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4 Propagarea fisurilor armate ı̂ntr-un material piezoelectric
pretensionat şi prepolarizat 8
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Capitolul 1

Introducere

Scurt istoric

Materialele piezoelectrice sunt utilizate pe scară largă ı̂n imagistica medicală,
acustică, ı̂n confecţionarea cipurilor, senzorilor, hidrofoanelor, a dispozitivelor de
acţionare a componentelor inteligente ale colectoarelor de energie. Proprietăţile
mecanice ale materialelor compozite cuplate cu proprietăţile electrice ale materialelor
piezoelectrice şi uneori şi cu proprietăţile magnetice oferă scopul de a fi create
structuri inteligente capabile să răspundă schimbărilor interne şi ı̂nconjurătoare, fiind
folosite datorită capacităţii lor de a reduce concentraţia stării de tensiune şi creşterii
rezistenţei la rupere ı̂n domeniul instrumentelor electronice, a aparatelor cu
microunde şi ı̂n optoelectronică.

Studiul câmpurior de tensiune ı̂ntr-un corp infinit anizotrop sau piezoelectric
cu o gaură eliptică a reprezentat s, i ı̂ncă reprezintă o problemă interesantă s, i
provocatoare ı̂n rândul mecanicienilor. Datorită simplităt, ii s, i important,ei sale,
acestor studii li s-au alocat un interes considerabil ı̂n ultimele decenii din partea
multor autori. Studiul unei fisuri sau al unei incluziuni eliptice aflate ı̂n materiale
compozite are o mare important, ă ı̂n teorie s, i aplicat, ii s, i a fost realizat ı̂n multe
lucrări interesante, de exemplu ([10], [17], [18], [53], [70]). Din cauza anizotropiei
materialului s, i a efectelor de cuplaj electroelastic, modelarea matematică a
materialelor piezoelectrice cu defecte precum fisuri, incluziuni, slăbiri nu este simplu
de elaborat din punct de vedere matematic, exemple ı̂n acest sens fiind lucrările ([9],
[29], [46], [66], [67], [68], [78], [76]).

Utilizând formalismul Lekhnitskii ([14], [42] [50]) pentru materiale compozite
elastice anizotrope s, i metoda lui Guz ([28]) pentru materiale compozite elastice
pretensionate, Soos ([4], [5], [19], [64]) obt, ine reprezentarea prin doi potent, iali
complecs, i Ψj = Ψj(zj), j = 1, 2 ı̂n cazul problemei incrementale antiplane a
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componentelor incrementale ale tensiunii θ, s, i ale deplasării incrementale electrice ∆.
Aplicat, iile materialelor piezoelectrice sunt de o deosebită important, ă pentru

utilizarea senzorilor s, i actuatorilor ı̂n structurile inteligente din imagistica medicală,
ı̂n aplicat, iile cu ultrasunete, ı̂n acustică s, i ı̂n multe alte domenii ale ingineriei.

În ultimele decenii, o mult, ime de cercetători au efectuat studii importante ı̂n
domeniul modelării matematice a materialelor piezoelectrice datorită efectelor de
cuplaj apărute ı̂ntre câmpurile electrice s, i cele mecanice. Eringen s, i Maugin ı̂n primul
volum al monografiei fundamentale ([24]) au studiat stabilitatea materialelor
piezoelectrice utilizând teoria micilor deformat, ii suprapuse peste marile deformat, ii ale
câmpurilor elastice statice. Sosa ([67]-[68]) a studiat propagarea fisurilor ı̂n medii
piezoelectrice bi s, i tridimensionale transversal izotrope ı̂n cadrul formalismului
tehnicilor de variabilă complexă. Într-una dintre primele lucrări referitoare la ruperea
la interfat,a materialelor piezoelectrice multifazice, Suo s, i colaboratorii ([69]), au
dezvoltat o nouă teorie a mecanicii ruperii pentru a determina intensitatea
fenomenului de rupere s, i propagarea fisurilor existente ı̂n materialele ceramice
piezoelectrice ı̂n cazul condit, iilor de histerezis. Cu ajutorul formalismului lui
Muskhelishvili sau a lui Lekhnitskii aplicat ı̂n cazul materialelor piezoelectrice
fisurate, mult, i autori au obt, inut rezultate importante si imperativ necesare studiului
propagării, Huang ([30]) sau a interact, iunii fisurilor, Crăciun ([15]-[20]). Bardzokas s, i
colaboratorii ([7]-[9]) au studiat ruperea plăcilor piezoceramice av̂ınd defecte sub
formă de fisuri/incluziuni s, i găuri, reducând problemele cu valori limită ale
electroelasticităt, ii la rezolvarea unor sisteme de ecuat, ii integrale.

Problemele de fisurare la interfat,a materialelor piezoelectrice au primit o atent, ie
considerabilă din partea multor cercetători ([29], [57]). Contribut, ii recente au fost
aduse ı̂n literatura de specialitate de către alt, i autori, ([46], [74]), ce au furnizat
solut, ii analitice pentru problemele de fisurare la interfat, ă, ı̂n cazul fisurilor de
interfat, ă impermeabile sau permeabile. Problema modelării matematice a
materialului piezoelectric deformat init, ial act, ionat de câmpuri mecanice s, i electrice
init, iale care cont, ine o fisură armată este insuficient studiată până ı̂n prezent.

În ultimii ani, mult, i cercetători au fost atras, i de studiul structurilor formate din
micro s, i nanomateriale datorită proprietăt, ilor lor speciale electronice, electrice s, i
mecanice. Grat, ie acestor proprietăt, i, nanomaterialele sunt utilizate ca componente
structurale elementare, nanobare ı̂n sistemele microelectromecanice (MEMS) sau ı̂n
sistemele nanoelectromecanice (NEMS) precum s, i ı̂n dispozitivele piezoelectrice. Cu
toate acestea, au apărut provocări majore pe măsură ce trecem la scara micro sau
nano. De aceea, sunt necesare viitoare studii ale materialelor piezoelectrice pentru
cres,terea performant,ei tehnologiei de fabricare a senzorilor, filtrelor, actuatorilor,
traductoarelor etc.
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Foliile subt, iri piezoelectrice sunt integrate cu componente structurale pentru a
obt, ine structuri inteligente precum MEMS sau NEMS s, i cu alte materiale compozite
utilizate pentru alte diverse funct, ii cerute. Cristalele piezoelectrice produc sarcină
electrică atunci când se aplică o anumită fort, ă mecanică s, i viceversa. Astfel,
materialul piezoelectric ne ajută la act, ionarea structurii ı̂n timp ce se utilizează
efectul piezoelectric, adică câmpul electric aplicat generează deformarea mecanică.

Utilizările MEMS/NEMS includ utilizarea traductoarelor pentru obt, inerea
energiei ı̂n ingineria mecanică, navigat, ie, industria aerospat, ială s, i marină, imagistica
medicală cu ultrasunete, la imprimarea cu jet de cerneală, la monitorizarea fluidelor
cu ajutorul surselor de alimentare piezoelectrice s, i ı̂n cazul dispozitivelor cu unde
acustice de suprafat, ă. Odată cu progresele sistemelor MEMS/NEMS moderne,
necesarul surselor de alimentare se reduce s, i, prin urmare, suntem orientat, i spre noi
amendamente ale teoriei de bază a piezoelectricităt, ii.

Există un număr mare de lucrări de cercetare care descriu teoriile de bază ı̂n
cadrul studiului materialelor piezoelectrice s, i a altor materiale conexe, dintre care
vom cita numai câteva ı̂n cele ce urmează. Ies,ean, ([39]) a investigat s, i a obt, inut
rezultatele fundamentale ı̂n cazul problemei deformării plane pentru materialele
piezoelectrice omogene anizotrope. Liang s, i Shen, ([44]) au examinat ı̂ncovoierea
nanobarelor de tip Bernoulli-Euler cu efect piezoelectric. Eom s, i Trolier-McKinstry,
([23]) au studiat proiectarea hetero-structurii MEMS cu peliculă subt, ire cu efect
piezoelectric. Vahdat s, i colaboratorii săi, ([71]) au investigat structura tip sandwich
rezonator ı̂ntre două straturi piezoelectrice. Sadek s, i Abukhaled, ([56]) au analizat
vibrat, iile unei grinzi datorate căldurii emise de către un actuator piezoelectric.
Kumar s, i Sharma, ([38]) au studiat amortizarea termoelastică ı̂ntr-o grindă
piezotermoelastică utilizând ecuat, ia termică derivată de ordin fract, ional pentru un
material izotrop transversal. Li s, i He, ([43]) au studiat bara piezoelectrică cu
elasticitate nelocală, conduct, ie termică de ordin fract, ional s, i sursă de căldură mobilă.
Zenkour, ([73]) a studiat răspunsul termomecanic al microbarei cu ajutorul teoriei
analizei tensiunii de cuplu modificate supuse la două temperaturi. S, i alt, i cercetători
au studiat comportamentul nanobarei piezoelectrice, precum Sharma s, i Kaur, ([61],
[62]), Abouelregal s, i Zenkour, ([2]), Lata s, i Kaur, ([40]).

Scopul s, i obiectivele cercetării

În această teză de doctorat, ı̂mi propun să studiez s, i să obt, in următoarele
rezultate:

1. Am obt, inut o solut, ie ı̂ntr-o formă elementară, compactă pentru potent, ialii
complecs, i precum s, i a câmpurilor incrementale de tensiune s, i electricitate pentru
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problema unei incluziuni eliptice aflate ı̂ntr-un material piezoelectric pretensionat s, i
prepolarizat acţionat la mari distanţe de tensiuni de forfecare antiplane constante s, i
uniforme, utilizând metoda transformării conforme.

2. În cazul unui material piezoelectric act, ionat init, ial de câmpuri mecanice s, i
electrice s, i care cont, ine o fisură armată de lungime 2a > 0 situată pe axa Ox1, supusă
Modului III antiplan de rupere clasică, am obt, inut si rezolvat problemele
Riemann-Hilbert găsite ı̂n potent, iali complecs, i, obt, inând ı̂n cazul unei valori
constante pentru tensiunea antiplană aplicată, potent, ialii complecs, i, câmpurile
incrementale de deplasare s, i de tensiune, precum s, i direct, ia de propagare a unei fisuri
armate ı̂ntr-un material piezoelectric de tip PZT.

3. În contextul teoriei piezotermoelasticităt, ii generalizate sunt obt, inute noi
modele matematice pentru nanobarele de tip piezotermoelastică, determinând astfel
expresiile pentru deflect, ia laterală, potent, ialul electric, momentul termic, amortizarea
termoelastică s, i saltul frecvent,ei.

Rezultatele originale ale celor trei studii de mai sus, obt, inute de autor sunt
prezentate fiecare ı̂n Capitolele 3, 4 s, i 5. De asemenea, acestă teză de doctorat
cont, ine acest capitol introductiv, un capitol prezentând preliminariile studiului, un
capitol cont, inând concluziile studiilor din teza de doctorat s, i un capitol prezentând
titlurile bibliografice.

Mult,umiri

Doresc să adresez mult,umiri conducatorului meu de doctorat, prof. univ. dr.
Crăciun Eduard-Marius, care m-a ı̂ndrumat, ı̂ncurajat s, i sprijinit de-a lungul perioadei
studiilor doctorale, precum s, i profesorilor din comisia de ı̂ndrumare care m-au ajutat
la formarea mea ı̂n aces,ti ani de pregătire ai stagiului de doctorat.

4



Capitolul 2

Preliminarii

Rezultatele originale ale tezei de doctorat le găsim ı̂n Capitolele 3-5.

În Capitolul 3 al prezentei teze de doctorat studiem problema unei
incluziuni/fisuri eliptice ı̂ntr-un material piezoelectric pretensionat s, i prepolarizat
supus unor tensiuni de forfecare antiplane, constante s, i uniforme la distant, ă, conform
modului trei de rupere, utilizând reprezentarea câmpurilor incrementale elastice s, i
electrice prin doi potent, iali complecs, i Ψj = Ψj(zj), j = 1, 2 s, i tehnica reprezentării
conforme a regiunilor cu fisură eliptică ı̂n exteriorul cercului unitar. Coeficient, ii
necunoscut, i ai funct, iilor analitice Ψ1(z1) s, i Ψ2(z2) reprezentate prin două serii
Laurent ı̂n două plane complexe sunt determinat, i din condit, iile pe frontieră s, i la
limită. În cazul unui material piezoelectric pretensionat s, i prepolarizat de clasa 4̄2m
cu o incluziune eliptică de tip fisură, când semiaxa mică tinde spre zero, potent, ialii
complecs, i obt, inut, i ı̂n acest capitol sunt de aceeas, i formă cu cei rezultat, i din problema
propagării fisurii prin rezolvarea problemei Riemann-Hilbert, ([19], [64]).

În Capitolul 4 analizăm starea antiplană a materialelor piezoelectrice
pretensionate s, i prepolarizate care cont, in o fisură armată, urmând modelul fisurii
armate utilizat de Bigoni s, i colaboratorii ([12], [72]). Folosindu-ne de celebra
monografie a lui Eringen s, i Maugin ([24]) deducem legile echilibrului incremental,
ecuat, iile constitutive s, i condit, iile suficiente ı̂n care pot exista stări incrementale
antiplane ı̂n materialul piezoelectric pretensionat s, i prepolarizat de tip PZT ([63]),
având axa de polarizare a materialului ı̂n direct, ia pozitivă Ox3. În acest caz, starea
incrementală antiplană poate fi reprezentată prin doi potent, iali complecs, i s, i ı̂n cazul
ı̂n care tensiunea incrementală aplicată are o valoare constantă, determinăm
expresiile asimptotice ale potent, ialilor complecs, i s, i reprezentările asimptotice ale
câmpurilor incrementale mecanice si electrice. Extinzând criteriul densităt, ii energiei
de deformare al lui Sih din cazul materialelor izotrope ([59], [63]) ı̂n cazul materialelor
piezoelectrice pretensionate s, i prepolarizate determinăm direct, ia de propagare a
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fisurii armate pentru un anumit material piezoelectric PZT ı̂n funct, ie de constanta de
rigiditate, s, i de câmpurile init, iale elastice s, i electrice.

În Capitolul 5 studiem comportamentul unei nanobare piezotermoelastică având
capetele fixate şi ţinute la o temperatură constantă, utilizând teoria
piezotermoelasticităţii generalizate. Din modelul matematic astfel formulat obţinem
expresiile adimensionale pentru deflecţia laterală, potenţialul electric, momentul
termic, amortizarea termoelastică şi saltul frecvenţei. În contextul teoriei
piezotermoelasticităţii generalizate, utilizând reprezentările grafice cu ajutorul
programului MATLAB am studiat influenţa efectului frecvenţei ı̂n reprezentarea
soluţiilor obţinute pentru deflecţia laterală, potenţialul electric, momentul termic,
amortizarea termoelastică şi a saltului frecvenţei ı̂n funct, ie de lungimea nanobarei ı̂n
cadrul teoriei cuplate (CT), teoriei Lord-Shulman (LS) şi respectiv teoriei
Green-Lindsey (GL).
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Capitolul 3

Material piezoelectric
pretensionat şi prepolarizat cu
fisură eliptică

Scopul principal al prezentului capitol constă ı̂n obţinerea unor noi rezultate
referitoare la soluţia exprimată prin potenţiali complecşi a problemei unei fisuri
eliptice aflate ı̂ntr-un material piezoelectric pretensionat şi prepolarizat acţionat la
mari distanţe de tensiuni de forfecare antiplane constante şi uniforme.

Structura capitolului de faţă este următoarea: ı̂n Subcapitolul 3.1 este prezentată
reprezentarea câmpurilor incrementale elastice şi electrice prin doi potenţiali
complecşi ı̂n cazul unui material piezoelectric pretensionat şi prepolarizat. În
Subcapitolele 3.2 şi 3.3 sunt evidenţiate rezultatele originale obţinute. În
Subcapitolul 3.2 utilizând condiţiile la limită şi metoda reprezentării conforme
determinăm expresiile generale ale potenţialilor complecşi ca serii Laurent, iar ı̂n
Subcapitolul 3.3 determinăm coeficienţii potenţialilor complecşi ı̂n cazul problemei
unei fisuri eliptice ı̂ntr-un material piezoelectric pretensionat şi prepolarizat de clasa
4̄2m. Noutatea acestui capitol o reprezintă obţinerea unei soluţii elementare sub
formă compactă a potenţialilor complecşi cu ajutorul cărora determinăm câmpurile
incrementale electrice şi de tensiune ı̂n cazul problemei fisurii eliptice aflate ı̂ntr-un
material piezoelectric pretensionat şi prepolarizat acţionat la mari distanţe de
tensiuni de forfecare antiplane constante şi uniforme.

Rezultatele acestui capitol au fost publicate ı̂n lucrarea [21] Craciun, EM., Ghita,
GMD., Rapeanu, E. Prestressed and prepolarized piezoelectric material with an
elliptical hole. Z. Angew. Math. Phys. 76, 18 (2025).
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Capitolul 4

Propagarea fisurilor armate
ı̂ntr-un material piezoelectric
pretensionat şi prepolarizat

Scopul principal al prezentului capitol constă ı̂n obţinerea unor noi rezultate
referitoare la modelarea matematică a unei fisuri armate/ranforsate (bridge crack) ı̂n
materiale piezoelectrice pretensionate şi prepolarizate ı̂n modul III de rupere clasică.

Structura capitolului de faţă este următoarea: ı̂n Subcapitolul 4.1 este prezentată
starea antiplană a materialelor piezoelectrice pretensionate şi prepolarizate, studiind
cazul materialului piezoelectric pretensionat şi prepolarizat de tip PZT. În
Subcapitolele 4.1, 4.2 şi 4.3 sunt evidenţiate rezultatele originale obţinute. În
Subcapitolul 4.2 studiem problema unei fisuri antiplane armate ı̂n materiale
piezoelectrice pretensionate şi prepolarizate. Utilizând condiţiile la limită ale fisurii
armate se obţin ecuaţiile diferenţiale liniare, neomogene având potenţialii complecşi
ca necunoscute. Pentru o valoare constantă a sarcinilor incrementale aplicate,
determinăm potenţialii complecşi, deplasările şi câmpurile incrementale de tensiune
corespunzătoare celui de-al treilea mod al ruperii clasice. În Subcapitolul 4.3 vom
extinde criteriul de rupere al densităţii energiei de deformaţie al lui Sih (SED) ı̂n
cazul materialelor piezoelectrice pretensionate şi prepolarizate şi vom studia
propagarea fisurilor armate aflate ı̂n modul antiplan de rupere ı̂ntr-un material
piezoelectric de tip PZT. Cu ajutorul rezultatelor numerice şi reprezentării grafice a
densităţii energiei incrementale de deformare, obţinem direcţia de propagare a fisurii
funcţie de diferite valori ale constantei de rigiditate precum şi de diferite valori ale
câmpurilor iniţiale elastice şi electrice.

Rezultatele acestui capitol au fost publicate ı̂n lucrarea [25] Ghita, GMD., Craciun,
E.M.: Reinforced crack propagation in a prestressed and prepolarized piezoelectric
material, Compos. Struct. 2024;342:118248.
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Capitolul 5

Modelarea matematică a
comportamentului dinamic pentru
nanobarele piezotermoelastice

Scopul principal al prezentului capitol constă ı̂n obţinerea unor noi rezultate
referitoare la modelarea matematică a materialelor piezoelectrice unidimensionale ı̂n
contextul teoriei piezotermoelasticităţii generalizate.

Structura capitolului de faţă este următoarea: ı̂n Subcapitolul 5.1 sunt prezentate
ecuaţiile de bază, relaţiile constitutive şi ecuaţia de conducţie a căldurii pentru un
mediu piezo-termoelastic anizotrop. În Subcapitolele 5.1 şi 5.2 sunt evidenţiate
rezultatele originale obţinute. În Subcapitolul 5.2 determinăm soluţia problemei
noastre ı̂n cazul unei nanobare piezotermoelastică, omogenă, transversal izotropă cu
secţiunea dreptunghiulară, supusă acţiunii unei sarcini de tip armonic uniform
distribuite aflate ı̂n stare de repaus cu extremităţile fixate şi supuse unei temperaturi
constante. Pentru diferite cazuri particulare ı̂n cazul materialului piezotermoelectric
titanat de zirconat de plumb (PZT-5A) se observă influenţa efectului frecvenţei ı̂n
reprezentarea soluţiilor obţinute pentru deflecţia laterală, potenţialul electric,
momentul termic, amortizarea termoelastică şi a saltului frecvenţei versus lungimea
nanobarei ı̂n cadrul teoriei cuplate (CT), teoriei Lord-Shulman(LS) şi respectiv
teoriei Green-Lindsey (GL).

Rezultatele acestui capitol au fost publicate ı̂n lucrarea [26] Kaur, I., Singh, K.,
Ghita, GMD.: New analytical method for dynamic response of thermoelastic
damping in simply supported generalized piezothermoelastic nanobeam, ZAMM-Z.
Angew. Math. Me. 2021;101(10):e202100108.
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Capitolul 6

Concluzii

Structura tezei de doctorat

Prezenta teză de doctorat, intitulată Modelarea matematică a
fenomenului de propagare a fisurilor ı̂n materiale piezoelectrice sub
act,iunea câmpurilor init,iale , este structurată ı̂n s,ase capitole urmate de o
bibliografie cu 82 de titluri.

Rezultate originale

Contribuţiile originale, incluse ı̂n prezenta teză de doctorat, sunt următoarele:

1. Studiul inclus ı̂n Capitolul 3, intitulat Material piezoelectric pretensionat şi
prepolarizat cu fisură eliptică a fost publicat ı̂n lucrarea [21].

2. Studiul inclus ı̂n Capitolul 4, intitulat Propagarea fisurilor armate ı̂ntr-un
material piezoelectric precomprimat şi prepolarizat a fost publicat ı̂n lucrarea
[25].

3. Studiul inclus ı̂n Capitolul 5, intitulat Modelarea matematică a
comportamentului dinamic pentru nanobarele piezotermoelastice a fost publicat
ı̂n lucrarea [26] s, i extins pentru nanobarele magnetopiezotermoelastice ı̂n
lucrarea [27].

Rezultate diseminate

Articole publicate pe durata studiilor doctorale, incluse ı̂n teza de doctorat
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Pe durata studiilor doctorale am publicat următoarele articole, care au fost
incluse ı̂n prezenta teză de doctorat:

1. Craciun, EM., Ghita, GMD., Rapeanu, E. Prestressed and prepolarized
piezoelectric material with an elliptical hole. Z. Angew. Math. Phys.
2025;7618:18 , https://doi.org/10.1007/s00033-024-02396-4, revistă indexată
ISI, cuartila Q2 (IF, AIS), vezi [21].

2. Ghita, GMD., Craciun, E.M.: Reinforced crack propagation in a prestressed
and prepolarized piezoelectric material, Compos. Struct. 2024;342:118248,
https://doi.org/10.1016/j.compstruct.2024.118248, revistă indexată ISI, cuartila
Q1 (IF, AIS), vezi [25].

3. Kaur, I., Singh, K., Ghita, GMD.: New analytical method for dynamic
response of thermoelastic damping in simply supported generalized
piezothermoelastic nanobeam, ZAMM-Z Angew Math Me.
2021;101(10):e202100108, https://doi.org/10.1002/zamm.202100108, revistă
indexată ISI, cuartila Q1 (IF), vezi [26].

4. Kaur, I., Singh, K., Ghita, GMD., Craciun, EM.: Modeling of a
magneto-electro-piezo-thermoelastic nanobeam with two temperature subjected
to ramp type heating, Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf.
Sci 2022;23(2):143-152, revistă indexată ISI, cuartila Q3 (IF, AIS), vezi [27].

Prezentarea rezultatelor cercetării ştiinţifice

Conferinţele ştiinţifice naţionale şi internaţionale, ı̂n cadrul cărora am prezentat
rezultatele cercetării pe durata studiilor doctorale, sunt următoarele:

� Students’ International Conference, CERC, Bucureşti, 06-07
Noiembrie, 2020, Academia Tehnică Militară Ferdinand I Bucures,ti, cu
lucrarea Cracks in a prestresed and prepolarized piezoelectric material.

� Conferint,a nat, ională a student, ilor, masteranzilor s, i doctoranzilor
Tehnonav Jr., Edit, ia a-XI-a, 25 Mai, 2022, Universitatea Ovidius din
Constant,a, cu lucrarea Modelarea matematica a nanobarelor
magneto-electro-piezotermoelastice.

� 15-th International Conference on advanced computational engineering
and Experimenting, ACEX 2022, Florent,a, Italia, 03-07 Iulie, 2022,

11



cu lucrarea ACEX 420 Anti-plane interface crack in piezoceramics with initial
fields, la sectiunea Plasticity and Constitutive Modelling (SS2), online, 06 Iulie
ora 10:20-10:50.

� 27th International Conference on Composite Structures, ICCS27,
Ravenna, Italia, 03-06 Septembrie, 2024, University of Bologna, cu
lucrarea 1224 Reinforced crack propagation in a prestressed and
prepolarizedpiezoelectric material, la sectiunea Delamination, damage, fracture,
failure and durability of composites online, 06 Septembrie ora 11:50-12:10.

Premierea rezultatelor cercetării ştiinţifice

Dintre articolele publicate pe parcursul studiilor doctorale, enumerate ı̂n
Subcapitolul 6.3.1 a fost premiat ı̂n cadrul competit, iei ”Premierea rezultatelor
cercetării- UEFISCDI” următorul articol:

1. New analytical method for dynamic response of thermoelastic
damping in simply supported generalized piezothermoelastic
nanobeam, ZAMM-Z. Angew. Math. Me. 2021;101(10):e202100108,
vezi [26].

Dacă va continua competit, ia ”Premierea rezultatelor cercetării- UEFISCDI” s, i
următoarele două articole enumerate ı̂n Subcapitolul 6.3.1 vor fi premiate, fiind ı̂n
cuartilele Q2 (zona galbenă) s, i respectiv Q1 (zona ros, ie):

1. Craciun, EM., Ghita, GMD., Rapeanu, E. Prestressed and prepolarized
piezoelectric material with an elliptical hole. Z. Angew. Math. Phys.
2025;7618:18 , https://doi.org/10.1007/s00033-024-02396-4, revistă indexată
ISI, cuartila Q2 (IF, AIS), vezi [21].

2. Ghita, GMD., Craciun, E.M.: Reinforced crack propagation in a prestressed
and prepolarized piezoelectric material, Compos. Struct. 2024;342:118248,
https://doi.org/10.1016/j.compstruct.2024.118248, revistă indexată ISI, cuartila
Q1 (IF, AIS), vezi [25].

Citări

Articolele publicate pe parcursul studiilor doctorale, enumerate ı̂n Subcapitolul
6.3.1 au până ı̂n prezent 29 de citări ı̂n Web of Science, numărul citărilor pentru fiecare
lucrare fiind ment, ionat mai jos:
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1. Craciun, EM., Ghita, GMD., Rapeanu, E. Prestressed and prepolarized
piezoelectric material with an elliptical hole. Z. Angew. Math. Phys.
2025;7618:18 , https://doi.org/10.1007/s00033-024-02396-4, revistă indexată
ISI, cuartila Q2, vezi [21],1 citare.

2. Ghita, GMD., Craciun, E.M.: Reinforced crack propagation in a prestressed
and prepolarized piezoelectric material, Compos. Struct. 2024;342:118248,
https://doi.org/10.1016/j.compstruct.2024.118248, revistă indexată ISI, cuartila
Q1, vezi [25], 2 citări.

3. Kaur, I., Singh, K., Ghita, GMD.: New analytical method for dynamic
response of thermoelastic damping in simply supported generalized
piezothermoelastic nanobeam, ZAMM-Z. Angew. Math. Me.
2021;101(10):e202100108, https://doi.org/10.1002/zamm.202100108, revistă
indexată ISI, cuartila Q2, vezi [26], 19 citări.

4. Kaur, I., Singh, K., Ghita, GMD., Craciun, EM.: Modeling of a
magneto-electro-piezo-thermoelastic nanobeam with two temperature subjected
to ramp type heating, Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf.
Sci 2022;23(2):143-152, revistă indexată ISI, cuartila Q3, vezi [27], 7 citări.

Direcţii viitoare de cercetare

1. Pe viitor ne propunem să studiem materialele piezoelectrice pretensionate s, i
prepolarizate cu gaură/fisură eliptica, cu metoda transformării conforme s, i utilizarea
potent, ialilor complecs, i ı̂n cazul materialelor termopiezoelectrice pretensionate s, i pentru
materialele magnetoelectroelastice anizotrope. De asemenea, ne propunem să studiem
interact, iunea dintre o gaură eliptică s, i o fisură clasică ı̂n materialele enumerate, precum
s, i extinderea studiului de la o gaură/fisură eliptică cu fet,ele libere de tensiuni la cazul
unei găuri/fisuri eliptice armate situată la interfaţa dintre două materiale piezoelectrice
prepolarizate.

2. Vom extinde studiile actuale la cazurile de interacţiune a fisurilor armate
coliniare sau/şi paralele, din cazul materialelor compozite anizotrope pretensionate, (a
se vedea [15]-[20]) pentru materiale piezoelectrice pretensionate şi prepolarizate sau la
materiale magnetotermopiezoelectrice pretensionate şi prepolarizate.
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