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2.4 Demonstraţia Teoremei 2.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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3.3 Demonstraţia Teoremei 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Concluzii generale 24
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ii



Introducere

Operatorul p-Laplacian, cunoscut şi sub denumirea de operatorul p-armonic şi notat cu ∆p,
reprezintă unul dintre cei mai studiaţi operatori ı̂n teoria ecuaţiilor cu derivate parţiale. Definit
pentru p ∈ (1,∞) prin ∆pu := div

(
|∇u|p−2∇u

)
, acest operator este neliniar pentru orice p ̸= 2,

iar ı̂n cazul particular p = 2, el coincide cu operatorul lui Laplace.
Importanţa sa este justificată de numeroase aplicaţii ı̂n fizică şi inginerie: modelarea fluxurilor

ı̂n medii poroase (legea neliniară a lui Darcy), comportamentul materialelor plastice, transferul
de căldură ı̂n context neliniar, dinamica gheţarilor sau descrierea mişcării browniene. Pentru
detalii, a se vedea Benedikt et al. [15], Lindqvist [29], respectiv Barbu, Rehmeier şi Röckner [10].

Pentru a introduce problemele clasice de valori proprii asociate operatorului p-Laplacian,
considerăm un domeniu mărginit Ω ⊂ R

N , cu N ≥ 2, având frontiera netedă ∂Ω. Problema de
valori proprii asociată operatorului −∆p, cu condiţii la limită de tip Dirichlet, este:

(P 0
D) :

{
−∆pu = λ|u|p−2u ı̂n Ω,

u = 0 pe ∂Ω.

Un număr real λ este o valoare proprie a acestei probleme dacă există uλ ∈ W 1,p
0 (Ω) \ {0} astfel

ı̂ncât ∫

Ω
|∇uλ|

p−2∇uλ · ∇w dx = λ

∫

Ω
|uλ|

p−2uλw dx, ∀w ∈ W 1,p
0 (Ω).

Se cunoaşte faptul că problema (P 0
D) admite un şir de perechi proprii (λn, un), cu 0 < λ1 <

λ2 ≤ λ3 ≤ · · · → ∞, obţinute prin metode variaţionale, cea mai cunoscută fiind cea care se
bazează pe genul lui Krasnosel’skĭı şi principiul Lusternik–Schnirelmann (a se vedea Gasinski şi
Papageorgiou [26, Section 6.2]).

Cu excepţia cazurilor p = 2 sau N = 1, nu se cunoaşte dacă spectrul este format doar
din aceste valori proprii (a se vedea Gasinski şi Papageorgiou [26, Section 6.1 şi 6.3]). Astfel,

spectrul operatorului −∆p, definit pe spaţiul Sobolev W 1,p
0 (Ω), reprezintă o problemă deschisă

timp de decenii, cu excepţia primei valori proprii λ1 (numită valoare proprie principală). Aceasta
este simplă şi are o funcţie proprie asociată strict pozitivă ı̂n Ω (vezi Lê [28, Theorem 5.1]).
Mai mult, λ1 poate fi caracterizată variaţional ca fiind minimul câtului Rayleigh, adică λ1 =

minu∈W 1,p
0 (Ω)

∫
Ω
|∇u|p∫
Ω
|u|p

(a se vedea Motreanu et al. [34, Proposition 9.6]). Rezultate similare există

şi pentru alte tipuri de condiţii la limită, cum ar fi cele de tip Neumann, Robin sau Steklov (vezi
Lê [28]).

Operatorul −(∆p +∆q), cu p, q ∈ (1,∞), p ̸= q cunoscut şi sub numele de −(p, q)-Laplacian
reprezintă o perturbare a operatorul−∆p. Acest operator este, spre deosebire de−∆p, neomogen.
Ca urmare, aplicarea unor tehnici variaţionale conduc la determinarea, ı̂n anumite cazuri, a
ı̂ntregii mulţimi de valori proprii. La aceste rezultate vom face referire ı̂n secţiunile următoare.

Operatorul−(p, q)-Laplacian reprezintă o combinaţie a două difuzii neliniare de ordine diferite,
reflectând interacţiunea a două mecanisme de transfer cu regimuri distincte. Datorită acestei
structuri el are numeroase aplicaţii ı̂n fizica matematică. De exemplu, ı̂n cazul ı̂n care p = 2 şi
q > 1, operatorul ∆ + aq∆q cu aq > 0 apare ı̂n teoria Born–Infeld pentru câmpuri electrostatice
(vezi Bonheure, Colasuonno şi Fortunato [16], precum şi Fortunato, Orsina şi Pisani [24]). Alte
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Introducere

aplicaţii ale operatorului (p, q)-Laplacian pot fi ı̂ntâlnite ı̂n fizica cuantică (vezi Benci et al. [13]
şi Benci, Fortunato şi Pisani [14]), ı̂n sistemele de tip reacţie–difuzie (vezi Cherfils şi Il’yasov
[17]), dar şi ı̂n teoria elasticităţii neliniare (vezi Marcellini [31] şi Zhikov [39]). Problemele de
valori proprii cu două faze sunt motivate inclusiv de modele provenite din relativitatea clasică.
Un exemplu ı̂n acest sens este operatorul

Qu := − div

(
∇u√

1− |∇u|2

)
,

care apare ca operator de curbură medie ı̂n spaţiul Lorentz–Minkowski (vezi Bartnik şi Simon
[11]). O aproximare de ordinul ı̂ntâi a acestuia este −∆u − ∆4u, ce corespunde operatorului
−(2, 4)-Laplacian (a se vedea Pompio şi Watanabe [38]).

Având ı̂n vedere aplicabilitatea extinsă a operatorului (p, q)-Laplacian, literatura dedicată
acestuia, inclusiv studiului valorilor proprii asociate, este deja vastă şi continuă să se dezvolte.
Menţionăm, ı̂n acest sens, două lucrări de sinteză relevante, Marano şi Mosconi [30], respectiv
Barbu şi Moroşanu [5].

Revizuirea literaturii

Pentru a motiva tema abordată ı̂n această teză şi a evidenţia contribuţiile obţinute, prezentăm,
pe scurt, cele trei probleme care vor fi analizate ı̂n capitolele următoare. Le vom nota, doar ı̂n
acest capitol, pentru simplitate, cu (Pi), i = 1, 3.

Considerăm ı̂n cele ce urmează un domeniu mărginit Ω ⊂ R
N , cu N ≥ 2, având frontieră

netedă ∂Ω.
Prima problemă investigată este o problemă de valori proprii definită ı̂n Ω care conţine

inclusiv potenţiali cu ponderi nenegative de ordin p şi q şi condiţii la limită de tip parametric:

(P1) :





−(∆pu+∆qu) + ρ1(x)|u|
p−2u+ ρ2(x)|u|

q−2u = λα(x)|u|r−2u, x ∈ Ω,

∂u

∂νpq
+ γ1(x)|u|

p−2u+ γ2(x)|u|
q−2u = λβ(x)|u|r−2u, x ∈ ∂Ω,

unde p, q, r ∈ (1,∞) cu p < q, iar coeficienţii α, ρi ∈ L∞(Ω), β, γi ∈ L∞(∂Ω) sunt funcţii
nenegative care satisfac

(hαβ) :

∫

Ω
αdx+

∫

∂Ω
β dσ > 0, (hργ) :

∫

Ω
ρi dx+

∫

∂Ω
γi dσ > 0, i = 1, 2.

În condiţia la limită considerată am folosit notaţia

∂u

∂νpq
:=
(
| ∇u |p−2 + | ∇u |q−2

)∂u
∂ν

, (1)

unde ν este versorul normalei exterioare la ∂Ω. Această notaţie va fi folosită şi ı̂n cele ce urmează.
A doua problemă are o structură apropiată, ı̂nsă conţine doar potenţiali cu ponderi nenegative
de ordin q, ca urmare nu mai există simetrie ı̂ntre exponenţii p şi q:

(P2) :





−(∆pu+∆qu) + ρ(x)|u|q−2u = λα(x)|u|r−2u, x ∈ Ω,

∂u

∂νpq
+ γ(x)|u|q−2u = λβ(x)|u|r−2u, x ∈ ∂Ω,

unde 1 < q < r < p < ∞, iar funcţiile α, ρ ∈ L∞(Ω), β, γ ∈ L∞(∂Ω) sunt nenegative şi verifică
ipotezele (hαβ), (hργ) introduse anterior ı̂n prezentarea problemei (P1).
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Introducere

Ultima problemă studiată este o problemă de transmisie neliniară, de valori proprii, definită
astfel:

(P3) :





−∆pu1 + γ1(x)|u1|
r−2u1 = λ|u1|

p−2u1, ı̂n Ω1,

−∆qu2 + γ2(x)|u2|
s−2u2 = λ|u2|

q−2u2, ı̂n Ω2,

u1 = u2,
∂u1
∂νp

=
∂u2
∂νq

, pe Γ,

∂u2
∂ν

+ β(x)|u2|
ζ−2u2 = 0, pe Σ,

unde Ω1 este un subdomeniu cu frontiera netedă Γ, astfel ı̂ncât Ω1 ⊂ Ω, iar Ω2 := Ω \ Ω1. Se
presupune că p, q, r, s, ζ ∈ (1,∞), γi ∈ L∞(Ωi) pentru i = 1, 2, iar β ∈ L∞(Σ) este nenegativă

a.p.t. pe Σ. În condiţiile la limită pe Γ şi Σ, am notat

∂ui
∂νθ

:=| ∇ui |
θ−2 ∇ui · νθ, θ ∈ {p, q}, i ∈ {1, 2},

∂u2
∂ν

:=| ∇u2 |
q−2 ∇u2 · ν,

unde νp+ νq = 0 sunt versorii normalelor exterioare pe Γ, iar ν este versorul normalei exterioare
pe Σ.

Ipotezele suplimentare referitoare la exponenţi şi coeficienţi vor fi precizate ı̂n capitolele
dedicate fiecărei probleme.

Începem cu cazul condiţiilor de tip Neumann. Introducem ı̂n acest sens problema de valori
proprii

(PN ) :

{
−(∆pu+∆qu) = λ | u |q−2 u ı̂n Ω,
∂u
∂νpq

= 0 pe ∂Ω.

Un număr real λ este valoare proprie pentru (PN ) dacă există uλ ∈ W := W 1,max{p,q}(Ω) \ {0}
astfel ı̂ncât

∫

Ω

(
| ∇uλ |p−2 + | ∇uλ |q−2

)
∇uλ · ∇u dx = λ

∫

Ω
| uλ |q−2 uλu dx ∀ u ∈ W.

În acest caz, funcţia uλ se numeşte funcţie proprie corespunzătoare valorii proprii λ, iar perechea
(λ, uλ) se numeşte pereche proprie a problemei (PN ).

Pentru p > 2 şi q = 2, Mihăilescu [32, Theorem 1.1] a arătat că spectrul problemei (PN ) este
{0} ∪ (λN (p, 2),∞), unde

λN (p, 2) :=

{
inf

u∈W\{0}

∫
Ω |∇u|2 dx∫
Ω u2 dx

;

∫

Ω
u dx = 0

}
> 0.

Pentru p < 2, Fărcăşeanu et al. [19, Theorem 1.1] au identificat ı̂ntreaga mulţime a valorilor
proprii pentru (PN ) ca fiind mulţimea {0}∪ (λN (p, 2),∞). Mihăilescu şi Moroşanu [33] au tratat
cazul general p ∈ (1,∞), q > 2, obţinând spectrul {0} ∪ (λN (p, q),∞), unde

λN (p, q) :=

{
inf

u∈W\{0}

∫
Ω |∇u|q dx∫
Ω | u |q dx

;

∫

Ω
| u |q−2 u dx = 0

}
> 0. (2)

Să considerăm problema de valori proprii asociată operatorului Steklov (p, q)-Laplacian

(PS) :





−(∆pu+∆qu) = 0 ı̂n Ω,

∂u

∂νpq
= λ | u |q−2 u pe ∂Ω.

3



Introducere

Costea şi Moroşanu [18, Theorem 3.1] pentru cazul p ∈ (1,∞), q ∈ [2,∞) au determinat spectrul
problemei (PS) ca fiind mulţimea {0} ∪ (λS(p, q),∞), unde

λS(p, q) :=

{
inf

u∈W\{0}

∫
Ω |∇u|q dx∫
∂Ω | u |q dx

;

∫

∂Ω
| u |q−2 u dx = 0

}
> 0.

În cazul operatorului Robin (p, q)-Laplacian avem următoarea problemă de valori proprii

(PR) :





−(∆pu+∆qu) = λ |u|q−2u ı̂n Ω,

∂u

∂νpq
+ β |u|q−2u = 0 pe ∂Ω,

unde p, q ∈ (1,∞), p ̸= q, iar β este o constantă pozitivă.
Problema (PR) a fost studiată de Gyulov şi Moroşanu [27], care au determinat un interval de

valori proprii (λR(p, q), λ0) şi, mai mult, au demonstrat că nu există valori proprii ı̂n intervalul
(−∞, λR(p, q)]. Constantele de mai sus sunt pozitive şi definite prin

λR(p, q) := inf
u∈W\{0}

∫
Ω |∇u|q dx+ β

∫
∂Ω |u|q dσ∫

Ω |u|q dx
< λ0 := β

∫
∂Ω ds∫
Ω dx

. (3)

Autorii au enunţat ca problemă deschisă existenţa valorilor proprii ı̂n intervalul [λ0,∞).
Menţionăm, de asemenea, lucrarea lui Papageorgiou et al. [36], ı̂n care este analizată o

problemă de valori proprii mai generală decât (PR), pentru cazul 1 < p < q. În această lucrare,
operatorul −(∆p+∆q) este perturbat printr-un potenţial de ordin q cu o pondere indefinită ζ ∈
Ls(Ω), unde s < N/q dacă q ≤ N şi s = 1 dacă q > N . Constanta β este ı̂nlocuită cu o funcţie
β ∈ W 1,∞(∂Ω), β ≥ 0, β ̸≡ 0, care satisface condiţia

∫
Ω ζ dx+

∫
∂Ω β dσ > 0. Folosind o abordare

similară celei din [27], autorii obţin un rezultat comparabil (vezi [36, Theorem 1]).
Studiul problemelor de valori proprii cu condiţii pe frontieră de tipul celor considerate ı̂n

problemele (P1) şi (P2) a fost iniţiat de Von Below şi François [12], ı̂n cazul particular al op-
eratorului lui Laplace pentru α = 1 şi β > 0 funcţie continuă pe ∂Ω. Această problemă este
cunoscută ı̂n literatură sub denumirea de problemă de valori proprii de tip dinamic, deoarece
apare ı̂n studiul ecuaţiilor parabolice cu condiţii la limită de tip dinamic (a se vedea [25]).

Pornind de la acest model liniar, cercetări ulterioare au vizat extinderea acestuia la contexte
neliniare, cu operatori de tip p-Laplacian sau (p, q)-Laplacian. În acest context, considerăm
următoarea problemă de valori proprii generalizată:

(Pgen) :





−(∆pu+∆qu) = λα(x) |u|r−2u ı̂n Ω,

∂u

∂νpq
= λβ(x) |u|r−2u pe ∂Ω,

unde p, q, r ∈ (1,∞) cu p ̸= q, iar α, β sunt funcţii nenegative care satisfac ipoteza (hαβ) formulată
ı̂n cadrul problemei (P1).

Este bine cunoscut că funcţiile proprii ale problemei (Pgen) aparţin mulţimii

Cr :=

{
u ∈ W ;

∫

Ω
α |u|r−2u dx+

∫

∂Ω
β |u|r−2u dσ = 0

}
.

În cazul r = q, Barbu şi Moroşanu [7, Theorem 1] au arătat că mulţimea valorilor proprii ale

4



Introducere

problemei (Pgen) este egală cu {0} ∪ (λ̃(p, q),∞), unde

0 < λ̃(p, q) := inf
u∈Cq\{0}

∫
Ω |∇u|q dx∫

Ω α |u|q dx+
∫
∂Ω β |u|q dσ

.

Acest rezultat generalizează atât cazurile anterioare obţinute pentru problemele (PN ) şi (PS),
cât şi rezultatul obţinut de Abreu şi Madeira [1] pentru problema (Pgen) cu q = 2 şi p ∈ (1,∞),
p ̸= 2.

Dacă r ̸= q, presupunem, fără a restrânge generalitatea, că 1 < p < q. Barbu şi Moroşanu

[8] au demonstrat că, dacă fie 1 < r < p < q < ∞, fie 1 < q < p < r < ∞ şi r ∈
(
1, q(N−1)

N−q

)

pentru q < N , atunci mulţimea valorilor proprii ale problemei (Pgen) este [0,∞). Pe de altă

parte, ı̂n [6], aceiaşi autori au arătat că, dacă 1 < p < r < q < ∞, cu r < q(N−1)
N−q pentru q < N ,

atunci există două constante strict pozitive, 0 < λ∗ < λ∗, astfel ı̂ncât orice λ ∈ {0}∪ [λ∗,∞) este
valoare proprie a (Pgen), ı̂n timp ce, aceeaşi problemă nu are valori proprii ı̂n λ ∈ (−∞, λ∗)\{0}.

În ceea ce urmează, vom evidenţia rezultatele originale obţinute ı̂n cadrul acestei teze
pentru primele două probleme, (P1) şi (P2), care extind sau generalizează contribuţiile deja
existente ı̂n literatură.
Mai exact, ı̂n lucrările Barbu, Burlacu şi Moroşanu [2, 4], unde au fost studiate problemele (P1)
şi, respectiv, (P2) introduse anterior, am generalizat şi/sau extins rezultatele obţinute pentru

problemele (PN ) şi (PS) din lucrările [18, 19, 27, 32, 33, 36]. Într-adevăr, prin alegerea funcţiilor
α sau β egale cu zero sau, respectiv, unu, se regăsesc condiţiile la limită de tip Neumann sau
Steklov. Referitor la rezultatele obţinute ı̂n lucrările [6, 7, 8], acestea au fost extinse ı̂n [4] prin
studierea spectrului problemei (P2), unde am introdus potenţiali de ordin q ı̂n ecuaţie şi/sau pe
frontieră. Folosind genusul lui Krasnosel’skĭı şi Principiul lui Lusternik–Schnirelmann, am oferit
un răspuns pozitiv la problema deschisă din [27], arătând că problema (PR) are valori proprii
mai mari decât λ0.

Pe de altă parte, introducerea potenţialilor de ordin p ı̂n problema (P1), alături de cei de ordin
q, a dus la concluzia că, ı̂n cazul problemei (PR), prezenţa unui potenţial de ordin p ı̂n ecuaţie
asigură caracterizarea completă a spectrului acesteia. Astfel, dacă alegem r = q, α = 1, ρ2 = 0
ı̂n Ω, β = γ1 = 0, γ2 = const. > 0 pe ∂Ω iar ponderea ρ1 ≥ 0 a.p.t. ı̂n Ω, cu

∫
Ω ρ1(x) dx > 0,

atunci, conform Teoremei 2.1.1(b), spectrul problemei este exact intervalul (λ̂q,∞), unde λ̂q > 0
este definit ca ı̂n formula (3), cu γ2 ı̂n loc de β, conform notaţiilor.

Rezultatele obţinute arată că nu doar perturbarea operatorului −∆q prin −∆p, dar şi per-
turbarea ecuaţiei sau a condiţiilor la limită cu termeni de tip potenţial de ordin p poate conduce
la obţinerea unui spectru continuu pentru problemă, ı̂n timp ce ı̂n lipsa unor astfel de perturbări
nu există rezultate care să caracterizeze complet acest spectru.

În continuare, vom prezenta lucrări recente dedicate problemelor de transmisie neliniare,
similare problemei (P3). Problemele de transmisie au diverse aplicaţii ı̂n mecanica fluidelor,
fizică, chimie, biologie, de aici şi importanţa studiului acestora (vezi Fife [20], Nicaise [35]).
Reamintim, de exemplu, faptul că Figueiredo şi Montenegro [21] au investigat o problemă de
transmisie cu creştere exponenţială critică, mai precis, neliniarităţile au comportamente de tipul
exp(α0s

2) când |s| → ∞, pentru o constantă α0 > 0. Autorii au demonstrat că următoarea
problemă eliptică de transmisie ı̂n R

2





−∆u1 = f(x, u1) ı̂n Ω1,

−∆u2 = g(x, u2) ı̂n Ω2,

u1 = u2,
∂u1

∂ν1
= ∂u2

∂ν2
pe Γ,

u2 = 0 pe Σ,

are o soluţie netrivială.
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De asemenea, problema de transmisie cu creştere critică





−∆u1 = λf(x, u1) ı̂n Ω1,

−∆u2 =| u2 |
2∗−2 u2 ı̂n Ω2,

u1 = u2,
∂u1

∂ν1
= ∂u2

∂ν2
pe Γ,

u2 = 0 pe Σ,

a fost studiată de aceiaşi autori ı̂n [22]. S-a demonstrat că, pentru λ suficient de mare, problema
admite o soluţie nenulă. Alte rezultate existente pentru problemele neliniare de transmisie,
abordate cu argumente variaţionale, pot fi consultate ı̂n [23, 33].

O problemă similară problemei (P3) a fost investigată de către Barbu et al. ı̂n [9]. Autorii
au considerat un domeniu mărginit Ω ⊂ R

N , N ≥ 2, cu frontieră de tip Lipschitz ∂Ω, care este
ı̂mpărţit ı̂n două subdomenii de tip Lipschitz, Ω1 şi Ω2. Cu alte cuvinte, Ω = Ω1 ∪ Ω2 ∪ Γ. Se
presupune că frontiera ∂Ω este ı̂mpărţită ı̂n două părţi, ∂Ω1 şi ∂Ω2, astfel ı̂ncât ∂Ω1 = Γ1 ∪ Γ şi
∂Ω2 = Γ2 ∪ Γ. În acest cadru, a fost considerată următoarea problemă de valori proprii:





−∆pu1 = λ |u1|
p−2u1 ı̂n Ω1,

−∆qu2 = λ |u2|
q−2u2 ı̂n Ω2,

∂u1
∂νp

= 0 pe Γ1,
∂u2
∂νq

= 0 pe Γ2,

u1 = u2,
∂u1
∂νp

=
∂u2
∂νq

pe Γ,

(0.1)

unde, pe frontieră, ∂u
∂νr

, r = p, q, desemnează derivatele conormale ale operatorilor implicaţi

ı̂n problemă, similare cu cele din formularea problemei (P3). Folosind principiul Lusternik -
Schnirelmann, autorii au demonstrat existenţa unui şir de valori proprii ale problemei de mai sus
care tinde la infinit.

Problema neliniară de transmisie (P3), investigată de noi ı̂n lucrarea Barbu, Burlacu şi
Moroşanu [3], generalizează acest rezultat prin includerea unor potenţiali nedefiniţi ı̂n cele două

subdomenii, care sunt configurate diferit faţă de cazul prezentat mai sus. În plus, dacă β = 0,
atunci condiţiile pe Σ devin de tip Neumann. Mai mult, folosind argumente similare, se pot
considera şi cazuri cu condiţii la limită generalizate, dar şi partiţionări diferite ale domeniului,
inclusiv de tipul celei din lucrarea [9].

Motivaţia şi obiectivele tezei

Studiul valorilor proprii pentru operatori neliniari de tip (p, q)-Laplacian a cunoscut ı̂n ultimele
decenii o dezvoltare semnificativă, atât ı̂n plan teoretic, cât şi ı̂n contextul aplicaţiilor.

Motivaţia tezei de faţă se bazează pe necesitatea extinderii cadrului actual al teoriei, ı̂n
special ı̂n următoarele direcţii:
(i) considerarea simultană a doi operatori neliniari de difuzie de ordine diferite, de tip p- şi
q-Laplacian, cu p ̸= q;
(ii) includerea potenţialilor cu ponderi nenegative ı̂n ecuaţie şi/sau pe frontieră;
(iii) tratarea unor condiţii la limită generalizate, ı̂n care parametrul apare atât ı̂n ecuaţie, cât
şi ı̂n condiţia de pe frontieră;
(iv) analiza unei probleme de transmisie ı̂ntre două subdomenii guvernate de operatori diferenţiali
diferiţi.

Pe baza acestor direcţii generale, obiectivele tezei sunt următoarele:

1 Studiul unei probleme de valori proprii cu condiţii la limită de tip parametric, ı̂n care apar
potenţiali cu ponderi nenegative de ordin p şi q, atât ı̂n ecuaţie cât şi pe frontieră. Această
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problemă, notată (P1), extinde cazurile clasice Neumann şi Steklov;

2 Investigarea unei versiuni asimetrice, (P2), ı̂n care doar potenţialii de ordin q sunt prezenţi,
eliminându-se simetria dintre componentele de ordin p şi q. Se urmăreşte caracterizarea
spectrului ı̂n funcţie de poziţionarea dintre p, q şi r;

3 Analiza unei probleme de transmisie (P3), ı̂n care domeniul este ı̂mpărţit ı̂n două sub-
domenii disjuncte Ω1 şi Ω2, cu operatori p- şi q-Laplacian acţionând separat, legaţi prin
condiţii de continuitate a soluţiei şi a fluxului pe interfaţa comună Γ;

4 Demonstrarea existenţei unor şiruri de valori proprii care tind la infinit şi, ı̂n unele cazuri,
caracterizarea completă a spectrului ı̂n funcţie de parametrii implicaţi;

5 Extinderea unor rezultate recente din literatură prin utilizarea următoarelor metode
variaţionale: metode directe, metoda de fibrare, metode de tip min-max bazate pe genusul
lui Krasnosel’skĭı şi Principiul Lusternik-Schnirelmann aplicat pe varietăţi Banach de clasă
C1.

Structura tezei

Teza ı̂ncepe cu un capitol de Preliminarii ı̂n care sunt prezentate noţiunile şi rezultatele clasice
utilizate ı̂n demonstrarea rezultatelor din capitolele următoare, grupate ı̂n două secţiuni: Spaţii
Lebesgue şi spaţii Sobolev, Definiţii şi proprietăţi, Câteva rezultate de calcul variaţional.

Capitolul următor (Capitolul 1 ı̂n acest rezumat) este dedicat studiului unei probleme de val-
ori proprii pentru operatorul (p, q)-Laplacian, ı̂n prezenţa unor potenţiali cu ponderi nenegative
de ordin p şi q, atât ı̂n ecuaţie, cât şi ı̂n condiţiile la limită. Problema analizată, notată mai
sus cu (P1), generalizează cazurile Neumann şi Steklov, prin apariţia parametrului spectral λ
atât ı̂n domeniul Ω, cât şi pe frontiera acestuia. După formularea problemei şi enunţarea princi-
palelor ipoteze, se introduc câteva rezultate auxiliare şi funcţionala de energie Jλ corespunzătoare
problemei studiate. Se investighează proprietăţile acesteia (diferenţiabilitate, coercivitate, semi-
continuitate) care sunt esenţiale pentru demonstraţiile ulterioare. Analiza se ramifică ı̂n funcţie
de poziţia exponentului r faţă de p şi q. Pentru r ∈ {p, q}, se obţine caracterizarea completă a

spectrului, acesta fiind de forma (d,∞), unde d > 0 depinde de p sau de q. În cazul r = q, abor-
darea foloseşte varietatea Nehari şi Regula Multiplicatorilor lui Lagrange. Pentru cazurile r < p
şi r ∈ (q, q∗), spectrul este (0,∞), iar demonstraţiile se bazează pe coercivitatea funcţionalei şi
tehnici variaţionale clasice. Cazul cel mai delicat, r ∈ (p, q), cu r < p∗, este tratat prin metoda
de fibrare introdusă de Pohozaev [37], conducând la determinarea unui interval de valori proprii
de forma [λ∗,∞), cu λ∗ > 0, ı̂n timp ce pentru λ < λ∗ < λ∗ problema nu admite soluţii nebanale.
Mai sus, am notat, pentru θ ∈ {p, q}, θ∗ = (N − 1)θ/(N − θ) pentru θ < N şi θ∗ = ∞ pentru
θ ≥ N , exponenţii critici de urmă.

Rezultatele prezentate ı̂n acest capitol au fost obţinute ı̂n cadrul lucrării Barbu, Burlacu
şi Moroşanu [2].

Următorul capitol cuprinde studiul unei versiuni asimetrice a problemei investigate anterior,
notată mai sus cu (P2), ı̂n care apar doar potenţiali de ordin q, eliminând astfel simetria ı̂n raport
cu exponenţii p s, i q. Această structură asimetrică conduce la o investigare mai detaliată a com-
portamentului spectral, ı̂n funcţie de poziţionarea exponenţilor p, q şi r, necesitând tratarea a zece
cazuri distincte. După prezentarea problemei, a ipotezelor şi formularea teoremelor principale,
este introdusă o problemă auxiliară a cărei primă valoare proprie este esenţială ı̂n demonstrarea
rezultatelor care urmează. În opt dintre cazuri este determinată ı̂ntreaga mulţime de valori
proprii a problemei. Acestea sunt abordate prin metode directe sau prin utilizarea metodei va-
rietăţii Nehari. Pentru cazul ı̂n care q < p şi r ∈ (q, p), se utilizează o metodă min-max bazată
pe genusul lui Krasnosel’skĭı şi Principiul Lusternik - Schnirelmann. Se obţine astfel existenţa
unui şir de valori proprii convergent la infinit, fără a putea concluziona că acesta descrie ı̂ntregul
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spectru al problemei. Totodată, această tehnică permite extinderea unor rezultate recente din
literatură (̂ın special [27]) privind existenţa unor valori proprii mai mari decât o constantă de
prag λ0.

Rezultatele acestui capitol au fost publicate ı̂n articolul Barbu, Burlacu şi Moroşanu [4].

Capitolul 3 este consacrat studiului problemei de transmisie (P3), ı̂n care operatorii p-, re-
spectiv q-Laplacian act, ionează ı̂n subdomenii disjuncte ale unui domeniu Ω, legate prin condiţii
de continuitate a soluţiei şi de echilibru al fluxului. După formularea exactă a problemei şi

precizarea ipotezelor, este introdus spaţiul funcţional W̃ , echivalent cu spaţiul de funcţii cu com-
ponente ı̂n W 1,p(Ω1) şi W 1,q(Ω2), cu urme egale pe interfaţa Γ. Este introdusă o familie de

subvarietăţi Mρ, ρ > 0, de clasă C1 ı̂n W̃ , fiecare având genusul infinit, ceea ce le face adec-
vate pentru aplicarea Principiului Lusternik–Schnirelmann. Se defineşte apoi o funcţională de
energie asociată problemei, notată J , şi se arată că punctele sale critice condiţionate de subva-
rietăţile introduse corespund soluţiilor slabe ale problemei. Se demonstrează că funcţionala J
este coercivă pe aceste subvarietăţi şi satisface condiţia Palais–Smale, fapt ce permite obţinerea
unui şir de valori proprii ale problemei (P3) care tind la infinit. Acest rezultat este prezentat
ı̂n Teorema 3.1.1. Capitolul este structurat ı̂n trei secţiuni, ultimele două: Secţiunea 2.2 este
dedicată rezultatelor preliminare (inclusiv demonstrarea proprietăţilor privind genusul infinit al
mulţimilor Mρ, ρ > 0 şi coercivitatea lui J pe acestea), iar Secţiunea 2.3 conţine demonstrarea
rezultatului principal.

Acest capitol se bazează pe lucrarea Barbu, Burlacu şi Moroşanu [3].

Teza se ı̂ncheie cu un scurt capitol care conţine posibile direcţii de cercetare şi diseminarea
rezultatelor.

Cuvinte cheie: Valori proprii, (p, q)−Laplacian, varietate Nehari, C1−varietate, metode
variaţionale, problemă neliniară de valori proprii, genusul lui Krasnosel’skĭı, problemă neliniară
de transmisie, principiul Lusternik–Schnirelmann, spaţii Sobolev.
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Capitolul 1

Asupra unei probleme de valori proprii

pentru (p, q)-Laplacian cu potent, iali de ordin p s, i q

În acest capitol sunt prezentate rezultatele originale obţinute ı̂n colaborare cu L. Barbu şi G.
Moroşanu, publicate ı̂n An. Şt. Univ. Ovidius Constanţa [2].

Dintre cele mai importante amintim: Teoremele 1.1.1 şi 1.1.2, Lemele 1.2.1–1.2.3, 1.3.1–1.3.5
şi 1.4.1–1.4.8.

În scopul simplificării notaţiilor, vom omite notaţiile dx şi dσ ı̂n integrale, atunci când con-
textul este clar şi nu apare ambiguitate.

1.1 Formularea problemei
şi prezentarea rezultatelor principale

În această secţiune reamintim problema formulată ı̂n Introducere, stabilim notaţiile utilizate s, i
enunţăm principalele rezultate ale capitolului.

Fie Ω ⊂ R
N , N ≥ 2, un domeniu mărginit cu frontiera netedă ∂Ω. Considerăm problema de

valori proprii asociată operatorului Au = −(∆pu+∆qu)

{
Au+ ρ1(x) | u |p−2 u+ ρ2(x) | u |q−2 u = λα(x) | u |r−2 u, x ∈ Ω,
∂u
∂νpq

+ γ1(x) | u |p−2 u+ γ2(x) | u |q−2 u = λβ(x) | u |r−2 u, x ∈ ∂Ω.
(1.1)

În acest capitol, presupunem că au loc următoarele ipoteze

(hpqr) p, q, r ∈ (1,∞), p < q;

(hαβ) α ∈ L∞(Ω) şi β ∈ L∞(∂Ω) sunt funcţii nenegative care verifică

∫

Ω

α dx+

∫

∂Ω

β dσ > 0; (1.2)
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1.1. Formularea problemei s, i prezentarea rezultatelor principale Capitolul 1

(hρiγi
) ρi ∈ L∞(Ω) şi γi ∈ L∞(∂Ω), i = 1, 2, sunt funcţii nenegative care satisfac

∫

Ω

ρi dx+

∫

∂Ω

γi dσ > 0, i = 1, 2. (1.3)

Soluţiile u ale problemei (1.1) aparţin spaţiului W := W 1,q(Ω) (deoarece q > p), şi verifică
ecuaţia (1.1)1 ı̂n sensul distribuţiilor, iar condiţia pe frontieră (1.1)2 ı̂n sensul urmei.

Definiţia 1.1.1. Numărul real λ se numeşte valoare proprie a problemei (1.1) dacă există uλ ∈
W \ {0} astfel ı̂ncât pentru orice u ∈ W are loc egalitatea

∫

Ω

(
| ∇uλ |p−2+ | ∇uλ |q−2

)
∇uλ · ∇u+

∫

Ω

(
ρ1 | uλ |p−2 +ρ2 | uλ |q−2

)
uλu

+

∫

∂Ω

(
γ1 | uλ |p−2 + γ2 | uλ |q−2

)
uλu = λ

(
α

∫

Ω

| uλ |r−2 uλu+

∫

∂Ω

β | uλ |r−2 uλu
)
.

(1.4)

Funcţia uλ se numeşte funcţie proprie corespunzătoare valorii proprii λ, asociată problemei (1.1).

Introducem următoarele notaţii

Kp(u) :=

∫

Ω

(
| ∇u |p +ρ1 | u |p

)
+

∫

∂Ω

γ1 | u |p ,

Kq(u) :=

∫

Ω

(
| ∇u |q +ρ2 | u |q

)
+

∫

∂Ω

γ2 | u |q ,

kθ(u) :=

∫

Ω

α | u |θ +

∫

∂Ω

β | u |θ ∀ u ∈ W, θ ∈ {p, q, r},

(1.5)

λ̂q := inf
u∈W\Z

Kq(u)

kq(u)
, λ̂p := inf

u∈W\Z

Kp(u)

kp(u)
, (1.6)

λ∗ := inf
u∈W\Z

Γ
Kp(u)

ωKq(u)
1−ω

kr(u)
, λ∗ =

r

pωq1−ω
λ∗,

ω :=
q − r

q − p
, Γ :=

q − p

(r − p)1−ω(q − r)ω
.

(1.7)

Să observăm faptul că toate funcţiile proprii uλ, corespunzătoare unei valori proprii λ > 0
satisfac condiţia kr(uλ) > 0, deci toate funcţiile proprii corespunzătoare problemei (1.1) vor
aparţine mulţimii W \ Z, unde

Z := {u ∈ W ; kr(u) = 0}.

Rezultatele principale ale capitolului sunt următoarele două teoreme.

Teorema 1.1.1 ([2]). Presupunem că ipotezele (hpqr), (hαβ), (hρiγi
) sunt ı̂ndeplinite.

(a) Dacă r = p, atunci λ̂p > 0, iar mulţimea valorilor proprii ale problemei (1.1) este intervalul

(λ̂p,∞);

(b) Dacă r = q, atunci λ̂q > 0, iar mulţimea valorilor proprii ale problemei (1.1) este intervalul

(λ̂q,∞).

10



1.2. Rezultate auxiliare Capitolul 1

Teorema 1.1.2 ([2]). Presupunem că ipotezele (hpqr), (hαβ) şi (hρiγi
) sunt ı̂ndeplinite.

(a) Dacă
(
r < p

)
sau

(
r > q cu r < q(N − 1)/(N − q) = q∗ ı̂n cazul q < N

)
, atunci mulţimea

valorilor proprii ale problemei (1.1) este intervalul (0,∞);
(b) Dacă p < r < q cu r < p(N − 1)/(N − p) = p∗ ı̂n cazul p < N, atunci 0 < λ∗ < λ∗ şi orice
λ ∈ [λ∗,∞) este valoare proprie a problemei (1.1).

Mai mult, pentru orice λ ∈ (−∞, λ∗) problema (1.1) are doar soluţia trivială.

În plus, cele două constante λ∗, λ∗ pot fi exprimate astfel

λ∗ = inf
u∈W\Z

Kp(u) +Kq(u)

kr(u)
, λ∗ = inf

u∈W\Z

1
pKp(u) +

1
qKq(u)

1
rkr(u)

. (1.8)

1.2 Rezultate auxiliare

Această secţiune reunes,te câteva rezultate tehnice care vor fi utilizate ı̂n demonstrarea teoremelor
prezentate anterioar.

Lema 1.2.1 ([2]). Presupunem că ipoteza (hαβ) este ı̂ndeplinită. Dacă

θ, r̃ ∈ (1,∞) şi
[
r̃ < θ∗ dacă θ < N

]
,

atunci,

∥ u ∥θ,r̃:=∥ ∇u ∥Lθ(Ω) +
(
kr̃(u)

) 1

r̃ ∀ u ∈ W 1,θ(Ω)

este o normă pe W 1,θ(Ω), echivalentă cu cea standard.

În cele ce urmează, pentru θ > 1, considerăm următoarea problemă de valori proprii

{
−∆θu+ ρ(x) | u |θ−2 u = λα(x) | u |θ−2 u ı̂n Ω,

| ∇u |θ−2 ∂u
∂ν + γ(x) | u |θ−2 u = λβ(x) | u |θ−2 u pe ∂Ω,

(1.9)

unde ρ ∈ L∞(Ω) şi γ ∈ L∞(∂Ω) sunt funcţii nenegative date, care satisfac

∫

Ω

ρ +

∫

∂Ω

γ > 0. (1.10)

Definim funcţionala de clasă C1

Θθ : W
1,θ(Ω) \ Zθ → (0,∞), Θθ(u) :=

Kθ(u)

kθ(u)
∀ u ∈ W 1,θ(Ω) \ Zθ,

unde

Kθ(u) :=

∫

Ω

(
| ∇u |θ +ρ | u |θ

)
+

∫

∂Ω

γ | u |θ .

Lema 1.2.2 ([2]). Presupunem că ipoteza (hαβ) este verificată, iar ρ ∈ L∞(Ω), γ ∈ L∞(∂Ω)

sunt funcţii nenegative care satisfac (1.10). Atunci, există u∗ ∈ W 1,θ(Ω) \ Zθ astfel ı̂ncât

Θθ(u∗) = λθ := inf
u∈W 1,θ(Ω)\Zθ

Θθ(u) > 0.

Mai mult, λθ este cea mai mică valoare proprie a problemei (1.9), iar u∗ este o funcţie proprie
corespunzătoare valorii proprii λθ.
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1.3. Demonstraţia Teoremei 1.1.1 Capitolul 1

Pentru λ > 0 vom defini funcţionala de energie asociată problemei (1.1)

Jλ : W → R, Jλ(u) =
1

p
Kp(u) +

1

q
Kq(u)−

λ

r
kr(u), ∀ u ∈ W. (1.11)

Coercivitatea funcţionalei Jλ pe W este studiată ı̂n lema următoare.

Lema 1.2.3 ([2]). Presupunem că ipotezele (hpqr), (hαβ), (hρiγi
) sunt ı̂ndeplinite. Atunci,

pentru orice r ∈ (1, q), funcţionala Jλ este coercivă pe W , echivalent, lim
∥u∥→∞

Jλ(u) = ∞.

1.3 Demonstraţia Teoremei 1.1.1

În această secţiune vom presupune că ipotezele (hpqr), (hαβ) şi (hρiγi
) sunt ı̂ndeplinite şi le vom

utiliza fără a le mai menţiona ı̂n rezultatele intermediare.

1.3.1 Demonstraţia Teoremei 1.1.1 (a) (Cazul r = p)

Demonstraţia Teoremei 1.1.1 (a) se bazează pe următoarele două leme.

Lema 1.3.1 ([2]). Dacă r = p, atunci λ̂p > 0 şi nu există valori proprii ale problemei (1.1) ı̂n

intervalul (−∞, λ̂p]. Mai mult, are loc inegalitatea

λ̃p := inf
u∈W\Z

1
qKq(u) +

1
pKp(u)

1
pkp(u)

= λ̂p. (1.12)

Lema 1.3.2 ([2]). Dacă r = p, atunci orice λ > λ̂p este o valoare proprie a problemei (1.1).

Utilizând Lemele 1.3.1 şi 1.3.2, Teorema 1.1.1 (a) este complet demonstrată.

1.3.2 Demonstraţia Teoremei 1.1.1 (b) (Cazul r = q)

Observăm că, ı̂n cazul r = q, funcţionala Jλ are următoarea formă

Jλ : W → R, Jλ(u) =
1

p
Kp(u) +

1

q
Kq(u)−

λ

q
kq(u) ∀ u ∈ W. (1.13)

În acest caz, funcţionala Jλ nu mai este coercivă pe W , aşadar va trebui să utilizăm o altă
metodă. In acest scop, pentru λ > 0, definim varietatea Nehari

Nλ =
{
u ∈ W \ {0}; ⟨J ′

λ(u), u⟩ = 0
}
= {u ∈ W \ {0}; Kp(u) +Kq(u)− λkq(u) = 0} .

Lema 1.3.3 ([2]). Dacă r = q, atunci λ̂q > 0 şi nu există valori proprii ale problemei (1.1) ı̂n

intervalul (−∞, λ̂q]. În plus, are loc următoarea egalitate

λ̃q := inf
u∈W\Z

q
pKp(u) +Kq(u)

kq(u)
= λ̂q. (1.14)

Lema 1.3.4 ([2]). Fie λ > λ̂q. Dacă r = q, atunci există un punct u∗ ∈ Nλ unde Jλ ı̂şi atinge
valoare minimă peste varietatea Nλ, iar

mλ := inf
u∈Nλ

Jλ(u) > 0.
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1.4. Demonstraţia Teoremei 1.1.2 Capitolul 1

Lema 1.3.5 ([2]). Fie λ > λ̂q. Dacă r = q, atunci minimul u∗ ∈ Nλ din Lema 1.3.4 este o
funcţie proprie a problemei (1.1) corespunzătoare valorii proprii λ.

Folosind Lemele 1.3.3, 1.3.4 şi 1.3.5, Teorema 1.1.1 (b) este complet demonstrată.

1.4 Demonstraţia Teoremei 1.1.2

Demonstrarea Teoremei 1.1.2 se bazează pe următoarele leme ı̂n care presupunem ipotezele
(hpqr), (hρiγi

) şi (hαβ), fără a le menţiona explicit ı̂n enunţuri.

1.4.1 Demonstraţia Teoremei 1.1.2 (a) (Cazul r < p)

Lema 1.4.1 ([2]). Dacă r < p, atunci orice λ > 0 este o valoare proprie a problemei (1.1).

1.4.2 Demonstraţia Teoremei 1.1.2 (a) (Cazul r ∈ (q, q∗))

Fie λ > 0 un număr real fixat. Deoarece ı̂n cazul r ∈ (q, q∗), funcţionala Jλ nu mai este coercivă
pe W, definim o nouă varietate Nehari, astfel

N̂λ = {u ∈ W \ {0}; ⟨J ′
λ(u), u⟩ = Kp(u) +Kq(u)− λkr(u) = 0}. (1.15)

Lema 1.4.2 ([2]). Presupunem că ipotezele q < r şi (r < q(N − 1)/(N − q) = q∗ dacă q < N)

sunt satisfăcute. Atunci există un punct u∗ ∈ N̂λ ı̂n care funcţionala Jλ ı̂şi atinge valoarea

minimă peste varietatea N̂λ, mλ := inf
u∈N̂λ

Jλ(u) > 0.

Lema 1.4.3 ([2]). Presupunem că q < r şi (r < q∗ dacă q < N). Atunci, minimul u∗ ∈ N̂λ din
Lema 1.4.2 este o funcţie proprie a problemei (1.1), corespunzătoare valorii proprii λ.

În concluzie, folosind Lemele 1.4.1-1.4.3, Teorema 1.1.2 (a) este complet demonstrată.

1.4.3 Demonstraţia Teoremei 1.1.2 (b) (Cazul r ∈ (p, q))

Demonstraţia acestui rezultat necesită o abordare diferită faţă de celelalte cazuri, deoarece
funcţionala Jλ nu este nici coercivă pe W şi nici mărginită pe varietatea Nehari.

Demonstraţia Teoremei 1.1.2 (b) o vom face, ca s, i ı̂n cazurile anterioare, cu ajutorul unor
leme care presupun ipotezele (hpqr), (hρiγi

) şi (hαβ), fără a le preciza ı̂n mod explicit ı̂n cadrul
fiecărui enunţ.

Lema 1.4.4 ([2]). Presupunem că p < r < q şi r < p∗ dacă p < N . Atunci, 0 < λ∗ < λ∗.

Lema 1.4.5 ([2]). Presupunem că p < r < q şi r < p∗ dacă p < N. Atunci constantele λ∗ şi λ∗

definite ı̂n relaţia (1.7) pot fi exprimate ı̂n mod echivalent astfel

λ∗ = inf
u∈W\Z

Kp(u) +Kq(u)

kr(u)
, λ∗ = inf

u∈W\Z

1
pKp(u) +

1
qKq(u)

1
rkr(u)

. (1.16)

Definim funcţionala

Φ : W \ Z → (0,∞), Φ(u) := Γ
Kp(u)

ωKq(u)
1−ω

kr(u)
∀ u ∈ W \ Z.
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1.4. Demonstraţia Teoremei 1.1.2 Capitolul 1

Lema 1.4.6 ([2]). Presupunem că p < r < q şi r < p∗ dacă p < N. Atunci există u∗ ∈ W \ Z
astfel ı̂ncât λ∗ = Φ(u∗) = inf

u∈W\Z
Φ(u).

Lema 1.4.7 ([2]). Presupunem că p < r < q şi r < p∗ dacă p < N. Dacă u∗ ∈ W \ Z este
minimul determinat ı̂n Lema 1.4.6, atunci

u∗ =
(q
p

)1/(q−p)
t(u∗)u∗ ∈ W \ Z, (1.17)

unde t(u∗) este o funcţie proprie a problemei (1.1) corespunzătoare valorii proprii λ∗.

În plus,
Jλ∗(u∗) = 0.

Lema 1.4.8 ([2]). Presupunem că p < r < q şi r < p∗ dacă p < N. Atunci, orice număr
λ ∈ (λ∗,∞) este o valoare proprie a problemei (1.1) şi pentru fiecare λ ∈ (−∞, λ∗)\{0} problema
(1.1) are doar soluţia trivială.

În concluzie, utilizând Lemele 1.4.4, 1.4.5, 1.4.7 şi 1.4.8, demonstraţia Teoremei 1.1.2 (b)
este completă.
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Capitolul 2

Asupra unei probleme de valori proprii

pentru (p, q)-Laplacian cu potenţiali de tip q

Capitolul de faţă este dedicat prezentării rezultatelor obţinute ı̂n colaborare cu L. Barbu şi G.
Moroşanu, apărute ı̂n Mediterr. J. Math. [4].
Enumerăm pe cele mai importante dintre acestea: Teoremele 2.1.1 – 2.1.3, Lema 2.2.1, Lemele 2.3.1–
2.3.6, precum şi Lemele 2.4.1–2.4.2.

Pentru simplificarea notaţiilor, ı̂n continuare vom omite elementele de măsură dx şi dσ din
integrale, acolo unde nu există risc de confuzie.

2.1 Formularea problemei
şi prezentarea rezultatelor principale

În această secţiune reamintim problema formulată ı̂n Introducere, stabilim notaţiile utilizate ı̂n
continuare s, i enunţăm rezultatele principale ale capitolului.

Fie Ω ⊂ R
N , cu N ≥ 2, un domeniu mărginit, cu frontiera netedă ∂Ω. Considerăm ı̂n Ω

problema de valori proprii asociată operatorului −∆p −∆q

{
−(∆pu+∆qu) + ρ(x) | u |q−2 u = λα(x) | u |r−2 u ı̂n Ω,
∂u
∂νpq

+ γ(x) | u |q−2 u = λβ(x) | u |r−2 u pe ∂Ω.
(2.1)

Întreaga analiză din acest capitol se sprijină pe ipotezele următoare

(hpqr) p, q, r ∈ (1,∞), p ̸= q;

(hαβ) α ∈ L∞(Ω) şi β ∈ L∞(∂Ω) sunt funcţii nenegative date care satisfac

∫

Ω
α +

∫

∂Ω
β > 0; (2.2)
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2.1. Formularea problemei şi prezentarea rezultatelor principale Capitolul 2

(hργ) ρ ∈ L∞(Ω) şi γ ∈ L∞(∂Ω) sunt funcţii nenegative date astfel ı̂ncât

∫

Ω
ρ +

∫

∂Ω
γ > 0; (2.3)

(h) Dacă r = q, atunci nu există o constantă pozitivă k0 astfel ı̂ncât

ρ = k0 α a.p.t. ı̂n Ω şi γ = k0 β a.p.t. pe ∂Ω.

Impunând ipotezele de mai sus şi analizând poziţionarea lui r ı̂n raport cu p şi q, putem descrie
complet spectrul problemei enunţate anterior ı̂n opt dintre cele zece cazuri posibile. În celelalte
două cazuri, obţinem doar submulţimi ale spectrului (a se vedea Teoremele 2.1.1–2.1.3 prezentate
mai jos).

Deoarece am presupus doar p ̸= q, soluţia u a problemei (2.1) este un element al spaţiului

Sobolev W := W 1,max{p,q}(Ω), care satisface ecuaţia (2.1)1 ı̂n sensul distribuţiilor şi condiţia de

pe frontieră (2.1)2 ı̂n sensul urmei. În acest sens, avem următoarea definiţie.

Definiţia 2.1.1. (i) O funcţie u ∈ W se numeşte soluţie slabă a problemei (2.1) dacă

∫

Ω
(| ∇u |p−2+ | ∇u |q−2)∇u · ∇v +

∫

Ω
ρ | u |q−2 uv +

∫

∂Ω
γ | u |q−2 uv

= λ
(∫

Ω
α | u |r−2 uv +

∫

∂Ω
β | u |r−2 uλv

)
∀ v ∈ W.

(2.4)

(ii) Numărul real λ se numeşte valoare proprie a problemei (2.1) dacă aceasta admite o soluţie

slabă nenulă uλ ∈ W \ {0}. În acest caz, funcţia uλ se numeşte funcţie proprie corespunzătoare
valorii proprii λ, iar perechea (λ, uλ) se numeşte pereche proprie a problemei (2.1).

Toate funcţiile proprii ale problemei (2.1) satisfac relaţia jr(uλ) > 0, unde

jr(u) :=

∫

Ω
α | u |r +

∫

∂Ω
β | u |r ∀ u ∈ W, (2.5)

aşadar, acestea aparţin mulţimii

W \ Z, Z := {u ∈ W ; jr(u) = 0}. (2.6)

Introducem, de asemenea, următoarele constante care vor juca un rol important ı̂n rezultatele
obţinute ı̂n continuare:

Λq := inf
u∈W\Z

∫
Ω

(
| ∇u |q +ρ | u |q

)
+
∫
∂Ω γ | u |q

jr(u)
, λ0 :=

∫
Ω ρ +

∫
∂Ω γ

jr(1)
. (2.7)

În plus, pentru orice σ > 0, definim mulţimea

Mσ :=
{
u ∈ W ; jr(u) = σ

}
. (2.8)

Rezultatele principale ale capitolului sunt următoarele trei teoreme.

Teorema 2.1.1 ([4]). Presupunem că ipotezele (hpqr), (hαβ) şi (hργ) sunt satisfăcute.
Dacă r = q şi presupunerea (h) are loc, atunci constantele Λq şi λ0 definite ı̂n (2.7) sunt pozitive.

Mai mult, Λq < λ0 şi orice λ ∈ (Λq, λ0) este o valoare proprie a problemei (2.1). În plus, problema
(2.1) are doar soluţii triviale pentru λ ı̂n intervalul (−∞,Λq].
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2.2. Rezultate auxiliare Capitolul 2

Teorema 2.1.2 ([4]). Presupunem că ipotezele (hpqr), (hαβ) şi (hργ) sunt satisfăcute. În fiecare
dintre următoarele cazuri
(a) r = p;
(b) max{p, q} < r < max{p∗, q∗};
(c) r < min{p, q};
(d) p < r < q,
mulţimea de valori proprii ale problemei (2.1) este intervalul (0,∞).

Teorema 2.1.3 ([4]). Presupunem că ipotezele (hpqr), (hαβ) şi (hργ) sunt satisfăcute. Dacă
r = q sau q < r < p, atunci pentru orice σ > 0 problema (2.1) are o infinitate de soluţii perechi
proprii de forma

(λn,±un) ∈ R×Mσ cu λn → ∞ când n → ∞.

2.2 Rezultate auxiliare

Pentru claritate şi concizie, folosim următoarele notaţii

Kξ(u) :=

∫

Ω
| ∇u |ξ, ξ ∈ {p, q}, kq(u) :=

∫

Ω
ρ | u |q +

∫

∂Ω
γ | u |q, u ∈ W. (2.9)

În continuare, enunţăm un rezultat auxiliar necesar pentru demonstrarea teoremelor enunţate
anterior.

Pentru θ > 1, considerăm următoarea problemă de valori proprii

{
−∆θu+ ρ(x) | u |θ−2 u = λα(x) | u |θ−2 u ı̂n Ω,

| ∇u |θ−2 ∂u
∂ν + γ(x) | u |θ−2 u = λβ(x) | u |θ−2 u pe ∂Ω.

(2.10)

Definim funcţională de clasă C1

Θ : W 1,θ(Ω) \ Zθ → (0,∞), Θ(u) :=
Kθ(u) + kθ(u)

jθ(u)
∀ u ∈ W 1,θ(Ω) \ Zθ.

Următoarea lemă oferă o caracterizare importantă a valorii minime a funcţionalei Θ pe mulţimea
W 1,θ(Ω) \ Zθ.

Lema 2.2.1 ([4]). Există u∗ ∈ W 1,θ(Ω) \ Zθ astfel ı̂ncât

Θ(u∗) = λθ := inf
u∈W 1,θ(Ω)\Zθ

Θ(u) > 0. (2.11)

Mai mult, λθ este cea mai mică valoare proprie a problemei (2.10), iar u∗ este o funcţie proprie
corespunzătoare valorii proprii λθ.

2.3 Demonstraţia Teoremelor 2.1.1 şi 2.1.2

Demonstrarea rezultatelor din această secţiune se va realiza cu ajutorul unor leme intermediare,
ı̂n cadrul cărora vom presupune că ipotezele (hpqr), (hαβ) şi (hργ) sunt ı̂ndeplinite. În plus, ı̂n
cazul particular r = q, vom considera că este satisfăcută şi ipoteza (h).
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2.3. Demonstraţia Teoremelor 2.1.1 şi 2.1.2 Capitolul 2

Lema 2.3.1 ([4]). Dacă r = q, atunci Λq > 0 şi nu există valori proprii ale problemei (2.1) ı̂n
intervalul (−∞,Λq]. Mai mult,

Λq = Λ̃q := inf
u∈W\Z

1
q

(
Kq(u) + kq(u)

)
+ 1

pKp(u)
1
q jq(u)

. (2.12)

Următoarea lemă exprimă o relaţie de inegalitate ı̂ntre constantele variaţionale definite ı̂n (2.7).

Lema 2.3.2 ([4]). Dacă r = q, atunci Λq < λ0.

Fie λ > 0. Considerăm funcţionala Jrλ : W → R, de clasă C1 definită astfel

Jrλ(u) =
1

p
Kp(u) +

1

q

(
Kq(u) + kq(u)

)
−

λ

r
jr(u). (2.13)

În ceea ce priveşte coercivitatea funcţionalei Jrλ, avem următorul rezultat.

Lema 2.3.3 ([4]). Presupunem că este ı̂ndeplinită una dintre următoarele două condiţii:

(i) 1 < r < q şi λ > 0;

(ii) r = q < p şi λ ∈ (Λq, λ0).

Atunci funcţionala Jrλ este coercivă pe spaţiul W , echivalent

lim
∥u∥→∞

Jrλ(u) = ∞.

Presupunând că sunt ı̂ndeplinite condiţiile din Lema 2.3.3 obţinem următorul rezultat privind
existenţa valorilor proprii pentru problema (2.1).

Lema 2.3.4 ([4]). (i) Dacă r < q, atunci orice număr real λ > 0 este o valoare proprie a
problemei (2.1);

(ii) Dacă r = q < p, atunci orice număr real λ ∈ (Λq, λ0) este o valoare proprie a proble-
mei (2.1).

În continuare vom prezenta cazurile complementare cazurilor considerate ı̂n Lema 2.3.4.
Dacă r > q sau r = q > p, nu ne putem aştepta ca funcţionala Jrλ să rămână coercivă pe

W . De aceea, pentru λ > 0, vom considera varietatea Nehari asociată acesteia, definită astfel

Nrλ = {u ∈ W \ {0}; ⟨J ′
rλ(u), u⟩ = Kp(u) +Kq(u) + kq(u)− λjr(u) = 0}.

Lema 2.3.5 ([4]). Presupunem că este ı̂ndeplinită una dintre următoarele două ipoteze:

(i) r = q > p şi λ ∈ (Λq, λ0);

(ii) r ̸= q, max{p, q} ≤ r < max{p∗, q∗} şi λ > 0, unde p∗ şi q∗ sunt exponenţii critici de urmă.

Atunci există u∗ ∈ Nrλ ı̂n care funcţionala Jrλ ı̂şi atinge valoarea minimă pe varietatea Nrλ,
adică

mrλ := inf
u∈Nrλ

Jrλ(u) > 0.

Ultimul rezultat necesar pentru demonstrarea Teoremelor 2.1.1 şi 2.1.2 arată că minimul
u∗ ∈ Nrλ obţinut ı̂n Lema 2.3.5 este, de fapt, un punct critic al funcţionalei Jrλ.

Lema 2.3.6 ([4]). (i) Dacă r = q > p, atunci orice număr real λ ∈ (Λq, λ0) este o valoare
proprie a problemei (2.1);
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2.4. Demonstraţia Teoremei 2.1.3 Capitolul 2

(ii) Dacă r ̸= q şi max{p, q} ≤ r < max{p∗, q∗}, atunci orice număr real λ ∈ (0,∞) este o
valoare proprie a problemei (2.1).

Concluzionând, folosind Lema 2.3.4 şi Lema 2.3.6, Teoremele 2.1.1 şi 2.1.2 sunt complet
demonstrate.

2.4 Demonstraţia Teoremei 2.1.3

Vom analiza cazul q < r < p ı̂n care funcţionala Jrλ nu mai este nici coercivă pe spaţiul W şi
nici mărginită inferior pe varietatea Nrλ.

Dacă r = q şi λ ≥ λ0, după cum am observat ı̂n secţiunea anterioară, va trebui să considerăm
şi alte argumente pentru a deduce faptul că problema (2.1) are valori proprii λ ≥ λ0.
Ca urmare, pentru a obţine rezultatul de multiplicitate enunţat ı̂n Teorema 2.1.3, vom utiliza
noţiunea de genus ı̂n sensul lui Krasnosel’skĭı.

Una dintre cele mai importante proprietăţi ale varietăţii Mσ este enunţată ı̂n următorul
rezultat.

Lema 2.4.1 ([4]). Pentru orice număr ı̂ntreg pozitiv k, există o mulţime compactă, simetrică
K ⊂ Mρ astfel ı̂ncât γ(K) = k.

Considerăm următoarea funcţională J : W → R, definită prin

J : W → R, J (u) =
1

p
Kp(u) +

1

q

(
Kq(u) + kq(u)

)
∀ u ∈ W. (2.14)

O proprietate importantă a funcţionalei definite anterior este dată de următoarea lemă.

Lema 2.4.2 ([4]). Dacă r = q sau q < r < p, atunci funcţionala J definită ı̂n (2.14) restricţionată
la Mσ satisface condiţia Palais–Smale (echivalent, orice şir

(
un
)
n
⊂ Mσ cu proprietatea că şirul(

J (un)
)
n
este mărginit şi J ′

Mσ
(un) → 0, are un subşir convergent).

În final, folosind Principiul Lusternik–Schnirelmannse şi lemele de mai sus, se poate con-
cluziona că există o infinitate de puncte critice ±un n ≥ 1, pentru funcţionala J ı̂n Mσ.
Acestor puncte critice ± un le sunt asociaţi multiplicatorii lui Lagrange λn, rezultând astfel o
infinitate de perechi proprii ale problemei (2.1), de forma:

(λn,±un) ∈ (0,∞)×Mσ n ≥ 1.

În plus, şirul λn → ∞, ceea ce conduce la demonstrarea completă a Teoremei 2.1.3.
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Capitolul 3

O problemă neliniară de valori proprii de transmisie

cu o condiţie pe frontieră de tip Neumann-Robin

Acest capitol reuneşte o serie de rezultate obţinute ı̂n colaborare cu L. Barbu şi G. Moroşanu,
publicate ı̂n Math. Methods Appl. Sci. [3].

Dintre ele, amintim: Teorema 3.1.1, Lemele 3.2.1, 3.2.2, precum şi Lemele 3.3.1–3.3.3.
În scopul simplificării notaţiilor, vom omite notaţiile dx şi dσ ı̂n integrale, atunci când con-

textul este clar şi nu apare ambiguitate.

3.1 Formularea problemei
s
,
i prezentarea rezultatelor principale

În această secţiune reamintim problema prezentată ı̂n Introducere, formulăm notaţiile necesare
şi enunţăm rezultatul principal al capitolului.

Fie Ω ⊂ R
N , N ≥ 2 un domeniu mărginit care are frontiera netedă Σ şi Ω1 un subdomeniu

cu frontiera netedă Γ, astfel ı̂ncât Ω1 ⊂ Ω, iar Ω2 = Ω \ Ω1.
Considerăm ı̂n Ω următoarea problemă de valori proprii de transmisie





−∆pu1 + γ1(x) | u1 |
r−2 u1 = λ | u1 |

p−2 u1 ı̂n Ω1,

−∆qu2 + γ2(x) | u2 |
s−2 u2 = λ | u2 |

q−2 u2 ı̂n Ω2,

u1 = u2,
∂u1

∂νp
= ∂u2

∂νq
pe Γ,

∂u2

∂ν + β(x) | u2 |
ζ−2 u2 = 0 pe Σ,

(3.1)

unde λ este un parametru real.
Pe parcursul capitolului, presupunem că sunt valabile următoarele ipoteze:

(h1)

p, q, r, s, ζ ∈ (1,∞), p ≤ q, ζ < q∗;

r < p
(
1 +

p

N

)
dacă r > p s, i p < N ;

s < q
(
1 +

q

N

)
dacă s > q s, i q < N.

(3.2)
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3.1. Formularea problemei s, i prezentarea rezultatelor principale Capitolul 3

(h2) γi ∈ L∞(Ωi), i = 1, 2, β ∈ L∞(Σ), β ≥ 0 a.p.t. pe Σ.
Pentru 1 < θ ≤ ∞, vom nota normele uzuale ale spaţiilor Lebesgue Lθ(Ωi) şi Lθ(Σ) cu

∥ · ∥iθ, i = 1, 2, respectiv ∥ · ∥∂θ.
Evident, soluţiile u = (u1, u2) ale problemei (3.1) aparţin spaţiului

W :=
{
u ∈ W 1,p(Ω);u|Ω2

∈ W 1,q(Ω2)
}
,

unde ui = u|Ωi
, i = 1, 2. Pe W considerăm norma uzuală

∥ u ∥:=∥ u1 ∥1 + ∥ u2 ∥2 ∀ u = (u1, u2) ∈ W, (3.3)

unde ∥ · ∥i, i = 1, 2, sunt definite prin

∥u1∥1 := ∥∇u1∥1p + ∥u1∥1p, ∥u2∥2 := ∥∇u2∥2q + ∥u2∥2q. (3.4)

Spaţiul W definit anterior se identifică cu spaţiul

W̃ :=
{
ũ = (u1, u2) ∈ W 1,p(Ω1)×W 1,q(Ω2); u1 = u2 pe Γ

}
, (3.5)

ceea ce implică faptul că W este un spaţiu Banach reflexiv.

Definiţia 3.1.1. Numărul real λ se numeşte valoare proprie a problemei (3.1) dacă aceasta

admite o soluţie slabă ũλ = (u1λ, u2λ) ∈ W̃ \ {(0, 0)}.

În acest caz, ũλ se numeşte funcţie proprie asociată valorii proprii λ, iar perechea (λ, ũλ) se
numeşte pereche proprie a problemei (3.1).

Următorul rezultat rezultă folosind un raţionament similar celui folosit ı̂n [9, Proposition 1.1].
El oferă o caracterizare a valorilor proprii ale problemei (3.1).

Propoziţia 3.1.1 ([3]). Numărul real λ este o valoare proprie a problemei (3.1) dacă şi numai

dacă există ũλ = (u1λ, u2λ) ∈ W̃ \{(0, 0)}, astfel ı̂ncât pentru orice (v1, v2) ∈ W̃ are loc egalitatea

∫

Ω1

| ∇u1λ |p−2 ∇u1λ · ∇v1 +

∫

Ω2

| ∇u2λ |q−2 ∇u2λ · ∇v2

+

∫

Ω1

γ1 | u1λ |r−2 u1λv1 +

∫

Ω2

γ2 | u2λ |s−2 u2λv2 +

∫

Σ
β | u2λ |ζ−2 u2λv2 dσ

= λ
(∫

Ω1

| u1λ |p−2 u1λv1 +

∫

Ω2

| u2λ |q−2 u2λv2

)
.

(3.6)

Fie ρ > 0. Considerăm submulţimea Mρ a spaţiului W̃ , pe care o definim astfel

Mρ :=
{
ũ = (u1, u2) ∈ W̃ ;

1

p

∫

Ω1

| u1 |
p +

1

q

∫

Ω2

| u2 |
q= ρ

}
. (3.7)

.

Rezultatul principal al acestui capitol este următoarea teoremă.

Teorema 3.1.1. ([3]). Presupunem că ipotezele (h1) şi (h2) sunt ı̂ndeplinite. Atunci, pen-
tru orice ρ > 0, există un şir de perechi proprii

(
λn,±(u1n, u2n)

)
n

ale problemei (3.1), cu(
(u1n, u2n)

)
n
⊂ Mρ şi λn → ∞ când n → ∞.
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3.2 Rezultate auxiliare

În această secţiune vom prezenta câteva proprietăţi ale mulţimii Mρ, definită ı̂n (3.7), care sunt
utilizate ı̂n demonstrarea rezultatului principal.

Introducem următoarele notaţii:

Kpq(u1, u2) :=
1

p

∫

Ω1

| ∇u1 |
p +

1

q

∫

Ω2

| ∇u2 |
q,

krsζ(u1, u2) :=
1

r

∫

Ω1

γ1 | u1 |
r +

1

s

∫

Ω2

γ2 | u2 |
s +

1

ζ

∫

Σ
| u2 |

ζ ,

jpq(u1, u2) :=
1

p

∫

Ω1

| u1 |
p +

1

q

∫

Ω2

| u2 |
q ∀ (u, u2) ∈ W̃ .

(3.8)

Definim funcţionala de clasă C1, J : W̃ → R,

J (ũ) = Kpq(u1, u2) + krsζ(u1, u2) ∀ ũ = (u1, u2) ∈ W̃ . (3.9)

Evident, funcţia jpq : W → R este de clasă C1. Datorită faptului că, pentru orice ũ = (u1, u2) ∈
Mρ, avem ⟨j′pq(ũ), ũ⟩ ≠ 0, deducem că ρ este o valoare regulată a acesteia. Prin urmare,

Mρ = j−1
pq (ρ) este o subvarietate Banach de clasă C1 ı̂n W̃ , având codimensiunea 1. În plus,

spaţiul tangent ı̂ntr-un punct ũ = (u1, u2) ∈ Mρ este dat de egalitatea

TũMρ = ker j′pq(ũ). (3.10)

Definim funcţionala de clasă C1, J : W̃ → R,

J (ũ) = Kpq(u1, u2) + krsζ(u1, u2) ∀ ũ = (u1, u2) ∈ W̃ . (3.11)

În mod evident, J ∈ C1(Mρ,R). Notăm JMρ
restricţia funcţionalei J la Mρ şi J ′

Mρ
(ũ)

diferenţiala lui J ı̂n ũ ∈ Mρ relativă la Mρ, adică restricţia lui J ′(ũ) la spaţiul tangent TũMρ.

Lema 3.2.1 ([3]). În orice punct ũ ∈ Mρ, diferenţiala lui J relativă la Mρ satisface egalitatea

J ′
Mρ

(ũ) = J ′(ũ)− λ(ũ)j′pq(ũ), unde λ(ũ) =
⟨J ′(ũ), ũ⟩

⟨j′pq(ũ), ũ⟩
. (3.12)

Următoarea lemă stabileşte faptul că Mρ are genusul infinit.

Lema 3.2.2 ([3]). Pentru orice număr ı̂ntreg pozitiv k există o submulţime simetrică şi compactă
K ⊂ Mρ astfel ı̂ncât γ(K) = k.

3.3 Demonstraţia Teoremei 3.1.1

În această secţiune presupunem că ipotezele (h1) şi (h2) sunt ı̂ndeplinite şi le vom utiliza fără a
le mai menţiona ulterior.

Demonstraţia Teoremei 3.1.1 va rezulta ca o consecinţă a unor rezultate intermediare.

Lema 3.3.1 ([3]). Funcţionala JMρ
este coercivă, adică

lim
∥(u1,u2)∥→∞,(u1,u2)∈Mρ

J (u1, u2) = ∞.
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Un rol important ı̂n demonstrarea rezultatului principal ı̂l are următoarea inegalitate.

Lema 3.3.2 ([3]). Fie K := K ′
pq : W̃

∗ → R derivata funcţionalei Kpq definită ı̂n (3.8)1. Atunci,

pentru orice ũ = (u1, u2), ṽ = (v1, v2) ∈ W̃ are loc următoarea inegalitate

⟨K(ũ)−K(ṽ), u− v⟩

≥
(
∥ ∇u1 ∥

p−1
1p − ∥ ∇v1 ∥

p−1
1p

)(
∥ ∇u1 ∥1p − ∥ ∇v1 ∥1p

)

+
(
∥ ∇u2 ∥

q−1
2q − ∥ ∇v2 ∥

q−1
2q

)(
∥ ∇u2 ∥2q − ∥ ∇v2 ∥2q

)
≥ 0.

(3.13)

Lema 3.3.3 ([3]). Funcţionala J satisface condiţia Palais–Smale ı̂n raport cu varietatea Mρ.

Existenţa unui număr infinit de puncte critice ±ũn (n ≥ 1) pentru funcţionala J pe mulţimea
Mρ este o consecinţă a Lemelor 3.2.2, 3.3.1, 3.3.3 şi a Teoremei Lusternik-Schnirelmann.

Fiecărui punct critic ±ũn (n ≥ 1) i se asociază un multiplicator Lagrange λn, ceea ce conduce
la o infinitate de perechi proprii (λn,±ũn), (n ≥ 1), ale problemei (3.1).

În final, se arată că λn → ∞ şi astfel demonstraţia Teoremei 3.1.1 este completă.
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Concluzii generale

Cuvânt de ı̂ncheiere

Rezultatele obţinute ı̂n această teză contribuie la extinderea teoriei spectrale pentru operatori
neliniari de tip (p, q)-Laplacian, ı̂n prezenţa unor potenţiali de ordin q şi/sau p, precum şi a
condiţiilor la limită generalizate. Studiul celor două probleme, prezentate ı̂n Capitolele 1 şi 2,
a permis obţinerea unor caracterizări complete sau parţiale ale spectrului, prin aplicarea unor
metode variaţionale combinate, adaptate contextului considerat.

Mai mult, analiza, ı̂n Capitolul 3, a unei probleme de transmisie neliniară, ı̂n care operatorii
p- şi q-Laplacian acţionează pe subdomenii diferite, a permis tratarea unui subiect mai puţin
investigat ı̂n literatură, dar cu potenţial teoretic important.

Direcţii viitoare de cercetare

Rezultatele prezentate ı̂n această teză oferă mai multe direcţii posibile de continuare a cercetării.
Printre acestea menţionăm:

(i) Obţinerea unor rezultate similare celor din Capitolele 1 şi 2 ı̂n cazul ı̂n care se introduc

potenţiali cu ponderi indefinite (mai exact, care pot schimba semnul). În astfel de cazuri,
o parte dintre argumentele folosite ı̂n lucrare nu mai pot fi aplicate, deci este necesară
utilizarea altor tehnici;

(ii) Analiza unor probleme de transmisie cu mai multe subdomenii şi operatori eliptici diferiţi
ı̂n fiecare subdomeniu, inclusiv cazuri ı̂n care subdomeniile interacţionează prin condiţii
neliniare de flux;

(iii) Investigarea problemelor de valori proprii asociate operatorilor din această lucrare ı̂n con-
textul domeniilor nemărginite, de exemplu, pe R

N sau pe R
N \ Ω, unde Ω ⊂ R

N este un
domeniu mărginit.

Diseminarea rezultatelor

Rezultatele obţinute ı̂n cadrul acestei teze au fost diseminate prin următoarele articole publicate
s, i prezentări la conferint,e:

Articole publicate

L. Barbu, A. Burlacu, G. Moroşanu, An eigenvalue problem involving the (p, q)-Laplacian
with a parametric boundary condition, Mediterr, J. Math. 20(4), art. no. 232, 2023 (Q1
quartilă JIF, Q2 quartilă AIS).
https://doi.org/10.1007/s00009-023-02431-0
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L. Barbu, A. Burlacu, G. Moroşanu, On a nonlinear transmission eigenvalue problem with
a Neumann–Robin boundary condition, Math. Methods Appl. Sci., 46(17), 18375-18386,
2023 (Q1 quartilă JIF, Q3 quartilă AIS).
https://doi.org/10.1002/mma.9563

L. Barbu, A. Burlacu, G. Moroşanu, On an eigenvalue problem associated with the (p, q)-
Laplacian, An. Şt. Univ. Ovidius Constanţa, 32(1), 45–63, 2024 (Q2 quartilă JIF, Q4
quartilă AIS).
https://doi.org/10.2478/auom-2024-0003

Prezentări la conferinţe

Conferinţe internaţionale

Eigenvalues of (p,q)-Laplacian under Robin-Steklov Boundary Condition, The 10th Inter-
national Scientific Conference-Sea Conf, Academia Navală Mircea cel Bătrân, 16-18 mai
2024 (prezentare orală);
https://www.anmb.ro/ro/conferinte/sea-conf/

Continuous Spectrum for an Eigenvalue Problem Governed by the (p,q)- Laplacian, ICATA-
International Conference on Approximation Theory and Its Applications, Universitatea
Lucian Blaga din Sibiu, 17-20 iulie 2024 (prezentare orală);
https://conferences.ulbsibiu.ro/icata/

On a Nonlinear Transmission Eigenvalue Problem, The 11th International Scientific Conference-
Sea Conf, Academia Navală Mircea cel Bătrân, 15-17 mai 2025 (prezentare orală);
https://www.anmb.ro/ro/conferinte/sea-conf/

Transmission Eigenvalue Problems with Neumann-Robin Boundary Conditions Involving
the p- and q-Laplacian, The 6th International Conference on Mathematics and Its Appli-
cations in Science and Engineering, Universitatea din Plovdiv, 15-17 iulie 2025 (prezentare
orală);
https://www.icmase.com/

Analysis of a Generalized Robin-Steklov Eigenvalue Problem with (p,q)-Laplacian, The 6th
International Conference on Mathematics and Its Applications in Science and Engineering,
Universitatea din Plovdiv, 15-17 iulie 2025 (prezentare orală).
https://www.icmase.com/

Conferinţe naţionale

An Eigenvalue Problem Involving the (p, q)-Laplacian with a Parametric Boundary Con-
dition, Sesiunea de Comunicări Matematice, Facultatea de Matematică şi Informatică,
Universitatea Ovidius din Constanţa, 10 decembrie 2022 (prezentare orală);
https://fmi.univ-ovidius.ro/sesiunea-de-comunicari-matematice-2022/

On an Eigenvalue Problem Associated with the (p, q)-Laplacian, Sesiunea de Comunicări
Matematice, Facultatea de Matematică şi Informatică, Universitatea Ovidius din Constanţa,
9 decembrie 2023 (prezentare orală).
https://fmi.univ-ovidius.ro/sesiunea-de-comunicari-matematice-2023/
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[28] A. Lê, Eigenvalue Problems for p-Laplacian, Nonlinear Anal., 64(2006), 1057-1099.

[29] P. Lindqvist, Notes on the Stationary p-Laplace Equation, Springer, Cham, 2019.

[30] S.A. Marano, S. Mosconi, Some recent results on the Dirichlet problem for (p, q)-Laplace equations, Discrete
Contin. Dyn. Syst. Ser. S, 11(2018), 279–291.

[31] P. Marcellini, Regularity and Existence of Solutions of Elliptic Equations with p,q-growth Conditions, J. Differ.
Equ., 90(1991), 1-30.

[32] M. Mihăilescu, An eigenvalue problem possesing a continuous family of eigenvalues plus an isolated eigenvale,
Commun. Pure Appl. Anal., 10(2011), 701-708.
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