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Introducere

Studiul incluziunilor de evolutie neliniare in spatii Hilbert reprezinta un subiect central in teoria
ecuatiilor cu derivate partiale, datorita atat importantei sale teoretice, cat si aplicabilitatii
acestora intr-un numar mare de domenii, de la mecanica si teoria controlului optimal, pana la
sisteme de tip reactie-difuzie si propagarea undelor. Printre cele mai importante instrumente
utilizate in acest domeniu se numara metodele de monotonie, dezvoltate semnificativ pentru a
studia incluziuni diferentiale asociate operatorilor maximal monotoni, eventual perturbati prin
termeni nemonotoni.

Aceasta teza este dedicata studiului a douéa clase de probleme la limita neliniare de ordinul
al doilea, formulate in spatii Hilbert reale. Incluziunile de evolutie asociate sunt guvernate de
operatori maximal monotoni si includ perturbatii neliniare de diverse tipuri, precum termeni
nemonotoni, operatori Lipschitz sau termeni subliniari.

Primul capitol al tezei are un caracter introductiv si este impartit in mai multe sectiuni:
Context si motivatie, Lucrari relevante, Obiectivele tezei, Structura tezei si Contributii stiintifice
si diseminare. Acesta este urmat de un capitol de Preliminarii, in care sunt prezentate notiunile
si rezultatele clasice pe care le vom utiliza, grupate In trei sectiuni: Spatii de functii, Cateva
instrumente abstracte si Operatori mazimal monotoni.

Lucrarea este structurata in doua parti, ambele continand contributii originale ale autorului.
Partea I: Incluziuni de evolutie in spatii Hilbert cu parametri corespunde Capitolului 1 al acestui
rezumat, iar Partea a Il-a: Probleme la limitad cu condifii antiperiodice si parametri in spatii
Hilbert cuprinde Capitolele 2, 3 si 4. Rezultatele prezentate in acest rezumat sunt date fara
demonstratii, insa sunt indicate metodele utilizate.

Teza se incheie cu un capitol in care sunt sintetizate principalele obiective atinse. De
asemenea, sunt conturate cateva directii de cercetare viitoare, dintre care amintim extinderea
cadrului abstract la spatii Banach, studiul incluziunilor diferentiale cu perturbatii nemonotone
si analiza comportamentului solutiilor in cazul relaxarii ipotezelor asupra operatorilor care
intervin 1n incluziunile de evolutie considerate.

Pentru claritate si concizie, acest rezumat extins nu include titluri de sectiuni sau sub-
sectiuni, oferind totusi o prezentare completa a rezultatelor obtinute in fiecare parte a tezei.
Referintele bibliografice mentionate sunt selectate strict in functie de continutul prezentat, iar
lista completa de lucrari poate fi consultata in varianta integrala a tezei.

Restul acestui capitol este dedicat prezentarii unor lucrari relevante din literatura, prin care
sunt punctate contributiile acestei teze in raport cu studiile existente.



Introducere

incepem prin formularea precisa a primei clase de probleme analizate in Partea I. Aceasta
include problemele la limita cu conditii de tip Dirichlet—Neumann:

(P.)) —eu’(t) + pu/(t) + Au(t) + Bu(t) > f(t) a.p.t. t€(0,T) (Eep)
) w(0) = uo, W/(T) =0, (BC)

unde € > 0, g > 0 sunt doi parametrii. Pentru p > 0, modelul redus corespunzator este
problema Cauchy

P, pu!(t) + Au(t) + Bu(t) > f(t) a.p.t. te€ (0,T) (EL)
a U(O) = Uup. (IO)

Consideram de asemenea incluziune algebrica neliniara:
(Eoo) Au(t)+ Bu(t) > f(t) apt. te(0,T).

Aceasta incluziune apare in mod natural ca limita stationara a solutiilor problemei (Px,).

Operatorul A este maximal monoton, iar B este un operator Lipschitz.

Prezentam pe scurt cateva lucrari relevante din literatura privind incluziunile de evolutie
abstracte de ordinul al doilea. Studiul incluziunilor de forma u”(t) € Au(t), cu conditii la limita
de forma u(0) = a, u(T) = b, cu a,b € D(A), a fost initiat de V. Barbu [0, 7]. H. Brézis [9]
a extins analiza pe intervalul [0,00), incluzand conditii la limita neliniare de tipul u/(0) €
07(u(0) — a). R.E. Bruck [!1] a introdus termeni neomogeni, analizand incluziuni de tipul
u'(t) € Au(t) + f(t) si conditii la limitd pentru a,b € D(A). Mai recent, probleme similare
de ordinul al doilea cu conditii de tip Dirichlet-Neumann au fost studiate de L. Barbu si G.
Morosanu [3], precum si de G. Morosanu si A. Petrusel [21, Lemma 4]. Totusi, rezultatele
acestora nu acopera toate situatiile considerate in Capitolul 1.

Convergenta solutiilor problemei (P.,) atunci cand ¢ — 04 a fost studiata in mai multe
contexte. M. Ahsan si G. Morosanu [!] au analizat cazul y = 1, cu A operator liniar si tare
monoton, caz extins ulterior la operatori maximal monotoni generali de catre L. Barbu si
G. Morosanu [3]. G. Morosanu si A. Petrusel [21] au studiat comportamentul asimptotic in
doua situatii: (i) e — 0, p > 0 fixat, si (ii) € > 0 fixat, 4 — 0. Rezultatele prezentate in
Capitolul 1 constituie contributii originale care generalizeaza aceste lucrari anterioare.

Partea a II-a introduce probleme cu conditii la limita antiperiodice intr-o forma abstracta,
particularizata de-a lungul Capitolelor 2— 4, prin ipoteze diferite.

Problema (P;,)qp este formulata abstract astfel:

(Poy) { —eu(t) + p (t) + Au(t) + Bu(t) > f(t)/sau F(t,u(t)) a.p.t. te (0,T),
P u(0) +u(T) =0, o/(0)+/(T) =0,

unde f € L?(0,T;H), F : [0,T] x H — H este o aplicatie de tip Carathéodory care verific o
conditie de crestere subliniara, iar € > 0, g > 0 sunt parametri.
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Pentru p > 0, problema redusa corespunzatoare are forma:

(P,) { pu'(t) + Au(t) + Bu(t) > f(t)/sau F(t,u(t)) a.p.t. t€ (0,7),
HIP u(0) +w(T) = 0.

De asemenea, incluziunea algebrica asociata este data de:
(Eo0)ap Au(t) + Bu(t) > f(t)/sau F(t,u(t)) a.p.t. te (0,T).

Operatorii A si B, care pot fi multivalenti, verificd ipoteze distincte in fiecare capitol.

Problema (P,)qp cu A operator ciclic monoton si B = 0 a fost studiata de Okochi [22], iar
Haraux [17] a analizat cazul Bu = Au, cu A > 0. Aizicovici si Pavel [2] au abordat problemele
(Pep)ap i (Py)ap in cazul B = 0 sau B = —01, unde A = Jp domina B. Autorii au demonstrat
existenta, unicitatea si dependenta continua a solutiilor antiperiodice in cazul B = 0, precum
si rezultate de existenta In cazul B = —0vy. Aceste lucrari au motivat cercetari ulterioare, cu
contributii notabile in spatii Hilbert datorate lui Chen [13], Chen si colaboratorilor [12, 14,

|, precum si lui Couchouron si Precup [16]. Rezultatele obtinute in aceasta lucrare privind
existenta solutiilor pentru aceste probleme completeaza aceste studii.

Comportamentul solutiilor problemei ( Pz, )qp dar si aproximarea celor ale problemelor (P,)qp
si (Eoo)ap nu au fost tratate anterior in context antiperiodic. Aceasta lucrare completeaza acest
vid si aduce perspective noi.

In final, prezentam o notiune esentiala, si anume conceptul de solutie tare pentru problemele
introduse anterior. Aceasta definitie ofera cadrul functional precis in care formulam si studiem
problemele din Partea a II-a.

Definitia 1 ([5], [25], [20]). O functie u € W?2(0,T; H) se numeste solutie (tare) a problemei
(Pep)ap daca sunt indeplinite simultan urmatoarele conditii:

(1) u(t) € D(A) a.p.t. t € (0,7T);

(i1) exista &, m € L*(0,T; H) astfel incat

—eu(t) + pu'(t) + £(t) — n(t) = f(t)(sau F(t,u(t))) si 01
&(t) € Ault), n(t) € Bu(t) a.p.t.t € (0,7); -

(i7i) uw(0) + u(T) =0, ' (0) + «/(T) = 0.
In mod similar, o functie u € WY2(0,T; H) se numeste solutie a problemei (Pu)ap daca u
indeplineste conditiile (i), (i1) (cu e =0), si u(0) +u(T) = 0.

Observam cd, dacd operatorii A si/sau B sunt univoci, atunci pentru orice t € [0,T] avem
E(t) = Au(t) si/sau n(t) = Bu(t). In acest caz, definitia de mai sus se simplificd, iar &(t)
si/sau n(t) se inlocuiesc cu expresiile Au(t) si/sau Bu(t), respectiv.

Cuvinte cheie: incluziune de evolutie, regularizare in sens Lions, solutie antiperiodica,
operator maximal monoton, subdiferentiala, operator Lipschitz, ecuatii parabolice semiliniare,
sisteme diferentiale neliniare de ordinul intai, ecuatia caldurii, sistemul telegrafistilor.



Partea 1

Incluziuni de evolutie in spatii Hilbert cu parametri



Capitolul 1

Incluziuni de evolutie cu doi parametri

Acest capitol oferd o prezentare detaliata a rezultatelor publicate intr-o lucrare realizata in
colaborare cu L. Barbu si G. Morosanu, publicata in Nonlinear Anal. Real World Appl. [1].

Dintre contributiile originale din acest capitol, mentionam in rezumat Teoremele 1.1-1.7.
Celelalte rezultate obtinute sunt prezentate in teza completa.

Fie H un spatiu Hilbert real, cu produsul scalar notat (-,-) si norma asociata acestuia || - ||.
Consideram urmatoarea problemé cu conditii la limita in spatiul Hilbert H

(Po) { u"(t) + p (t) + Au(t) + Bu(t) 3 f(t), 0 <t <T, 29
= u(0) = up, ' (T)=0, (BC)

unde T > 0 este un moment de timp dat, ¢ > 0, p > 0 sunt doi parametri, iar A, B sunt
operatori care satisfac urmétoarele ipoteze:

(Ha) A: D(A) C H — H este un operator maximal monoton (eventual multivoc, caz in care
(Eep) este o incluziune de evolutie);
(Hg) B : D(B) = H — H este un operator Lipschitz, adica existd o constanta L > 0 astfel
incat || Bx — By ||[<L| x—y|, pentru orice z, y € H.

Ipoteze suplimentare vor fi introduse pe parcursul capitolului.

Pentru p > 0 consideram si urmatoarea problema Cauchy:

pu (t) + Au(t) + Bu(t) 2 f(t), 0 <t < T, (E,)
() { u(0) = uo. (IC)

Problema (P,) este o problema redusa, obtinuta din (F.,) pentru € = 0, care este considerata
o problema perturbata asociata lui (P,). Observam ca in problema (P,) este pastrata doar



Capitolul 1 Incluziuni de evolutie cu doi parametri

conditia u(0) = ug din problema (P.,).
Consideram, de asemenea, urméatoarea incluziune (algebrica):

(Eoo) Ault) + Bult) > f(t), 0< t < T,

care se obtine luand € = 0 si ¢ = 0 in ecuatia (E.,).
Pentru inceput, introducem definitia solutiilor (tari) corespunzatoare problemelor (P,) si
(Pep)-

Definitia 2 ([19, Definitia 2.1, p. 47]). Presupunem ca ipotezele (Ha) si (Hp) sunt satisfacute
siug € D(A).

Fie p > 0. O functie u € WH2(0,T; H) se numeste solutie (tare) a problemei (P,) dacd sunt
indeplinite simultan urmdtoarele conditii:

(1) u(t) € D(A) a.p.t. t € (0,7T);

(i1) exista & € L?(0,T; H) astfel incdt

pu! (t) + E(t) + Bu(t) = f(t) si&(t) € Au(t) a.p.t. t € (0,T); (1.1)

(31) u(0) = uyp.

Fie e > 0 si g > 0. In mod similar, o functie uw € W>2(0,T; H) se numeste solutie (tare) a
problemei (P.;,) dacd u indeplineste conditia (),

(i1)’ ewista &€ € L*(0,T; H) astfel incat

—eu” (t) + ' (t) + £(t) + Bu(t) = f(t) si £(t) € Au(t) a.p.t. t € (0,T); (1.2)

(i41)" u(0) = ug, «'(T) = 0.

In prima sectiune, ne propunem sa demonstram rezultate de existenta si unicitate pentru
solutiile problemei (F;,), precum si pentru incluziunea algebrica (Epg). Incepem prin studierea
problemei (Pz,).

Teorema 1.1 ([1]). Fiec > 0 si u > 0. Presupunem ca ipotezele (Hy) si (Hp) sunt indeplinite,
iar constanta Lipschitz L asociata lui B satisface
2e
L < ek (1.3)
Atunci, pentru orice ug € D(A) si orice f € L*(0,T;H), existd o solutie unicd u = Ugy €
W?22(0,T; H) a problemei (Pz,).

Demonstratia se bazeaza pe utilizarea regularizarii Yosida pentru a aproxima operatorul
neliniar A in cazul B = 0. Existenta si unicitatea solutiei se obtine prin argumente de compaci-
tate, incluzand Criteriul Arzela—Ascoli si proprietatea de demi-inchidere a operatorilor maximal
monotoni. Existenta gi unicitatea solutiei in cazul B # 0 rezulta dintr-un argument de punct
fix, folosind Principiul Contractiilor al lui Banach, in conditia impusa constantei Lipschitz L.



Capitolul 1 Incluziuni de evolutie cu doi parametri

Conditia L < % joaca un rol esential in rezultat, Insa nu este necesara in toate cazurile,
asa cum ilustreaza urmatorul exemplu.
Un contraexemplu simplu ([])
Consideram in H = R urméatoarea problema

—u’(t) + pu/(t) —u(t) =0, 0 <t <T,
(P) { u(0) =ug #0, ' (T)=0.

Pentru p = 0, solutia generald a ecuatiei de mai sus care satisface u(0) = ug este data de
u(t) = ug cost+csint, 0 <t < T.Daca T = 7/2, obtinem u'(7/2) = —ug # 0, deci problema de
mai sus nu are solutie. Observim ci nu este satisficuta conditia (1.3) (L = 1 > 8/7? = 2¢/T?).
Totusi, este posibil ca problema (F;,) sa aiba solutie chiar daca nu este satisfacuta conditia
(1.3). De exemplu, daca in problema (P) de mai sus, luam p = 0 si 7' = 27, atunci u = ug cost
este solutia unica a acesteia, desi conditia (1.3) nu este satisfacuta.
In continuare, consideram ecuatia (incluziunea) (FEgo). Introducem urmitoarea ipotezi
suplimentard pentru operatorul A.
(Hy)) A : D(A) C H — H (eventual multivoc) este maximal monoton si, in plus, tare
monoton de constanta w > 0; adica

(z —y, u—v) > w|u—v|?* pentru orice u, v € D(A) siz € Au, y € Av. (1.4)

Avem urmatorul rezultat de existenta si unicitate pentru solutia incluziunii (Fog).

Teorema 1.2 ([1]). Presupunem cd ipotezele (Ha) si (Hp) sunt indeplinite, cu constantele
w >0 si L >0 astfel incat L < w. Atunci, pentru orice f € WHP(0,T; H) si orice p € (1,00),
ecuatia (Egg) are o solutie unica u € WHP(0,T; H).

Dupa ce am stabilit ca problema (P.,) are solutie si aceasta este unica, analizam in conti-
nuare dependenta solutiei in raport cu parametrii € > 0 si p > 0. Mai precis, aratam ca solutia
ug,, depinde continuu de € si p, daca acestia tind catre eg > 0 si ug > 0. Acest rezultat se
obtine prin deducerea unor estimari adecvate in spatiul Hilbert L2(0,T; H) si prin utilizarea
atenta a unor argumente de interpolare.

Dupa ce am stabilit continuitatea solutiei u., in raport cu parametrii € si p, analizam in
continuare comportamentul asimptotic al acestei solutii cand € — 04 si p — po > 0. Aceasta
analiza are ca scop justificarea riguroasa a convergentei solutiei problemei perturbate, de ordinul
al doilea (P;,), la solutia problemei reduse, de ordinul intai (P,).

Teorema 1.3 ([1]). Presupunem cd ipotezele (Ha) si (Hp) sunt indeplinite, jo > 0 este fizat,
up € D(A), si f € WHL(0,T; H). Atunci, pentru orice € > 0 suficient de mic si pn > 0 suficient
de aproape de pg, problemele (P.,) si (P,) admit solutii unice ue, € W22(0,T; H), respectiv
uy € Whee(0,7T; H). In plus, are loc urmdtoarea estimare:

e — Waoll e o1y = OV + O( 1 — o [V/3). (1.5)
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Acest rezultat de convergenta se obtine prin impartirea demonstratiei in doi pasi. In primul
pas se demonstreaza ca solutia problemei (P,) converge citre solutia problemei (P,,) cand
1 — o, folosind o norma de tip Bielecki. In al doilea pas se estimeazi diferenta dintre u,
si u, prin utilizarea unei ponderi exponentiale, urmata de estimari deduse din proprietatea de
monotonie ale lui A si proprietatea de a fi Lipschitz a lui B. Cele doua estimari sunt apoi
combinate pentru a obtine rezultatul final.

Observatia 1.1 ([1]). Dacd e > 0 este un parametru mic si u este un numdr pozitiv fizat (de
exemplu = 1), atunci problema (perturbata) (P,) = (Eeu) + (BC) reprezinta o reqularizare
de tip Lions a problemei (reduse) (P,) = (E,) 4+ (IC). Pentru cazul in care A este liniar si
B =0, vezi [15].

Daca A este un operator ciclic monoton, are loc o convergenta similara, asa cum este precizat
in rezultatul de mai jos.

Teorema 1.4 ([!]). Presupunem ca A este subdiferentiala unei functii ¢ : H — (—00, +00]
proprii, conveze si inferior semicontinue, iar ipoteza (Hp) este indeplinita. Fie py > 0 fizat,
ug € D(A) si f € L?(0,T; H). Atunci, pentru orice € > 0 suficient de mic si p > 0 suficient
de aproape de po, problemele (P.,) si (P,) admit solutii unice uz, € W2%(0,T; H), respectiv
u, € WH2(0,T; H), iar estimarea (1.5) are loc.

Aceasta varianta a rezultatului de convergenta obtinut anterior se bazeaza pe tehnici simi-
lare. Estimarea normei derivatei lui w, se obtine folosind un rezultat bine cunoscut (vezi [10,
Theorem 3.6, p. 72]), in combinatie cu argumentul general de continuitate din primul pas al
demonstratiei Teoremei 1.3.

Sectiunea urmatoare este dedicatd studiului comportamentului asimptotic al solutiei ., a
problemei (P;,) atunci cand parametrii tind la zero, adica atunci cand € — 04 si 4 — 04. Ne
asteptam la un rezultat de convergenta a solutiei problemei perturbate la solutia incluziunii
algebrice (Eqp) dar nu in norma C([0,T]; H). Intr-adevir, deoarece uc,(0) = ug, in timp ce
u nu satisface in general u(0) = ug, apare un strat limita in jurul punctului ¢ = 0. Pentru a
compensa aceasta discrepanta, se introduce o functie corector.

Consideram mai intadi un model simplificat in care operatorul este A de forma A = wl cu
w >0, iar B=0. In acest caz, ecuatia redusa (Eyg) devine wu = f, iar functia corector poate
fi construita explicit. Mai precis, consideram problema
{ —eul, + pug, +wue, = f, t €(0,7T), (1.6)

e, (0) = uo, ug,(T)=0. ’

In acest caz am demonstrat urmatorul rezultat de convergenta.

Teorema 1.5 ([1]). Fiee > 0 siu > 0. Atunci, pentru orice ug € H si orice f € WH2(0,T; H),
problema (1.6) si ecuatia (Eoo) admit solutii unice ue, € W*2(0,T; H), respectivu = (1/w)f €
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WY2(0,T; H). Mai mult, pentru e, 1 < 1 si orice j > 1, are loc urmdtoarea estimare:

1 &’
Husu - (U + a)HC([O,T];H) =0 <M1/2 + 61/4 + m + Ml/2> . (17)

Demonstratia se bazeaza pe construirea unei functii corector a(t) care compenseaza discre-
panta dintre u., si v in vecinatatea lui ¢ = 0 si care verifica o ecuatie diferentiala ordinara in
H.

Consideram in continuare un cadru mai general, in care operatorul A este liniar, maxi-
mal monoton si tare monoton de constanta w > 0, iar B este Lipschitz. In aceste conditii,
convergenta se mentine, ins# in norma mai slab# a spatiului L?(0,T; H):

Teorema 1.6 ([1]). Fie 0 < ¢, u < 1, astfel incit ¢ < p?/(4L). Presupunem cd ipotezele
(Ha)" si (Hp) sunt indeplinite si, in plus, cd L < w. Atunci, pentru orice ug € D(A) si orice
f € WY2(0,T; H), problema (P.,) si ecuatia (Eo) admit solutii unice ue, € W>2(0,T; H),
respectivu € WH2(0,T; H). Mai mult, dacd A este un operator liniar, atunci are loc urmdtoarea
estimare:

| ey — u || 220,15 = O(1'/?). (1.8)

Observam ca, daca ipoteza (Hp) este inlocuita cu
(Hg) B:H — H este monoton si Lipschitz pe multimi marginite,
obtinem urmatorul rezultat de aproximare.

Teorema 1.7 ([1]). Fie0 < e, u < 1. Presupunem ca ipotezele (H4) si (Hg)' sunt indeplinite.
Atunci, pentru orice ug € D(A) si orice f € W12(0,T; H), problema (P.,) si ecuatia (Eo)
admit solutii unice ug, € W22(0,T; H), respectivu € WY2(0,T; H). Mai mult, dacd A este un
operator liniar, are loc urmatoarea estimare:

1/2 , _1/4 &l .
H Uep — U HL?(O,T;H)Z @ <M / +e€ / + W) Vi > 1 (1~9)
In acest context, demonstratia Teoremei 1.6 poate fi reluata aproape integral, modificarea

esentiala aparand in estimarea termenului neliniar care implica operatorul B.

Observatia 1.2 ([1]). Cu toate acestea, estimarile obtinute in Teoremele 1.6 si 1.7 sunt in
norma spatiului L?(0,T; H), nu in norma din C([0,T); H). Obtinerea unor estimdri in norma
C([0,T7; H) ramane o problemd deschisa.

In ultima sectiune a capitolului, aplicam rezultatele abstracte anterioare ecuatiei neliniare
a caldurii si sistemului telegrafistilor.
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Probleme la limita cu conditii antiperiodice
s1 parametri n spatii Hilbert



Capitolul 2

Asupra unor incluziuni de evolutie

cu parametru si conditii antiperiodice

Rezultatele prezentate in acest capitol fac parte dintr-o lucrare aflata in evaluare la Monatshefte
fiir Mathematik [20].

Dintre contributiile originale din acest capitol, mentionam in rezumat Teoremele 2.1-2.4.
Celelalte rezultate obtinute sunt prezentate in teza completa.

Amintim ca H reprezinta un spatiu Hilbert real cu produs scalar (-,-) si norma || - ||.
Consideram in H urmatoarele probleme cu conditii la limita antiperiodice

() —eu(t) +u/(t) + Au(t) + Bu(t) > F(t,u(t)) a.p.t. t € (0,T), (E:)
e w(0) +u(T) =0, ' (0)+u/'(T)=0,

’ . W(t) + Au(t) + Bu(t) 5 F(t,u(t)) a.p.t. t € (0,T), (Eo)
VP w(0) + u(T) = 0.

Pentru a studia problemele (Px)ap si (Fo)ap, presupunem ca au loc urméatoarele ipoteze:
(Hp) Aplicatia F' : [0,T] x H — H este o functie de tip Carathéodory si satisface urméatoarea
conditie de crestere subliniara

| F(t,v) I L || v +1(t) a.p.t. t € (0,T) si pentru orice v € H, (2.1)

unde L > 0sil € L?(0,T), cul(t) >0 a.p.t. t € (0,7).

(Hs) Operatorul A = 9p, unde ¢ : H — [0,+00] este o functie para, proprie, convexa si
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Capitolul 2 Asupra unor incluziuni de evolutie cu parametru si conditii antiperiodice

inferior semicontinui, astfel incat ¢(0) = 0. In plus, ¢ satisface conditia
(Hy,) pentru orice r > 0, multimea {x € D(¢); || z || +¢(z) < r} este compactd in H.

Operatorul B satisface una dintre urmatoarele doua conditii:

(Hg)1 B = —01,unde ¢ : H — R este o functie pari, de clasa C, si pentru orice r > 0 exista
o constanta K, > 0 astfel incat || 9y (v) ||< K, pentru orice v € H cu || v ||< r;

(Hg)2 B = —0¢, unde ¢ : H — (—o00,+00] este o functie para, proprie, convexa si inferior
semicontinua, care satisface:

(Hy) D(0p) C D(0v), si pentru orice r > 0, existd o constanta p, € [0, 1) si o functie
v :[0,00) = [0, 00), crescatoare, astfel incat, pentru orice u € D(dy) cu || u ||< r, este
satisfacuta conditia

1 (0)°(u) 12 pr [ () (w) [P+l w ) (o(w) + 1) (2.2)

(unde () reprezinta sectiunea minimald a lui d, si similar pentru ).

In prima sectiune obtinem rezultate de existentd a solutiilor problemelor (P:)ap si (Po)ap, pre-
cum gi estimari uniforme in raport cu parametrul . Acestea sunt esentiale pentru a analiza
comportamentul solutiilor problemelor (P:),, atunci cand acest parametru converge la 0.

Presupunem in continuare ca operatorul B verifica ipoteza (Hp); si demonstram un prim
rezultat de existenta corespunzator.

Teorema 2.1 ([20]). Presupunem ca sunt indeplinite ipotezele (Hy), (Hp)1 si (Hp), iar con-
stanta L din (Hp) satisface L < w/T. Atunci, pentru orice € > 0, problemele (P:)ap st (Po)ap
admit cel putin o solutie u. € W22(0,T; H), respectivu € W12(0,T; H). In plus, aceste solutii
satisfac urmatoarele estimari:

[ 20,y <N Ullz20,1) /KLy || we lleqo,m:m < Ro,

(2.3)
| 0¥ (ue) 2 0,m.m < Ci, € || ul H%Q(O,T;H) + I & H%?(O,T;H)S C3, || o(ue) lepm< Cs,

cu Ug, &, € inlocuite cu u, £, 0, dacd u este o solutie a problemei (Pp)ap,

not.

unde kp, =1 — LT/m, Ry "= VT || 1 I z2(0,1) /(2kL). De asemenea, C;, i = 1,3 sunt constante
pozitive care depind de T, L, ||l||2(0,), ¥(0), $i constanta din ipoteza (Hp)1 pentru r = Ro,
dar sunt independente de ¢.

In (2.3), & si € reprezintd sectiuni ale lui Op(uz), respectiv dp(u) (vezi Definitia 1).

Existenta solutiilor pentru problemele (P )qp si (Po)qp este demonstrata printr-un argument
de compacitate bazat pe Teorema de punct fix a lui Schaefer. Estimarile uniforme (2.3) sunt
obtinute folosind inegalitati de tip Poincaré pentru functii antiperiodice cu valori in H, tehnici
de monotonie si argumente de regularitate specifice subdiferentialelor dy si 0.

Un rezultat similar Teoremei 2.1 are loc in cazul in care B satisface ipoteza (Hp)2 in loc
de (H B)l-

12



Capitolul 2 Asupra unor incluziuni de evolutie cu parametru si conditii antiperiodice

Teorema 2.2 ([26]). Presupunem ca sunt indeplinite ipotezele (Hy), (Hp)2 si (Hp), iar con-
stanta L din (Hp) satisface L < 7/T. Atunci, pentru orice € > 0, problemele (P:)qp $i (Po)ap
admit cel putin o solutie u. € W22(0,T; H), respectivu € WH2(0,T; H).

Mai mult, aceste solutii satisfac estimarile (2.3)12 si, in plus:

I & N2 < Cuy Nl e Nlrzo,mm) < Cos | @(ue) llejon< Css € |l | 20mm< Ca, (24)

unde ug, &, 1e, € sunt inlocuite cu u, &, 1, 0, dacda u este o solutie a lui (Py)qp.

Mai sus, C;, i = 1,4 sunt constante pozitive care depind de T, L, illz2(0,r) s constanta si
functia din ipoteza (Hy), pentru r = Ro (definita anterior in Teorema 2.1), dar sunt indepen-
dente de €.

In (2.4), & si me reprezinta sectiuni ale lui Op(ue), respectiv OY(ue), iar € si n corespund
sectiunilor lui Op(u), respectv P (u).

Demonstratia acestui rezultat se bazeaza pe utilizarea regularizarii Moreau-Yosida pentru
functia v, ceea ce conduce la o familie de probleme aproximative, pentru care existenta solutiilor
este garantata de Teorema 2.1. Estimarile uniforme in raport cu € pentru solutiile problemelor
aproximative sunt deduse folosind inegalitati de tip Poincaré pentru functii antiperiodice cu
valori in H, proprietati ale subdiferentialelor si ipoteza (Hy). Folosind metode de compacitate,
demiinchiderea operatorilor maximali monotoni gi slab inferior semicontinuitatea normelor,
obtinem, prin trecere la limita, existenta unei solutii pentru problema originala, impreuna cu
estimarile corespunzatoare. Aceasta tehnica se aplica in mod similar atat problemei perturbate,
cat si celei reduse.

Observatia 2.1 ([20]). Un operator care satisface ipoteza (Hp)1 nu verifica, in general, i
ipoteza (Hp)s. In acest sens avem urmdtorul exemplu. Consideram H = L*(Q), unde Q este
un domeniu mdrginit si nevid din RY. Fie q € (1,2]. Alegem a € L*°() astfel incat

m({z € Q; a(z) >0}) >0 si m({z € Q; a(z) <0}) > 0.

Definim functia pard, de clasd C*, k : H — R, prin k(u) = ¢! fQ a(x)|ul? dz, si notam B =
—0k : H — H. Atunci, pentru orice w € H, avem Bu = —a(z)|u|?"! sgnu. Din inegalitatea
lui Hélder, B satisface (Hp)1. Deoarece k nu este nici convexa, nici concavd, B nu satisface
ipoteza (Hp)s.

Observatia 2.2 ([26]). Dacd F : R x H — H satisface ipoteza (Hp) pe intervalul [0,T] si, in
plus,
Fit+T,u)+F(t,—u)=0 a.p.t. t €R si orice uw € H,

iar B este un operator impar, atunci solutiile obtinute in rezultatele de mai sus pot fi extinse
pe intreaga multime R prin T-antiperiodicitate.

In analiza comportamentului solutiilor problemei (F:)q, in raport cu parametrul €, trebuie
subliniat ca, in ipotezele Teoremelor 2.1 si 2.2, problemele (F:)qp si (FP)qp nu admit, in general,
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solutii unice, asa cum este discutat in lucrarile [17] si [24]. Cu toate acestea, putem stabili
urmatorul rezultat privind convergenta sirurilor de solutii asociate problemei (P )qp.

Teorema 2.3 ([20]). Fieeog > 0 fizat. Presupunem ca ipoteza (Ha) este indeplinita, impreund
cu una dintre ipotezele (Hg), sau (HB)a. In plus, presupunem cd (Hp) are loc, iar constanta
L satisface L < w/T. Pentru orice € > 0, fie us o solutie a problemei (P:)qp, a cdrei existentd
este asigurata de Teorema 2.1, in cazul (Hg)1, sau de Teorema 2.2, in cazul (Hp)s. Atunci,
pentru orice sir 0 < e, — €9, exista un subsir (notat la fel) astfel incdt

ue, = u in C([0,T); H), wu
ue, = u in C([0,T); H), wu

—/ slab in WY2(0,T; H) dacd o > 0,

, ) (2.5)
— ' slab in L*(0,T;H) daca €9 =0,

/
En
!/
En

unde limita u este o solutie a problemei (Pz,)ap dacd g9 > 0, respectiv (Py)ap dacd eg = 0.

Demonstratia se bazeaza pe estimarile uniforme obtinute in Teoremele 2.1 si 2.2, argumente
de compacitate si proprietatea de demiinchidere a operatorilor maximal monotoni.

Prezentam In continuare doua conditii suficiente pentru unicitatea solutiilor problemelor
(P:)ap si (Po)ap- Acestea ne permit sa demonstram ca solutia problemei (P:),, este continua
in raport cu parametrul € si aproximeaza solutia problemei (Fp)q, atunci cand € — 0.

In cele ce urmeaza, presupunem ca I satisface o ipoteza mai restrictiva decat (Hp):

(Hp)" F este o aplicatie de tip Carathéodory care verifica urméatoarea conditie

| Ft,v) = F(t,w) [< L |v—wl, (2.6)

a.p.t. t € (0,T) si pentru orice v, w € H, unde L este o constants pozitivi.

Notim Ro=vT | F(t,0) 20,y /(2kg), unde kp = 1 — LT/m, conform definitiei din
Teorema 2.1.
Teorema 2.4 ([20]). Fie g9 > 0 fizat. Presupunem ca sunt verificate (Ha), (Hp)', impreund
cu una dintre ipotezele (Hgp)1 sau (Hp)a. In plus, presupunem cd este satisfiacutd una dintre
conditiile:
(h1) A este un operator tare monoton cu constanta w > 0, B este Lipschitz pe bila By (0,Ro)
cu constanta Lipschitz Lg, si L+ L < w;
(ho) A este un operator liniar, B este Lipschitz pe bila By (0,Ro) cu constanta Lipschitz Lp,
si (L+ Lp)T < .
Atunci, pentru orice € > 0, solutiile us siu ale problemelor (P:)qp, respectiv (Py)ap (obtinute in
Teorema 2.1, in cazul ipotezei (Hp)1, sau in Teorema 2.2, in cazul ipotezei (Hpg)2) sunt unice.
In plus, au loc urmatoarele estimari si rezultate de aprorimare:

I te = ey lleqoiryin < o Il — o, lzx(ory= Ol <o),

Ue — e, in CH[0,T]; H) cind e — g9 > 0, (2.7)
| ue — |20, m= O(Ve) dacd are loc (hy) si € — 04,
ue = u in C([0,T); H) cand e — 0.
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Demonstratia se bazeaza pe inegalitati de tip Poincaré pentru functii antiperiodice cu va-
lori in H si pe tehnici de monotonie pentru a stabili unicitatea solutiilor. Separate, se obtin
estimarile dorite, in functie de ipoteza considerata, (h1) sau (hg), tinand cont ca A este tare
monoton, respectiv liniar. Argumente de regularitate si compacitate, sunt folosite pentru a de-
monstra convergenta in C*([0,T]; H) cand € — g9 > 0, respectiv in C([0,T]; H) cand & — 0.

Sectiunea finala este dedicata aplicarii rezultatelor abstracte la probleme concrete. In par-
ticular, ne concentram asupra ecuatiei semilineare a caldurii cu conditii la limita antiperiodice
in raport cu variabila timp, precum si asupra unor sisteme de ecuatii diferentiale ordinare cu
solutii antiperiodice.
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Capitolul 3

Incluziuni de evolutie cu doi parametri

si conditii antiperiodice

Acest capitol prezinta rezultatele din articolul realizat in colaborare cu L. Barbu si G. Morosanu,
acceptat spre publicare in Communications in Contemporary Mathematics [5]

Dintre contributiile originale din acest capitol, mentionam in rezumat Teoremele 3.1-3.9.
Celelalte rezultate pot fi consultate in continutul integral al tezei.

Fie H un spatiu Hilbert real cu produsul scalar notat (-,-) si norma asociata acestuia || - ||.
Consideram mai Intai urmatoarea problema de ordinul al doilea, cu conditii la limita anti-
periodice in H:

—eu(t) + pu'(t) + Au(t) + Bu(t) > f(t) a.p.t.t € (0,7T), (Eep)

(Pgu)ap { U(O) 4 u(T) =0, u’(O) + u’(T) =0,

unde T > 0 este un moment final fixat, ¢ > 0, u >0, si f € L*(0,T; H).
In cazul g > 0, analizam si urmatoarea problema antiperiodica de ordinul intai:

(Pa)ap { ! () + Au(t) + Bu(t) 3 f(t) apt.te(0,T), (E,)

u(0) +u(T) = 0.
Introducem de asemenea urmatoarea incluziune algebrica:
(E00)ap Au(t)+ Bu(t) > f(t) a.p.t.t e (0,T).

Analiza din acest capitol se bazeaza pe urmatoarele ipoteze generale:
(Hey,) parametrii € si psatisfac e >0, p >0, si e+ p > 0;
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(Hy) A= 0p,unde ¢ : H— [0,+00] este o functie para, proprie, convexa, inferior semicon-
tinua, astfel incat p(0) = 0;
(Hg) B : H — H este un operator continuu cu o cregtere subliniara, adica exista L > 0 si
[ > 0, astfel incat

| Bul|<L| ul +! pentruorice u € H;

(H,,) pentru orice v > 0, multimea {z € D(¢); || = [|[< v, ¢(x) <~} este compacta in H.

Ipoteze suplimentare asupra operatorilor A si B vor fi introduse pe parcurs.

Prima sectiune este dedicata obtinerii existentei solutiilor problemelor (P;)ap si (Py)ap si
a unor estimari uniforme ale acestora, in raport cu parametrii considerati. Aceste estimari vor
fi ulterior utilizate pentru analiza comportamentului solutiilor problemei (P, )qp in raport cu
parametrii € si u.

incepem prin stabilirea existentei a cel putin unei solutii pentru problema (F-,)qp, impreuna
cu estimari uniforme in raport cu parametrul pu.

Teorema 3.1 ([5]). Fie ¢ > 0 fizat. Presupunem ca ipotezele (Hya), (Hy,) si (Hp) sunt
indeplinite, iar constanta L a operatorului B satisface

7T2€

L< .

(3.1)

Atunci, pentru orice p > 0 si f € L*(0,T; H), problema (Pep)ap admite cel putin o solutie
Uey € W22(0,T; H), astfel incat Eep € L?(0,T; H), unde & este o sectiune a lui Op(uey,) ca
in Definitia (1.1). In plus, pentru orice p > 0, au loc urmatoarele estimari:

| ul,, l20,mm< Cre, | uty, l2o,mm< Cozy | e leoo,r);m) < Cse (3.2)

I e Nz20,75m) < Caey || ©(uep) Lo (0,1)< Cse, (3.3)

unde Cic, i = 1,5 sunt constante pozitive care depind de e, T, || f 220,70, L 811, dar sunt
independente de .

Demonstratia Teoremei 3.1 se bazeaza pe Teorema de punct fix a lui Schaefer, pentru a
obtine existenta unei solutii. Instrumentele cheie includ argumente de monotonie, inegalitati
de tip Poincaré si rezultate de scufundare pentru spatiile Sobolev.

Observatia 3.1 ([5]). Concluziile Teoremei 3.1 raman adevarate dacd renuntam la ipoteza
(Hy.), dar in schimb presupunem o conditie mai puternicd asupra operatorului B; mai exact,
ipoteza (Hp) este inlocuitd cu

(Hg)' B: H — H este un operator Lipschitz cu constanta Lipschitz L.

Observatia 3.2 ([5]). Consideram problema (Pzp)ap cu A = 0, u = 0, si Bu = Lu, unde
L < en?/T?. Ne afiam astfel in ipotezele Observatiei 3.1. Este cunoscut faptul cd en?/T? este
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cea mai mica valoare proprie a problemei
eu (t) = Au(t), t € (0,T), u(0) +u(T) =0, v (0)+«(T) = 0.

Prin urmare, potrivit alternativei lui Fredholm (a se vedea, de exemplu, [20, Teorema 7.10]),
exista f € H, pentru care problema

nu are solutie.

Asadar, conditia L < en?/T? este optimd atunci cand B = Lu, ca urmare si in contextul
Observatiei 3.1.

Urmatorul rezultat ofera o conditie suficienta pentru existenta solutiilor problemelor (Px;,)qp

si (Py)ap, atunci cand constanta L este presupusa ,suficient de mica” in raport cu p. In plus,
se obtin estimari uniforme in raport cu ¢, care vor fi utilizate in sectiunile urmatoare.

Teorema 3.2 ([5]). Fie p > 0 fizat. Presupunem ca ipotezele (Ha), (Hy,.) si (Hp) sunt
indeplinite, iar constanta L a operatorului B satisface

T
L < —. 3.4
L (3.4)
Atunci, pentru orice e > 0 si f € L*(0,T; H), problemele (Pep)ap i (Pu)ap admit cel putin
o solutie us, € W22(0,T; H), respectiv u, € Wh2(0,T; H), astfel incat &, &, € L*(0,T; H),
unde &, si €, reprezinta sectiuni ale lui 0p(uey(t)), respectiv Op(u,(t)), ca in Definitia (1.1).

In plus, pentru orice € > 0, au loc urmatoarele estimari:
I uty l2rm < Crs N tep oo < Cows |l Eep 20,75 < Cps (3.5)

el ul, lleorm< Caps | ©(tep) =01 < Csp (3.6)
cu Ugy, tnlocuit prin u, daca € =0 (cu exceptia estimarii (3.6),),

unde Cy,,, i = 1,5 sunt constante pozitive care depind de p, T, || f 220,70y, L sil, dar sunt
independente de €.

Demonstratia Teoremei 3.2 se bazeazd pe tehnicile utilizate in Teorema 3.1, folosind un
argument de tip punct fix pentru a obtine existenta, urmat de aplicarea unor inegalitati de tip
Poincaré pentru functii antiperiodice cu valori in H, in vederea deducerii estimarilor uniforme.

Observatia 3.3 ([5]). Observam ca rezultatul din Teorema 3.2 ramdne adevarat in absenta
ipotezei (Hy,), dacda se impun conditii mai restrictive asupra operatorilor A si B. Mai exact,
presupunem cd ipoteza (H ) este satisfacutd, iar A este, in plus, un operator liniar. De aseme-
nea, consideram cd este indeplinitd ipoteza (Hg)', cu constanta de Lipschitz L a operatorului B

RPSVEA . . T T
satisfacand inegalitatea L < 7.
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Concluziile Teoremelor 3.1 si 3.2 raman valabile pentru ipoteze diferite asupra operatorilor
A si B. Mai exact, presupunem ca ipoteza (H,4) este inlocuita cu ipoteza mai restrictiva
(Hs)' ipoteza (H4) este indeplinita si, in plus, operatorul A este tare monoton, cu constanta
w > 0 (vezi conditia (1.4)).

In acest caz, se poate demonstra un rezultat similar celor anterioare, in care constanta L
satisface o conditie care implica doar constanta w.

Teorema 3.3 ([5]). Presupunem cd ipotezele (Ha)', (Hy,) si (Hg) sunt indeplinite, cu con-
stantele L si w satisfacand
L<w. (3.7)

Atunci, pentru orice € si pu care satisfac ipoteza (H.,) si orice f € L?(0,T; H), problemele
(Pep)ap 80 (Pu)ap admit cel putin o solutie ue, € W22(0,T; H), respectiv u, € W12(0,T; H),
astfel incat &, €, € L2(0,T; H), unde &, si €, reprezintd sectiuni ale lui Op(ue,(t)), respectiv
Op(uu(t)), ca in Definitia (1.1). In plus, au loc urmdtoarele estimdri:

2 2 2 2 2 2
| e 20 < Cro € NNl e +0° 1ty T2 + 1 e 7207, < C2y (3.8)
pentru orice € si pu care satisfac (Hey,), cu uey, inlocuit prin u, dacd € = 0;

CoV'T C
| wep o, m < 22/1 o e(uep) =< CC2 (: + Cl) : (3.9)

pentru orice € > 0 si > 0, cu ugy, tnlocuit prin u, dacd e = 0;

CoT CoTVT
|ty |22 0,75 < e I vep Neqom:m<S —5—

o7 2me (3.10)
si || p(uep) |l (0,m< C Co <2€ + Cl> pentru orice € > 0 si 1 > 0,
i

unde C, C;, i = 1,2 sunt constante pozitive care depind de T, || f | r2(0,1;m), w, L sil, dar sunt
independente de € si L.

Observatia 3.4 ([0]). Merita subliniat faptul ca toate concluziile Teoremei 3.3 raman valabile
si daca presupunem alte ipoteze. Mai precis, renuntam la ipoteza (Hy,) siin schimb presupunem
cd B satisface conditia mai puternicd (Hg)', cu constanta Lipschitz L < w. In plus, obtinem
unicitatea solutiilor pentru problemele (Pzy)ap (dacd € > 0) si (Py)ap-

Demonstratia acestei afirmatii se bazeaza pe Principiul contractiilor al lui Banach.

Observatia 3.5 ([7]). Mentionam cd, daca f € L3 (R;H) si f(t+T)+ f(t) =0 a.p.t. t € R,
iar B este un operator impar, atunci solutiile obtinute in rezultatele de mai sus pot fi extinse

pe intreaga multime R prin T-antiperiodicitate.

Sectiunea urmatoare studiaza comportamentul solutiilor problemei (P, )qp in raport cu € si
. Incepem prin a presupune ca ipotezele (H4), (Hy,) si (Hp) sunt indeplinite. In acest cadru,
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problemele (Pry)ap si (Pu)qp DU au neaparat solutii unice (a se vedea [8], [17], [23] si [24]). Vom
considera mai multe scenarii, in functie de care dintre parametrii € sau u tinde la zero.

Rezultatele de convergenta care urmeaza (Teoremele 3.4-3.7) sunt obtinute utilizand teh-
nici similare. Demonstratiile se bazeazd pe o combinatie intre estimarile uniforme in raport
cu parametrii € si/sau p obtinute anterior, Lema lui Ascoli, proprietatea de demiinchidere a
operatorilor maximal monotoni si argumente de convergenta slaba in spatii Sobolev.

Cazul 1: Fie ¢ = g9 > 0 fixat si yp — 0.

not.

Consideram problema (Pry0)ap = (Pz,)ap, care corespunde cazului particular ;4 = 0 in
problema (P, )qp- In acest cadru, se obtine urmatorul rezultat de convergenta.

Teorema 3.4 ([5]). Fie g > 0 fizat. Presupunem cd ipotezele Teoremei 3.1 sunt indeplinite,
iar (3.1) este satisfacutd de o (adicd L < w2eo/T?). Pentru orice p > 0, fie uz,, o solutie a
problemei (Pryp)ap data de Teorema 3.1. Atunci, pentru orice sir 0 < pi, — 0, exista un subsir
(notat la fel), astfel incat ue,,, — w n C([0,T]; H), usypu, — u slab tn W22(0,T; H) cand
n — 00, iar limita u este o solutie tare a problemei (Px,).

Cazul 2: Fie yu = pg > 0 fixat si € — 0.

Teorema 3.5 ([5]). Fie ug > 0 fizat. Presupunem cd ipotezele Teoremei 3.2 sunt indeplinite,
iar (3.4) este satisfacuta de po (adica L < wug/T). Pentru orice € > 0, fie Uey, $i Uy, solutii
ale problemelor (Pep,)ap, Tespectiv (Pp,)ap, date de Teorema 3.2. Atunci, pentru orice sir 0 <
en — 0, existd un subsir (notat la fel), astfel incat ue, ., — upu, n C([0,T]; H), ul . — up,
slab in L?(0,T; H) cand n — oo, iar limita uy,, este o solutie a problemei (Py,)ap-

Cazul 3: Fie ¢ — g si p — pio, cu €o, po satisfacand ipoteza (He,,)

In urmitorul rezultat presupunem ci (H4), (Hy.), si (Hp) sunt indeplinite, cu constantele
w si L satisfacand L < w. In baza acestor ipoteze, putem obtine un rezultat de convergenta
mai general decat cele obtinute anterioar.

Teorema 3.6 ([5]). Fie €y si po fizati, satisfacand ipoteza (He,u,). Presupunem ca ipotezele
Teoremei 3.3 sunt indeplinite. Pentru orice € si p care satisfac (Hep)ap, notam cu uey, St wy,
solutii ale problemelor (Pey)ap st (Pu)ap, Tespetiv, date de Teorema 3.3. Atunci, pentru orice
sir cu componente pozitive (e, tn) — (€0, fto), existda un subsir (notat la fel), astfel incat

Ue, pn, — Uy 0 C([0,T]; H), u;nun — ULO slab in LQ(O,T; H) daca g = 0,

Ue,p,,, — w in C([0,T); H), ue,p, — u slab in W*2(0,T; H) dacd g > 0,
iar limitele u,, siu sunt solutii ale problemelor (Py,)ap, respectiv (Peyu,)ap-

Teorema 3.7 ([5]). Fie g > 0 si uo > 0 fizati. Presupunem ca ipotezele din Teorema 3.2
sunt indeplinite, iar relatia (3.4) este satisfacutd pentru po (adica L < mug/T). Atunci exista
do € (0, o), astfel incat pentru orice parametrii € si p care satisfac (Hey), cu | € — g |< o,
| p—po |< o, si f € L*(0,T; H), problemele (Pep,)ap $i (Py)ap admit solutie ue, € W*2(0,T; H),
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respectiv u, € WH2(0,T; H). Mai mult, pentru orice sir cu componente pozitive (e, jin) —
(€0, f10), existd un subsir (notat la fel), astfel incat

Ue,p, — w in C([0,T); H), ue,p, — u slab in W22(0,T; H) dacd g9 > 0, si
Ue,p,, = Uy, i C([0,T]; H), wl , — u, slabin L*(0,T; H) dacd o = 0.

Enfhn
In plus, limitele u si u,, sunt solutii tari ale problemelor (Peyyu))ap i (P )ap, Tespectiv.

Exemple ([5]) Fie Q un domeniu marginit si nevid din RY. Urmitorii operatori definiti
pe H = L?(f2) sunt impari, continui si subliniari, dar nu sunt Lipschitz:
(1) Bu=+|u|*sgnu, cu a € (0,1);

(2) Bu ==+ sgnu-e /1"l daci u # 0, BO = 0.

Pe un spatiu Hilbert arbitrar H, putem considera operatorul
Bu=+|u|*"!wu, daci u#0, BO=0, unde o € (0, 1).

In urmétoarea sectiune se studiazi continuitatea solutiilor problemei (Pzp)ap n raport cu €
si p, incluzand rezultate de aproximare pentru solutiile problemelor (P,)ap si (Foo)ap- In cele
ce urmeaza, vom considera doud situatii particulare in care problemele (P.,)qp si (Pp)qp admit
solutii unice.

In cazul unicitatii solutiilor, sunt de asteptat anumite estimari ale ratei de convergenta a
diferentei u.y — ue,p, dacd eg > 0, respectiv g, — u,, daca ¢g = 0 (in norma C([0,7]; H) sau
L*(0,T; H)), precum si dependenta continua a solutiei u., a problemei (P:,)qp in raport cu
parametrii € si p.

Presupunem, pentru inceput, ci operatorul A este tare monoton. Vom presupune de ase-
menea ci sunt indeplinite ipotezele (Ha) si (Hp)', cu constantele w si L satisficand relatia
L < w. Este de mentionat cd ipoteza (H,_) nu mai este necesard, in consecintd, o vom omite.
Observatia 3.4 de mai sus garanteaza existenta si unicitatea solutiilor u., si v, ale problemelor
(Pzp)ap si respectiv (Py)ap-

Putem formula urmatorul rezultat privind dependenta continua a solutiei ., a problemei
(Py)ap In raport cu parametrii € si p si aproximarea solutiilor problemelor reduse. Metodele
utilizate pentru a demonstra fiecare dintre cele trei cazuri, in functie de parametrul care tinde
la zero individual sau simultan, sunt similare si implica estimarile deduse anterior, proprietatile
subdiferentialei si Criteriul lui Arzela—Ascoli.

Teorema 3.8 ([0]). Presupunem cd ipotezele (Hp) si (Hp)' sunt indeplinite, cu constan-
tele w si L satisfacand L < w. Atunci, pentru orice €, ji care verificd (Hep) si orice [ €
L*(0,T; H), problemele (P-p)ap $i (Pu)ap admit solutie unicd ue, € W20, T;H), respectiv
u, € WH2(0,T; H). Mai mult, pentru orice o, pio fizati care satisfac (He,p, ), au loc urmdtoarele
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estimart st aprorimari:

H Uep — Ugypug HC([O,T];H): O(’ €—¢o |) + O(| H = o |) st

Uey, — Ugopy in CH([0,T); H) cand (e, 1) — (0, po) dacd go > 0;
|ty — o 20,750 = O(VE) + O( = o |) si

Uy — Up, in C([OaT]a H) cand (57/1’) - (0+7,u'0)‘

(3.11)

Dacd, in plus, presupunem cd B este un operator impar si f € WY2(0,T;H), cu f(0) +
f(T) = 0, atunci incluziunea (algebricd) (Eoo)ap admite o solutie unicd ugg € W12(0,T; H),
care satisface uoo(0) + upo(T) = 0, u(t) € D(A) pentru orice t € [0,T], si

| wep — w00 || 220,17,y = O(Ve) + O(1). (3.12)
Mai mult, dacd este indeplinitd conditia % /e = O(1), atunci

uey — ugo in C([0,T]; H) cand (e, ) — (04,04). (3.13)

Exemple ([5]) Consideram urmatoarele exemple de operatori Lipschitz impari. Mai intai,
consideram retractia radiala pe bila unitate din H, definita prin B; : H — H,

Ba_)® daca ||z ||<1,
1= oy daca [ > L.

Este bine cunoscut faptul cd B; este Lipschitz de constanta L, = 1.

Un alt exemplu (a se vedea [24, Lemma 2.3]) este operatorul By : H — H,
Bog—d ¥ daca ||z [|<1,
T\ e daca [z >,

care are, de asemenea, constanta Lipschitz egala cu 1.

Sa consideram acum cazul particular in care H = L?(Q), unde ) este un domeniu méarginit,
nevid din RY. Céateva exemple de operatori Lipschitz impari pe H sunt: (1) Bu = = sin u; (2)
B(u) = +u/v1+u% (3) Bu= +sgnu-min{| u|®, |u [}, cud<a<1<p.

In continuare, prezentdm conditii suficiente care garanteaza unicitatea solutiilor problemelor
(Pp)ap si (Py)ap, In cazul in care operatorul A nu mai este tare monoton.

Teorema 3.9 ([5]). Fie ey st po fizati, satisfacand (He,p,). Presupunem ca (Ha) si (Hg)' sunt
indeplinite, cu constanta Lipschitz L a operatorului B astfel incat

7T2€

Z<T—2O daci eg >0 si L <

THo daca g = 0.

In plus fata de ipotezele de mai sus, daca ey = 0, presupunem ca A este un operator liniar
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si ipoteza (H,,) este indeplinita.

Atunci exista 09 € (0, max{eo, po}), astfel incat pentru orice € si p satisfacand (Hg,), cu
| e —e0 |< o, | pp—po |< S0, si f € L2(0,T; H), problemele (Pep)ap si (Pu)ap admit solutie
UNICca Uey, € W22(0,T; H), respectiv uy € W2(0,T; H). Mai mult, au loc urmdtoarele estimari
$i aPTOXTIMATIL:

|t = e leoiryon= Ol € 20 )+ O = pia |) i
Uepy — Uggp, N CY[0,T]; H) cind (e, 1) — (g0, po) dacd o > 0;
Uey —> Uy, tn C([0,T); H) st
ug, — u,, slab in L*(0,T;H) cind (e, 1) — (04, po)-

(3.14)

Sectiunea finala este consacrata aplicarii rezultatelor abstracte obtinute anterior la probleme
concrete, incluzand ecuatii semiliniare si neliniare cu conditii antiperiodice in timp.
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Capitolul 4

Probleme cu conditii la limita antiperiodice

guvernate de operatori maximal monotoni

Rezultatele prezentate in acest capitol fac parte dintr-un articol publicat in An. St. Univ.
Ovidius Constanta [25].

Dintre contributiile originale din acest capitol, mentionam in rezumat Teoremele 4.1 si
4.2. Celelalte rezultate obtinute sunt prezentate in teza completa.

In acest capitol, studiem incluziuni diferentiale de ordinul intai si al doilea cu conditii
la limita antiperiodice, in ipoteza ca operatorul A este maximal monoton, tare monoton, si
impar. Acest cadru mai general permite tratarea unor modele neliniare care includ sistemele
hiperbolice. Deoarece A nu este o subdiferentiald, sunt necesare conditii mai restrictive asupra
operatorilor B si functiei f pentru a asigura obtinerea unor rezultate similare celor din capitolele
anterioare.

Reamintim ca H este un spatiu Hilbert real, cu produs scalar (-,-) si norma || - || indusa de
acesta.

Consideram in H aceeasi clasa de probleme ca in capitolul anterior

(P) —eu” (t) + p/ () + Au(t) + Bu(t) > f(t) apt. t € (0,7), (Ee)
s w(0) +u(T) =0, o/ (0)+u/(T) =0,

unde 7" > 0, € > 0, si pu > 0, impreuna cu

pu'(t) + Au(t) + Bu(t) > f(t) a.p.t.te (0,7), (E,)
(Fi)ap { w(0) + u(T) = 0. ’
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pentru p > 0. Introducem de asemenea incluziunea algebrica
(Eoo)ap Au(t) + Bu(t) > f(t) a.p.t. te (0,T),

care se obtine prin fixarea formala a valorilor e = p = 0 in (£;,).
In acest capitol, consideram urmatoarele ipoteze generale asupra operatorilor care apar in
problemele formulate anterior

(Hy) feW"(0,T;H)si f(0)+ f(T) =0;
(Ha) Operatorul A : D(A) € H — H este impar, maximal monoton si tare monoton de
constantd wg > 0 (eventual multivoc);

(Hp) Operatorul B : H — H este impar, maximal monoton (eventual multivoc) si satisface
urmatoarea conditie: pentru orice r > 0, exista L, > 0, astfel incat pentru orice x € H cu
| z ||[<r avem || Bz ||< L,.

Observatia 4.1. Un exemplu de operator B care satisface ipoteza (Hp) este Bx =|| x |P~2 .
Acest operator este de asemenea ciclic monoton, deoarece corespunde subdiferentialei functiei
conveze © —|| x ||P .

Pentru inceput, demonstram ca problemele introduse mai sus admit solutii unice. In plus,
obtinem estiméri uniforme ale acestor solutii in raport cu parametrii € si u. Aceste estimari
vor fi esentiale pentru demonstrarea rezultatelor prezentate in cele ce urmeaza.

Pe tot parcursul acestui capitol, toate solutiile problemelor mentionate anterior sunt consi-
derate 1n sensul Definitiei 1.

Teorema 4.1 ([25]). (i) Presupunem ca A este un operator mazximal monoton impar si cd
ipoteza (Hp) este indeplinitd. Atunci, pentru orice e > 0, u >0, si f € L*(0,T; H), problema
(Pep)ap admite o solutie unicd ue, € W>2(0,T; H) care satisface urmdatoarea estimare:

el udy Nz, SN F e,y - (4.1)

(13) Presupunem ca ipoteza (Hy) este satisfacuta. Atunci, pentru orice € > 0 si u > 0 cu
e+ pu >0, si pentru orice f care satisface ipoteza (Hy), problemele (Py)ap st (Pep)ap admit
solutii unice u, € Wh2(0,T; H) si Uey € W22(0,T; H), respectiv. Mai mult, au loc urmdatoarele
estimari:

| ), p20,mm) < wy | f I z2(0,7;m) Ppentru orice p > 0,

! , (4.2)
| ul,, ez, < wo Y 20,1y  pentru orice € > 0, u > 0.

In plus, incluziunea algebricd (Eoo)ap admite o solutie unicd ugg € WH2(0,T; H), care satisface
u00(0) + uoo(T) = 0 si u(t) € D(A) pentru orice t € [0,T].

Demonstratia se bazeaza pe tehnici specifice operatorilor maximal monotoni care includ
utilizarea aproximantei Yosida, proprietatea de demiinchdere a extensiilor canonice ale opera-
torilor A si B precum si pe Criteriul lui Arzela—Ascoli.
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Urmatoarea sectiune este destinata investigarii dependentei continue a solutiei ue, a pro-
blemei (Py;,)qp In raport cu parametrii € si p. De asemenea, obtinem rezultate de aproximare
pentru solutiile problemei reduse (P,)qp si a incluziunii algebrice (Fog)ap-

Teorema 4.2 ([25]). Presupunem ca ipoteza (Hp) este satisfacutd.

(i) Fie eg > 0 si po > 0 fizati. Presupunem ca A este un operator mazximal monoton impar.
Pentru oricee >0, u >0, si f € L*(0,T; H), fie uc, € W»2(0,T; H) solutia unicd a problemei
(Pep)ap obtinuta in Teorema 4.1 (i). Atunci, urmdatoarea estimare si convergentd au loc:

| e — Ueopio HC([O,T];H): O(le—eol) +O( u—po |),

o A (4.3)
Uy — Ueop, 0 C([0,T); H) cand (e, i) — (€0, to)-

(i) Fie po > 0 fizat. Presupunem ca (Hya) este indeplinita. Pentru orice € > 0 si > 0 cu
€+ u >0, si pentru orice f care satisface (Hy), fie us, € W2(0,T; H) si uy, € WH2(0,T; H)
solutiile unice ale problemelor (P, )ap, respectiv (Py)ap, obtinute in Teorema 4.1 (ii). Atunci,
urmdatoarea estimare si aproxrimare au loc:

Il e = v 20,75 = O(VE) + O( 1 = puo |),

4.4
Uy — Uy, n C([0,T); H) cand (e, ) = (04, po). 44

Mai mult, urmdtoarea estimare este de asemenea valabila:
” Uep — UOO ||L2(0,T;H): O(\E) + O(:U’) cand (55 M) — (OJrv 0+)a (45)

unde ugp € WH2(0,T; H) este solutia unicd a incluziunii (algebrice) (Eoo)ap, obtinutd in Teo-
rema 4.1(i). In plus, dacd p®/e = O(1), atunci

Uy — ugo tn C([0,T]; H) cand (e, ) — (04,04). (4.6)

In final, ultima sectiune este dedicata aplicarii rezultatelor abstracte obtinute anterior la
un model semiliniar al sistemului telegrafigtilor, cu conditii antiperiodice in timp.
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