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Introduction

The study of nonlinear evolution inclusions in Hilbert spaces is a central topic in the field

of partial differential equations, motivated both by its theoretical richness and its relevance

to a wide range of applied problems, from mechanics and control theory to reaction-diffusion

systems and wave propagation. Among the most powerful tools in this area are monotonicity

methods, which have been extensively developed to handle differential inclusions governed by

maximal monotone operators, possibly perturbed by nonmonotone terms.

This thesis is devoted to the study of two classes of abstract nonlinear second-order boundary

value problems in real Hilbert spaces. The associated evolution inclusions are governed by

maximal monotone operators and incorporate nonlinear perturbations of various types, such as

nonmonotone, Lipschitz continuous, or sublinear terms.

The thesis begins with an introductory chapter comprising several key sections: Context

and Motivation, Related Works, Objectives of the Thesis, Structure of the Thesis and Scientific

Contributions and Dissemination. This is followed by a chapter on Preliminaries, in which

essential notions and tools are grouped into three sections: Function Spaces, Some Abstract

Tools and Maximal Monotone Operators.

The main body of the thesis is structured in two parts, each containing original contribu-

tions. Part I: Evolution Inclusions in Hilbert Spaces with Parameters corresponds to Chapter 1

of this summary, while Part II: Antiperiodic Boundary Value Problems in Hilbert Spaces with

Parameters encompasses Chapters 2, 3, and 4. The results presented throughout this summary

are given without proofs, though the underlying methods are usually indicated.

The thesis concludes with a final chapter that summarizes the main findings and discusses

their mathematical and applicative relevance. Additionally, it outlines several open directions

and perspectives for future research, including the extension of the abstract framework to

Banach spaces, the study of differential inclusions with nonmonotone perturbations, and the

behavior of solutions when relaxing the structural assumptions on the perturbation operators.

For conciseness and ease of presentation, this extended summary omits all section and

subsection headings, but provides a comprehensive overview of the results obtained in each

part of the thesis. The bibliographical resources mentioned are strictly selected based on the

content presented. The complete list of publications can be found in the full version of the

thesis.

We devote the rest of this chapter to introducing some of the relevant work in the literature,

placing the contributions of this thesis within the context of existing studies.
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Introduction

We begin by precisely formulating the first class of problems considered in Part I. These

involve boundary value problems with Dirichlet–Neumann conditions

(Pεµ)

{

−εu′′(t) + µu′(t) +Au(t) +Bu(t) ∋ f(t), 0 < t < T, (Eεµ)

u(0) = u0, u′(T ) = 0, (BC)

where ε > 0, µ ≥ 0 are two parameters. For µ > 0, the corresponding reduced model is the

Cauchy problem

(Pµ)

{

µu′(t) +Au(t) +Bu(t) ∋ f(t), 0 < t < T, (Eµ)

u(0) = u0. (IC)

We next consider the following nonlinear algebraic inclusion

(E00) Au(t) +B u(t) ∋ f(t), for a.e. t ∈ (0, T ).

This inclusion naturally arises as the stationary limit of the solutions to problem (Pεµ).

The operators A and B satisfy assumptions presented in Chapter 1.

We briefly review relevant literature on second-order abstract evolution inclusions. The

study of inclusions of the form u′′(t) ∈ Au(t) under Dirichlet or boundedness conditions was

initiated by V. Barbu [7, 6]. H. Brézis [9] extended the analysis on [0,∞) with nonlinear

boundary conditions like u′(0) ∈ ∂j(u(0) − a). R.E. Bruck [11] introduced inhomogeneous

terms, considering u′′(t) ∈ Au(t) + f(t) with a, b ∈ D(A). More recently, similar second-order

problems with Dirichlet–Neumann type conditions have been considered by L. Barbu and G.

Moroşanu [3], and by G. Moroşanu and A. Petruşel [21, Lemma 4]. However, their results do

not cover all the situations addressed in Chapter 1.

The convergence of solutions to problem (Pεµ) as ε → 0+ has been studied in several

settings. M. Ahsan and G. Moroşanu [1] considered the case µ = 1 with A linear and strongly

monotone, later extended to general maximal monotone A by L. Barbu and G. Moroşanu [3].

G. Moroşanu and A. Petruşel [21] further examined the asymptotic behavior in two cases: (i)

ε→ 0 with fixed µ > 0, and (ii) fixed ε > 0, µ→ 0. The results in Chapter 1 constitute original

contributions that extend earlier findings.

Part II introduces antiperiodic boundary problems in abstract form, progressively refined

across Chapters 2–4 under varying assumptions. The problem (Pεµ)ap is formulated as follows:

(Pεµ)ap

{

−εu′′ + µu′ +Au+B u ∋ f/or F (·, u(·)) a.e. in (0, T ),

u(0) + u(T ) = 0, u′(0) + u′(T ) = 0,

where f ∈ L2(0, T ;H), F : [0, T ]×H → H is a Carathéodory mapping which verifies a sublinear

growth condition, ε > 0, µ ≥ 0 are parameters. For µ > 0, the corresponding reduced problem
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Introduction

takes the form

(Pµ)ap

{

µu′ +Au+B u ∋ f/or F (·, u(·)) a.e. in (0, T ),

u(0) + u(T ) = 0.

Additionally, the associated algebraic inclusion is given by

(E00)ap Au+B u ∋ f a.e. in (0, T ).

The (possibly set-valued) operators A and B are subject to distinct assumptions in each chapter.

The problem (Pµ)ap with B = 0 was studied by Okochi [22], and by Haraux [17] in the case

Bu = λu, λ > 0. Aizicovici and Pavel [2] addressed problems (Pεµ)ap and (Pµ)ap with B = 0

or B = −∂ψ, where A = ∂ϕ dominates B in a specified sense. They established existence,

uniqueness, and continuous dependence for antiperiodic solutions when B = 0, and existence

results when B = −∂ψ. These works motivated further research, with notable contributions

in Hilbert spaces by Chen [13], Chen et al. [12, 14, 15], and Couchouron and Precup [16]. The

results obtained here complement these studies.

The behavior of solutions to (Pεµ)ap with respect to both parameters, as well as the ap-

proximation of solutions to (Pµ)ap and the algebraic inclusion (E00)ap, has not been addressed

for antiperiodic boundary conditions. This work fills that gap and offers new insights.

Finally, we present a central notion that sets the stage for the rest of our analysis: the

concept of a strong solution. This definition provides the precise functional framework in

which we formulate and study our problems in Part II.

Definition 1 ([5], [25], [26]). A function u ∈W 2,2(0, T ;H) is said to be a (strong) solution to

problem (Pεµ)ap if the following conditions are all satisfied

(i) u(t) ∈ D(A) for a.e. t ∈ (0, T );

(ii) there exist ξ, η ∈ L2(0, T ;H), such that

−εu′′(t) + µu′(t) + ξ(t)− η(t) = f(t)(or F (t, u(t))) and

ξ(t) ∈ Au(t), η(t) ∈ B u(t) for a.e. t ∈ (0, T );
(0.1)

(iii) u(0) + u(T ) = 0, u′(0) + u′(T ) = 0.

In a similar way, a function u ∈ W 1,2(0, T ;H) is said to be a solution to problem (Pµ)ap if u

fulfills conditions (i), (ii) (with ε = 0), and u(0) + u(T ) = 0.

Note that if the operators A and/or B are single-valued, then for all t ∈ [0, T ], we have

ξ(t) = Au(t) and/or η(t) = B u(t). In this case, the definition above is simplified, with ξ(t)

and/or η(t) being replaced by the expressions Au(t) and/or B u(t), respectively.

Keywords: Evolution inclusion, Lions regularization, antiperiodic solution, maximal mono-

tone operator, subdifferential, Lipschitz operator, semilinear parabolic equations, nonlinear

ordinary differential systems, heat equation, telegraph differential system.
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Evolution Inclusions in Hilbert Spaces with Parameters



Chapter 1

A Class of Evolution Inclusions

with Two Parameters

This chapter is dedicated to a detailed presentation of results published in a joint work with

L. Barbu and G. Moroşanu in Nonlinear Anal. Real World Appl. [4].

Among the original contributions in this chapter, we mention in the summary Theo-

rems 1.1-1.7. The rest of the obtained results are presented in the full version of the thesis.

Let H denote a real Hilbert space with inner product (·, ·) and norm ∥ · ∥.
We consider the following boundary-value problem in the Hilbert space H

(Pεµ)

{

−εu′′(t) + µu′(t) +Au(t) +Bu(t) ∋ f(t), 0 < t < T, (Eεµ)

u(0) = u0, u′(T ) = 0, (BC)

where T > 0 is a given time instant; ε > 0, µ ≥ 0 are two parameters, and A,B are operators

satisfying the following hypotheses:

(HA) A : D(A) ⊂ H → H is a maximal monotone operator (possibly set-valued, in which case

(Eεµ) is a differential or evolution inclusion);

(HB) B : D(B) = H → H is a Lipschitz operator, i.e., there exists a constant L > 0 such that

∥ Bx−By ∥≤ L ∥ x− y ∥, for all x, y ∈ H.

Further assumptions will be imposed later in the chapter.

For µ > 0 we also consider the following Cauchy problem

(Pµ)

{

µu′(t) +Au(t) +Bu(t) ∋ f(t), 0 < t < T, (Eµ)

u(0) = u0. (IC)
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Chapter 1 Evolution Inclusions with Two Parameters

Problem (Pµ) is a reduced problem obtained by making ε = 0 in (Pεµ), which is said to be a

perturbed problem associated with (Pµ). Notice that problem (Pµ) inherits from problem (Pεµ)

only the condition u(0) = u0.

We also consider the following (algebraic) inclusion

(E00) Au(t) +Bu(t) ∋ f(t), 0 ≤ t ≤ T,

which is obtained by taking ε = 0 and µ = 0 in equation (Eεµ).

As a first step, we introduce the definition of (strong) solutions corresponding to problems

(Pµ) and (Pεµ).

Definition 2 ([19, Definition 2.1, p. 47]). Assume that assumptions (HA) and (HB) are

satisfied and u0 ∈ D(A).

Let µ > 0. A function u ∈W 1,2(0, T ;H) is said to be a (strong) solution to problem (Pµ) if the

following conditions are all satisfied

(i) u(t) ∈ D(A) for a.e. t ∈ (0, T );

(ii) there exists ξ ∈ L2(0, T ;H), such that

µu′(t) + ξ(t) +Bu(t) = f(t) and ξ(t) ∈ Au(t) for a.e. t ∈ (0, T ); (1.1)

(iii) u(0) = u0.

Let ε > 0 and µ ≥ 0. In a similar way, a function u ∈ W 2,2(0, T ;H) is said to be a (strong)

solution to problem (Pεµ) if u fulfills condition (i),

(ii)′ there exists ξ ∈ L2(0, T ;H), such that

−εu′′(t) + u′(t) + ξ(t) +Bu(t) = f(t) and ξ(t) ∈ inAu(t) for a.e. t ∈ (0, T ); (1.2)

(iii)′ u(0) = u0, u
′(T ) = 0.

In the first section, we aim to establish existence and uniqueness results for the solutions

of problem (Pεµ), as well as for the algebraic inclusion (E00). We start by examining problem

(Pεµ).

Theorem 1.1 ([4]). Let ε > 0 and µ ≥ 0. Assume that (HA) and (HB) are fulfilled, with the

Lipschitz constant L of B satisfying

L <
2ε

T 2
. (1.3)

Then, for every u0 ∈ D(A) and every f ∈ L2(0, T ;H), there exists a unique solution u = uεµ ∈
W 2,2(0, T ;H) to problem (Pεµ).

The proof is based on using the Yosida regularization for approximating the nonlinear

operator A in the case B = 0. The existence and uniqueness results are obtained through

compactness arguments, including the Arzelà–Ascoli Criterion and the demiclosedness property

of maximal monotone operators. The existence and uniqueness in the case B ̸= 0 results from
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Chapter 1 Evolution Inclusions with Two Parameters

a fixed-point argument, using the Banach Contraction Principle in the imposed condition on

the Lipschitz constant L.

The condition L < 2ε
T 2 plays a crucial role in the result, but it is not necessary in all cases,

as the following example illustrates.

A simple counterexample ([4])

Consider in H = R the following problem

(P )

{

−u′′(t) + µu′(t)− u(t) = 0, 0 < t < T,

u(0) = u0 ̸= 0, u′(T ) = 0.

For µ = 0, the general solution of the above equation satisfying u(0) = u0 is given by u(t) =

u0 cos t + c sin t, 0 ≤ t ≤ T. If T = π/2, we get u′(π/2) = −u0 ̸= 0, so the problem above has

no solution. Notice that condition (1.3) is not satisfied (L = 1 > 8/π2 = 2ε/T 2).

However, it may happen that problem (Pεµ) has a solution, even if the condition (1.3) is

not satisfied. For example, if we consider again problem (P ) above, with µ = 0 and T = 2π,

then u = u0 cos t is the unique solution of this problem, even if condition (1.3) is not satisfied.

From the arguments implemented in the proof of Theorem 1.1, we see that if B = 0, the

theorem holds true without condition (1.3).

Next, we continue with the equation (inclusion) (E00). We require the following stronger

assumption on A.

(HA)
′ A : D(A) ⊂ H → H (possibly set-valued) is maximal monotone and, in addition,

strongly monotone with constant ω > 0; i.e.

(x− y, u− v) ≥ ω∥u− v∥2 for all u, v ∈ D(A) and x ∈ Au, y ∈ Av. (1.4)

Using a similar approach to the proof of Theorem 1.1, we have the following existence and

uniqueness result for the solution to equation (E00).

Theorem 1.2 ([4]). Assume that (HA)
′ and (HB) are both fulfilled, with constants ω > 0 and

L > 0 satisfying L < ω. Then, for every f ∈ W 1,p(0, T ;H) and every p ∈ (1,∞), equation

(E00) has a unique solution u ∈W 1,p(0, T ;H).

After establishing the well-posedness of problem (Pεµ), we proceed to analyze the depen-

dence of the solution on the parameters ε > 0 and µ ≥ 0. More precisely, we show that the

solution uεµ varies continuously with respect to ε and µ, as they approach fixed reference values

ε0 > 0 and µ0 ≥ 0. This result is obtained by deriving suitable estimates in the Hilbert space

L2(0, T ;H) and careful use of interpolation arguments.

Having established the continuity of the solution uεµ with respect to the parameters ε and

µ, we now investigate the asymptotic behavior of this solution as ε→ 0+ and µ→ µ0 > 0. This

analysis aims to rigorously justify the convergence from the second-order regularized problem

(Pεµ) to the first-order problem (Pµ) as the regularization vanishes.

7



Chapter 1 Evolution Inclusions with Two Parameters

Theorem 1.3 ([4]). Assume that (HA) and (HB) hold, µ0 is a fixed positive constant, u0 ∈
D(A), and f ∈ W 1,1(0, T ;H). Then, for every ε > 0 small enough and µ > 0 close to µ0, the

problems (Pεµ) and (Pµ) have unique solutions, uεµ ∈ W 2,2(0, T ;H) and uµ ∈ W 1,∞(0, T ;H),

respectively, and the following estimate holds:

∥uεµ − uµ0
∥C([0,T ];H) = O(ε1/4) +O(| µ− µ0 |1/2). (1.5)

This convergence result is obtained by decomposing the analysis into two stages. The first

part proves that the solution to problem (Pµ) converges continuously to the solution of (Pµ0
)

as µ → µ0, using a Bielecki norm. The second stage estimates the difference between uεµ and

uµ by applying an exponentially weighted transformation, followed by estimates deduced from

the monotony property of operator A and the Lipschitz property of operator B. These two

estimates are then combined to conclude the result.

Remark 1.1 ([4]). If ε > 0 is a small parameter and µ is a fixed positive number (in particuar

µ = 1), then the (perturbed) problem (Pεµ) ≡ (Eεµ) + (BC) is a Lions type regularization of

the (reduced) problem (Pµ) ≡ (Eµ) + (IC) above. For the case A linear and B = 0, see [18].

Remark 1.2. If A is a subdifferential operator, a similar convergence holds, as stated below.

Theorem 1.4 ([4]). Assume that A is the subdifferential of a proper, convex, and lower semi-

continuous function ϕ : H → (−∞,+∞], and (HB) holds. Let µ0 > 0 be fixed, and let

u0 ∈ D(A) and f ∈ L2(0, T ;H). Then, for every ε > 0 small enough and µ > 0 close to µ0, the

problems (Pεµ) and (Pµ) admit unique solutions uεµ ∈ W 2,2(0, T ;H) and uµ ∈ W 1,2(0, T ;H),

respectively, and the estimate (1.5) holds.

This version of the convergence result relies on analogous techniques, adapted to the subd-

ifferential structure of A. In particular, the norm estimate for the derivative of uµ is obtained

using a well-known result (see [10, Theorem 3.6, p. 72]), in combination with the general

continuity argument from the first stage of the proof of Theorem 1.3.

The following section concerns the asymptotic behavior of the solution uεµ to problem

(Pεµ) as the parameters vanish, i.e., as ε → 0+ and µ → 0+. In this fashion, the dynamics

are expected to converge to those of the algebraic inclusion (E00). However, since uεµ(0) = u0
while u, the solution of (E00), typically does not satisfy u(0) = u0, a boundary layer develops

near t = 0. To compensate for this mismatch, a corrector is introduced.

We first consider a simplified model where the operator A is linear and scalar, i.e., A = ωI

with ω > 0, and B = 0. In this case, the reduced equation (E00) becomes ωu = f , and the

exact corrector can be explicitly constructed. Consider the problem

{

−εu′′εµ + µu′εµ + ωuεµ = f, t ∈ (0, T ),

uεµ(0) = u0, u′εµ(T ) = 0.
(1.6)

In this case, we proved the following convergence result.
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Theorem 1.5 ([4]). Let ε > 0 and µ > 0. Then for every u0 ∈ H and every f ∈W 1,2(0, T ;H),

problem (1.6) and equation (E00) have unique solutions uεµ ∈ W 2,2(0, T ;H) and respectively

u = (1/ω)f ∈W 1,2(0, T ;H). Moreover, for ε, µ≪ 1, the following estimate holds

∥uεµ − (u+ α)∥C([0,T ];H) = O
(

µ1/2 + ε1/4 +
µ

ε1/4
+

εj

µ1/2

)

∀j ≥ 1. (1.7)

The proof is based on constructing a corrector function α(t) that absorbs the boundary

layer at t = 0 and satisfies an ordinary differential equation in H.

We now move to a more general setting, in which A is a linear and maximal ω−strongly

monotone operator and B is Lipschitz. Under these assumptions, the convergence still holds,

though in the weaker norm of L2(0, T ;H):

Theorem 1.6 ([4]). Let 0 < ε, µ ≪ 1, such that ε < µ2/(4L). Assume that (HA)
′ and (HB)

are fulfilled and, in addition, L < ω. Then, for every u0 ∈ D(A) and every f ∈ W 1,2(0, T ;H),

problem (Pεµ) and equation (E00) have unique solutions uεµ ∈ W 2,2(0, T ;H) and respectively

u ∈W 1,2(0, T ;H). Moreover, if in addition A is a linear operator, the following estimate holds

∥ uεµ − u ∥L2(0,T ;H)= O(µ1/2). (1.8)

Notice that, if (HB) is replaced by

(HB)
′ B : H → H is monotone and Lipschitz on bounded sets,

we have the following approximation result.

Theorem 1.7 ([4]). Let 0 < ε, µ ≪ 1. Assume that (HA)
′ and (HB)

′ are fulfilled. Then, for

every u0 ∈ D(A) and every f ∈ W 1,2(0, T ;H), problem (Pεµ) and equation (E00) have unique

solutions uεµ ∈ W 2,2(0, T ;H) and respectively u ∈ W 1,2(0, T ;H). Moreover, if A is a linear

operator, the following estimate holds

∥ uεµ − u ∥L2(0,T ;H)= O
(

µ1/2 + ε1/4 +
εj

µ1/2

)

∀j ≥ 1. (1.9)

In this setting, the proof of Theorem 1.6 can be repeated almost entirely, with the key

modification arising in the control of the nonlinear term involving B.

Remark 1.3 ([4]). Unfortunately, the estimates provided by Theorems 1.6 and 1.7 are in

L2(0, T ;H), not in C([0, T ];H). Obtaining estimates in the C([0, T ];H)-norm remains an

open problem.

In the final section of this chapter, we apply our abstract findings to two applications, the

regularization of the nonlinear heat equation and the regularization of the telegraph system.
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Chapter 2

On One-Parameter Evolution Inclusions

with Antiperiodic Conditions

The results presented in this chapter are part of a manuscript currently under review in Monat-

shefte für Mathematik [26].

Among the original contributions in this chapter, we mention Theorems 2.1-2.4. The

rest of the obtained results are presented in the full version of the thesis.

Recall that H denotes a real Hilbert space with inner product (·, ·) and norm ∥ · ∥.
We consider the following antiperiodic boundary value problems in H

(Pε)ap

{

−εu′′(t) + u′(t) +Au(t) +Bu(t) ∋ F (t, u(t)) for a.e. t ∈ (0, T ), (Eε)

u(0) + u(T ) = 0, u′(0) + u′(T ) = 0,

and

(P0)ap

{

u′(t) +Au(t) +Bu(t) ∋ F (t, u(t)) for a.e. t ∈ (0, T ), (E0)

u(0) + u(T ) = 0.

To study problems (Pε)ap and (P0)ap, we place ourselves in the following abstract framework

(HF ) The mapping F : [0, T ]×H → H is a Carathéodory function and satisfies the following

sublinear growth condition

∥ F (t, v) ∥≤ L ∥ v ∥ + l(t) for a.e. t ∈ (0, T ) and for all v ∈ H, (2.1)

where L ≥ 0 and l ∈ L2(0, T ), with l(t) ≥ 0 for a.e. t ∈ (0, T ).

(HA) The operator A = ∂ϕ, where ϕ : H → [0,+∞] is an even, proper, convex, and lower

11



Chapter 2 One-Parameter Evolution Inclusions with Antiperiodic Conditions

semicontinuous function, such that ϕ(0) = 0. In addition, ϕ satisfies the following condition

(Hϕc
) for every r > 0, the set {x ∈ D(ϕ); ∥ x ∥ +ϕ(x) ≤ r}

is compact in H.

The operator B is assumed to satisfy one of the following two conditions:

(HB)1 B = −∂ψ, where ψ : H → R is an even, continuously differentiable function, and for

all r > 0, there exists Kr > 0 such that ∥ ∂ψ(v) ∥≤ Kr for all v ∈ H with ∥ v ∥≤ r;

(HB)2 B = −∂ψ, where ψ : H → (−∞,+∞] is an even, proper, convex, and lower semicon-

tinuous function satisfying

(Hψ) D(∂ϕ) ⊂ D(∂ψ), and for all r > 0, there exist a constant ρr ∈ [0, 1), and a

non-decreasing function γ : [0,∞) → [0,∞), such that for all u ∈ D(∂ϕ) with ∥ u ∥≤ r, the

following condition is satisfied

∥ (∂ψ)0(u) ∥2≤ ρr ∥ (∂ϕ)0(u) ∥2 +γ(∥ u ∥)
(

ϕ(u) + 1
)

(2.2)

(here (∂ϕ)0 stands for the minimal section of ∂ϕ and similarly for ψ).

In the first section, we address existence and uniqueness results concerning problems (Pε)ap
and (P0)ap, along with uniform estimates that are essential for analyzing the limiting behavior

as ε→ 0. We begin by working under the assumption that the operator B satisfies (HB)1 and

establish the first existence result within this framework.

Theorem 2.1 ([26]). Assume that (HA), (HB)1, and (HF ) hold, with the constant L in (HF )

satisfying L < π/T. Then, for every ε > 0, problems (Pε)ap and (P0)ap have at least one solution

uε ∈ W 2,2(0, T ;H) and u ∈ W 1,2(0, T ;H), respectively. Furthermore, these solutions satisfy

the following estimates

∥ u′ε ∥L2(0,T ;H)≤∥ l ∥L2(0,T ) /kL, ∥ uε ∥C([0,T ];H)≤ R0,

∥ ∂ψ(uε) ∥L2(0,T ;H)≤ C1, ε
2 ∥ u′′ε ∥2L2(0,T ;H) + ∥ ξε ∥2L2(0,T ;H)≤ C2

2 , ∥ ϕ(uε) ∥C[0,T ]≤ C3,
(2.3)

with uε, ξε, ε replaced by u, ξ, 0, respectively, if u is a solution to (P0)ap,

where kL = 1 − LT/π, R0
not.
=

√
T ∥ l ∥L2(0,T ) /(2kL), and Ci, i = 1, 3 are positive constants

depending on T, L, ∥l∥L2(0,T ), ψ(0), and the constant from assumption (HB)1 with r = R0, but

are independent of ε.

In (2.3), ξε and ξ denote the sections of ∂ϕ(uε) and ∂ϕ(u), respectively (see Definition 1).

The existence of solutions for problems (Pε)ap and (P0)ap is established using a compactness

argument based on the Schaefer Fixed Point Theorem. Key estimates are derived via Poincaré-

type inequalities for H−valued antiperiodic functions, monotonicity techniques, and regularity

arguments involving the subdifferentials ∂ϕ and ∂ψ.

A similar result to Theorem 2.1 holds, assuming B satisfies (HB)2 instead of (HB)1.
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Chapter 2 One-Parameter Evolution Inclusions with Antiperiodic Conditions

Theorem 2.2 ([26]). Assume that (HA), (HB)2, and (HF ) hold, with the constant L in (HF )

satisfying L < π/T. Then, for every ε > 0, the problems (Pε)ap and (P0)ap have at least one

solution uε ∈ W 2,2(0, T ;H) and u ∈ W 1,2(0, T ;H), respectively. Furthermore, these solutions

satisfy estimates (2.3)1,2, and additionally

∥ ξε ∥L2(0,T ;H)≤ C1, ∥ ηε ∥L2(0,T ;H)≤ C2, ∥ ϕ(uε) ∥C[0,T ]≤ C3, ε ∥ u′′ε ∥L2(0,T ;H)≤ C4, (2.4)

with uε, ξε, ηε, ε replaced by u, ξ, η, 0, respectively, if u is a solution to (P0)ap.

Here Ci, i = 1, 4 are positive constants depending on T, L, ∥l∥L2(0,T ), and the constant and

function from assumption (Hψ) with r = R0 (previously defined in Theorem 2.1), but are

independent of ε.

In (2.4), ξε and ηε denote the sections of ∂ϕ(uε) and ∂ψ(uε), while ξ and η correspond to the

sections of ∂ϕ(u) and ∂ψ(u), respectively.

The proof of this result is based on using the Moreau-Yosida regularisation for function ψ,

which led to a family of approximate problems. Uniform estimates are derived using Poincaré-

type inequalities for H−valued antiperiodic functions, properties of subdifferentials and struc-

tural assumptions like (Hψ). Using compactness methods and the demiclosedness property of

maximal monotone operators, we obtain, passing to the limit, the existence of solutions to the

original problem, along with the corresponding estimates. This technique applies similarly for

both the perturbed and unperturbed problems.

Remark 2.1 ([26]). An operator satisfying (HB)1 is not a particular case of one satisfying

(HB)2. For example, consider H = L2(Ω), where Ω is a nonempty bounded domain in R
N , and

let q ∈ (1, 2]. Take a ∈ L∞(Ω), such that m({x ∈ Ω; a(x) > 0}) > 0 and m({x ∈ Ω; a(x) <

0}) > 0. Define the even, continuously differentiable function k : H → R, k(u) = q−1
∫

Ω a(x) |
u |q dx, and set B = −∂k : H → H. Then, for all u ∈ H, we have B u = −a(x) | u |q−1 sgnu.

By Hölder’s inequality, B satisfies (HB)1, but since k is neither convex nor concave, B does

not satisfy (HB)2.

Remark 2.2 ([26]). If F : R×H → H satisfies assumption (HF ) on [0, T ] and, in addition,

F (t+ T, u) + F (t,−u) = 0 for a.e. t ∈ R and u ∈ H,

and if B is an odd operator, then the solutions obtained in the results of this section can be

extended to all of R by T−antiperiodicity.

In analyzing the behavior of the solutions to (Pε)ap with respect to ε, it is worth empha-

sizing that under the assumptions of Theorem 2.1 and Theorem 2.2, the problems (Pε)ap and

(P0)ap may exhibit genuine nonuniqueness of solutions, as discussed in references [17] and [24].

Nonetheless, we have the following result concerning the convergence of sequences of solutions

to problem (Pε)ap.

13



Chapter 2 One-Parameter Evolution Inclusions with Antiperiodic Conditions

Theorem 2.3 ([26]). Let ε0 ≥ 0 be fixed. Assume that (HA) holds, along with either (HB)1 or

(HB)2. In addition, (HF ) is fulfilled, with the constant L satisfying L < π/T. For every ε > 0,

let uε be a solution to problem (Pε)ap, given by Theorem 2.1 under (HB)1, or by Theorem 2.2

under (HB)2. Then, for every sequence 0 < εn → ε0, there exists a subsequence (not relabeled),

such that

uεn → u inC([0, T ];H), u′εn → u′ weakly in W 1,2(0, T ;H) if ε0 > 0,

uεn → u in C([0, T ];H), u′εn → u′ weakly in L2(0, T ;H) if ε0 = 0,
(2.5)

where the limit u is a solution to (Pε0)ap if ε0 > 0, and a solution to (P0)ap if ε0 = 0.

The proof relies on the uniform estimates obtained in Theorems 2.1 and 2.2, compactness

arguments and the demiclosedness property of maximal monotone operators.

We also provide two sets of sufficient conditions to guarantee the uniqueness of solutions to

problems (Pε)ap and (P0)ap. These conditions allow us to establish that the solution to (Pε)ap
is continuous with respect to ε and approximates the solution to (P0)ap as ε→ 0+.

We impose the following stronger condition on F , instead of (HF ).

(HF )
′ F is a Carathéodory mapping and instead of 2.1, we assume that F satisfies

∥ F (t, v)− F (t, w) ∥≤ L̄ ∥ v − w ∥, (2.6)

for a.e. t ∈ (0, T ) and all v, w ∈ H, where L̄ is a positive constant.

We denote R0=
√
T ∥ F (t, 0) ∥L2(0,T ) /(2kL̄), where kL̄ = 1 − L̄T/π, as defined in Theo-

rem 2.1.

Theorem 2.4 ([26]). Let ε0 ≥ 0 be fixed. Assume that (HA) and (HF )
′ hold, along with either

(HB)1 or (HB)2. Furthermore, suppose that one of the following conditions is fulfilled:

(h1)A is a strongly monotone operator with constant ω > 0, B is Lipschitz continuous on the

ball BH(0,R0) with the Lipschitz constant LB, and L̄+ LB < ω;

(h2)A is a single-valued linear operator, B is Lipschitz continuous on the ball BH(0,R0) with

the Lipschitz constant LB, and (L̄+ LB)T < π.

Then, for every ε > 0, the solutions uε and u to problems (Pε)ap and (P0)ap, respectively (as

established by Theorem 2.1 under (HB)1, or by Theorem 2.2 under (HB)2), are unique. In

addition, the following estimates and approximations are valid

∥ uε − uε0 ∥C([0,T ];H)≤
√
T

2
∥ u′ε − u′ε0 ∥L2(0,T ;H)= O(| ε− ε0 |) and

uε → uε0 in C1([0, T ];H) as ε→ ε0 > 0,

∥ uε − u ∥L2(0,T ;H)= O(
√
ε) if (h1) holds and ε→ 0+,

uε → u in C([0, T ];H) as ε→ 0+.

(2.7)

The proof relies on Poincaré-type inequalities for H−valued antiperiodic functions and

monotonicity techniques to establish uniqueness of solutions. Separate estimates are derived
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Chapter 2 One-Parameter Evolution Inclusions with Antiperiodic Conditions

under structural conditions (h1) and (h2), depending on whether the operator A is strongly

monotone or linear. Regularity and compactness arguments, together with the Arzelà–Ascoli

Criterion, are employed to prove convergence in C1([0, T ];H) as ε → ε0 > 0, and convergence

in C([0, T ];H) as ε→ 0+.

The final section is devoted to applications of the abstract results to concrete problems.

Specifically, we examine the semilinear heat equation under time-antiperiodic boundary condi-

tions, as well as antiperiodic systems of ordinary differential equations.
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Chapter 3

On Two-Parameter Evolution Inclusions

with Antiperiodic Conditions

Based on a joint work with L. Barbu and G. Moroşanu, accepted for publication in Communi-

cations in Contemporary Mathematics [5], this chapter investigates a second-order antiperiodic

boundary value problem that focuses on the case where both parameters ε > 0 and µ ≥ 0 are

present. In addition, we examine the associated reduced problem obtained by setting ε = 0, as

well as the limiting algebraic inclusion corresponding to the case ε = µ = 0.

Among the original contributions from this chapter, we mention in the summary The-

orems 3.1-3.9. The rest of the results obtained can be consulted in the integral content of the

thesis.

Recall that H denotes a real Hilbert space with inner product (·, ·) and norm ∥ · ∥.
Let T > 0 be a given final time. We first consider the following second-order antiperiodic

problem in a real Hilbert space H:

(Pεµ)ap

{

−εu′′(t) + µu′(t) +Au(t) +Bu(t) ∋ f(t) for a.e. t ∈ (0, T ), (Eεµ)

u(0) + u(T ) = 0, u′(0) + u′(T ) = 0,

where ε > 0, µ ≥ 0, and f ∈ L2(0, T ;H).

In the case µ > 0, we also consider the associated first-order antiperiodic problem:

(Pµ)ap

{

µu′(t) +Au(t) +B u(t) ∋ f(t) for a.e. t ∈ (0, T ), (Eµ)

u(0) + u(T ) = 0.

In addition, we analyze the limiting case ε = µ = 0, which leads to the following algebraic

16
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inclusion:

(E00)ap Au(t) +B u(t) ∋ f(t) for a.e. t ∈ (0, T ).

The general framework in which we analyze these problems is given by the following as-

sumptions:

(Hεµ) the parameters ε and µ satisfy ε ≥ 0, µ ≥ 0, and ε+ µ > 0;

(HA) A = ∂ϕ, where ϕ : H → [0,+∞] is a proper, convex, lower semicontinuous, and even

function, such that ϕ(0) = 0;

(HB) B : H → H is a continuous operator satisfying the sublinear growth condition

∥ B u ∥≤ L ∥ u ∥ + l for all u ∈ H,

for some constants L > 0 and l ≥ 0.

(Hϕc
) for every γ > 0, the set {x ∈ D(ϕ); ∥ x ∥≤ γ, ϕ(x) ≤ γ} is compact in H.

Additional assumptions on the operators A and B will be introduced later.

The first section is dedicated to proving existence and finding uniform estimates of solutions

to problems (Pεµ)ap and (Pµ)ap. These estimates will later be used to analyze the behavior of

strong solutions to (Pεµ)ap with respect to ε and µ.

We begin by establishing the existence of at least one strong solution to problem (Pεµ)ap,

along with uniform estimates with respect to the parameter µ.

Theorem 3.1 ([5]). Let ε > 0 be fixed. Assume that (HA), (Hϕc
), and (HB) are fulfilled, with

the constant L of B satisfying

L <
π2ε

T 2
. (3.1)

Then for every µ ≥ 0 and f ∈ L2(0, T ;H), the problem (Pεµ)ap has at least one strong solution

uεµ ∈W 2,2(0, T ;H), such that ξεµ ∈ L2(0, T ;H), where ξεµ(t) denotes the section of ∂ϕ(uεµ(t))

as in (1.1) for a.e. t ∈ (0, T ). In addition, for every µ ≥ 0, the following estimates hold

∥ u′′εµ ∥L2(0,T ;H)≤ C1ε, ∥ u′εµ ∥L2(0,T ;H)≤ C2ε, ∥ uεµ ∥C([0,T ];H)≤ C3ε, (3.2)

∥ ξεµ ∥L2(0,T ;H)≤ C4ε, ∥ ϕ(uεµ) ∥L∞(0,T )≤ C5ε, (3.3)

where Ciε, i = 1, 5, are positive constants depending on ε, T, ∥ f ∥L2(0,T ;H), L, and l, but

independent of µ.

The proof of Theorem 3.1 relies on a fixed point approach, specifically the Schaefer Fixed

Point Theorem, to establish the existence of a strong solution. Key tools include monotonicity

arguments, Poincaré-type inequalities, and embedding results for Sobolev spaces.

Remark 3.1 ([5]). Theorem 3.1 still holds if we drop the assumption (Hϕc
) but instead impose

a stronger condition on B; namely, the assumption (HB) is replaced by

17
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(HB)
′ B : H → H is a Lipschitz continuous operator, with Lipschitz constant L.

Remark 3.2 ([5]). Consider the problem (Pεµ)ap with A = 0, µ = 0, and B u = Lu, where

L < επ2/T 2. So we are in the framework of Remark 3.1 above. It is well known that επ2/T 2

is the smallest eigenvalue of the problem

εu′′(t) = λu(t), t ∈ (0, T ), u(0) + u(T ) = 0, u′(0) + u′(T ) = 0.

Hence, by virtue of the Fredholm Alternative (see, e.g., [20, Theorem 7.10]), the problem

−εu′′(t)− ε
π2

T 2
u(t) = f(t), t ∈ (0, T ), u(0) + u(T ) = 0, u′(0) + u′(T ) = 0

is not solvable for all f.

So, the condition L < επ2/T 2 is suitable if B = Lu and of course the same condition is

suitable in the framework of Remark 3.1.

The next result involves a sufficient condition for the existence of solutions to problems

(Pεµ)ap and (Pµ)ap when the constant L is assumed to be ”sufficiently small” with respect to

µ. In addition, uniform estimates with respect to ε are obtained and will be employed in the

following sections.

Theorem 3.2 ([5]). Let µ > 0 be fixed. Assume that (HA), (Hϕc
), and (HB) are fulfilled, with

the constant L of B satisfying

L <
πµ

T
. (3.4)

Then for every ε > 0 and f ∈ L2(0, T ;H), the problems (Pεµ)ap and (Pµ)ap have at least one

strong solution uεµ ∈ W 2,2(0, T ;H) and uµ ∈ W 1,2(0, T ;H), respectively, such that ξεµ, ξµ ∈
L2(0, T ;H), where ξεµ(t) and ξµ(t) denote the sections of ∂ϕ(uεµ(t)) and ∂ϕ(uµ(t)), respectively,

as in (1.1) for a.e. t ∈ (0, T ). In addition, for every ε ≥ 0, the following estimates hold

∥ u′εµ ∥L2(0,T ;H)≤ C1µ, ∥ uεµ ∥C([0,T ];H)≤ C2µ, ∥ ξεµ ∥L2(0,T ;H)≤ C3µ, (3.5)

ε ∥ u′′εµ ∥L2(0,T ;H)≤ C4µ, ∥ ϕ(uεµ) ∥L∞(0,T )≤ C5µ, (3.6)

with uεµ replaced by uµ if ε = 0 (except (3.6)1),

where Ciµ, i = 1, 5, are positive constants depending on µ, T, ∥ f ∥L2(0,T ;H), L, and l, but

independent of ε.

The proof of Theorem 3.2 builds upon the techniques used in Theorem 3.1, employing a fixed

point argument to ensure existence, followed by Poincaré-type inequalities for H−antiperiodic

functions to derive uniform bounds.
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Remark 3.3 ([5]). Notice that Theorem 3.2 remains valid if we remove (Hϕc
) and instead

introduce stronger assumptions on A and B. Specifically, we assume that (HA) is satisfied,

along with the additional condition that the operator A is linear. Furthermore, we require that

(HB)
′ holds with a Lipschitz constant of B, L satisfying L < πµ/T.

The conclusions of Theorems 3.1 and 3.2 are still valid under some alternative assumptions.

Specifically, we assume that (HA) is replaced by the stronger assumption

(HA)
′ Assumption (HA) holds and, in addition, A is strongly monotone with constant ω > 0

(see condition (1.4)).

In this case, one can prove a result similar to the previous ones, in which the constant L

satisfies a condition which involves only ω.

Theorem 3.3 ([5]). Assume that (HA)
′, (Hϕc

), and (HB) are fulfilled, with constants L and

ω satisfying

L < ω. (3.7)

Then for every ε and µ satisfying (Hεµ) and f ∈ L2(0, T ;H), the problems (Pεµ)ap and (Pµ)ap
have at least one strong solution uεµ ∈ W 2,2(0, T ;H) and uµ ∈ W 1,2(0, T ;H), respectively,

such that ξεµ, ξµ ∈ L2(0, T ;H), where ξεµ(t) and ξµ(t) denote the sections of ∂ϕ(uεµ(t)) and

∂ϕ(uµ(t)), respectively, as in (1.1) for a.e. t ∈ (0, T ). In addition, the following estimates hold

∥ uεµ ∥L2(0,T ;H)≤ C1, ε
2 ∥ u′′εµ ∥2L2(0,T ;H) +µ

2 ∥ u′εµ ∥2L2(0,T ;H) + ∥ ξεµ ∥2L2(0,T ;H)≤ C2
2 , (3.8)

for all ε and µ satisfying (Hεµ), with uεµ replaced by uµ if ε = 0;

∥ uεµ ∥C([0,T ];H)≤ C2

√
T/(2µ), ∥ ϕ(uεµ) ∥L∞(0,T )≤ C C2 (C2/µ+ C1) , (3.9)

for all ε ≥ 0 and µ > 0, with uεµ replaced by uµ if ε = 0;

∥ u′εµ ∥L2(0,T ;H)≤ C2T/(πε), ∥ uεµ ∥C([0,T ];H)≤ C2T
√
T/(2πε),

∥ ϕ(uεµ) ∥L∞(0,T )≤ C C2 (C2T/(πε) + C1) for all ε > 0 and µ ≥ 0,
(3.10)

where C, Ci, i = 1, 2, are positive constants depending on T, ∥ f ∥L2(0,T ;H), ω, L, and l but

independent of ε and µ.

Remark 3.4 ([5]). It is worth pointing out that all the conclusions of Theorem 3.3 remain

valid under some alternative assumptions. Specifically, let us drop the condition (Hϕc
) but,

instead, require that B satisfy the stronger condition (HB)
′ with the Lipschitz constant L < ω.

Additionally, we obtain uniqueness of the solutions to problems (Pεµ)ap if ε > 0, and (Pµ)ap.

The proof of this claim follows essentially the same arguments presented in Remark 3.1.

Remark 3.5 ([5]). We mention that if f ∈ L2
loc(R;H), such that f(t+ T ) + f(t) = 0 for a.e.

t ∈ R, and B is an odd operator, then the strong solutions provided by the results of this section

can be extended by T−antiperiodicity to all of R.
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The following section studies the behavior of solutions to problem (Pεµ)ap with respect

to ε and µ. We begin by assuming that (HA), (Hϕc
), and (HB) are satisfied. Under these

assumptions, problems (Pεµ)ap and (Pµ)ap may exhibit genuine nonuniqueness of solutions (as

discussed in references [8], [17], [23] and [24]). We will consider some scenarios, depending on

whether the parameter ε or µ tends to zero.

The convergence results (Theorems 3.4–3.7) are all established using similar techniques.

The proofs rely on a combination of uniform estimates with respect to parameters ε and/or µ

obtained earlier, Ascoli’s Lemma, the demiclosedness property of maximal monotone operators

and weak convergence arguments in Sobolev spaces.

Case 1: Let ε = ε0 > 0 be fixed and µ→ 0+.

Consider the problem (Pε00)ap
not.
= (Pε0)ap which corresponds to the particular case µ = 0 in

the problem (Pε0µ)ap. Within this framework, the following convergence result is established.

Theorem 3.4 ([5]). Let ε0 > 0 be fixed. Assume that all the assumptions of Theorem 3.1 hold

with (3.1) satisfied by ε0 (i.e., L < π2ε0/T
2). For every µ ≥ 0, let uε0µ be a strong solution

to problem (Pε0µ)ap given by Theorem 3.1. Then, for every sequence 0 < µn → 0, there exists

a subsequence, still denoted
(

µn
)

n
, such that uε0µn

→ u in C([0, T ];H), uε0µn
→ u weakly in

W 2,2(0, T ;H) as n→ ∞, and the limit u is a strong solution to problem (Pε0). Clearly, if all the

solutions under consideration are unique, then uε0µ → u in C([0, T ];H) and uε0µ → u weakly

in W 2,2(0, T ;H) as µ→ 0+.

Case 2: Let µ = µ0 > 0 be fixed and ε→ 0+.

Consider the problem derived by setting ε = 0 in the differential inclusion (Eεµ0
)ap, along

with the T−antiperiodic condition. In this framework, we obtain the following convergence

result.

Theorem 3.5 ([5]). Let µ0 > 0 be fixed. Assume that all the assumptions of Theorem 3.2

hold with (3.4) satisfied by µ0 (i.e., L < πµ0/T ). For each ε > 0, let uεµ0
and uµ0

be strong

solutions to problems (Pεµ0
)ap and (Pµ0

)ap, respectively, given by Theorem 3.2. Then for every

sequence 0 < εn → 0, there exists a subsequence, still denoted
(

εn
)

n
, such that uεnµ0

→ uµ0

in C([0, T ];H), u′εnµ0
→ u′µ0

weakly in L2(0, T ;H) as n → ∞, and the limit uµ0
is a strong

solution to problem (Pµ0
)ap. Clearly, if all the solutions under consideration are unique, then

uεµ0
→ uµ0

in C([0, T ];H) and u′εµ0
→ u′µ0

weakly in L2(0, T ;H) as ε→ 0+.

Case 3: Let ε→ ε0 and µ→ µ0, with ε0, µ0 satisfying (Hε0µ0
)

In the next result we assume that (HA)
′, (Hϕc

), and (HB) hold with constants ω and L

satisfying L < ω. Given these assumptions, we can achieve a convergence result that is more

general than those obtained in the previous two results.

Theorem 3.6 ([5]). Let ε0 and µ0 be fixed, satisfying (Hε0µ0
). Assume that all the assumptions

of Theorem 3.3 hold. For every ε and µ satisfying (Hεµ)ap, let uεµ and uµ be strong solutions

to problems (Pεµ)ap and (Pµ)ap, respectively, obtained in Theorem 3.3. Then for every sequence

with positive components (εn, µn) → (ε0, µ0), there exists a subsequence, still denoted
(

εn, µn
)

n
,
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such that

uεnµn
→ uµ0

in C([0, T ];H), u′εnµn

→ u′µ0
weakly in L2(0, T ;H) if ε0 = 0,

uεnµn
→ u in C([0, T ];H), uεnµn

→ u weakly in W 2,2(0, T ;H) if ε0 > 0,

and the limits uµ0
and u are strong solutions to problems (Pµ0

)ap, and respectively (Pε0µ0
)ap.

Clearly, if all the solutions under consideration are unique, then

uεµ → uµ0
in C([0, T ];H), u′εµ → u′µ0

weakly in L2(0, T ;H) if ε0 = 0,

uεµ → u in C1([0, T ];H), uεµ → u weakly in W 2,2(0, T ;H) if ε0 > 0,
(3.11)

as (ε, µ) → (ε0, µ0).

Theorem 3.7 ([5]). Let ε0 ≥ 0 and µ0 > 0 be fixed. Assume that all the assumptions of The-

orem 3.2 hold with (3.4) satisfied by µ0 (i.e., L < πµ0/T ). Then there exists δ0 ∈ (0, µ0),

such that for every ε and µ satisfying (Hεµ), with | ε − ε0 |< δ0, | µ − µ0 |< δ0, and

f ∈ L2(0, T ;H), the problems (Pεµ)ap and (Pµ)ap have at least one strong solution uεµ ∈
W 2,2(0, T ;H) and uµ ∈W 1,2(0, T ;H), respectively. Moreover, for every sequence with positive

components (εn, µn) → (ε0, µ0), there exists a subsequence, still denoted
(

(εn, µn)
)

n
, such that

uεnµn
→ u in C([0, T ];H), uεnµn

→ u weakly in W 2,2(0, T ;H) if ε0 > 0, and

uεnµn
→ uµ0

in C([0, T ];H), u′εnµn

→ u′µ0
weakly in L2(0, T ;H) if ε0 = 0.

Furthermore, the limits u and uµ0
are strong solutions to problems (Pε0µ0

)ap and (Pµ0
)ap, re-

spectively.

Examples ([5]) Let Ω be a nonempty bounded domain of RN . The following operators on

H = L2(Ω) are odd, continuous, and sublinear, but not Lipschitz:

(1) B u = ± | u |α sgnu, with α ∈ (0, 1);

(2) B u = ± sgnu · e−1/|u| if u ̸= 0, and B 0 = 0.

On an arbitrary Hilbert space H, we can consider the operator

B u = ± ∥ u ∥α−1 u, if u ̸= 0, and B 0 = 0, where α ∈ (0, 1).

The following section studies the continuity of the solutions to problem (Pεµ)ap with respect

to ε and µ, including approximation results for the solutions to (Pµ)ap and (E00)ap. In what

follows, we consider some specific cases where the problems (Pεµ)ap and (Pµ)ap have unique

strong solutions.

In the case of uniqueness, some estimates for the convergence rate of uεµ − uε0µ0
if ε0 > 0,

and uεµ−uµ0
if ε0 = 0 (in the norm of C([0, T ];H) or L2(0, T ;H)), and continuous dependence

of the solution uεµ to problem (Pεµ) on parameters ε and µ are expected.

We first begin with an investigation in the case in which the operator A is strongly monotone.

We will also assume (HA)
′, and (HB)

′, with constants ω and L satisfying L < ω. It is worth

mentioning that assumption (Hϕc
) is no longer needed, so we drop it. Under these assumptions,
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Remark 3.4 above guarantees existence and uniqueness of the strong solutions uεµ and uµ to

problems (Pεµ)ap and (Pµ)ap, respectively.

We can state the following result concerning the continuous dependence of the solution

uεµ to problem (Pεµ)ap on parameters ε and µ and the approximation of the solutions of

the reduced problems. The methods used to prove each of the three cases, depending on

whether each parameter tends to zero individually or simultaneously, are similar and involve

the use of previously deduced inequalities, properties of the subdifferential and the Arzelà-Ascoli

Criterion.

Theorem 3.8 ([5]). Assume that (HA)
′ and (HB)

′, with constants ω and L satisfying L < ω,

are fulfilled. Then for every ε, µ satisfying (Hεµ) and f ∈ L2(0, T ;H), the problems (Pεµ)ap and

(Pµ)ap have unique strong solutions uεµ ∈ W 2,2(0, T ;H) and uµ ∈ W 1,2(0, T ;H), respectively.

Moreover, for any fixed ε0, µ0 satisfying (Hε0µ0
), the following estimates and approximations

hold true

∥ uεµ − uε0µ0
∥C([0,T ];H)= O(| ε− ε0 |) +O(| µ− µ0 |) and

uεµ → uε0µ0
in C1([0, T ];H) as (ε, µ) → (ε0, µ0) if ε0 > 0;

∥ uεµ − uµ0
∥L2(0,T ;H)= O(

√
ε) +O(| µ− µ0 |) and

uεµ → uµ0
in C([0, T ];H) as (ε, µ) → (0+, µ0).

(3.12)

If, in addition, we assume that B is an odd operator and f ∈W 1,2(0, T ;H), with f(0)+f(T ) =

0, then the (algebraic) inclusion (E00)ap admits a unique solution u00 ∈W 1,2(0, T ;H), satisfying

u00(0) + u00(T ) = 0, u(t) ∈ D(A) for all t ∈ [0, T ], and

∥ uεµ − u00 ∥L2(0,T ;H)= O(
√
ε) +O(µ). (3.13)

Furthermore, if (hεµ) holds (i.e., µ2/ε = O(1)), then

uεµ → u00 in C([0, T ];H) as (ε, µ) → (0+, 0+). (3.14)

Examples ([5]) Here are some examples of odd Lipschitz operators. To begin with, we

consider the radial retraction on the unit ball of H, defined by B1 : H → H,

B1 x =

{

x if ∥ x ∥≤ 1,
x

∥x∥ if ∥ x ∥> 1.

It is well known that B1 is Lipschitz continuous with a Lipschitz constant L1 = 1.

Another example (as shown in [24, Lemma 2.3]) is the operator B2 : H → H,

B2 x =

{

x if ∥ x ∥≤ 1,
x

∥x∥2 if ∥ x ∥> 1,
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Chapter 3 Two-Parameter Evolution Inclusions with Antiperiodic Conditions

which also has a Lipschitz constant equal to 1.

Let us now consider the specific case where H = L2(Ω), with Ω being a nonempty bounded

domain in R
N . Some examples of odd Lipschitz operators on H are given by: (1) B u = ± sin u;

(2) B(u) = ±u/
√

1 + u2; (3) B u = ± sgnu ·min{| u |α, | u |β}, with 0 < α < 1 < β.

Next, we provide some sufficient conditions that guarantee the uniqueness of strong solutions

to problems (Pεµ)ap and (Pµ)ap, applicable when the operator A is no longer strongly monotone.

Theorem 3.9 ([5]). Let ε0 and µ0 be fixed, satisfying (Hε0µ0
). Assume that (HA) and (HB)

′

hold, with Lipschitz constant L of B satisfying

L <
π2ε0
T 2

if ε0 > 0 and L <
πµ0
T

if ε0 = 0.

In addition to the assumptions stated above, if ε0 = 0, suppose that A is a single valued,

linear operator and that (Hϕc
) holds.

Then there exists δ0 ∈ (0,max{ε0, µ0}), such that for every ε and µ satisfying (Hεµ), with

| ε − ε0 |< δ0, | µ − µ0 |< δ0, and f ∈ L2(0, T ;H), the problems (Pεµ)ap and (Pµ)ap have

unique strong solutions, uεµ ∈ W 2,2(0, T ;H) and uµ ∈ W 1,2(0, T ;H), respectively. Moreover,

the following estimate and approximations hold true

∥ uεµ − uε0µ0
∥C([0,T ];H)= O(| ε− ε0 |) +O(| µ− µ0 |) and

uεµ → uε0µ0
in C1([0, T ];H) as (ε, µ) → (ε0, µ0) if ε0 > 0;

uεµ → uµ0
in C([0, T ];H) and

u′εµ → u′µ0
weakly in L2(0, T ;H) as (ε, µ) → (0+, µ0).

(3.15)

The final section is devoted to illustrating the abstract results through concrete applications,

including semilinear and nonlinear problems subject to antiperiodic conditions in time.
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Chapter 4

A Class of Antiperiodic Boundary Value Problems

Governed by Maximal Monotone Operators

The results presented in this chapter are part of an article published in An. Şt. Univ. Ovidius

Constanţa [25].

Among the original contributions in this chapter, we mention Theorems 4.1 and 4.2.

Building on the previous chapters, we now examine second- and first-order inclusions with

antiperiodic boundary conditions, where A is an odd strongly maximal monotone operator.

This broader setting allows for applications to nonlinear models like hyperbolic systems. Since

A is not a subdifferential, stronger conditions on B and f are required to ensure well-posedness.

Recall that H denotes a real Hilbert space with inner product (·, ·) and norm ∥ · ∥.
We consider in a real Hilbert space H the same class of problems as the previous chapter

(Pεµ)ap

{

−εu′′(t) + µu′(t) +Au(t) +Bu(t) ∋ f(t) a.e. in (0, T ), (Eεµ)

u(0) + u(T ) = 0, u′(0) + u′(T ) = 0,

where T > 0, ε > 0, and µ ≥ 0, along with

(Pµ)ap

{

µu′(t) +Au(t) +Bu(t) ∋ f(t) a.e. in (0, T ), (Eµ)

u(0) + u(T ) = 0.

for µ > 0. We also introduce the limiting algebraic inclusion

(E00)ap Au(t) +Bu(t) ∋ f(t) a.e. in (0, T ),

which is obtained by formally setting ε = µ = 0 in (Eεµ).
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Chapter 4 Antiperiodic Problems Governed by Maximal Monotone Operators

The analysis is carried out under the following assumptions on the data and operators

involved in problems (Pεµ)ap, (Pµ)ap, and (E00)ap.

(Hf ) f ∈W 1,2(0, T ;H) and f(0) + f(T ) = 0;

(HA) The operator A : D(A) ⊂ H → H is odd, strongly maximal monotone (possibly set-

valued), with constant ω0 > 0;

(HB) The operator B : H → H is odd, maximal monotone (possibly set-valued) and satisfies

the following condition: for each r > 0, there is Lr > 0 with the property that for all x ∈ H

with ∥ x ∥≤ r, it holds that ∥ B x ∥≤ Lr.

Remark 4.1. A typical example of an operator B satisfying assumption (HB) is given by

B x =∥ x ∥p−2 x for all x ∈ H. This operator is also cyclically monotone, as it corresponds to

the subdifferential of the convex function x→∥ x ∥p .

We begin by proving that the problems introduced above admit unique solutions. Addi-

tionally, we obtain some uniform estimates with respect to the parameters ε and µ of these

solutions. These estimates will be crucial in proving the results presented in the subsequent

sections.

Throughout this chapter, all solutions to the aforementioned problems are considered in the

sense of Definition 1.

Theorem 4.1 ([25]). (i) Assume that A is an odd maximal monotone operator and (HB) is

fulfilled. Then, for every ε > 0, µ ≥ 0, and f ∈ L2(0, T ;H), the problem (Pεµ)ap has a unique

solution uεµ ∈W 2,2(0, T ;H) which satisfies the following estimate

ε ∥ u′′εµ ∥L2(0,T ;H)≤∥ f ∥L2(0,T ;H) . (4.1)

(ii) Assume that (HA) is satisfied. Then, for every nonnegative ε and µ such that ε + µ >

0, and for f satisfying (Hf ), both problems (Pµ)ap and (Pεµ)ap have unique solutions uµ ∈
W 1,2(0, T ;H) and uεµ ∈W 2,2(0, T ;H), respectively. Moreover, the following estimates hold

∥ u′µ ∥L2(0,T ;H) ≤ ω−1
0 ∥ f ′ ∥L2(0,T ;H) for every µ > 0,

∥ u′εµ ∥L2(0,T ;H) ≤ ω−1
0 ∥ f ′ ∥L2(0,T ;H) for every ε > 0, µ ≥ 0.

(4.2)

In addition, the algebraic inclusion (E00)ap has a unique solution u00 ∈W 1,2(0, T ;H), satisfying

u00(0) + u00(T ) = 0 and u(t) ∈ D(A) for all t ∈ [0, T ].

The proof is based on specific techniques of maximal monotone operators, which include us-

ing the Yosida approximation, the demiclosedness property of canonical extensions of operators

A and B, as well as the Arzelà–Ascoli Criterion.

The following section is designated to investigate the continuous dependence of the solution

uεµ to problem (Pεµ)ap on parameters ε and µ. We also obtain approximating results regarding

the solutions to the reduced problem (Pµ)ap and the algebraic inclusion (E00)ap.
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Theorem 4.2 ([25]). Assume that (HB) is fulfilled.

(i) Let ε0 > 0 and µ0 ≥ 0 be fixed. Suppose that A is an odd maximal monotone operator.

For every ε > 0, µ ≥ 0, and f ∈ L2(0, T ;H), let uεµ ∈ W 2,2(0, T ;H) be the unique solution to

problem (Pεµ)ap given by Theorem 4.1 (i). Then the following estimate and convergence hold

∥ uεµ − uε0µ0
∥C([0,T ];H)= O(| ε− ε0 |) +O(| µ− µ0 |),

uεµ → uε0µ0
in C1([0, T ];H) as (ε, µ) → (ε0, µ0).

(4.3)

(ii) Let µ0 > 0 be fixed. Assume that (HA) holds. For every nonnegative ε and µ such that

ε+µ > 0, and f satisfying (Hf ), let uεµ ∈W 2,2(0, T ;H) and uµ ∈W 1,2(0, T ;H) be the unique

solutions to problems (Pεµ)ap, and respectively (Pµ)ap, given by Theorem 4.1 (ii). Then, the

following estimate and approximation hold

∥ uεµ − uµ0
∥L2(0,T ;H)= O(

√
ε) +O(| µ− µ0 |),

uεµ → uµ0
in C([0, T ];H) as (ε, µ) → (0+, µ0).

(4.4)

Moreover, the following estimate is also valid

∥ uεµ − u00 ∥L2(0,T ;H)= O(
√
ε) +O(µ) as (ε, µ) → (0+, 0+), (4.5)

where u00 ∈ W 1,2(0, T ;H) is the unique solution to the (algebraic) inclusion (E00)ap, given by

Theorem 4.1(ii). Furthermore, if µ2/ε = O(1), then

uεµ → u00 in C([0, T ];H) as (ε, µ) → (0+, 0+). (4.6)

Finally, the last section applies the abstract work to an antiperiodic semilinear telegraph

system.
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[4] L. Barbu, G. Moroşanu, I.V. Vı̂ntu, Second-order differential inclusions with two small

parameters, Nonlinear Anal. Real World Appl. 77 (2024), 104061.
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