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Introducere

Studiul incluziunilor de evolut, ie neliniare ı̂n spat, ii Hilbert reprezintă un subiect central ı̂n teoria

ecuaţiilor cu derivate parţiale, datorită atât important,ei sale teoretice, cât s, i aplicabilităt, ii

acestora ı̂ntr-un număr mare de domenii, de la mecanică s, i teoria controlului optimal, până la

sisteme de tip react, ie-difuzie s, i propagarea undelor. Printre cele mai importante instrumente

utilizate ı̂n acest domeniu se numără metodele de monotonie, dezvoltate semnificativ pentru a

studia incluziuni diferent, iale asociate operatorilor maximal monotoni, eventual perturbat, i prin

termeni nemonotoni.

Această teză este dedicată studiului a două clase de probleme la limită neliniare de ordinul

al doilea, formulate ı̂n spat, ii Hilbert reale. Incluziunile de evolut, ie asociate sunt guvernate de

operatori maximal monotoni s, i includ perturbat, ii neliniare de diverse tipuri, precum termeni

nemonotoni, operatori Lipschitz sau termeni subliniari.

Primul capitol al tezei are un caracter introductiv s, i este ı̂mpărt, it ı̂n mai multe sect, iuni:

Context s
,

i motivat
,

ie, Lucrări relevante, Obiectivele tezei, Structura tezei s, i Contribut,ii s, tiint,ifice

s
,

i diseminare. Acesta este urmat de un capitol de Preliminarii, ı̂n care sunt prezentate not, iunile

s, i rezultatele clasice pe care le vom utiliza, grupate ı̂n trei sect, iuni: Spat
,

ii de funct
,

ii, Câteva

instrumente abstracte s, i Operatori maximal monotoni.

Lucrarea este structurată ı̂n două părt, i, ambele cont, inând contribut, ii originale ale autorului.

Partea I: Incluziuni de evolut
,

ie ı̂n spat
,

ii Hilbert cu parametri corespunde Capitolului 1 al acestui

rezumat, iar Partea a II-a: Probleme la limită cu condiţii antiperiodice şi parametri ı̂n spaţii

Hilbert cuprinde Capitolele 2, 3 s, i 4. Rezultatele prezentate ı̂n acest rezumat sunt date fără

demonstrat, ii, ı̂nsă sunt indicate metodele utilizate.

Teza se ı̂ncheie cu un capitol ı̂n care sunt sintetizate principalele obiective atinse. De

asemenea, sunt conturate câteva direct, ii de cercetare viitoare, dintre care amintim extinderea

cadrului abstract la spat, ii Banach, studiul incluziunilor diferent, iale cu perturbat, ii nemonotone

s, i analiza comportamentului solut, iilor ı̂n cazul relaxării ipotezelor asupra operatorilor care

intervin ı̂n incluziunile de evoluti̧e considerate.

Pentru claritate s, i concizie, acest rezumat extins nu include titluri de sect, iuni sau sub-

sect, iuni, oferind totus, i o prezentare completă a rezultatelor obt, inute ı̂n fiecare parte a tezei.

Referint,ele bibliografice ment, ionate sunt selectate strict ı̂n funct, ie de cont, inutul prezentat, iar

lista completă de lucrări poate fi consultată ı̂n varianta integrală a tezei.

Restul acestui capitol este dedicat prezentării unor lucrări relevante din literatură, prin care

sunt punctate contribut, iile acestei teze ı̂n raport cu studiile existente.
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Introducere

Începem prin formularea precisă a primei clase de probleme analizate ı̂n Partea I. Aceasta

include problemele la limită cu condiţii de tip Dirichlet–Neumann:

(Pεµ)

{

−εu′′(t) + µu′(t) +Au(t) +Bu(t) ∋ f(t) a.p.t. t ∈ (0, T ) (Eεµ)

u(0) = u0, u′(T ) = 0, (BC)

unde ε > 0, µ ≥ 0 sunt doi parametrii. Pentru µ > 0, modelul redus corespunzător este

problema Cauchy

(Pµ)

{

µu′(t) +Au(t) +Bu(t) ∋ f(t) a.p.t. t ∈ (0, T ) (Eµ)

u(0) = u0. (IC)

Considerăm de asemenea incluziune algebrică neliniară:

(E00) Au(t) +B u(t) ∋ f(t) a.p.t. t ∈ (0, T ).

Această incluziune apare ı̂n mod natural ca limită stat, ionară a solut, iilor problemei (Pεµ).

Operatorul A este maximal monoton, iar B este un operator Lipschitz.

Prezentăm pe scurt câteva lucrări relevante din literatură privind incluziunile de evolut, ie

abstracte de ordinul al doilea. Studiul incluziunilor de forma u′′(t) ∈ Au(t), cu condit, ii la limită

de forma u(0) = a, u(T ) = b, cu a, b ∈ D(A), a fost init, iat de V. Barbu [6, 7]. H. Brézis [9]

a extins analiza pe intervalul [0,∞), incluzând condit, ii la limită neliniare de tipul u′(0) ∈
∂j(u(0) − a). R.E. Bruck [11] a introdus termeni neomogeni, analizând incluziuni de tipul

u′′(t) ∈ Au(t) + f(t) şi conditii la limită pentru a, b ∈ D(A). Mai recent, probleme similare

de ordinul al doilea cu condit, ii de tip Dirichlet–Neumann au fost studiate de L. Barbu s, i G.

Moros,anu [3], precum s, i de G. Moros,anu s, i A. Petrus,el [21, Lemma 4]. Totus, i, rezultatele

acestora nu acoperă toate situat, iile considerate ı̂n Capitolul 1.

Convergent,a solut, iilor problemei (Pεµ) atunci când ε → 0+ a fost studiată ı̂n mai multe

contexte. M. Ahsan s, i G. Moros,anu [1] au analizat cazul µ = 1, cu A operator liniar s, i tare

monoton, caz extins ulterior la operatori maximal monotoni generali de către L. Barbu s, i

G. Moros,anu [3]. G. Moros,anu s, i A. Petrus,el [21] au studiat comportamentul asimptotic ı̂n

două situat, ii: (i) ε → 0, µ > 0 fixat, s, i (ii) ε > 0 fixat, µ → 0. Rezultatele prezentate ı̂n

Capitolul 1 constituie contribut, ii originale care generalizează aceste lucrări anterioare.

Partea a II-a introduce probleme cu condit, ii la limită antiperiodice ı̂ntr-o formă abstractă,

particularizată de-a lungul Capitolelor 2– 4, prin ipoteze diferite.

Problema (Pεµ)ap este formulată abstract astfel:

(Pεµ)ap

{

−εu′′(t) + µu′(t) +Au(t) +B u(t) ∋ f(t)/sau F (t, u(t)) a.p.t. t ∈ (0, T ),

u(0) + u(T ) = 0, u′(0) + u′(T ) = 0,

unde f ∈ L2(0, T ;H), F : [0, T ] ×H → H este o aplicat, ie de tip Carathéodory care verifică o

condit, ie de cres,tere subliniară, iar ε > 0, µ ≥ 0 sunt parametri.
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Introducere

Pentru µ > 0, problema redusă corespunzătoare are forma:

(Pµ)ap

{

µu′(t) +Au(t) +B u(t) ∋ f(t)/sau F (t, u(t)) a.p.t. t ∈ (0, T ),

u(0) + u(T ) = 0.

De asemenea, incluziunea algebrică asociată este dată de:

(E00)ap Au(t) +B u(t) ∋ f(t)/sau F (t, u(t)) a.p.t. t ∈ (0, T ).

Operatorii A s, i B, care pot fi multivalent, i, verifică ipoteze distincte ı̂n fiecare capitol.

Problema (Pµ)ap cu A operator ciclic monoton şi B = 0 a fost studiată de Okochi [22], iar

Haraux [17] a analizat cazul Bu = λu, cu λ > 0. Aizicovici s, i Pavel [2] au abordat problemele

(Pεµ)ap s, i (Pµ)ap ı̂n cazul B = 0 sau B = −∂ψ, unde A = ∂φ domină B. Autorii au demonstrat

existent,a, unicitatea s, i dependent,a continuă a solut, iilor antiperiodice ı̂n cazul B = 0, precum

s, i rezultate de existent, ă ı̂n cazul B = −∂ψ. Aceste lucrări au motivat cercetări ulterioare, cu

contribut, ii notabile ı̂n spat, ii Hilbert datorate lui Chen [13], Chen s, i colaboratorilor [12, 14,

15], precum s, i lui Couchouron s, i Precup [16]. Rezultatele obt, inute ı̂n această lucrare privind

existenta solutiilor pentru aceste probleme completează aceste studii.

Comportamentul solut, iilor problemei (Pεµ)ap dar s, i aproximarea celor ale problemelor (Pµ)ap
s, i (E00)ap nu au fost tratate anterior ı̂n context antiperiodic. Această lucrare completează acest

vid s, i aduce perspective noi.

În final, prezentăm o not, iune esent, ială, şi anume conceptul de solut, ie tare pentru problemele

introduse anterior. Această definit, ie oferă cadrul funct, ional precis ı̂n care formulăm s, i studiem

problemele din Partea a II-a.

Definit
,
ia 1 ([5], [25], [26]). O funct

,

ie u ∈W 2,2(0, T ;H) se numes
,

te solut
,

ie (tare) a problemei

(Pεµ)ap dacă sunt ı̂ndeplinite simultan următoarele condit
,

ii:

(i) u(t) ∈ D(A) a.p.t. t ∈ (0, T );

(ii) există ξ, η ∈ L2(0, T ;H) astfel ı̂ncât

−εu′′(t) + µu′(t) + ξ(t)− η(t) = f(t)(sau F (t, u(t))) s
,

i

ξ(t) ∈ Au(t), η(t) ∈ B u(t) a.p.t. t ∈ (0, T );
(0.1)

(iii) u(0) + u(T ) = 0, u′(0) + u′(T ) = 0.

În mod similar, o funct
,

ie u ∈ W 1,2(0, T ;H) se numes
,

te solut
,

ie a problemei (Pµ)ap dacă u

ı̂ndeplines
,

te condit
,

iile (i), (ii) (cu ε = 0), s
,

i u(0) + u(T ) = 0.

Observăm că, dacă operatorii A s
,

i/sau B sunt univoci, atunci pentru orice t ∈ [0, T ] avem

ξ(t) = Au(t) s
,

i/sau η(t) = B u(t). În acest caz, definit
,

ia de mai sus se simplifică, iar ξ(t)

s
,

i/sau η(t) se ı̂nlocuiesc cu expresiile Au(t) s
,

i/sau B u(t), respectiv.

Cuvinte cheie: incluziune de evolut, ie, regularizare ı̂n sens Lions, solut, ie antiperiodică,

operator maximal monoton, subdiferent, ială, operator Lipschitz, ecuat, ii parabolice semiliniare,

sisteme diferent, iale neliniare de ordinul ı̂ntâi, ecuat, ia căldurii, sistemul telegrafis,tilor.
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Partea I

Incluziuni de evolut, ie ı̂n spat, ii Hilbert cu parametri



Capitolul 1

Incluziuni de evoluţie cu doi parametri

Acest capitol oferă o prezentare detaliată a rezultatelor publicate ı̂ntr-o lucrare realizată ı̂n

colaborare cu L. Barbu s, i G. Moroşanu, publicată ı̂n Nonlinear Anal. Real World Appl. [4].

Dintre contribuţiile originale din acest capitol, menţionăm ı̂n rezumat Teoremele 1.1–1.7.

Celelalte rezultate obţinute sunt prezentate ı̂n teza completă.

Fie H un spat, iu Hilbert real, cu produsul scalar notat (·, ·) s, i norma asociată acestuia ∥ · ∥.
Considerăm următoarea problemă cu condit, ii la limită ı̂n spat, iul Hilbert H

(Pεµ)

{

−εu′′(t) + µu′(t) +Au(t) +Bu(t) ∋ f(t), 0 < t < T, (Eεµ)

u(0) = u0, u′(T ) = 0, (BC)

unde T > 0 este un moment de timp dat, ε > 0, µ ≥ 0 sunt doi parametri, iar A, B sunt

operatori care satisfac următoarele ipoteze:

(HA) A : D(A) ⊂ H → H este un operator maximal monoton (eventual multivoc, caz ı̂n care

(Eεµ) este o incluziune de evolut, ie);

(HB) B : D(B) = H → H este un operator Lipschitz, adică există o constantă L > 0 astfel

ı̂ncât ∥ Bx−By ∥≤ L ∥ x− y ∥, pentru orice x, y ∈ H.

Ipoteze suplimentare vor fi introduse pe parcursul capitolului.

Pentru µ > 0 considerăm s, i următoarea problemă Cauchy:

(Pµ)

{

µu′(t) +Au(t) +Bu(t) ∋ f(t), 0 < t < T, (Eµ)

u(0) = u0. (IC)

Problema (Pµ) este o problemă redusă, obt, inută din (Pεµ) pentru ε = 0, care este considerată

o problemă perturbată asociată lui (Pµ). Observăm că ı̂n problema (Pµ) este păstrată doar
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Capitolul 1 Incluziuni de evoluţie cu doi parametri

condit, ia u(0) = u0 din problema (Pεµ).

Considerăm, de asemenea, următoarea incluziune (algebrică):

(E00) Au(t) +Bu(t) ∋ f(t), 0 ≤ t ≤ T,

care se obţine luând ε = 0 s, i µ = 0 ı̂n ecuat, ia (Eεµ).

Pentru ı̂nceput, introducem definit, ia solut, iilor (tari) corespunzătoare problemelor (Pµ) s, i

(Pεµ).

Definit
,
ia 2 ([19, Definit, ia 2.1, p. 47]). Presupunem că ipotezele (HA) s, i (HB) sunt satisfăcute

s
,

i u0 ∈ D(A).

Fie µ > 0. O funct
,

ie u ∈ W 1,2(0, T ;H) se numes
,

te solut
,

ie (tare) a problemei (Pµ) dacă sunt

ı̂ndeplinite simultan următoarele condit
,

ii:

(i) u(t) ∈ D(A) a.p.t. t ∈ (0, T );

(ii) există ξ ∈ L2(0, T ;H) astfel ı̂ncât

µu′(t) + ξ(t) +Bu(t) = f(t) s
,

i ξ(t) ∈ Au(t) a.p.t. t ∈ (0, T ); (1.1)

(iii) u(0) = u0.

Fie ε > 0 s
,

i µ ≥ 0. În mod similar, o funct
,

ie u ∈ W 2,2(0, T ;H) se numes
,

te solut
,

ie (tare) a

problemei (Pεµ) dacă u ı̂ndeplines
,

te condit
,

ia (i),

(ii)′ există ξ ∈ L2(0, T ;H) astfel ı̂ncât

−εu′′(t) + u′(t) + ξ(t) +Bu(t) = f(t) s
,

i ξ(t) ∈ Au(t) a.p.t. t ∈ (0, T ); (1.2)

(iii)′ u(0) = u0, u
′(T ) = 0.

În prima sect, iune, ne propunem să demonstrăm rezultate de existent, ă s, i unicitate pentru

solut, iile problemei (Pεµ), precum s, i pentru incluziunea algebrică (E00). Începem prin studierea

problemei (Pεµ).

Teorema 1.1 ([4]). Fie ε > 0 s
,

i µ ≥ 0. Presupunem că ipotezele (HA) s, i (HB) sunt ı̂ndeplinite,

iar constanta Lipschitz L asociată lui B satisface

L <
2ε

T 2
. (1.3)

Atunci, pentru orice u0 ∈ D(A) s
,

i orice f ∈ L2(0, T ;H), există o solut
,

ie unică u = uεµ ∈
W 2,2(0, T ;H) a problemei (Pεµ).

Demonstrat, ia se bazează pe utilizarea regularizării Yosida pentru a aproxima operatorul

neliniar A ı̂n cazul B = 0. Existenţa şi unicitatea soluţiei se obţine prin argumente de compaci-

tate, incluzând Criteriul Arzelà–Ascoli s, i proprietatea de demi-̂ınchidere a operatorilor maximal

monotoni. Existenţa şi unicitatea soluţiei ı̂n cazul B ̸= 0 rezultă dintr-un argument de punct

fix, folosind Principiul Contract, iilor al lui Banach, ı̂n condit, ia impusă constantei Lipschitz L.
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Capitolul 1 Incluziuni de evoluţie cu doi parametri

Condit, ia L < 2ε
T 2 joacă un rol esent, ial ı̂n rezultat, ı̂nsă nu este necesară ı̂n toate cazurile,

as,a cum ilustrează următorul exemplu.

Un contraexemplu simplu ([4])

Considerăm ı̂n H = R următoarea problemă

(P )

{

−u′′(t) + µu′(t)− u(t) = 0, 0 < t < T,

u(0) = u0 ̸= 0, u′(T ) = 0.

Pentru µ = 0, solut, ia generală a ecuat, iei de mai sus care satisface u(0) = u0 este dată de

u(t) = u0 cos t+c sin t, 0 ≤ t ≤ T. Dacă T = π/2, obt, inem u′(π/2) = −u0 ̸= 0, deci problema de

mai sus nu are solut, ie. Observăm că nu este satisfăcută condit, ia (1.3) (L = 1 > 8/π2 = 2ε/T 2).

Totus, i, este posibil ca problema (Pεµ) să aibă solut, ie chiar dacă nu este satisfăcută condit, ia

(1.3). De exemplu, dacă ı̂n problema (P ) de mai sus, luăm µ = 0 s, i T = 2π, atunci u = u0 cos t

este solut, ia unică a acesteia, des, i condit, ia (1.3) nu este satisfăcută.

În continuare, consideram ecuat, ia (incluziunea) (E00). Introducem următoarea ipoteză

suplimentară pentru operatorul A.

(HA)
′ A : D(A) ⊂ H → H (eventual multivoc) este maximal monoton s, i, ı̂n plus, tare

monoton de constantă ω > 0; adică

(x− y, u− v) ≥ ω∥u− v∥2 pentru orice u, v ∈ D(A) s, i x ∈ Au, y ∈ Av. (1.4)

Avem următorul rezultat de existent, ă s, i unicitate pentru solut, ia incluziunii (E00).

Teorema 1.2 ([4]). Presupunem că ipotezele (HA)
′ s

,

i (HB) sunt ı̂ndeplinite, cu constantele

ω > 0 s
,

i L > 0 astfel ı̂ncât L < ω. Atunci, pentru orice f ∈ W 1,p(0, T ;H) s
,

i orice p ∈ (1,∞),

ecuat
,

ia (E00) are o solut
,

ie unică u ∈W 1,p(0, T ;H).

După ce am stabilit că problema (Pεµ) are soluţie şi aceasta este unică, analizăm ı̂n conti-

nuare dependent,a solut, iei ı̂n raport cu parametrii ε > 0 s, i µ ≥ 0. Mai precis, arătăm că solut, ia

uεµ depinde continuu de ε s, i µ, dacă aces,tia tind către ε0 > 0 s, i µ0 ≥ 0. Acest rezultat se

obt, ine prin deducerea unor estimări adecvate ı̂n spat, iul Hilbert L2(0, T ;H) s, i prin utilizarea

atentă a unor argumente de interpolare.

După ce am stabilit continuitatea solut, iei uεµ ı̂n raport cu parametrii ε s, i µ, analizăm ı̂n

continuare comportamentul asimptotic al acestei solut, ii când ε → 0+ s, i µ → µ0 > 0. Această

analiză are ca scop justificarea riguroasă a convergent,ei soluţiei problemei perturbate, de ordinul

al doilea (Pεµ), la soluţia problemei reduse, de ordinul ı̂ntâi (Pµ).

Teorema 1.3 ([4]). Presupunem că ipotezele (HA) s, i (HB) sunt ı̂ndeplinite, µ0 > 0 este fixat,

u0 ∈ D(A), s
,

i f ∈W 1,1(0, T ;H). Atunci, pentru orice ε > 0 suficient de mic s
,

i µ > 0 suficient

de aproape de µ0, problemele (Pεµ) s
,

i (Pµ) admit solut
,

ii unice uεµ ∈ W 2,2(0, T ;H), respectiv

uµ ∈W 1,∞(0, T ;H). În plus, are loc următoarea estimare:

∥uεµ − uµ0
∥C([0,T ];H) = O(ε1/4) +O(| µ− µ0 |1/2). (1.5)
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Capitolul 1 Incluziuni de evoluţie cu doi parametri

Acest rezultat de convergent, ă se obt, ine prin ı̂mpărt, irea demonstratiei ı̂n doi pasi. În primul

pas se demonstrează că solut, ia problemei (Pµ) converge către solut, ia problemei (Pµ0
) când

µ → µ0, folosind o normă de tip Bielecki. În al doilea pas se estimează diferent,a dintre uεµ
s, i uµ prin utilizarea unei ponderi exponent, iale, urmată de estimări deduse din proprietatea de

monotonie ale lui A s, i proprietatea de a fi Lipschitz a lui B. Cele două estimări sunt apoi

combinate pentru a obt, ine rezultatul final.

Observaţia 1.1 ([4]). Dacă ε > 0 este un parametru mic s
,

i µ este un număr pozitiv fixat (de

exemplu µ = 1), atunci problema (perturbată) (Pεµ) ≡ (Eεµ) + (BC) reprezintă o regularizare

de tip Lions a problemei (reduse) (Pµ) ≡ (Eµ) + (IC). Pentru cazul ı̂n care A este liniar s
,

i

B = 0, vezi [18].

Dacă A este un operator ciclic monoton, are loc o convergent, ă similară, as,a cum este precizat

ı̂n rezultatul de mai jos.

Teorema 1.4 ([4]). Presupunem că A este subdiferent
,

iala unei funct
,

ii φ : H → (−∞,+∞]

proprii, convexe s
,

i inferior semicontinue, iar ipoteza (HB) este ı̂ndeplinită. Fie µ0 > 0 fixat,

u0 ∈ D(A) s
,

i f ∈ L2(0, T ;H). Atunci, pentru orice ε > 0 suficient de mic s
,

i µ > 0 suficient

de aproape de µ0, problemele (Pεµ) s
,

i (Pµ) admit solut
,

ii unice uεµ ∈ W 2,2(0, T ;H), respectiv

uµ ∈W 1,2(0, T ;H), iar estimarea (1.5) are loc.

Această variantă a rezultatului de convergent, ă obţinut anterior se bazează pe tehnici simi-

lare. Estimarea normei derivatei lui uµ se obt, ine folosind un rezultat bine cunoscut (vezi [10,

Theorem 3.6, p. 72]), ı̂n combinat, ie cu argumentul general de continuitate din primul pas al

demonstrat, iei Teoremei 1.3.

Sect, iunea următoare este dedicată studiului comportamentului asimptotic al solut, iei uεµ a

problemei (Pεµ) atunci când parametrii tind la zero, adică atunci când ε → 0+ s, i µ → 0+. Ne

as,teptăm la un rezultat de convergent, ă a soluţiei problemei perturbate la solut, ia incluziunii

algebrice (E00) dar nu ı̂n norma C([0, T ];H). Într-adevăr, deoarece uεµ(0) = u0, ı̂n timp ce

u nu satisface ı̂n general u(0) = u0, apare un strat limită ı̂n jurul punctului t = 0. Pentru a

compensa această discrepant, ă, se introduce o funcţie corector.

Considerăm mai ı̂ntâi un model simplificat ı̂n care operatorul este A de forma A = ωI cu

ω > 0, iar B = 0. În acest caz, ecuat, ia redusă (E00) devine ωu = f , iar funcţia corector poate

fi construită explicit. Mai precis, considerăm problema

{

−εu′′εµ + µu′εµ + ωuεµ = f, t ∈ (0, T ),

uεµ(0) = u0, u′εµ(T ) = 0.
(1.6)

În acest caz am demonstrat următorul rezultat de convergenţă.

Teorema 1.5 ([4]). Fie ε > 0 s
,

i µ > 0. Atunci, pentru orice u0 ∈ H s
,

i orice f ∈W 1,2(0, T ;H),

problema (1.6) s
,

i ecuat
,

ia (E00) admit solut
,

ii unice uεµ ∈W 2,2(0, T ;H), respectiv u = (1/ω)f ∈

8
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W 1,2(0, T ;H). Mai mult, pentru ε, µ≪ 1 şi orice j ≥ 1, are loc următoarea estimare:

∥uεµ − (u+ α)∥C([0,T ];H) = O
(

µ1/2 + ε1/4 +
µ

ε1/4
+

εj

µ1/2

)

. (1.7)

Demonstrat, ia se bazează pe construirea unei funct, ii corector α(t) care compensează discre-

panţa dintre uεµ şi u ı̂n vecinătatea lui t = 0 s, i care verifică o ecuat, ie diferent, ială ordinară ı̂n

H.

Considerăm ı̂n continuare un cadru mai general, ı̂n care operatorul A este liniar, maxi-

mal monoton s, i tare monoton de constantă ω > 0, iar B este Lipschitz. În aceste condit, ii,

convergent,a se ment, ine, ı̂nsă ı̂n norma mai slabă a spat, iului L2(0, T ;H):

Teorema 1.6 ([4]). Fie 0 < ε, µ ≪ 1, astfel ı̂ncât ε < µ2/(4L). Presupunem că ipotezele

(HA)
′ s

,

i (HB) sunt ı̂ndeplinite s
,

i, ı̂n plus, că L < ω. Atunci, pentru orice u0 ∈ D(A) s
,

i orice

f ∈ W 1,2(0, T ;H), problema (Pεµ) s
,

i ecuat
,

ia (E00) admit solut
,

ii unice uεµ ∈ W 2,2(0, T ;H),

respectiv u ∈W 1,2(0, T ;H). Mai mult, dacă A este un operator liniar, atunci are loc următoarea

estimare:

∥ uεµ − u ∥L2(0,T ;H)= O(µ1/2). (1.8)

Observăm că, dacă ipoteza (HB) este ı̂nlocuită cu

(HB)
′ B : H → H este monoton s, i Lipschitz pe mult, imi mărginite,

obt, inem următorul rezultat de aproximare.

Teorema 1.7 ([4]). Fie 0 < ε, µ≪ 1. Presupunem că ipotezele (HA)
′ s

,

i (HB)
′ sunt ı̂ndeplinite.

Atunci, pentru orice u0 ∈ D(A) s
,

i orice f ∈ W 1,2(0, T ;H), problema (Pεµ) s
,

i ecuat
,

ia (E00)

admit solut
,

ii unice uεµ ∈W 2,2(0, T ;H), respectiv u ∈W 1,2(0, T ;H). Mai mult, dacă A este un

operator liniar, are loc următoarea estimare:

∥ uεµ − u ∥L2(0,T ;H)= O
(

µ1/2 + ε1/4 +
εj

µ1/2

)

∀j ≥ 1. (1.9)

În acest context, demonstrat, ia Teoremei 1.6 poate fi reluată aproape integral, modificarea

esent, ială apărând ı̂n estimarea termenului neliniar care implică operatorul B.

Observaţia 1.2 ([4]). Cu toate acestea, estimările obţinute ı̂n Teoremele 1.6 s
,

i 1.7 sunt ı̂n

norma spaţiului L2(0, T ;H), nu ı̂n norma din C([0, T ];H). Obt
,

inerea unor estimări ı̂n norma

C([0, T ];H) rămâne o problemă deschisă.

În ultima sect, iune a capitolului, aplicăm rezultatele abstracte anterioare ecuat, iei neliniare

a căldurii s, i sistemului telegrafis,tilor.
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Partea a II-a

Probleme la limită cu condiţii antiperiodice
şi parametri ı̂n spat, ii Hilbert



Capitolul 2

Asupra unor incluziuni de evolut, ie

cu parametru s, i condit, ii antiperiodice

Rezultatele prezentate ı̂n acest capitol fac parte dintr-o lucrare aflată ı̂n evaluare la Monatshefte

für Mathematik [26].

Dintre contribuţiile originale din acest capitol, menţionăm ı̂n rezumat Teoremele 2.1–2.4.

Celelalte rezultate obţinute sunt prezentate ı̂n teza completă.

Amintim că H reprezintă un spat, iu Hilbert real cu produs scalar (·, ·) s, i norma ∥ · ∥.
Considerăm ı̂n H următoarele probleme cu condit, ii la limită antiperiodice

(Pε)ap

{

−εu′′(t) + u′(t) +Au(t) +Bu(t) ∋ F (t, u(t)) a.p.t. t ∈ (0, T ), (Eε)

u(0) + u(T ) = 0, u′(0) + u′(T ) = 0,

s, i

(P0)ap

{

u′(t) +Au(t) +Bu(t) ∋ F (t, u(t)) a.p.t. t ∈ (0, T ), (E0)

u(0) + u(T ) = 0.

Pentru a studia problemele (Pε)ap s, i (P0)ap, presupunem că au loc următoarele ipoteze:

(HF ) Aplicat, ia F : [0, T ]×H → H este o funct, ie de tip Carathéodory s, i satisface următoarea

condit, ie de cres,tere subliniară

∥ F (t, v) ∥≤ L ∥ v ∥ + l(t) a.p.t. t ∈ (0, T ) s, i pentru orice v ∈ H, (2.1)

unde L ≥ 0 s, i l ∈ L2(0, T ), cu l(t) ≥ 0 a.p.t. t ∈ (0, T ).

(HA) Operatorul A = ∂φ, unde φ : H → [0,+∞] este o funct, ie pară, proprie, convexă s, i
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inferior semicontinuă, astfel ı̂ncât φ(0) = 0. În plus, φ satisface condit, ia

(Hϕc
) pentru orice r > 0, mult, imea {x ∈ D(φ); ∥ x ∥ +φ(x) ≤ r} este compactă ı̂n H.

Operatorul B satisface una dintre următoarele două condit, ii:

(HB)1 B = −∂ψ, unde ψ : H → R este o funct, ie pară, de clasă C1, s, i pentru orice r > 0 există

o constantă Kr > 0 astfel ı̂ncât ∥ ∂ψ(v) ∥≤ Kr pentru orice v ∈ H cu ∥ v ∥≤ r;

(HB)2 B = −∂ψ, unde ψ : H → (−∞,+∞] este o funct, ie pară, proprie, convexă s, i inferior

semicontinuă, care satisface:

(Hψ) D(∂φ) ⊂ D(∂ψ), s, i pentru orice r > 0, există o constantă ρr ∈ [0, 1) s, i o funct, ie

γ : [0,∞) → [0,∞), crescătoare, astfel ı̂ncât, pentru orice u ∈ D(∂φ) cu ∥ u ∥≤ r, este

satisfăcută condit, ia

∥ (∂ψ)0(u) ∥2≤ ρr ∥ (∂φ)0(u) ∥2 +γ(∥ u ∥)
(

φ(u) + 1
)

(2.2)

(unde (∂φ)0 reprezintă sect, iunea minimală a lui ∂φ, s, i similar pentru ψ).

În prima sect, iune obţinem rezultate de existent, ă a soluţiilor problemelor (Pε)ap s, i (P0)ap, pre-

cum şi estimări uniforme ı̂n raport cu parametrul ε. Acestea sunt esent, iale pentru a analiza

comportamentul soluţiilor problemelor (Pε)ap atunci când acest parametru converge la 0.

Presupunem ı̂n continuare că operatorul B verifică ipoteza (HB)1 şi demonstrăm un prim

rezultat de existenţă corespunzător.

Teorema 2.1 ([26]). Presupunem că sunt ı̂ndeplinite ipotezele (HA), (HB)1 s
,

i (HF ), iar con-

stanta L din (HF ) satisface L < π/T. Atunci, pentru orice ε > 0, problemele (Pε)ap s
,

i (P0)ap
admit cel put

,

in o solut
,

ie uε ∈W 2,2(0, T ;H), respectiv u ∈W 1,2(0, T ;H). În plus, aceste solut
,

ii

satisfac următoarele estimări:

∥ u′ε ∥L2(0,T ;H)≤∥ l ∥L2(0,T ) /kL, ∥ uε ∥C([0,T ];H)≤ R0,

∥ ∂ψ(uε) ∥L2(0,T ;H)≤ C1, ε
2 ∥ u′′ε ∥2L2(0,T ;H) + ∥ ξε ∥2L2(0,T ;H)≤ C2

2 , ∥ φ(uε) ∥C[0,T ]≤ C3,
(2.3)

cu uε, ξε, ε ı̂nlocuite cu u, ξ, 0, dacă u este o solut
,

ie a problemei (P0)ap,

unde kL = 1− LT/π, R0
not.
=

√
T ∥ l ∥L2(0,T ) /(2kL). De asemenea, Ci, i = 1, 3 sunt constante

pozitive care depind de T, L, ∥l∥L2(0,T ), ψ(0), s, i constanta din ipoteza (HB)1 pentru r = R0,

dar sunt independente de ε.

În (2.3), ξε s
,

i ξ reprezintă sect
,

iuni ale lui ∂φ(uε), respectiv ∂φ(u) (vezi Definit
,

ia 1).

Existent,a solut, iilor pentru problemele (Pε)ap s, i (P0)ap este demonstrată printr-un argument

de compacitate bazat pe Teorema de punct fix a lui Schaefer. Estimările uniforme (2.3) sunt

obt, inute folosind inegalităt, i de tip Poincaré pentru funct, ii antiperiodice cu valori ı̂n H, tehnici

de monotonie s, i argumente de regularitate specifice subdiferent, ialelor ∂φ s, i ∂ψ.

Un rezultat similar Teoremei 2.1 are loc ı̂n cazul ı̂n care B satisface ipoteza (HB)2 ı̂n loc

de (HB)1.
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Teorema 2.2 ([26]). Presupunem că sunt ı̂ndeplinite ipotezele (HA), (HB)2 s
,

i (HF ), iar con-

stanta L din (HF ) satisface L < π/T. Atunci, pentru orice ε > 0, problemele (Pε)ap s
,

i (P0)ap
admit cel put

,

in o solut
,

ie uε ∈W 2,2(0, T ;H), respectiv u ∈W 1,2(0, T ;H).

Mai mult, aceste solut
,

ii satisfac estimările (2.3)1,2 şi, ı̂n plus:

∥ ξε ∥L2(0,T ;H)≤ C1, ∥ ηε ∥L2(0,T ;H)≤ C2, ∥ φ(uε) ∥C[0,T ]≤ C3, ε ∥ u′′ε ∥L2(0,T ;H)≤ C4, (2.4)

unde uε, ξε, ηε, ε sunt ı̂nlocuite cu u, ξ, η, 0, dacă u este o solut
,

ie a lui (P0)ap.

Mai sus, Ci, i = 1, 4 sunt constante pozitive care depind de T , L, ∥l∥L2(0,T ) s
,

i constanta s
,

i

funct
,

ia din ipoteza (Hψ), pentru r = R0 (definită anterior ı̂n Teorema 2.1), dar sunt indepen-

dente de ε.

În (2.4), ξε s
,

i ηε reprezintă sect
,

iuni ale lui ∂φ(uε), respectiv ∂ψ(uε), iar ξ s
,

i η corespund

sect
,

iunilor lui ∂φ(u), respectv ∂ψ(u).

Demonstraţia acestui rezultat se bazează pe utilizarea regularizării Moreau-Yosida pentru

funcţia ψ, ceea ce conduce la o familie de probleme aproximative, pentru care existenţa soluţiilor

este garantată de Teorema 2.1. Estimările uniforme ı̂n raport cu ε pentru soluţiile problemelor

aproximative sunt deduse folosind inegalităt, i de tip Poincaré pentru funct, ii antiperiodice cu

valori ı̂n H, proprietăt, i ale subdiferent, ialelor s, i ipoteza (Hψ). Folosind metode de compacitate,

demîınchiderea operatorilor maximali monotoni şi slab inferior semicontinuitatea normelor,

obţinem, prin trecere la limită, existenţa unei soluţii pentru problema originală, ı̂mpreună cu

estimările corespunzătoare. Această tehnică se aplică ı̂n mod similar atât problemei perturbate,

cât şi celei reduse.

Observaţia 2.1 ([26]). Un operator care satisface ipoteza (HB)1 nu verifică, ı̂n general, şi

ipoteza (HB)2. În acest sens avem următorul exemplu. Considerăm H = L2(Ω), unde Ω este

un domeniu mărginit şi nevid din R
N . Fie q ∈ (1, 2]. Alegem a ∈ L∞(Ω) astfel ı̂ncât

m({x ∈ Ω; a(x) > 0}) > 0 şi m({x ∈ Ω; a(x) < 0}) > 0.

Definim funct
,

ia pară, de clasă C1, k : H → R, prin k(u) = q−1
∫

Ω a(x)|u|q dx, s, i notăm B =

−∂k : H → H. Atunci, pentru orice u ∈ H, avem B u = −a(x)|u|q−1 sgnu. Din inegalitatea

lui Hölder, B satisface (HB)1. Deoarece k nu este nici convexă, nici concavă, B nu satisface

ipoteza (HB)2.

Observaţia 2.2 ([26]). Dacă F : R×H → H satisface ipoteza (HF ) pe intervalul [0, T ] s
,

i, ı̂n

plus,

F (t+ T, u) + F (t,−u) = 0 a.p.t. t ∈ R s
,

i orice u ∈ H,

iar B este un operator impar, atunci solut
,

iile obt
,

inute ı̂n rezultatele de mai sus pot fi extinse

pe ı̂ntreaga mult
,

ime R prin T -antiperiodicitate.

În analiza comportamentului solut, iilor problemei (Pε)ap ı̂n raport cu parametrul ε, trebuie

subliniat că, ı̂n ipotezele Teoremelor 2.1 s, i 2.2, problemele (Pε)ap s, i (P0)ap nu admit, ı̂n general,
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soluţii unice, as,a cum este discutat ı̂n lucrările [17] s, i [24]. Cu toate acestea, putem stabili

următorul rezultat privind convergenţa şirurilor de soluţii asociate problemei (Pε)ap.

Teorema 2.3 ([26]). Fie ε0 ≥ 0 fixat. Presupunem că ipoteza (HA) este ı̂ndeplinită, ı̂mpreună

cu una dintre ipotezele (HB)1 sau (HB)2. În plus, presupunem că (HF ) are loc, iar constanta

L satisface L < π/T. Pentru orice ε > 0, fie uε o soluţie a problemei (Pε)ap, a cărei existenţă

este asigurată de Teorema 2.1, ı̂n cazul (HB)1, sau de Teorema 2.2, ı̂n cazul (HB)2. Atunci,

pentru orice s
,

ir 0 < εn → ε0, există un subs
,

ir (notat la fel) astfel ı̂ncât

uεn → u ı̂n C([0, T ];H), u′εn ⇀ u′ slab ı̂n W 1,2(0, T ;H) dacă ε0 > 0,

uεn → u ı̂n C([0, T ];H), u′εn ⇀ u′ slab ı̂n L2(0, T ;H) dacă ε0 = 0,
(2.5)

unde limita u este o solut
,

ie a problemei (Pε0)ap dacă ε0 > 0, respectiv (P0)ap dacă ε0 = 0.

Demonstrat, ia se bazează pe estimările uniforme obţinute ı̂n Teoremele 2.1 s, i 2.2, argumente

de compacitate s, i proprietatea de demîınchidere a operatorilor maximal monotoni.

Prezentăm ı̂n continuare două condiţii suficiente pentru unicitatea solut, iilor problemelor

(Pε)ap s, i (P0)ap. Acestea ne permit să demonstrăm că solut, ia problemei (Pε)ap este continuă

ı̂n raport cu parametrul ε s, i aproximează solut, ia problemei (P0)ap atunci când ε→ 0+.

În cele ce urmează, presupunem că F satisface o ipoteză mai restrictivă decât (HF ):

(HF )
′ F este o aplicat,̧ ie de tip Carathéodory care verifică următoarea condiţie

∥ F (t, v)− F (t, w) ∥≤ L̄ ∥ v − w ∥, (2.6)

a.p.t. t ∈ (0, T ) s, i pentru orice v, w ∈ H, unde L̄ este o constantă pozitivă.

Notăm R0=
√
T ∥ F (t, 0) ∥L2(0,T ) /(2kL̄), unde kL̄ = 1 − L̄T/π, conform definit, iei din

Teorema 2.1.

Teorema 2.4 ([26]). Fie ε0 ≥ 0 fixat. Presupunem că sunt verificate (HA), (HF )
′, ı̂mpreună

cu una dintre ipotezele (HB)1 sau (HB)2. În plus, presupunem că este satisfăcută una dintre

condit
,

iile:

(h1)A este un operator tare monoton cu constanta ω > 0, B este Lipschitz pe bila BH(0,R0)

cu constanta Lipschitz LB, s, i L̄+ LB < ω;

(h2)A este un operator liniar, B este Lipschitz pe bila BH(0,R0) cu constanta Lipschitz LB,

s
,

i (L̄+ LB)T < π.

Atunci, pentru orice ε > 0, soluţiile uε şi u ale problemelor (Pε)ap, respectiv (P0)ap (obţinute ı̂n

Teorema 2.1, ı̂n cazul ipotezei (HB)1, sau ı̂n Teorema 2.2, ı̂n cazul ipotezei (HB)2) sunt unice.

În plus, au loc următoarele estimări şi rezultate de aproximare:

∥ uε − uε0 ∥C([0,T ];H)≤
√
T

2
∥ u′ε − u′ε0 ∥L2(0,T ;H)= O(|ε− ε0|),

uε → uε0 ı̂n C1([0, T ];H) când ε→ ε0 > 0,

∥ uε − u ∥L2(0,T ;H)= O(
√
ε) dacă are loc (h1) s, i ε→ 0+,

uε → u ı̂n C([0, T ];H) când ε→ 0+.

(2.7)
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Demonstrat, ia se bazează pe inegalităt, i de tip Poincaré pentru funct, ii antiperiodice cu va-

lori ı̂n H s, i pe tehnici de monotonie pentru a stabili unicitatea solut, iilor. Separate, se obt, in

estimările dorite, ı̂n funcţie de ipoteza considerată, (h1) sau (h2), ţinând cont că A este tare

monoton, respectiv liniar. Argumente de regularitate s, i compacitate, sunt folosite pentru a de-

monstra convergent,a ı̂n C1([0, T ];H) când ε→ ε0 > 0, respectiv ı̂n C([0, T ];H) când ε→ 0+.

Sect, iunea finală este dedicată aplicării rezultatelor abstracte la probleme concrete. În par-

ticular, ne concentrăm asupra ecuaţiei semilineare a căldurii cu condiţii la limită antiperiodice

ı̂n raport cu variabila timp, precum şi asupra unor sisteme de ecuaţii diferenţiale ordinare cu

soluţii antiperiodice.
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Capitolul 3

Incluziuni de evolut, ie cu doi parametri

şi condit, ii antiperiodice

Acest capitol prezintă rezultatele din articolul realizat ı̂n colaborare cu L. Barbu s, i G. Moros,anu,

acceptat spre publicare ı̂n Communications in Contemporary Mathematics [5]

Dintre contribuţiile originale din acest capitol, menţionăm ı̂n rezumat Teoremele 3.1–3.9.

Celelalte rezultate pot fi consultate ı̂n conţinutul integral al tezei.

Fie H un spat, iu Hilbert real cu produsul scalar notat (·, ·) şi norma asociată acestuia ∥ · ∥.
Considerăm mai ı̂ntâi următoarea problemă de ordinul al doilea, cu condit, ii la limită anti-

periodice ı̂n H:

(Pεµ)ap

{

−εu′′(t) + µu′(t) +Au(t) +Bu(t) ∋ f(t) a.p.t. t ∈ (0, T ), (Eεµ)

u(0) + u(T ) = 0, u′(0) + u′(T ) = 0,

unde T > 0 este un moment final fixat, ε > 0, µ ≥ 0, s, i f ∈ L2(0, T ;H).

În cazul µ > 0, analizăm s, i următoarea problemă antiperiodică de ordinul ı̂ntâi:

(Pµ)ap

{

µu′(t) +Au(t) +B u(t) ∋ f(t) a.p.t. t ∈ (0, T ), (Eµ)

u(0) + u(T ) = 0.

Introducem de asemenea următoarea incluziune algebrică:

(E00)ap Au(t) +B u(t) ∋ f(t) a.p.t. t ∈ (0, T ).

Analiza din acest capitol se bazează pe următoarele ipoteze generale:

(Hεµ) parametrii ε s, i µ satisfac ε ≥ 0, µ ≥ 0, s, i ε+ µ > 0;
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(HA) A = ∂φ, unde φ : H → [0,+∞] este o funct, ie pară, proprie, convexă, inferior semicon-

tinuă, astfel ı̂ncât φ(0) = 0;

(HB) B : H → H este un operator continuu cu o creştere subliniară, adică există L > 0 şi

l ≥ 0, astfel ı̂ncât

∥ B u ∥≤ L ∥ u ∥ + l pentru orice u ∈ H;

(Hϕc
) pentru orice γ > 0,mult, imea {x ∈ D(φ); ∥ x ∥≤ γ, φ(x) ≤ γ} este compactă ı̂n H.

Ipoteze suplimentare asupra operatorilor A s, i B vor fi introduse pe parcurs.

Prima sect, iune este dedicată obt, inerii existent,ei solut, iilor problemelor (Pεµ)ap s, i (Pµ)ap s, i

a unor estimări uniforme ale acestora, ı̂n raport cu parametrii consideraţi. Aceste estimări vor

fi ulterior utilizate pentru analiza comportamentului solut, iilor problemei (Pεµ)ap ı̂n raport cu

parametrii ε s, i µ.

Începem prin stabilirea existent,ei a cel put, in unei solut, ii pentru problema (Pεµ)ap, ı̂mpreună

cu estimări uniforme ı̂n raport cu parametrul µ.

Teorema 3.1 ([5]). Fie ε > 0 fixat. Presupunem că ipotezele (HA), (Hϕc
) s

,

i (HB) sunt

ı̂ndeplinite, iar constanta L a operatorului B satisface

L <
π2ε

T 2
. (3.1)

Atunci, pentru orice µ ≥ 0 s
,

i f ∈ L2(0, T ;H), problema (Pεµ)ap admite cel put
,

in o solut
,

ie

uεµ ∈ W 2,2(0, T ;H), astfel ı̂ncât ξεµ ∈ L2(0, T ;H), unde ξεµ este o sect
,

iune a lui ∂φ(uεµ) ca

ı̂n Definit
,

ia (1.1). În plus, pentru orice µ ≥ 0, au loc următoarele estimări:

∥ u′′εµ ∥L2(0,T ;H)≤ C1ε, ∥ u′εµ ∥L2(0,T ;H)≤ C2ε, ∥ uεµ ∥C([0,T ];H)≤ C3ε, (3.2)

∥ ξεµ ∥L2(0,T ;H)≤ C4ε, ∥ φ(uεµ) ∥L∞(0,T )≤ C5ε, (3.3)

unde Ciε, i = 1, 5 sunt constante pozitive care depind de ε, T , ∥ f ∥L2(0,T ;H), L s
,

i l, dar sunt

independente de µ.

Demonstrat, ia Teoremei 3.1 se bazează pe Teorema de punct fix a lui Schaefer, pentru a

obt, ine existent,a unei solut, ii. Instrumentele cheie includ argumente de monotonie, inegalităt, i

de tip Poincaré s, i rezultate de scufundare pentru spat, iile Sobolev.

Observaţia 3.1 ([5]). Concluziile Teoremei 3.1 rămân adevărate dacă renunt
,

ăm la ipoteza

(Hϕc
), dar ı̂n schimb presupunem o condit

,

ie mai puternică asupra operatorului B; mai exact,

ipoteza (HB) este ı̂nlocuită cu

(HB)
′ B : H → H este un operator Lipschitz cu constanta Lipschitz L.

Observaţia 3.2 ([5]). Considerăm problema (Pεµ)ap cu A = 0, µ = 0, s
,

i B u = Lu, unde

L < επ2/T 2. Ne aflăm astfel ı̂n ipotezele Observaţiei 3.1. Este cunoscut faptul că επ2/T 2 este
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cea mai mică valoare proprie a problemei

εu′′(t) = λu(t), t ∈ (0, T ), u(0) + u(T ) = 0, u′(0) + u′(T ) = 0.

Prin urmare, potrivit alternativei lui Fredholm (a se vedea, de exemplu, [20, Teorema 7.10]),

există f ∈ H, pentru care problema

−εu′′(t)− ε
π2

T 2
u(t) = f(t), t ∈ (0, T ), u(0) + u(T ) = 0, u′(0) + u′(T ) = 0

nu are soluţie.

As
,

adar, condit
,

ia L < επ2/T 2 este optimă atunci când B = Lu, ca urmare s
,

i ı̂n contextul

Observaţiei 3.1.

Următorul rezultat oferă o condit, ie suficientă pentru existent,a solut, iilor problemelor (Pεµ)ap
s, i (Pµ)ap, atunci când constanta L este presupusă

”
suficient de mică” ı̂n raport cu µ. În plus,

se obt, in estimări uniforme ı̂n raport cu ε, care vor fi utilizate ı̂n sect, iunile următoare.

Teorema 3.2 ([5]). Fie µ > 0 fixat. Presupunem că ipotezele (HA), (Hϕc
) s

,

i (HB) sunt

ı̂ndeplinite, iar constanta L a operatorului B satisface

L <
πµ

T
. (3.4)

Atunci, pentru orice ε > 0 s
,

i f ∈ L2(0, T ;H), problemele (Pεµ)ap s
,

i (Pµ)ap admit cel put
,

in

o solut
,

ie uεµ ∈ W 2,2(0, T ;H), respectiv uµ ∈ W 1,2(0, T ;H), astfel ı̂ncât ξεµ, ξµ ∈ L2(0, T ;H),

unde ξεµ s
,

i ξµ reprezintă sect
,

iuni ale lui ∂φ(uεµ(t)), respectiv ∂φ(uµ(t)), ca ı̂n Definit
,

ia (1.1).

În plus, pentru orice ε ≥ 0, au loc următoarele estimări:

∥ u′εµ ∥L2(0,T ;H)≤ C1µ, ∥ uεµ ∥C([0,T ];H)≤ C2µ, ∥ ξεµ ∥L2(0,T ;H)≤ C3µ, (3.5)

ε ∥ u′′εµ ∥L2(0,T ;H)≤ C4µ, ∥ φ(uεµ) ∥L∞(0,T )≤ C5µ, (3.6)

cu uεµ ı̂nlocuit prin uµ dacă ε = 0 (cu except
,

ia estimării (3.6)1),

unde Ciµ, i = 1, 5 sunt constante pozitive care depind de µ, T , ∥ f ∥L2(0,T ;H), L s
,

i l, dar sunt

independente de ε.

Demonstrat, ia Teoremei 3.2 se bazează pe tehnicile utilizate ı̂n Teorema 3.1, folosind un

argument de tip punct fix pentru a obt, ine existent,a, urmat de aplicarea unor inegalităt, i de tip

Poincaré pentru funct, ii antiperiodice cu valori ı̂n H, ı̂n vederea deducerii estimărilor uniforme.

Observaţia 3.3 ([5]). Observăm că rezultatul din Teorema 3.2 rămâne adevărat ı̂n absenţa

ipotezei (Hϕc
), dacă se impun condiţii mai restrictive asupra operatorilor A şi B. Mai exact,

presupunem că ipoteza (HA) este satisfăcută, iar A este, ı̂n plus, un operator liniar. De aseme-

nea, considerăm că este ı̂ndeplinită ipoteza (HB)
′, cu constanta de Lipschitz L a operatorului B

satisfăcând inegalitatea L < πµ
T .

18



Capitolul 3 Incluziuni de evolut, ie cu doi parametrii şi condit, ii antiperiodice

Concluziile Teoremelor 3.1 s, i 3.2 rămân valabile pentru ipoteze diferite asupra operatorilor

A şi B. Mai exact, presupunem că ipoteza (HA) este ı̂nlocuită cu ipoteza mai restrictivă

(HA)
′ ipoteza (HA) este ı̂ndeplinită s, i, ı̂n plus, operatorul A este tare monoton, cu constantă

ω > 0 (vezi condit, ia (1.4)).

În acest caz, se poate demonstra un rezultat similar celor anterioare, ı̂n care constanta L

satisface o condit, ie care implică doar constanta ω.

Teorema 3.3 ([5]). Presupunem că ipotezele (HA)
′, (Hϕc

) s
,

i (HB) sunt ı̂ndeplinite, cu con-

stantele L s
,

i ω satisfăcând

L < ω. (3.7)

Atunci, pentru orice ε s
,

i µ care satisfac ipoteza (Hεµ) s
,

i orice f ∈ L2(0, T ;H), problemele

(Pεµ)ap s
,

i (Pµ)ap admit cel put
,

in o solut
,

ie uεµ ∈ W 2,2(0, T ;H), respectiv uµ ∈ W 1,2(0, T ;H),

astfel ı̂ncât ξεµ, ξµ ∈ L2(0, T ;H), unde ξεµ s
,

i ξµ reprezintă sect
,

iuni ale lui ∂φ(uεµ(t)), respectiv

∂φ(uµ(t)), ca ı̂n Definit
,

ia (1.1). În plus, au loc următoarele estimări:

∥ uεµ ∥L2(0,T ;H)≤ C1, ε2 ∥ u′′εµ ∥2L2(0,T ;H) +µ
2 ∥ u′εµ ∥2L2(0,T ;H) + ∥ ξεµ ∥2L2(0,T ;H)≤ C2

2 , (3.8)

pentru orice ε s
,

i µ care satisfac (Hεµ), cu uεµ ı̂nlocuit prin uµ dacă ε = 0;

∥ uεµ ∥C([0,T ];H)≤
C2

√
T

2µ
, ∥ φ(uεµ) ∥L∞(0,T )≤ C C2

(

C2

µ
+ C1

)

, (3.9)

pentru orice ε ≥ 0 s
,

i µ > 0, cu uεµ ı̂nlocuit prin uµ dacă ε = 0;

∥ u′εµ ∥L2(0,T ;H)≤
C2T

πε
, ∥ uεµ ∥C([0,T ];H)≤

C2T
√
T

2πε

s
,

i ∥ φ(uεµ) ∥L∞(0,T )≤ C C2

(

C2T

πε
+ C1

)

pentru orice ε > 0 s
,

i µ ≥ 0,

(3.10)

unde C, Ci, i = 1, 2 sunt constante pozitive care depind de T , ∥ f ∥L2(0,T ;H), ω, L s
,

i l, dar sunt

independente de ε s
,

i µ.

Observaţia 3.4 ([5]). Merită subliniat faptul că toate concluziile Teoremei 3.3 rămân valabile

s
,

i dacă presupunem alte ipoteze. Mai precis, renunt
,

ăm la ipoteza (Hϕc
) s

,

i ı̂n schimb presupunem

că B satisface condit
,

ia mai puternică (HB)
′, cu constanta Lipschitz L < ω. În plus, obt

,

inem

unicitatea solut
,

iilor pentru problemele (Pεµ)ap (dacă ε > 0) s
,

i (Pµ)ap.

Demonstrat
,

ia acestei afirmat
,̧

ii se bazează pe Principiul contracţiilor al lui Banach.

Observaţia 3.5 ([5]). Ment
,

ionăm că, dacă f ∈ L2
loc(R;H) s

,

i f(t+ T ) + f(t) = 0 a.p.t. t ∈ R,

iar B este un operator impar, atunci solut
,

iile obţinute ı̂n rezultatele de mai sus pot fi extinse

pe ı̂ntreaga mult
,

ime R prin T -antiperiodicitate.

Sect, iunea următoare studiază comportamentul solut, iilor problemei (Pεµ)ap ı̂n raport cu ε s, i

µ. Începem prin a presupune că ipotezele (HA), (Hϕc
) s, i (HB) sunt ı̂ndeplinite. În acest cadru,

19



Capitolul 3 Incluziuni de evolut, ie cu doi parametrii şi condit, ii antiperiodice

problemele (Pεµ)ap s, i (Pµ)ap nu au neapărat soluţii unice (a se vedea [8], [17], [23] s, i [24]). Vom

considera mai multe scenarii, ı̂n funct, ie de care dintre parametrii ε sau µ tinde la zero.

Rezultatele de convergent, ă care urmează (Teoremele 3.4–3.7) sunt obt, inute utilizând teh-

nici similare. Demonstrat, iile se bazează pe o combinat, ie ı̂ntre estimările uniforme ı̂n raport

cu parametrii ε s, i/sau µ obţinute anterior, Lema lui Ascoli, proprietatea de demîınchidere a

operatorilor maximal monotoni s, i argumente de convergent, ă slabă ı̂n spat, ii Sobolev.

Cazul 1: Fie ε = ε0 > 0 fixat s, i µ→ 0+.

Considerăm problema (Pε00)ap
not.
= (Pε0)ap, care corespunde cazului particular µ = 0 ı̂n

problema (Pε0µ)ap. În acest cadru, se obt, ine următorul rezultat de convergent, ă.

Teorema 3.4 ([5]). Fie ε0 > 0 fixat. Presupunem că ipotezele Teoremei 3.1 sunt ı̂ndeplinite,

iar (3.1) este satisfăcută de ε0 (adică L < π2ε0/T
2). Pentru orice µ ≥ 0, fie uε0µ o solut

,

ie a

problemei (Pε0µ)ap dată de Teorema 3.1. Atunci, pentru orice s
,

ir 0 < µn → 0, există un subs
,

ir

(notat la fel), astfel ı̂ncât uε0µn
→ u ı̂n C([0, T ];H), uε0µn

→ u slab ı̂n W 2,2(0, T ;H) când

n→ ∞, iar limita u este o solut
,

ie tare a problemei (Pε0).

Cazul 2: Fie µ = µ0 > 0 fixat s, i ε→ 0+.

Teorema 3.5 ([5]). Fie µ0 > 0 fixat. Presupunem că ipotezele Teoremei 3.2 sunt ı̂ndeplinite,

iar (3.4) este satisfăcută de µ0 (adică L < πµ0/T ). Pentru orice ε > 0, fie uεµ0
s
,

i uµ0
solut

,

ii

ale problemelor (Pεµ0
)ap, respectiv (Pµ0

)ap, date de Teorema 3.2. Atunci, pentru orice s
,

ir 0 <

εn → 0, există un subs
,

ir (notat la fel), astfel ı̂ncât uεnµ0
→ uµ0

ı̂n C([0, T ];H), u′εnµ0
→ u′µ0

slab ı̂n L2(0, T ;H) când n→ ∞, iar limita uµ0
este o solut

,

ie a problemei (Pµ0
)ap.

Cazul 3: Fie ε→ ε0 s, i µ→ µ0, cu ε0, µ0 satisfăcând ipoteza (Hε0µ0
)

În următorul rezultat presupunem că (HA)
′, (Hϕc

), s, i (HB) sunt ı̂ndeplinite, cu constantele

ω s, i L satisfăcând L < ω. În baza acestor ipoteze, putem obt, ine un rezultat de convergent, ă

mai general decât cele obt, inute anterioar.

Teorema 3.6 ([5]). Fie ε0 s
,

i µ0 fixaţi, satisfăcând ipoteza (Hε0µ0
). Presupunem că ipotezele

Teoremei 3.3 sunt ı̂ndeplinite. Pentru orice ε s
,

i µ care satisfac (Hεµ)ap, notăm cu uεµ s
,

i uµ
solut

,

ii ale problemelor (Pεµ)ap s
,

i (Pµ)ap, respetiv, date de Teorema 3.3. Atunci, pentru orice

s
,

ir cu componente pozitive (εn, µn) → (ε0, µ0), există un subs
,

ir (notat la fel), astfel ı̂ncât

uεnµn
→ uµ0

ı̂n C([0, T ];H), u′εnµn

→ u′µ0
slab ı̂n L2(0, T ;H) dacă ε0 = 0,

uεnµn
→ u ı̂n C([0, T ];H), uεnµn

→ u slab ı̂n W 2,2(0, T ;H) dacă ε0 > 0,

iar limitele uµ0
s
,

i u sunt solut
,

ii ale problemelor (Pµ0
)ap, respectiv (Pε0µ0

)ap.

Teorema 3.7 ([5]). Fie ε0 ≥ 0 s
,

i µ0 > 0 fixaţi. Presupunem că ipotezele din Teorema 3.2

sunt ı̂ndeplinite, iar relat
,

ia (3.4) este satisfăcută pentru µ0 (adică L < πµ0/T ). Atunci există

δ0 ∈ (0, µ0), astfel ı̂ncât pentru orice parametrii ε s
,

i µ care satisfac (Hεµ), cu | ε − ε0 |< δ0,

| µ−µ0 |< δ0, s, i f ∈ L2(0, T ;H), problemele (Pεµ)ap s, i (Pµ)ap admit solut
,

ie uεµ ∈W 2,2(0, T ;H),
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respectiv uµ ∈ W 1,2(0, T ;H). Mai mult, pentru orice s
,

ir cu componente pozitive (εn, µn) →
(ε0, µ0), există un subs

,

ir (notat la fel), astfel ı̂ncât

uεnµn
→ u ı̂n C([0, T ];H), uεnµn

→ u slab ı̂n W 2,2(0, T ;H) dacă ε0 > 0, s
,

i

uεnµn
→ uµ0

ı̂n C([0, T ];H), u′εnµn

→ u′µ0
slab ı̂n L2(0, T ;H) dacă ε0 = 0.

În plus, limitele u s
,

i uµ0
sunt solut

,

ii tari ale problemelor (Pε0µ0
)ap s

,

i (Pµ0
)ap, respectiv.

Exemple ([5]) Fie Ω un domeniu mărginit şi nevid din R
N . Următorii operatori definit, i

pe H = L2(Ω) sunt impari, continui s, i subliniari, dar nu sunt Lipschitz:

(1) B u = ± | u |α sgnu, cu α ∈ (0, 1);

(2) B u = ± sgnu · e−1/|u| dacă u ̸= 0, B 0 = 0.

Pe un spat, iu Hilbert arbitrar H, putem considera operatorul

B u = ± ∥ u ∥α−1 u, dacă u ̸= 0, B 0 = 0, unde α ∈ (0, 1).

În următoarea sect, iune se studiază continuitatea solut, iilor problemei (Pεµ)ap ı̂n raport cu ε

s, i µ, incluzând rezultate de aproximare pentru solut, iile problemelor (Pµ)ap s, i (E00)ap. În cele

ce urmează, vom considera două situaţii particulare ı̂n care problemele (Pεµ)ap s, i (Pµ)ap admit

solut, ii unice.

În cazul unicitat, ii soluţiilor, sunt de as,teptat anumite estimări ale ratei de convergent, ă a

diferent,ei uεµ − uε0µ0
dacă ε0 > 0, respectiv uεµ − uµ0

dacă ε0 = 0 (̂ın norma C([0, T ];H) sau

L2(0, T ;H)), precum s, i dependent,a continuă a solut, iei uεµ a problemei (Pεµ)ap ı̂n raport cu

parametrii ε s, i µ.

Presupunem, pentru ı̂nceput, că operatorul A este tare monoton. Vom presupune de ase-

menea că sunt ı̂ndeplinite ipotezele (HA)
′ s, i (HB)

′, cu constantele ω s, i L satisfăcând relat, ia

L < ω. Este de ment, ionat că ipoteza (Hϕc
) nu mai este necesară, ı̂n consecint, ă, o vom omite.

Observaţia 3.4 de mai sus garantează existent,a s, i unicitatea solut, iilor uεµ s, i uµ ale problemelor

(Pεµ)ap s, i respectiv (Pµ)ap.

Putem formula următorul rezultat privind dependent,a continuă a solut, iei uεµ a problemei

(Pεµ)ap ı̂n raport cu parametrii ε s, i µ s, i aproximarea solut, iilor problemelor reduse. Metodele

utilizate pentru a demonstra fiecare dintre cele trei cazuri, ı̂n funct, ie de parametrul care tinde

la zero individual sau simultan, sunt similare s, i implică estimările deduse anterior, proprietăţile

subdiferenţialei s, i Criteriul lui Arzelà–Ascoli.

Teorema 3.8 ([5]). Presupunem că ipotezele (HA)
′ s

,

i (HB)
′ sunt ı̂ndeplinite, cu constan-

tele ω s
,

i L satisfăcând L < ω. Atunci, pentru orice ε, µ care verifică (Hεµ) s
,

i orice f ∈
L2(0, T ;H), problemele (Pεµ)ap s

,

i (Pµ)ap admit solut
,

ie unică uεµ ∈ W 2,2(0, T ;H), respectiv

uµ ∈W 1,2(0, T ;H). Mai mult, pentru orice ε0, µ0 fixaţi care satisfac (Hε0µ0
), au loc următoarele
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estimări s
,

i aproximări:

∥ uεµ − uε0µ0
∥C([0,T ];H)= O(| ε− ε0 |) +O(| µ− µ0 |) s, i

uεµ → uε0µ0
ı̂n C1([0, T ];H) când (ε, µ) → (ε0, µ0) dacă ε0 > 0;

∥ uεµ − uµ0
∥L2(0,T ;H)= O(

√
ε) +O(| µ− µ0 |) s, i

uεµ → uµ0
ı̂n C([0, T ];H) când (ε, µ) → (0+, µ0).

(3.11)

Dacă, ı̂n plus, presupunem că B este un operator impar s
,

i f ∈ W 1,2(0, T ;H), cu f(0) +

f(T ) = 0, atunci incluziunea (algebrică) (E00)ap admite o solut
,

ie unică u00 ∈ W 1,2(0, T ;H),

care satisface u00(0) + u00(T ) = 0, u(t) ∈ D(A) pentru orice t ∈ [0, T ], s
,

i

∥ uεµ − u00 ∥L2(0,T ;H)= O(
√
ε) +O(µ). (3.12)

Mai mult, dacă este ı̂ndeplinită condiţia µ2/ε = O(1), atunci

uεµ → u00 ı̂n C([0, T ];H) când (ε, µ) → (0+, 0+). (3.13)

Exemple ([5]) Considerăm următoarele exemple de operatori Lipschitz impari. Mai ı̂ntâi,

considerăm retract, ia radială pe bila unitate din H, definită prin B1 : H → H,

B1 x =

{

x dacă ∥ x ∥≤ 1,
x

∥x∥ dacă ∥ x ∥> 1.

Este bine cunoscut faptul că B1 este Lipschitz de constantă L1 = 1.

Un alt exemplu (a se vedea [24, Lemma 2.3]) este operatorul B2 : H → H,

B2 x =

{

x dacă ∥ x ∥≤ 1,
x

∥x∥2 dacă ∥ x ∥> 1,

care are, de asemenea, constantă Lipschitz egală cu 1.

Să considerăm acum cazul particular ı̂n care H = L2(Ω), unde Ω este un domeniu mărginit,

nevid din R
N . Câteva exemple de operatori Lipschitz impari pe H sunt: (1) B u = ± sin u; (2)

B(u) = ±u/
√

1 + u2; (3) B u = ± sgnu ·min{| u |α, | u |β}, cu 0 < α < 1 < β.

În continuare, prezentăm condit, ii suficiente care garantează unicitatea solut, iilor problemelor

(Pεµ)ap s, i (Pµ)ap, ı̂n cazul ı̂n care operatorul A nu mai este tare monoton.

Teorema 3.9 ([5]). Fie ε0 s
,

i µ0 fixaţi, satisfăcând (Hε0µ0
). Presupunem că (HA) s, i (HB)

′ sunt

ı̂ndeplinite, cu constanta Lipschitz L a operatorului B astfel ı̂ncât

L <
π2ε0
T 2

dacă ε0 > 0 s
,

i L <
πµ0
T

dacă ε0 = 0.

În plus fat
,

ă de ipotezele de mai sus, dacă ε0 = 0, presupunem că A este un operator liniar
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s
,

i ipoteza (Hϕc
) este ı̂ndeplinită.

Atunci există δ0 ∈ (0,max{ε0, µ0}), astfel ı̂ncât pentru orice ε s
,

i µ satisfăcând (Hεµ), cu

| ε − ε0 |< δ0, | µ − µ0 |< δ0, s, i f ∈ L2(0, T ;H), problemele (Pεµ)ap s
,

i (Pµ)ap admit solut
,

ie

unică uεµ ∈W 2,2(0, T ;H), respectiv uµ ∈W 1,2(0, T ;H). Mai mult, au loc următoarele estimări

şi aproximări:

∥ uεµ − uε0µ0
∥C([0,T ];H)= O(| ε− ε0 |) +O(| µ− µ0 |) s

,

i

uεµ → uε0µ0
ı̂n C1([0, T ];H) când (ε, µ) → (ε0, µ0) dacă ε0 > 0;

uεµ → uµ0
ı̂n C([0, T ];H) s

,

i

u′εµ → u′µ0
slab ı̂n L2(0, T ;H) când (ε, µ) → (0+, µ0).

(3.14)

Secţiunea finală este consacrată aplicării rezultatelor abstracte obţinute anterior la probleme

concrete, incluzând ecuaţii semiliniare şi neliniare cu condiţii antiperiodice ı̂n timp.
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Capitolul 4

Probleme cu condiţii la limită antiperiodice

guvernate de operatori maximal monotoni

Rezultatele prezentate ı̂n acest capitol fac parte dintr-un articol publicat ı̂n An. Şt. Univ.

Ovidius Constanţa [25].

Dintre contribuţiile originale din acest capitol, menţionăm ı̂n rezumat Teoremele 4.1 s, i

4.2. Celelalte rezultate obţinute sunt prezentate ı̂n teza completă.

In acest capitol, studiem incluziuni diferenţiale de ordinul ı̂ntâi s, i al doilea cu condit, ii

la limită antiperiodice, ı̂n ipoteza că operatorul A este maximal monoton, tare monoton, s, i

impar. Acest cadru mai general permite tratarea unor modele neliniare care includ sistemele

hiperbolice. Deoarece A nu este o subdiferent, ială, sunt necesare condit, ii mai restrictive asupra

operatorilor B s, i funct, iei f pentru a asigura obţinerea unor rezultate similare celor din capitolele

anterioare.

Reamintim că H este un spaţiu Hilbert real, cu produs scalar (·, ·) şi normă ∥ · ∥ indusă de

acesta.

Considerăm ı̂n H aceeas, i clasă de probleme ca ı̂n capitolul anterior

(Pεµ)ap

{

−εu′′(t) + µu′(t) +Au(t) +Bu(t) ∋ f(t) a.p.t. t ∈ (0, T ), (Eεµ)

u(0) + u(T ) = 0, u′(0) + u′(T ) = 0,

unde T > 0, ε > 0, s, i µ ≥ 0, ı̂mpreună cu

(Pµ)ap

{

µu′(t) +Au(t) +B u(t) ∋ f(t) a.p.t. t ∈ (0, T ), (Eµ)

u(0) + u(T ) = 0.
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pentru µ > 0. Introducem de asemenea incluziunea algebrică

(E00)ap Au(t) +Bu(t) ∋ f(t) a.p.t. t ∈ (0, T ),

care se obt, ine prin fixarea formală a valorilor ε = µ = 0 ı̂n (Eεµ).

În acest capitol, considerăm următoarele ipoteze generale asupra operatorilor care apar ı̂n

problemele formulate anterior

(Hf ) f ∈W 1,2(0, T ;H) s, i f(0) + f(T ) = 0;

(HA) Operatorul A : D(A) ⊂ H → H este impar, maximal monoton s, i tare monoton de

constantă ω0 > 0 (eventual multivoc);

(HB) Operatorul B : H → H este impar, maximal monoton (eventual multivoc) s, i satisface

următoarea condit, ie: pentru orice r > 0, există Lr > 0, astfel ı̂ncât pentru orice x ∈ H cu

∥ x ∥≤ r, avem ∥ B x ∥≤ Lr.

Observaţia 4.1. Un exemplu de operator B care satisface ipoteza (HB) este B x =∥ x ∥p−2 x.

Acest operator este de asemenea ciclic monoton, deoarece corespunde subdiferent
,

ialei funct
,

iei

convexe x→∥ x ∥p .

Pentru ı̂nceput, demonstrăm că problemele introduse mai sus admit solut, ii unice. În plus,

obt, inem estimări uniforme ale acestor solut, ii ı̂n raport cu parametrii ε s, i µ. Aceste estimări

vor fi esent, iale pentru demonstrarea rezultatelor prezentate ı̂n cele ce urmează.

Pe tot parcursul acestui capitol, toate solut, iile problemelor ment, ionate anterior sunt consi-

derate ı̂n sensul Definit, iei 1.

Teorema 4.1 ([25]). (i) Presupunem că A este un operator maximal monoton impar s
,

i că

ipoteza (HB) este ı̂ndeplinită. Atunci, pentru orice ε > 0, µ ≥ 0, s
,

i f ∈ L2(0, T ;H), problema

(Pεµ)ap admite o solut
,

ie unică uεµ ∈W 2,2(0, T ;H) care satisface următoarea estimare:

ε ∥ u′′εµ ∥L2(0,T ;H)≤∥ f ∥L2(0,T ;H) . (4.1)

(ii) Presupunem că ipoteza (HA) este satisfăcută. Atunci, pentru orice ε ≥ 0 s
,

i µ ≥ 0 cu

ε + µ > 0, s
,

i pentru orice f care satisface ipoteza (Hf ), problemele (Pµ)ap s
,

i (Pεµ)ap admit

solut
,

ii unice uµ ∈W 1,2(0, T ;H) s
,

i uεµ ∈W 2,2(0, T ;H), respectiv. Mai mult, au loc următoarele

estimări:

∥ u′µ ∥L2(0,T ;H) ≤ ω−1
0 ∥ f ′ ∥L2(0,T ;H) pentru orice µ > 0,

∥ u′εµ ∥L2(0,T ;H) ≤ ω−1
0 ∥ f ′ ∥L2(0,T ;H) pentru orice ε > 0, µ ≥ 0.

(4.2)

În plus, incluziunea algebrică (E00)ap admite o solut
,

ie unică u00 ∈W 1,2(0, T ;H), care satisface

u00(0) + u00(T ) = 0 s
,

i u(t) ∈ D(A) pentru orice t ∈ [0, T ].

Demonstrat, ia se bazează pe tehnici specifice operatorilor maximal monotoni care includ

utilizarea aproximantei Yosida, proprietatea de demîınchdere a extensiilor canonice ale opera-

torilor A si B precum şi pe Criteriul lui Arzelà–Ascoli.
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Următoarea sect, iune este destinată investigării dependent,ei continue a solut, iei uεµ a pro-

blemei (Pεµ)ap ı̂n raport cu parametrii ε s, i µ. De asemenea, obt, inem rezultate de aproximare

pentru solut, iile problemei reduse (Pµ)ap s, i a incluziunii algebrice (E00)ap.

Teorema 4.2 ([25]). Presupunem că ipoteza (HB) este satisfăcută.

(i) Fie ε0 > 0 s
,

i µ0 ≥ 0 fixaţi. Presupunem că A este un operator maximal monoton impar.

Pentru orice ε > 0, µ ≥ 0, s
,

i f ∈ L2(0, T ;H), fie uεµ ∈W 2,2(0, T ;H) solut
,

ia unică a problemei

(Pεµ)ap obţinută ı̂n Teorema 4.1 (i). Atunci, următoarea estimare şi convergenţă au loc:

∥ uεµ − uε0µ0
∥C([0,T ];H)= O(| ε− ε0 |) +O(| µ− µ0 |),

uεµ → uε0µ0
ı̂n C1([0, T ];H) când (ε, µ) → (ε0, µ0).

(4.3)

(ii) Fie µ0 > 0 fixat. Presupunem că (HA) este ı̂ndeplinită. Pentru orice ε ≥ 0 s
,

i µ ≥ 0 cu

ε+ µ > 0, s
,

i pentru orice f care satisface (Hf ), fie uεµ ∈ W 2,2(0, T ;H) s
,

i uµ ∈ W 1,2(0, T ;H)

solut
,

iile unice ale problemelor (Pεµ)ap, respectiv (Pµ)ap, obţinute ı̂n Teorema 4.1 (ii). Atunci,

următoarea estimare s
,

i aproximare au loc:

∥ uεµ − uµ0
∥L2(0,T ;H)= O(

√
ε) +O(| µ− µ0 |),

uεµ → uµ0
ı̂n C([0, T ];H) când (ε, µ) → (0+, µ0).

(4.4)

Mai mult, următoarea estimare este de asemenea valabilă:

∥ uεµ − u00 ∥L2(0,T ;H)= O(
√
ε) +O(µ) când (ε, µ) → (0+, 0+), (4.5)

unde u00 ∈ W 1,2(0, T ;H) este solut
,

ia unică a incluziunii (algebrice) (E00)ap, obţinută ı̂n Teo-

rema 4.1(ii). În plus, dacă µ2/ε = O(1), atunci

uεµ → u00 ı̂n C([0, T ];H) când (ε, µ) → (0+, 0+). (4.6)

În final, ultima secţiune este dedicată aplicării rezultatelor abstracte obţinute anterior la

un model semiliniar al sistemului telegrafiştilor, cu condiţii antiperiodice ı̂n timp.
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[4] L. Barbu, G. Moroşanu, I.V. Vı̂ntu, Second-order differential inclusions with two small

parameters, Nonlinear Anal. Real World Appl. 77 (2024), 104061.
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[20] G. Moroşanu, Functional Analysis for the Applied Sciences, Springer, Cham, 2019.
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