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Introduction

The study of nonlinear evolution inclusions in Hilbert spaces is a central topic in the field
of partial differential equations, motivated both by its theoretical richness and its relevance
to a wide range of applied problems, from mechanics and control theory to reaction-diffusion
systems and wave propagation. Among the most powerful tools in this area are monotonicity
methods, which have been extensively developed to handle differential inclusions governed by
maximal monotone operators, possibly perturbed by nonmonotone terms.

This thesis is devoted to the study of two classes of abstract nonlinear second-order boundary
value problems in real Hilbert spaces. The associated evolution inclusions are governed by
maximal monotone operators and incorporate nonlinear perturbations of various types, such as
nonmonotone, Lipschitz continuous, or sublinear terms.

The thesis begins with an introductory chapter comprising several key sections: Context
and Motivation, Related Works, Objectives of the Thesis, Structure of the Thesis and Scientific
Contributions and Dissemination. This is followed by a chapter on Preliminaries, in which
essential notions and tools are grouped into three sections: Function Spaces, Some Abstract
Tools and Maximal Monotone Operators.

The main body of the thesis is structured in two parts, each containing original contribu-
tions. Part I: Evolution Inclusions in Hilbert Spaces with Parameters corresponds to Chapter 1
of this summary, while Part II: Antiperiodic Boundary Value Problems in Hilbert Spaces with
Parameters encompasses Chapters 2, 3, and 4. The results presented throughout this summary
are given without proofs, though the underlying methods are usually indicated.

The thesis concludes with a final chapter that summarizes the main findings and discusses
their mathematical and applicative relevance. Additionally, it outlines several open directions
and perspectives for future research, including the extension of the abstract framework to
Banach spaces, the study of differential inclusions with nonmonotone perturbations, and the
behavior of solutions when relaxing the structural assumptions on the perturbation operators.

For conciseness and ease of presentation, this extended summary omits all section and
subsection headings, but provides a comprehensive overview of the results obtained in each
part of the thesis. The bibliographical resources mentioned are strictly selected based on the
content presented. The complete list of publications can be found in the full version of the
thesis.

We devote the rest of this chapter to introducing some of the relevant work in the literature,
placing the contributions of this thesis within the context of existing studies.
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We begin by precisely formulating the first class of problems considered in Part I. These
involve boundary value problems with Dirichlet—Neumann conditions

(P —eu(t) + ! () + Au(t) + Bu(t) > f(t), 0 <t < T, (E.,)
T w(0) = g, W/(T) =0, (BC)

where € > 0, u > 0 are two parameters. For p > 0, the corresponding reduced model is the
Cauchy problem

) pu! (t) + Au(t) + Bu(t) > f(t), 0 <t < T, (EL)
a U(O) = Uup. (IC)

We next consider the following nonlinear algebraic inclusion
(Eoo) Au(t) + Bu(t) > f(t), forae. te(0,T).

This inclusion naturally arises as the stationary limit of the solutions to problem (F;,).

The operators A and B satisfy assumptions presented in Chapter 1.

We briefly review relevant literature on second-order abstract evolution inclusions. The
study of inclusions of the form w”(t) € Au(t) under Dirichlet or boundedness conditions was
initiated by V. Barbu [7, 6]. H. Brézis [J] extended the analysis on [0,00) with nonlinear
boundary conditions like u'(0) € 9j(u(0) — a). R.E. Bruck [I1] introduced inhomogeneous
terms, considering u”(t) € Au(t) + f(t) with a,b € D(A). More recently, similar second-order
problems with Dirichlet—Neumann type conditions have been considered by L. Barbu and G.
Morosanu [3], and by G. Moroganu and A. Petrugel [21, Lemma 4]. However, their results do
not cover all the situations addressed in Chapter 1.

The convergence of solutions to problem (FP,) as ¢ — 04 has been studied in several
settings. M. Ahsan and G. Moroganu [!] considered the case ;1 = 1 with A linear and strongly
monotone, later extended to general maximal monotone A by L. Barbu and G. Moroganu [3].
G. Morosanu and A. Petrusel [21] further examined the asymptotic behavior in two cases: (i)
e — 0 with fixed p > 0, and (ii) fixed £ > 0, u — 0. The results in Chapter 1 constitute original
contributions that extend earlier findings.

Part II introduces antiperiodic boundary problems in abstract form, progressively refined
across Chapters 2-4 under varying assumptions. The problem (FP.,)qp is formulated as follows:

(P.)) { —eu 4+ pu' + Au+ Bu > f/or F(-,u(-)) a.e. in (0,7,
P w(0) +u(T) =0, o/(0)+/'(T) =0,

where f € L2(0,T; H), F : [0,T] x H — H is a Carathéodory mapping which verifies a sublinear
growth condition, € > 0, u > 0 are parameters. For u > 0, the corresponding reduced problem
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takes the form

puw' + Au+ Bu > f/or F(-,u(:)) a.e. in (0,T),
<P “)ap{ u(0) + u(T) = 0.

Additionally, the associated algebraic inclusion is given by
(Eo0)ap Au+Bu> f ae in (0,7).

The (possibly set-valued) operators A and B are subject to distinct assumptions in each chapter.

The problem (P,),p, with B = 0 was studied by Okochi [22], and by Haraux [17] in the case
Bu = Au, A > 0. Aizicovici and Pavel [2] addressed problems (P:,)ap and (Py)qp with B =0
or B = —0Y, where A = Jp dominates B in a specified sense. They established existence,
uniqueness, and continuous dependence for antiperiodic solutions when B = 0, and existence
results when B = —0vy. These works motivated further research, with notable contributions
in Hilbert spaces by Chen [13], Chen et al. [12, 14, 15], and Couchouron and Precup [16]. The
results obtained here complement these studies.

The behavior of solutions to (FP,)ep With respect to both parameters, as well as the ap-
proximation of solutions to (P,)qp and the algebraic inclusion (FEpg)ap, has not been addressed
for antiperiodic boundary conditions. This work fills that gap and offers new insights.

Finally, we present a central notion that sets the stage for the rest of our analysis: the
concept of a strong solution. This definition provides the precise functional framework in
which we formulate and study our problems in Part II.

Definition 1 ([5], [25], [26]). A function u € W22(0,T; H) is said to be a (strong) solution to
problem (P.p)ap if the following conditions are all satisfied

(i) u(t) € D(A) for a.e. t € (0,T);

(i1) there exist &, n € L*(0,T; H), such that

—eu"(t) + pl'(t) + £(t) — n(t) = f(t)(or F(t,u(t))) and 0.1)
£(t) € Au(t), n(t) € Bu(t) for a.e. t € (0,T); '

(i71) uw(0) + u(T) = 0, ' (0) + «/(T) = 0.
In a similar way, a function uw € Wh2(0,T; H) is said to be a solution to problem (P,)qp if u
fulfills conditions (i), (ii) (with e = 0), and u(0) + u(T) = 0.

Note that if the operators A and/or B are single-valued, then for all t € [0,T], we have
&(t) = Au(t) and/or n(t) = Bu(t). In this case, the definition above is simplified, with &(t)
and/or n(t) being replaced by the expressions Au(t) and/or Bu(t), respectively.

Keywords: Evolution inclusion, Lions regularization, antiperiodic solution, maximal mono-
tone operator, subdifferential, Lipschitz operator, semilinear parabolic equations, nonlinear
ordinary differential systems, heat equation, telegraph differential system.
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Evolution Inclusions in Hilbert Spaces with Parameters



Chapter 1

A Class of Evolution Inclusions

with Two Parameters

This chapter is dedicated to a detailed presentation of results published in a joint work with
L. Barbu and G. Morosanu in Nonlinear Anal. Real World Appl. [1].

Among the original contributions in this chapter, we mention in the summary Theo-
rems 1.1-1.7. The rest of the obtained results are presented in the full version of the thesis.
Let H denote a real Hilbert space with inner product (-,-) and norm || - .
We consider the following boundary-value problem in the Hilbert space H

(Poy) { u”(t) + p (t) + Au(t) + Bu(t) 3 f(t), 0 <t <T, 29
H u(0) = wug, v (T)=0, (BC)

where T' > 0 is a given time instant; € > 0, 4 > 0 are two parameters, and A, B are operators
satisfying the following hypotheses:

(Ha) A: D(A) C H — H is a maximal monotone operator (possibly set-valued, in which case
(Eey) is a differential or evolution inclusion);
(Hp) B:D(B)=H — H is a Lipschitz operator, i.e., there exists a constant L > 0 such that

I Bm—By ||§L\|:r—y||, for all z, y € H.
Further assumptions will be imposed later in the chapter.
For > 0 we also consider the following Cauchy problem

pu () + Au(t) + Bu(t) 2 f(t), 0 <t < T, (E,)
() { u(0) = up. (10)
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Problem (P,) is a reduced problem obtained by making ¢ = 0 in (F.,), which is said to be a
perturbed problem associated with (P,). Notice that problem (P,) inherits from problem (P.,,)
only the condition u(0) = up.

We also consider the following (algebraic) inclusion

(Eoo) Au(t) + Bu(t) > f(t), 0<t < T,

which is obtained by taking € = 0 and ¢ = 0 in equation (E.,).
As a first step, we introduce the definition of (strong) solutions corresponding to problems
(Pu) and (Pep).

Definition 2 ([19, Definition 2.1, p. 47]). Assume that assumptions (Ha) and (Hp) are
satisfied and ug € D(A).

Let i1 > 0. A function u € WY2(0,T; H) is said to be a (strong) solution to problem (P,) if the
following conditions are all satisfied

(i) u(t) € D(A) for a.e. t € (0,T);

(ii) there exists € € L?(0,T; H), such that

pu'(t) + £(t) + Bu(t) = f(t) and £(t) € Au(t) for a.e. t € (0,T); (1.1)

(731) u(0) = up.

Let ¢ > 0 and p > 0. In a similar way, a function v € W22(0,T; H) is said to be a (strong)
solution to problem (P.,) if u fulfills condition (i),

(i1)’ there exists ¢ € L*(0,T; H), such that

—eu” (t) + o' (t) + £(t) + Bu(t) = f(t) and £(t) € inAu(t) for a.e. t € (0,T); (1.2)

(i41) u(0) = ug, u/(T) = 0.

In the first section, we aim to establish existence and uniqueness results for the solutions
of problem (P;,), as well as for the algebraic inclusion (Epg). We start by examining problem

(Pepa)-

Theorem 1.1 ([1]). Let € > 0 and p > 0. Assume that (Ha) and (Hg) are fulfilled, with the

Lipschitz constant L of B satisfying
2e

L<ﬁ'

(1.3)

Then, for every ug € D(A) and every f € L*(0,T; H), there exists a unique solution u = u., €
W?22(0,T; H) to problem (Pv,).

The proof is based on using the Yosida regularization for approximating the nonlinear
operator A in the case B = 0. The existence and uniqueness results are obtained through
compactness arguments, including the Arzela—Ascoli Criterion and the demiclosedness property
of maximal monotone operators. The existence and uniqueness in the case B # 0 results from
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a fixed-point argument, using the Banach Contraction Principle in the imposed condition on
the Lipschitz constant L.

The condition L < % plays a crucial role in the result, but it is not necessary in all cases,
as the following example illustrates.
A simple counterexample ([1])
Consider in H = R the following problem

—u’(t) + pu'(t) —u(t) =0, 0 <t <T,
(P) { w(0) = up £ 0, w/(T) = 0.

For p = 0, the general solution of the above equation satisfying u(0) = ug is given by u(t) =
ugcost +csint, 0 <t <T.If T = /2, we get u/(w/2) = —ug # 0, so the problem above has
no solution. Notice that condition (1.3) is not satisfied (L = 1 > 8/72 = 2¢/T?).

However, it may happen that problem (F:,) has a solution, even if the condition (1.3) is
not satisfied. For example, if we consider again problem (P) above, with ;= 0 and T = 2,
then u = ug cost is the unique solution of this problem, even if condition (1.3) is not satisfied.

From the arguments implemented in the proof of Theorem 1.1, we see that if B = 0, the
theorem holds true without condition (1.3).

Next, we continue with the equation (inclusion) (Epp). We require the following stronger
assumption on A.
(Ha)) A:D(A) C H — H (possibly set-valued) is maximal monotone and, in addition,
strongly monotone with constant w > 0; i.e.

(x —y, u—v)>w|u—2v|?*for all u,ve D(A)and z € Au, y € Av. (1.4)

Using a similar approach to the proof of Theorem 1.1, we have the following existence and
uniqueness result for the solution to equation (Fyg).

Theorem 1.2 ([1]). Assume that (Ha)" and (Hg) are both fulfilled, with constants w > 0 and
L > 0 satisfying L < w. Then, for every f € WHP(0,T; H) and every p € (1,00), equation
(Eoo) has a unique solution u € WHP(0,T; H).

After establishing the well-posedness of problem (F;,), we proceed to analyze the depen-
dence of the solution on the parameters € > 0 and u > 0. More precisely, we show that the
solution wu.,, varies continuously with respect to € and p, as they approach fixed reference values
€o > 0 and pg > 0. This result is obtained by deriving suitable estimates in the Hilbert space
L?(0,T; H) and careful use of interpolation arguments.

Having established the continuity of the solution u., with respect to the parameters e and
1, we now investigate the asymptotic behavior of this solution as € — 04 and pu — po > 0. This
analysis aims to rigorously justify the convergence from the second-order regularized problem
(P.) to the first-order problem (P,) as the regularization vanishes.
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Theorem 1.3 ([!]). Assume that (Ha) and (Hpg) hold, uo is a fized positive constant, ug €
D(A), and f € WHL(0,T; H). Then, for every e > 0 small enough and p > 0 close to g, the
problems (P.,) and (P,) have unique solutions, uc,, € W?%(0,T; H) and u, € WH>(0,T; H),
respectively, and the following estimate holds:

[ tep — uuoHC([O,T];H) = 0(51/4) +O(| 1 — po |1/2)- (1.5)

This convergence result is obtained by decomposing the analysis into two stages. The first
part proves that the solution to problem (P,) converges continuously to the solution of (P,,)
as [ — po, using a Bielecki norm. The second stage estimates the difference between u., and
u,, by applying an exponentially weighted transformation, followed by estimates deduced from
the monotony property of operator A and the Lipschitz property of operator B. These two
estimates are then combined to conclude the result.

Remark 1.1 ([1]). Ife > 0 is a small parameter and p is a fized positive number (in particuar
p = 1), then the (perturbed) problem (P:,) = (E.,) + (BC) is a Lions type regularization of
the (reduced) problem (P,) = (E,) + (IC) above. For the case A linear and B =0, see [15].

Remark 1.2. If A is a subdifferential operator, a similar convergence holds, as stated below.

Theorem 1.4 ([1]). Assume that A is the subdifferential of a proper, convex, and lower semi-
continuous function ¢ : H — (—o00,+00], and (Hp) holds. Let pg > 0 be fized, and let
ug € D(A) and f € L*(0,T; H). Then, for every e > 0 small enough and 1 > 0 close to g, the
problems (P.,) and (P,) admit unique solutions uc, € W>2(0,T; H) and u, € W12(0,T; H),
respectively, and the estimate (1.5) holds.

This version of the convergence result relies on analogous techniques, adapted to the subd-
ifferential structure of A. In particular, the norm estimate for the derivative of w,, is obtained
using a well-known result (see [10, Theorem 3.6, p. 72]), in combination with the general
continuity argument from the first stage of the proof of Theorem 1.3.

The following section concerns the asymptotic behavior of the solution uc, to problem
(P.,) as the parameters vanish, i.e., as ¢ — 04 and g — O4. In this fashion, the dynamics
are expected to converge to those of the algebraic inclusion (Eqg). However, since uc,(0) = ug
while wu, the solution of (Eyg), typically does not satisfy u(0) = ug, a boundary layer develops
near t = 0. To compensate for this mismatch, a corrector is introduced.

We first consider a simplified model where the operator A is linear and scalar, i.e., A = wl
with w > 0, and B = 0. In this case, the reduced equation (FEpy) becomes wu = f, and the
exact corrector can be explicitly constructed. Consider the problem

{ —eul, + pug, +wue, = f, t € (0,7T), (1.6)

e, (0) = o, u’EM(T) =0.

In this case, we proved the following convergence result.
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Theorem 1.5 ([1]). Lete > 0 and > 0. Then for every ug € H and every f € WH2(0,T; H),
problem (1.6) and equation (Eo) have unique solutions us, € W*2(0,T; H) and respectively
u= (1/w)f € WY2(0,T; H). Moreover, for e, p < 1, the following estimate holds

pooe :
ey = (u+ )l oo 1,0 = O (ulﬂ +el/t 4 aat M1/2> Vj > 1. (1.7)

The proof is based on constructing a corrector function «(t) that absorbs the boundary
layer at ¢ = 0 and satisfies an ordinary differential equation in H.

We now move to a more general setting, in which A is a linear and maximal w—strongly
monotone operator and B is Lipschitz. Under these assumptions, the convergence still holds,
though in the weaker norm of L?(0,T; H):

Theorem 1.6 ([1]). Let 0 < &, p < 1, such that ¢ < p%/(4L). Assume that (Ha)' and (Hp)
are fulfilled and, in addition, L < w. Then, for every ug € D(A) and every f € W12(0,T; H),
problem (Pe,) and equation (En) have unique solutions ue, € W*2(0,T; H) and respectively
u € WY2(0,T; H). Moreover, if in addition A is a linear operator, the following estimate holds

| Ugy — U ||L2(0,T;H)= O(H1/2)~ (1.8)

Notice that, if (Hp) is replaced by
(Hg)" B:H — H is monotone and Lipschitz on bounded sets,
we have the following approximation result.

Theorem 1.7 ([1]). Let 0 < e, pu < 1. Assume that (Ha)" and (Hg)' are fulfilled. Then, for
every ug € D(A) and every f € WH2(0,T; H), problem (P.,) and equation (Eg) have unique
solutions ue, € W2%(0,T; H) and respectively uw € W12(0,T; H). Moreover, if A is a linear
operator, the following estimate holds

Ej .
o = o= 0 (24 44+ 55 Wiz 1. (19)

In this setting, the proof of Theorem 1.6 can be repeated almost entirely, with the key
modification arising in the control of the nonlinear term involving B.

Remark 1.3 ([1]). Unfortunately, the estimates provided by Theorems 1.6 and 1.7 are in
L?(0,T;H), not in C([0,T); H). Obtaining estimates in the C([0,T]; H)-norm remains an
open problem.

In the final section of this chapter, we apply our abstract findings to two applications, the
regularization of the nonlinear heat equation and the regularization of the telegraph system.
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Chapter 2

On One-Parameter Evolution Inclusions

with Antiperiodic Conditions

The results presented in this chapter are part of a manuscript currently under review in Monat-
shefte fir Mathematik [20].

Among the original contributions in this chapter, we mention Theorems 2.1-2.4. The
rest of the obtained results are presented in the full version of the thesis.

Recall that H denotes a real Hilbert space with inner product (-,-) and norm || - ||.

We consider the following antiperiodic boundary value problems in H

(P —eu”(t) +u/(t) + Au(t) + Bu(t) > F(t,u(t)) for ae. t € (0,T), (E.)
=ap w(0) +u(T) =0, (0)+u(T) =0,

and
(Po)ap { vt

To study problems (P:),p and (Fp)ap, we place ourselves in the following abstract framework
(Hp) The mapping F': [0,7] x H — H is a Carathéodory function and satisfies the following
sublinear growth condition

Au(t) + Bu(t) > F(t,u(t)) for a.e. t € (0,T), (Ev)

| F(t,v) |[< L || v +U(t) for ae. t € (0,T) and for all v € H, (2.1)

where L > 0 and [ € L?(0,T), with I(t) > 0 for a.e. t € (0,7).

(H4) The operator A = dp, where ¢ : H — [0, +00] is an even, proper, convex, and lower

11
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semicontinuous function, such that ¢(0) = 0. In addition, ¢ satisfies the following condition

(Hy,) for every r > 0, the set {x € D(¢); || = || +¢(z) <7}
is compact in H.

The operator B is assumed to satisfy one of the following two conditions:

(Hg)1 B = —0v, where ¢ : H — R is an even, continuously differentiable function, and for
all 7 > 0, there exists K, > 0 such that || 0¢(v) ||< K, for all v € H with || v ||< 73

(Hpg)2s B = —0v, where ¥ : H — (—00,400] is an even, proper, convex, and lower semicon-
tinuous function satisfying

(Hy) D(0p) C D(0v), and for all © > 0, there exist a constant p, € [0,1), and a
non-decreasing function - : [0,00) — [0, 00), such that for all u € D(d¢) with || u ||< r, the
following condition is satisfied

1 (0v)° () IP< pr I (99)" (@) II* +(Il w 1) (0(w) + 1) (2.2)

(here (0¢)? stands for the minimal section of Oy and similarly for ).

In the first section, we address existence and uniqueness results concerning problems (P )q,
and (Pp)qp, along with uniform estimates that are essential for analyzing the limiting behavior
as € — 0. We begin by working under the assumption that the operator B satisfies (Hp); and
establish the first existence result within this framework.

Theorem 2.1 ([20]). Assume that (Hya), (Hp)1, and (Hp) hold, with the constant L in (Hp)
satisfying L < 7 /T. Then, for everye > 0, problems (P:)qp and (Py)qp have at least one solution
ue € W220,T; H) and u € WY2(0,T; H), respectively. Furthermore, these solutions satisfy
the following estimates

Il Npzo,mm < pzo,) /kLs || ue lleqorm < Ro,

(2.3)
I 99 (ue) llr20,mm < Crs € |l ey + | &6 20 < Css I 0(ue) Nl < Cs,

with ue, &, € replaced by u, &, 0, respectively, if u is a solution to (FPo)ap,

where k;, =1 — LT /7, Ro " T 10 lz20,m) /(2kL), and Cy, @ = 1,3 are positive constants
depending on T, L, |[l||r2(0,1), ¥(0), and the constant from assumption (Hp)1 with r = Ro, but
are independent of €.

In (2.3), & and £ denote the sections of Op(us) and dp(u), respectively (see Definition 1).

The existence of solutions for problems (F:)qp and (Fp)qp is established using a compactness
argument based on the Schaefer Fixed Point Theorem. Key estimates are derived via Poincaré-
type inequalities for H—valued antiperiodic functions, monotonicity techniques, and regularity
arguments involving the subdifferentials dyp and 0.

A similar result to Theorem 2.1 holds, assuming B satisfies (Hp)2 instead of (Hp);.

12
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Theorem 2.2 ([26]). Assume that (Ha), (Hp)2, and (Hp) hold, with the constant L in (Hp)
satisfying L < w/T. Then, for every € > 0, the problems (P.)ap and (Py)qp have at least one
solution u. € W22(0,T; H) and v € WY2(0,T; H), respectively. Furthermore, these solutions
satisfy estimates (2.3)1,2, and additionally

I & N2 < Cuy Nl e Nlezo,mm) < Cos | @(ue) llojon< Css € |l (| 20mm< Ca, (24)

with ue, &, ne, € replaced by u, &, n, 0, respectively, if u is a solution to (Po)ap'

Here C;, i = 1,4 are positive constants depending on T, L, lllz2(0,1), and the constant and
function from assumption (Hy) with v = Rg (previously defined in Theorem 2.1), but are
independent of e.

In (2.4), & and n. denote the sections of dp(ue) and 0V (ue), while & and n correspond to the
sections of Op(u) and O (u), respectively.

The proof of this result is based on using the Moreau-Yosida regularisation for function 1,
which led to a family of approximate problems. Uniform estimates are derived using Poincaré-
type inequalities for H—valued antiperiodic functions, properties of subdifferentials and struc-
tural assumptions like (Hy). Using compactness methods and the demiclosedness property of
maximal monotone operators, we obtain, passing to the limit, the existence of solutions to the
original problem, along with the corresponding estimates. This technique applies similarly for
both the perturbed and unperturbed problems.

Remark 2.1 ([20]). An operator satisfying (Hp)1 is not a particular case of one satisfying
(Hp)a. For example, consider H = L*(Q), where Q is a nonempty bounded domain in R, and
let ¢ € (1,2]. Take a € L>®(R2), such that m({x € Q; a(x) > 0}) > 0 and m({z € Q; a(z) <
0}) > 0. Define the even, continuously differentiable function k : H — R, k(u) = ¢~* [ a(z) |
u |9 dz, and set B = —0k : H — H. Then, for all u € H, we have Bu = —a(z) | u |71 sgnu.
By Hélder’s inequality, B satisfies (Hp)1, but since k is neither conver nor concave, B does
not satisfy (Hp)s.

Remark 2.2 ([26]). If F: R x H — H satisfies assumption (Hgr) on [0,T] and, in addition,
F(t+T,u)+F(t,—u) =0 forae teR andue H,

and if B is an odd operator, then the solutions obtained in the results of this section can be
extended to all of R by T'—antiperiodicity.

In analyzing the behavior of the solutions to (F:)s, with respect to ¢, it is worth empha-
sizing that under the assumptions of Theorem 2.1 and Theorem 2.2, the problems (P:),, and
(Py)ap may exhibit genuine nonuniqueness of solutions, as discussed in references [17] and [24].
Nonetheless, we have the following result concerning the convergence of sequences of solutions
to problem (Px)gp.

13
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Theorem 2.3 ([20]). Let g > 0 be fized. Assume that (Ha) holds, along with either (Hp)y or
(Hg)2. In addition, (HF) is fulfilled, with the constant L satisfying L < w/T. For every & > 0,
let ue be a solution to problem (Pr)ap, given by Theorem 2.1 under (Hg)1, or by Theorem 2.2
under (Hp)2. Then, for every sequence 0 < €, — £, there exists a subsequence (not relabeled),
such that

e, — u inC([0,T); H), u. — u' weakly in WH(0,T; H) if go > 0,

€

2.5
e, — u in C([0,T); H), u. — v weakly in L*(0,T; H) if o =0, (2:5)

where the limit u is a solution to (Px,)ap if €0 > 0, and a solution to (Py)ap if €9 = 0.

The proof relies on the uniform estimates obtained in Theorems 2.1 and 2.2, compactness
arguments and the demiclosedness property of maximal monotone operators.

We also provide two sets of sufficient conditions to guarantee the uniqueness of solutions to
problems (P:)qp and (Pp)ap. These conditions allow us to establish that the solution to (P:)qp
is continuous with respect to ¢ and approximates the solution to () as € — 0.

We impose the following stronger condition on F', instead of (Hp).

(Hp)" F is a Carathéodory mapping and instead of 2.1, we assume that F' satisfies

| F(t,v) = F(t,w) <L | v—wl| (2.6)

for a.e. t € (0,T) and all v, w € H, where L is a positive constant.
We denote Ro=vT | F(t,0) lr2(0,m) /(2kg), where kp = 1 — LT/, as defined in Theo-

rem 2.1.

Theorem 2.4 ([20]). Let eg > 0 be fized. Assume that (Ha) and (Hp)" hold, along with either
(Hgp)1 or (Hg)a. Furthermore, suppose that one of the following conditions is fulfilled:

(h1) A is a strongly monotone operator with constant w > 0, B is Lipschitz continuous on the
ball By (0,Ro) with the Lipschitz constant Lg, and L+ Lp < w;

(ha) A is a single-valued linear operator, B is Lipschitz continuous on the ball By (0,Ro) with
the Lipschitz constant Ly, and (L + Lg)T < 7.

Then, for every € > 0, the solutions u. and u to problems (Px:)ap and (Py)ap, respectively (as
established by Theorem 2.1 under (Hp)i, or by Theorem 2.2 under (Hg)2), are unique. In
addition, the following estimates and approximations are valid

It~ ey Noorims Y5 Il =ty Nzsoirym= Ol € <o |) and

ue — ue, in CH[0,T];H) as e —eg >0, (2.7)
| ue = |[r207.m)= O(VE) if (h1) holds and e — 04,

ue —u in C([0,T];H) as &— 04.

The proof relies on Poincaré-type inequalities for H—valued antiperiodic functions and
monotonicity techniques to establish uniqueness of solutions. Separate estimates are derived

14



Chapter 2 One-Parameter Evolution Inclusions with Antiperiodic Conditions

under structural conditions (hy) and (hg), depending on whether the operator A is strongly
monotone or linear. Regularity and compactness arguments, together with the Arzela—Ascoli
Criterion, are employed to prove convergence in C*([0,T]; H) as € — €¢ > 0, and convergence
in C([0,T];H) as ¢ — 0.

The final section is devoted to applications of the abstract results to concrete problems.
Specifically, we examine the semilinear heat equation under time-antiperiodic boundary condi-
tions, as well as antiperiodic systems of ordinary differential equations.

15



Chapter 3

On Two-Parameter Evolution Inclusions

with Antiperiodic Conditions

Based on a joint work with L. Barbu and G. Morosanu, accepted for publication in Communi-
cations in Contemporary Mathematics [5], this chapter investigates a second-order antiperiodic
boundary value problem that focuses on the case where both parameters ¢ > 0 and p > 0 are
present. In addition, we examine the associated reduced problem obtained by setting € = 0, as
well as the limiting algebraic inclusion corresponding to the case ¢ = yu = 0.

Among the original contributions from this chapter, we mention in the summary The-
orems 3.1-3.9. The rest of the results obtained can be consulted in the integral content of the
thesis.

Recall that H denotes a real Hilbert space with inner product (-,-) and norm || - ||.

Let T > 0 be a given final time. We first consider the following second-order antiperiodic
problem in a real Hilbert space H:

(P) —eu”(t) + pu/(t) + Au(t) + Bu(t) > f(t) for a.e. t € (0,7), (Eep)
s w(0) +uw(T) =0, o/ (0)+ v/ (T) =0,

where ¢ > 0, 4 >0, and f € L?(0,T; H).
In the case p > 0, we also consider the associated first-order antiperiodic problem:

pu'(t) + Au(t) + Bu(t) > f(t) for ae. t e (0,T), (E,)
(Buap { u(0) + u(T) = 0. '

In addition, we analyze the limiting case ¢ = pu = 0, which leads to the following algebraic

16



Chapter 3 Two-Parameter Evolution Inclusions with Antiperiodic Conditions

inclusion:

(Eo0)ap Au(t)+ Bu(t) > f(t) fora.e. te (0,T).

The general framework in which we analyze these problems is given by the following as-
sumptions:
(Hey) the parameters € and p satisfy € > 0, >0, and € + p > 0;
(Hy) A = 0y, where ¢ : H — [0,+00] is a proper, convex, lower semicontinuous, and even
function, such that ¢(0) = 0;
(Hp) B:H — H is a continuous operator satisfying the sublinear growth condition

| Bu||<L|ul +1 forall ueH,

for some constants L > 0 and { > 0.

(Hy,) for every v > 0,the set {x € D(¢); || = [|[< 7, ¢(x) <~} is compact in H.

Additional assumptions on the operators A and B will be introduced later.

The first section is dedicated to proving existence and finding uniform estimates of solutions
to problems (P )qp and (P,)ap. These estimates will later be used to analyze the behavior of
strong solutions to (P:,).p with respect to e and p.

We begin by establishing the existence of at least one strong solution to problem (P.,)ap,
along with uniform estimates with respect to the parameter .

Theorem 3.1 ([5]). Let € > 0 be fized. Assume that (Ha), (Hy,), and (Hp) are fulfilled, with

the constant L of B satisfying

7T2€

Then for every u >0 and f € L*(0,T; H), the problem (P.,)qp has at least one strong solution
Uz, € W22(0,T; H), such that &, € L*(0,T; H), where &.,(t) denotes the section of dp(ue,(t))
as in (1.1) for a.e. t € (0,T). In addition, for every u > 0, the following estimates hold

| uy 205 < Cres || wly lz20mm < Coes || Uep oo, < Cses (3.2)

| Eep ||L2(0,T;H)§ Cie, || ‘P(us,u) ||L°°(O,T)§ Cse, (3-3)

where Ciz, i = 1,5, are positive constants depending on &, T, || f 220,715 Ly and 1, but
independent of .
The proof of Theorem 3.1 relies on a fixed point approach, specifically the Schaefer Fixed

Point Theorem, to establish the existence of a strong solution. Key tools include monotonicity
arguments, Poincaré-type inequalities, and embedding results for Sobolev spaces.

Remark 3.1 ([5]). Theorem 3.1 still holds if we drop the assumption (Hy,) but instead impose
a stronger condition on B; namely, the assumption (Hp) is replaced by

17



Chapter 3 Two-Parameter Evolution Inclusions with Antiperiodic Conditions

(Hg)" B: H — H is a Lipschitz continuous operator, with Lipschitz constant L.

Remark 3.2 ([5]). Consider the problem (Pey)ap with A = 0, p = 0, and Bu = Lu, where
L < em?/T?%. So we are in the framework of Remark 3.1 above. It is well known that en?®/T?
s the smallest eigenvalue of the problem

eu’(t) = Mu(t), t € (0,T), u(0) +u(T) =0, «'(0)+(T)=0.

Hence, by virtue of the Fredholm Alternative (see, e.g., [20, Theorem 7.10]), the problem

7.(.2

—eu’(t) — eﬁu(t) = f(t), t€(0,T), u(0)+u(T) =0, v'(0)+(T) =0

18 not solvable for all f.

So, the condition L < en?/T? is suitable if B = Lu and of course the same condition is
suitable in the framework of Remark 3.1.

The next result involves a sufficient condition for the existence of solutions to problems
(P-p)ap and (P,)qp when the constant L is assumed to be ”sufficiently small” with respect to
p. In addition, uniform estimates with respect to € are obtained and will be employed in the
following sections.

Theorem 3.2 ([5]). Let u > 0 be fized. Assume that (Ha), (Hy,), and (Hp) are fulfilled, with
the constant L of B satisfying
T
L < T (3.4)

Then for every e > 0 and f € L*(0,T; H), the problems (Pey)ap and (Py)ap have at least one
strong solution u., € W2%(0,T; H) and u, € WY2(0,T; H), respectively, such that &, &, €
L%(0,T; H), where &,,(t) and &,(t) denote the sections of dp(uepu(t)) and dp(u,u(t)), respectively,
as in (1.1) for a.e. t € (0,T). In addition, for every e > 0, the following estimates hold

| uly, ez, m < Cuyps | tep lleqo.rm < Cous | € 220,70 < Cus (3.5)
el ul, Nezo.rm < Caps || @(tep) 0, < Csps (3.6)

with ue, replaced by w, if € =0 (except (3.6),),

where C;,, i = 1,5, are positive constants depending on p, T, || f 220,71, L> and 1, but
independent of €.

The proof of Theorem 3.2 builds upon the techniques used in Theorem 3.1, employing a fixed
point argument to ensure existence, followed by Poincaré-type inequalities for H —antiperiodic
functions to derive uniform bounds.
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Chapter 3 Two-Parameter Evolution Inclusions with Antiperiodic Conditions

Remark 3.3 ([5]). Notice that Theorem 3.2 remains valid if we remove (H,,) and instead
introduce stronger assumptions on A and B. Specifically, we assume that (Hga) is satisfied,
along with the additional condition that the operator A is linear. Furthermore, we require that
(Hg)' holds with a Lipschitz constant of B, L satisfying L < mu/T.

The conclusions of Theorems 3.1 and 3.2 are still valid under some alternative assumptions.
Specifically, we assume that (H4) is replaced by the stronger assumption
(Ha)' Assumption (Hy4) holds and, in addition, A is strongly monotone with constant w > 0
(see condition (1.4)).

In this case, one can prove a result similar to the previous ones, in which the constant L
satisfies a condition which involves only w.

Theorem 3.3 ([5]). Assume that (Ha)', (Hy.), and (Hp) are fulfilled, with constants L and
w satisfying
L <w. (3.7)

Then for every € and p satisfying (Hey) and f € L*(0,T; H), the problems (Pep)ap and (Pp)ap
have at least one strong solution u., € W22(0,T;H) and Uy, € WY2(0,T; H), respectively,
such that &, &, € L?(0,T; H), where &,(t) and &,(t) denote the sections of dp(ue,u(t)) and
Op(uy(t)), respectively, as in (1.1) for a.e. t € (0,T). In addition, the following estimates hold

| wepe l20,m:my < Crs € N wly ooy 17 0ty ooy + | on 20 < G35 (3.8)

for all € and p satisfying (H.,), with ue, replaced by u, if € = 0;

I wep lleqorm < CoV'T/(2p), || o (tep) 2o 0,7y < C Co (Co2/pn + C1) (3.9)
for alle >0 and p > 0, with ue, replaced by u, if € = 0;

I ul, |2, < CoT/(me), || uey loqo.mm< CaTVT/(2me),

3.10
| p(uep) (o, < C C2 (CoT/(me) + C1) for all e > 0and p > 0, (8.10)

where C, C;, i = 1,2, are positive constants depending on T, || f ||r2(0,m;m), w, L, and 1 but
independent of € and p.

Remark 3.4 ([5]). It is worth pointing out that all the conclusions of Theorem 3.3 remain
valid under some alternative assumptions. Specifically, let us drop the condition (H,,) but,
instead, require that B satisfy the stronger condition (Hg) with the Lipschitz constant L < w.
Additionally, we obtain uniqueness of the solutions to problems (Pey)ap if € > 0, and (Py)qp.
The proof of this claim follows essentially the same arguments presented in Remark 3.1.

Remark 3.5 ([5]). We mention that if f € L2 (R; H), such that f(t +T)+ f(t) =0 for a.e.
t € R, and B is an odd operator, then the strong solutions provided by the results of this section

can be extended by T —antiperiodicity to all of R.
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Chapter 3 Two-Parameter Evolution Inclusions with Antiperiodic Conditions

The following section studies the behavior of solutions to problem (P.,)q, with respect
to ¢ and p. We begin by assuming that (Hj), (Hy,), and (Hp) are satisfied. Under these
assumptions, problems (Pr,)ap and (P,)qp may exhibit genuine nonuniqueness of solutions (as
discussed in references [%], [17], [23] and [24]). We will consider some scenarios, depending on
whether the parameter € or p tends to zero.

The convergence results (Theorems 3.4-3.7) are all established using similar techniques.
The proofs rely on a combination of uniform estimates with respect to parameters € and/or u
obtained earlier, Ascoli’s Lemma, the demiclosedness property of maximal monotone operators
and weak convergence arguments in Sobolev spaces.

Case 1: Let ¢ = g9 > 0 be fixed and p — 0.

Consider the problem (Pz0)ap not- (P-,)ap which corresponds to the particular case g = 0 in
the problem (Px,,)ap. Within this framework, the following convergence result is established.

Theorem 3.4 ([5]). Let g9 > 0 be fized. Assume that all the assumptions of Theorem 3.1 hold
with (3.1) satisfied by o (i.e., L < m%eo/T?). For every p > 0, let ue,, be a strong solution
to problem (Pryu)ap given by Theorem 3.1. Then, for every sequence 0 < p, — 0, there exists
a subsequence, still denoted (,un)n, such that ug,,, — w in C([0,T]; H), ueypn, — u weakly in
W22(0,T; H) asn — oo, and the limit u is a strong solution to problem (P.,). Clearly, if all the
solutions under consideration are unique, then us, — w in C([0,T]; H) and u,, — v weakly
in W2(0,T; H) as pn — 0.

Case 2: Let u = pp > 0 be fixed and € — 04.

Consider the problem derived by setting € = 0 in the differential inclusion (E.,,)qp, along
with the T'—antiperiodic condition. In this framework, we obtain the following convergence
result.

Theorem 3.5 ([0]). Let po > 0 be fized. Assume that all the assumptions of Theorem 3.2
hold with (3.4) satisfied by po (i.e., L < wuo/T). For each € > 0, let ucy, and u,, be strong
solutions to problems (Pzp)ap and (P, )ap, respectively, given by Theorem 3.2. Then for every
sequence 0 < g, — 0, there exists a subsequence, still denoted (6n)n, such that ue, ., — Uy,
in C([0,T]; H), ul,,, — uj, weakly in L*(0,T;H) as n — oo, and the limit uy, is a strong

solution to problem (P, )ap. Clearly, if all the solutions under consideration are unique, then

Uepy = Uy, in C([0,T]; H) and ul,, — ), weakly in L*(0,T;H) ase — 0.

Case 3: Let ¢ — g9 and p — o, with €, po satisfying (He,,,)

In the next result we assume that (Ha)', (H,,), and (Hp) hold with constants w and L
satisfying L < w. Given these assumptions, we can achieve a convergence result that is more
general than those obtained in the previous two results.

Theorem 3.6 ([5]). Let g and po be fized, satisfying (He,,.,). Assume that all the assumptions
of Theorem 3.3 hold. For every € and p satisfying (Hep)ap, let us, and w, be strong solutions
to problems (Pey)ap and (Py,)ap, respectively, obtained in Theorem 3.3. Then for every sequence

with positive components (ey, in) — (€0, po), there exists a subsequence, still denoted (6n, un)n,
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Chapter 3 Two-Parameter Evolution Inclusions with Antiperiodic Conditions

such that

Ue, p,, — Uy 0 C([0,T]; H), u’enan — uLo weakly in L*(0,T; H) if g = 0,

Uy, — w i C([0,T]; H), e, pu, — u weakly in W2’2(O,T; H) if g > 0,

and the limits u,, and w are strong solutions to problems (Pp,)ap, and respectively (Peyu,)ap-

0
Clearly, if all the solutions under consideration are unique, then

Uey, — Uy, 1 C([0,T]; H), ul, — u, weakly in L*(0,T; H) if g9 = 0, (3.11)
Uey —> U N CY([0,T); H), Uey — U weakly in W22(0,T; H) if g9 > 0, ‘

as (57 M) - (507 MO)'

Theorem 3.7 ([5]). Let g9 > 0 and pp > 0 be fizred. Assume that all the assumptions of The-
orem 3.2 hold with (3.4) satisfied by po (i.e., L < muo/T). Then there exists o9 € (0, po),
such that for every ¢ and p satisfying (He,), with | € —eo |< b0, | p — po |< 6o, and
f € L*(0,T;H), the problems (P.p)ap and (P,)ap have at least one strong solution u., €
W22(0,T; H) and u, € WY2(0,T; H), respectively. Moreover, for every sequence with positive
components (ep, ttn) — (€0, o), there exists a subsequence, still denoted ((En,,un))n, such that

e, ., —u in C([0,T); H), ue,,, —u weakly in W**(0,T; H) ifeo >0, and
Ue, p, — Uy 1 C([0,T]; H), u;u — uibo weakly in L?(0,T; H) if eg = 0.
Furthermore, the limits u and u,, are strong solutions to problems (Peyu,)ap and (Ppuy)ap, re-
spectively.

Examples ([5]) Let Q be a nonempty bounded domain of RY. The following operators on
H = L?(Q) are odd, continuous, and sublinear, but not Lipschitz:

(1) Bu==+|u|*sgnu, with a € (0,1);
(2) Bu= =+ sgnu-e /1" if u #£ 0, and B0 = 0.

On an arbitrary Hilbert space H, we can consider the operator
Bu=4=|u||**tu,ifu#0,and B0 =0, where a € (0, 1).

The following section studies the continuity of the solutions to problem (F:,)qp with respect
to € and p, including approximation results for the solutions to (P,)qp and (Eop)ep. In what
follows, we consider some specific cases where the problems (F.,)qp and (P,)qp have unique
strong solutions.

In the case of uniqueness, some estimates for the convergence rate of u., — u.,,, if €9 > 0,
and g, —uy, if €9 = 0 (in the norm of C([0, T); H) or L*(0,T; H)), and continuous dependence
of the solution u., to problem (F;,) on parameters ¢ and p are expected.

We first begin with an investigation in the case in which the operator A is strongly monotone.
We will also assume (H4)', and (Hg)', with constants w and L satisfying L < w. It is worth
mentioning that assumption (H,, ) is no longer needed, so we drop it. Under these assumptions,
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Chapter 3 Two-Parameter Evolution Inclusions with Antiperiodic Conditions

Remark 3.4 above guarantees existence and uniqueness of the strong solutions u., and u, to
problems (P.,)ap and (P,)qp, respectively.

We can state the following result concerning the continuous dependence of the solution
Ugy, to problem (P:,)qp on parameters ¢ and p and the approximation of the solutions of
the reduced problems. The methods used to prove each of the three cases, depending on
whether each parameter tends to zero individually or simultaneously, are similar and involve
the use of previously deduced inequalities, properties of the subdifferential and the Arzela-Ascoli
Criterion.

Theorem 3.8 ([5]). Assume that (Ha)' and (Hg)', with constants w and L satisfying L < w,
are fulfilled. Then for every e, p satisfying (He,) and f € L*(0,T; H), the problems (P.y)qp and
(Pu)ap have unique strong solutions u., € W2%(0,T; H) and u, € WH2(0,T; H), respectively.
Moreover, for any fized €y, po satisfying (Heyp,), the following estimates and approzimations
hold true

| wep — Ueopo leo,r:m= O € —co0|) + O(| 1 —po |) and
Uey — Usopy 0 CH([0,T]; H) as (g, ) — (0, o) if €0 > 0;
| e =y ||L2(0,T;H)= OWe)+O(| pp—po|) and
Ugy — Upg in C([OvT];H) as (6,#) - (OJraMO)'

(3.12)

If, in addition, we assume that B is an odd operator and f € W12(0,T; H), with f(0)+ f(T) =
0, then the (algebraic) inclusion (Eoo)ap admits a unique solution ugg € WH2(0,T; H), satisfying
u00(0) + upo(T) = 0, u(t) € D(A) for allt € [0,T], and

| e — oo || 220,7:my= O(Ve) + O(n). (3.13)
Furthermore, if (hey) holds (i.e., p*/e = O(1)), then
Uep — ugo n C([0,T]; H) as (e, 1) = (04,04). (3.14)

Examples ([5]) Here are some examples of odd Lipschitz operators. To begin with, we
consider the radial retraction on the unit ball of H, defined by By : H — H,

Bip_d® if ||z]<1,
R I

[k
It is well known that B; is Lipschitz continuous with a Lipschitz constant Ly = 1.
Another example (as shown in [24, Lemma 2.3]) is the operator By : H — H,

Boo— T if [|z|<1,
SR IS N

llz]|>
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Chapter 3 Two-Parameter Evolution Inclusions with Antiperiodic Conditions

which also has a Lipschitz constant equal to 1.

Let us now consider the specific case where H = L?(Q2), with  being a nonempty bounded
domain in RY. Some examples of odd Lipschitz operators on H are given by: (1) Bu = + sin u;
(2) B(u) = +u/vV 1442 (3) Bu= +sgnu-min{| v |*, |« |*}, with 0 < a <1 < 3.

Next, we provide some sufficient conditions that guarantee the uniqueness of strong solutions
to problems (Ps;,)qp and (P,)qp, applicable when the operator A is no longer strongly monotone.

Theorem 3.9 ([5]). Let eg and po be fized, satisfying (He,p,). Assume that (Ha) and (Hp)'
hold, with Lipschitz constant L of B satisfying

7T2€0

L< T2 ifeg >0 and L < % if eg = 0.

In addition to the assumptions stated above, if g = 0, suppose that A is a single valued,
linear operator and that (Hy,) holds.

Then there exists 6y € (0, max{eg, po}), such that for every e and p satisfying (He,,), with
| e —eo |< o, | u—po |< o, and f € L?(0,T; H), the problems (Pep)ap and (P,)ap have
unique strong solutions, ue, € W22(0,T; H) and Uy € WY2(0,T; H), respectively. Moreover,
the following estimate and approximations hold true

| ey = veopo lleqomm= Ol e —eo [) + O —po |) and
Uy — Uegpo 1 CH([0,T]; H) as (g, 1) — (0, o) if €0 > 0;
Uy — Uy, in C([0,T); H) and
ug, — u,, weakly in L*(0,T;H) as (e, 1) — (04, o).

(3.15)

The final section is devoted to illustrating the abstract results through concrete applications,
including semilinear and nonlinear problems subject to antiperiodic conditions in time.
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Chapter 4

A Class of Antiperiodic Boundary Value Problems

Governed by Maximal Monotone Operators

The results presented in this chapter are part of an article published in An. St. Univ. Ovidius
Constanta [25].

Among the original contributions in this chapter, we mention Theorems 4.1 and 4.2.
Building on the previous chapters, we now examine second- and first-order inclusions with
antiperiodic boundary conditions, where A is an odd strongly maximal monotone operator.
This broader setting allows for applications to nonlinear models like hyperbolic systems. Since
A is not a subdifferential, stronger conditions on B and f are required to ensure well-posedness.
Recall that H denotes a real Hilbert space with inner product (-,-) and norm || - ||.
We consider in a real Hilbert space H the same class of problems as the previous chapter

(P) —eu(t) + pu'(t) + Au(t) + Bu(t) > f(t) a.e. in (0,7), (Eep)
s w(0) +w(T) =0, o/ (0)+ v/ (T) =0,
where T' > 0, € > 0, and p > 0, along with

) pu'(t) + Au(t) + Bu(t) > f(t) a.e. in (0,7), (Eyn)
o u(0) + u(T) = 0.

for > 0. We also introduce the limiting algebraic inclusion
(Eoo)ap Au(t) 4+ Bu(t) > f(t) a.e. in (0,7,

which is obtained by formally setting e = =0 in (E.,).
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The analysis is carried out under the following assumptions on the data and operators
involved in problems (P, )ap, (Pu)ap, and (Eoo)ap-

(Hy) feW"(0,T;H) and f(0)+ f(T) = 0;
(H4) The operator A : D(A) C H — H is odd, strongly maximal monotone (possibly set-
valued), with constant wy > 0;

(Hp) The operator B : H — H is odd, maximal monotone (possibly set-valued) and satisfies
the following condition: for each r > 0, there is L, > 0 with the property that for all x € H
with || « ||< r, it holds that || Bz ||< L,.

Remark 4.1. A typical example of an operator B satisfying assumption (Hp) is given by
Bz =| z ||P72 x for all z € H. This operator is also cyclically monotone, as it corresponds to
the subdifferential of the convex function x —|| x ||P .

We begin by proving that the problems introduced above admit unique solutions. Addi-
tionally, we obtain some uniform estimates with respect to the parameters € and p of these
solutions. These estimates will be crucial in proving the results presented in the subsequent
sections.

Throughout this chapter, all solutions to the aforementioned problems are considered in the
sense of Definition 1.

Theorem 4.1 ([25]). (i) Assume that A is an odd mazximal monotone operator and (Hp) is
fulfilled. Then, for every e > 0, >0, and f € L*(0,T; H), the problem (Pe,)ap has a unique
solution uz, € W2(0,T; H) which satisfies the following estimate

el ul, Ne2o.rm <N f 2oy - (4.1)

(11) Assume that (Hpa) is satisfied. Then, for every nonnegative € and p such that € + p >
0, and for [ satisfying (Hy), both problems (P,)ap and (Pey)ap have unique solutions w, €
Wh2(0,T; H) and Ugy € W22(0,T; H), respectively. Moreover, the following estimates hold

| ), p20,mm) < wo || f I 220,71y for every p >0,

g (4.2)
| Uleu HL2(0,T;H) < w ! | I ||L2(0,T;H) Jor every e >0, u > 0.

In addition, the algebraic inclusion (Eoo)ap has a unique solution ugg € WH2(0,T; H), satisfying
u00(0) + upo(T) = 0 and u(t) € D(A) for all t € [0,T].

The proof is based on specific techniques of maximal monotone operators, which include us-
ing the Yosida approximation, the demiclosedness property of canonical extensions of operators
A and B, as well as the Arzela—Ascoli Criterion.

The following section is designated to investigate the continuous dependence of the solution
ugy, to problem (P.,)q, on parameters € and p. We also obtain approximating results regarding
the solutions to the reduced problem (P,)q, and the algebraic inclusion (Egg)ap-
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Theorem 4.2 ([25]). Assume that (Hg) is fulfilled.

(i) Let ¢g > 0 and po > 0 be fizred. Suppose that A is an odd mazimal monotone operator.
For every e > 0, n >0, and f € L*(0,T; H), let uz, € W%2(0,T; H) be the unique solution to
problem (Pey)ap given by Theorem 4.1 (1). Then the following estimate and convergence hold

” Uep — Ugopo HC([O,T];H): O(‘ €—¢&o D + O(’ H = Ho ’)7

chot (4.3)
Ugp — Uggpuo 1N ¢ ([O7T];H) as (Ea,u) - (507M0)'

(ii) Let pg > 0 be fized. Assume that (Hy) holds. For every nonnegative € and p such that
e+u >0, and f satisfying (Hy), let ue, € W*2(0,T; H) and u, € WH2(0,T; H) be the unique
solutions to problems (Pe)ap, and respectively (Py)ap, given by Theorem 4.1 (ii). Then, the
following estimate and approximation hold

I tteps = wpo [p2(0,75m= O(VE) + O 1 — pao 1),

4.4
Uey — Uy, 0 C([0,T); H) as (g, 1) = (04, po)- 44)

Moreover, the following estimate is also valid
| tep — woo || 220,y = O(Ve) + O(w) as (e, 1) = (04,04), (4.5)

where ugg € W12(0,T; H) is the unique solution to the (algebraic) inclusion (Ego)ap, given by
Theorem 4.1(ii). Furthermore, if u*/e = O(1), then

Uep — ugo n C([0,T]; H) as (e, ) = (04,04). (4.6)

Finally, the last section applies the abstract work to an antiperiodic semilinear telegraph
system.
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