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Introducere

Operatorul p-Laplacian, cunoscut si sub denumirea de operatorul p-armonic si notat cu A,
reprezinta unul dintre cei mai studiati operatori in teoria ecuatiilor cu derivate partiale. Definit
pentru p € (1,00) prin Ayu := div (|Vu]p_2Vu) , acest operator este neliniar pentru orice p # 2,
iar in cazul particular p = 2, el coincide cu operatorul lui Laplace.

Importanta sa este justificatd de numeroase aplicatii in fizica si inginerie: modelarea fluxurilor
in medii poroase (legea neliniara a lui Darcy), comportamentul materialelor plastice, transferul
de caldura in context neliniar, dinamica ghetarilor sau descrierea miscarii browniene. Pentru
detalii, a se vedea Benedikt et al. [15], Lindqvist [29], respectiv Barbu, Rehmeier si Rockner [10].

Pentru a introduce problemele clasice de valori proprii asociate operatorului p-Laplacian,
consideram un domeniu marginit @ ¢ RV, cu N > 2, avand frontiera neteds 0. Problema de
valori proprii asociata operatorului —A,, cu conditii la limita de tip Dirichlet, este:

0 —-Apu MulP~2u  in Q,
(Pp) :
u = 0 pedQ.

Un numar real A este o valoare proprie a acestei probleme daca exista u) € I/VO1 P(Q)\ {0} astfel
incat

/Q |VU>\|p72VU>\ Vwdr = )\/Q |u)\\p72u)\w dz, Yw € W&’p(Q).

Se cunoaste faptul ci problema (PJ) admite un sir de perechi proprii (A, un), cu 0 < A <
Ao < A3 < --- = 00, obtinute prin metode variationale, cea mai cunoscuta fiind cea care se
bazeaza pe genul lui Krasnosel’skil si principiul Lusternik—Schnirelmann (a se vedea Gasinski si
Papageorgiou [26, Section 6.2]).

Cu exceptia cazurilor p = 2 sau N = 1, nu se cunoagte daca spectrul este format doar
din aceste valori proprii (a se vedea Gasinski si Papageorgiou [26, Section 6.1 si 6.3]). Astfel,

spectrul operatorului —A,, definit pe spatiul Sobolev WO1 P(), reprezinti o problema deschisi
timp de decenii, cu exceptia primei valori proprii A\; (numita valoare proprie principala). Aceasta
este simpla gi are o functie proprie asociata strict pozitiva in Q (vezi Lé [28, Theorem 5.1]).

Mai mult, A\; poate fi caracterizatd variational ca fiind minimul catului Rayleigh, adica A; =
IV ul?
Q

min,, e pye () IIQW (a se vedea Motreanu et al. [34, Proposition 9.6]). Rezultate similare exista
si pentru alte tipuri de conditii la limita, cum ar fi cele de tip Neumann, Robin sau Steklov (vezi
Le [24)).

Operatorul —(A, + A,), cu p,q € (1,00), p # ¢ cunoscut si sub numele de —(p, ¢)-Laplacian
reprezinta o perturbare a operatorul —A,,. Acest operator este, spre deosebire de —A,, neomogen.
Ca urmare, aplicarea unor tehnici variationale conduc la determinarea, in anumite cazuri, a
intregii multimi de valori proprii. La aceste rezultate vom face referire In sectiunile urmatoare.

Operatorul —(p, ¢)-Laplacian reprezinta o combinatie a doua difuzii neliniare de ordine diferite,
reflectdnd interactiunea a doua mecanisme de transfer cu regimuri distincte. Datorita acestei
structuri el are numeroase aplicatii in fizica matematica. De exemplu, in cazul in care p = 2 si
g > 1, operatorul A + a,A, cu a, > 0 apare in teoria Born-Infeld pentru campuri electrostatice
(vezi Bonheure, Colasuonno si Fortunato [16], precum si Fortunato, Orsina si Pisani [21]). Alte
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aplicatii ale operatorului (p, ¢)-Laplacian pot fi intalnite in fizica cuantica (vezi Benci et al. [13]
si Benci, Fortunato gi Pisani [11]), in sistemele de tip reactie—difuzie (vezi Cherfils si [I'yasov
[17]), dar si in teoria elasticitatii neliniare (vezi Marcellini [31] si Zhikov [39]). Problemele de
valori proprii cu doua faze sunt motivate inclusiv de modele provenite din relativitatea clasica.
Un exemplu in acest sens este operatorul

Qu := —div Ve ,
V1—1|Vul|?

care apare ca operator de curbura medie in spatiul Lorentz—Minkowski (vezi Bartnik gi Simon
[11]). O aproximare de ordinul intai a acestuia este —Au — Ayu, ce corespunde operatorului
—(2,4)-Laplacian (a se vedea Pompio si Watanabe [38]).

Avéand in vedere aplicabilitatea extinsa a operatorului (p, ¢)-Laplacian, literatura dedicata
acestuia, inclusiv studiului valorilor proprii asociate, este deja vasta si continua sa se dezvolte.
Mentionam, in acest sens, doua lucrari de sinteza relevante, Marano si Mosconi [30], respectiv
Barbu gi Morosanu [5].

Revizuirea literaturii

Pentru a motiva tema abordata in aceasta teza si a evidentia contributiile obtinute, prezentam,
pe scurt, cele trei probleme care vor fi analizate in capitolele urméatoare. Le vom nota, doar in
acest capitol, pentru simplitate, cu (F;), i =1, 3.

Consideram in cele ce urmeazi un domeniu marginit @ € RY, cu N > 2, avand frontiers
neteda 0.

Prima problema investigata este o probleméa de valori proprii definita in €2 care contine
inclusiv potentiali cu ponderi nenegative de ordin p si ¢ si conditii la limita de tip parametric:

—(Apu+ Aqu) + pr (@) |ulP 20 + po(@)[ul?%u = Aa(@)|ul “2u, T €O,
A (@) |ulPu e (@) u|? e = AB(x) |u|" e, x € 09,

unde p,q,r € (1,00) cu p < g, iar coeficientii o, p; € L*(Q), B,y € L>®(0Q) sunt functii
nenegative care satisfac

(hag) : /adw—i— Bdo >0, (hy): /pidx—i—/ vido >0, i=1,2.
Q 0N Q oN

In conditia la limita considerata am folosit notatia

ou

OVpq

_ o Ou
= (12 4 | v )2 0

unde v este versorul normalei exterioare la 0. Aceasta notatie va fi folosita gi in cele ce urmeaza.
A doua problema are o structura apropiata, insa contine doar potentiali cu ponderi nenegative
de ordin ¢, ca urmare nu mai exista simetrie intre exponentii p si g¢:

—(Apu+ Agu) + p(2)|u)?u = Aa(x)|u|"2u, z€Q,
PV o @l = M@l € 00,
OVpq

unde 1 < g < r < p < o0, iar functiile a, p € L>(Q), B, € L*>°(I2) sunt nenegative si verifica
ipotezele (hag), (hpy) introduse anterior in prezentarea problemei (P;).
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Ultima problema studiata este o problema de transmisie neliniara, de valori proprii, definita

astfel:
—Apul + ’71($)’U1|T_2ul = )\\u1|p_2u1, n Ql,

—Aguz + y2(x)|ug| " 2u2 = Aua|9%us, in Q,
: 0 0
(Ps) s ug =y, =222 pe I,
Ovp Oy
8u _
5, HB@ual "y =0, pe %,

unde Q; este un subdomeniu cu frontiera neteda I, astfel incat Q; C Q, iar Qy := Q \ﬁl. Se
presupune ca p,q,r,s,( € (1,00), v € L*(;) pentru i = 1,2, iar § € L*°(X) este nenegativa
a.p.t. pe 2. In conditiile la limita pe I" si ¥, am notat

ou;

s =] Vg 972 Vg - vg, 6 € {p,q}, i € {1, 2} —| Vug |72 Vg - v,

unde v, + v4 = 0 sunt versorii normalelor exterioare pe I', iar v este versorul normalei exterioare
pe 2.

Ipotezele suplimentare referitoare la exponenti si coeficienti vor fi precizate in capitolele
dedicate fiecarei probleme.

incepem cu cazul conditiilor de tip Neumann. Introducem in acest sens problema de valori

proprii
P (Apu +Au)=A|ul??u in Q,
(Fn) Du— 0 pe OQ.

Vp

Un numér real A este valoare proprie pentru (Py) daci existd uy € W := Whmax{pat(Q)\ {0}
astfel Incat

/<|Vu>\ P=2 + | Vuy |q2)VuA'Vud$:/\/ | uy 972 upyu doz ¥ u € W.
Q Q

In acest caz, functia u) se numeste functie proprie corespunzatoare valorii proprii A, iar perechea
(A, uy) se numesgte pereche proprie a problemei (Py).

Pentru p > 2 gi ¢ = 2, Mihailescu [32, Theorem 1.1] a ardtat ca spectrul problemei (Py) este
{0} U (AN (p,2), 00), unde

Vul|?d
)\N(p,2)::{ inf M; /udx:()}>0.
Q

weW\{0}  [qu?dx

Pentru p < 2, Farcageanu et al. [19, Theorem 1.1] au identificat intreaga multime a valorilor
proprii pentru (Py) ca fiind multimea {0} U (AN (p, 2), 00). Mihailescu si Moroganu [33] au tratat
cazul general p € (1,00), ¢ > 2, obtinand spectrul {0} U (A (p, ¢), 00), unde

AN (p, q) ::{ o JalVulde, /| ud:U:O}>0. 2

ueW\{0} fQ | w |9 da’

~—

Sa consideram problema de valori proprii asociata operatorului Steklov (p, ¢)-Laplacian

—(Apu+Agu) =0 in Q,
(Ps) : Oou

= -2 Q
e Aul|Tu pe Q.
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Costea si Moroganu [18, Theorem 3.1] pentru cazul p € (1,00), ¢ € [2,00) au determinat spectrul
problemei (Ps) ca fiind multimea {0} U (A¥(p, q), 00), unde

Vul?d
AS(p,q):{ inf W/ \u\q_Qudx:0}>O.
oN

weW\{0} [0 | |9 da’

In cazul operatorului Robin (p, ¢)-Laplacian avem urméatoarea problema de valori proprii
—(Apu+ Agu) = Mul? 2y in Q,

(Pr) : Ou +Bulf?u=0 pe dQ,
OVpq

unde p,q € (1,00),p # q, iar [ este o constanta pozitiva.
Problema (Pg) a fost studiata de Gyulov si Morosanu [27], care au determinat un interval de

valori proprii (A(p, ), \o) si, mai mult, au demonstrat c& nu exists valori proprii in intervalul
(—o0, A(p, q)]. Constantele de mai sus sunt pozitive si definite prin

Vul? dx + ul? do ds
Mi(p,q) = inf Jo IVl B Jo 1! <X:=p Joo . (3)
ueW\{0} Jo lul? dx Jo dz
Autorii au enuntat ca problema deschisa existenta valorilor proprii in intervalul [Ag, c0).
Mentionam, de asemenea, lucrarea lui Papageorgiou et al. [306], in care este analizata o

problema de valori proprii mai generala decat (Pr), pentru cazul 1 < p < q. In aceastd lucrare,
operatorul —(A,+A,) este perturbat printr-un potential de ordin ¢ cu o pondere indefinita ¢ €
L*(2), unde s < N/q daca ¢ < N gi s = 1 daca ¢ > N. Constanta § este inlocuita cu o functie
B e Wh>e(00Q), B >0, B # 0, care satisface conditia fQ Cdx+ faﬂ B do > 0. Folosind o abordare

similara celei din [27], autorii obtin un rezultat comparabil (vezi [36, Theorem 1]).
Studiul problemelor de valori proprii cu conditii pe frontiera de tipul celor considerate in
problemele (P;) si (P2) a fost initiat de Von Below si Frangois [12], in cazul particular al op-

eratorului lui Laplace pentru @ = 1 si § > 0 functie continud pe 0€2. Aceastd problema este
cunoscuta in literatura sub denumirea de problema de valori proprii de tip dinamic, deoarece
apare in studiul ecuatiilor parabolice cu conditii la limita de tip dinamic (a se vedea [25]).

Pornind de la acest model liniar, cercetari ulterioare au vizat extinderea acestuia la contexte
neliniare, cu operatori de tip p-Laplacian sau (p, ¢)-Laplacian. In acest context, consideram
urmatoarea problema de valori proprii generalizata:

—(Apu+ Agu) = Aa(x) [ul"?u  in Q,
(Pgen) : ou

anq = \G(x) |u\T_2u pe 09,

unde p, ¢, 7 € (1,00) cup # ¢, iar o, § sunt functii nenegative care satisfac ipoteza (hqg) formulata
in cadrul problemei (P}).
Este bine cunoscut ca functiile proprii ale problemei (Pyen) apartin multimii

Cr:= {u ew; / o |ul""2u dx +/ Blul"2udo = 0}.
Q o0

In cazul r = g, Barbu si Morosanu [7, Theorem 1] au aratat cd multimea valorilor proprii ale
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problemei (Pyen) este egala cu {0} U (A(p,q),0), unde

Jo [Vu|? dx

0<Ap,q):= inf
(P 4) uel Mo [ alultdr + [ Blultdo

Acest rezultat generalizeaza atat cazurile anterioare obtinute pentru problemele (Py) si (Ps),
cat gi rezultatul obtinut de Abreu si Madeira [1] pentru problema (Pyen) cu g =2 i p € (1,00),

p# 2.

Daca r # ¢, presupunem, fard a restrange generalitatea, cad 1 < p < ¢. Barbu si Moroganu
[8] au demonstrat ca, daca fie ] <r <p<g<oo,fiel <g<p<r<oosire (1 q(N ql))
pentru ¢ < N, atunci multimea valorilor proprii ale problemei (Pgen) este [0 00). Pe de alta
) pentru ¢ < N,

atunci exista doud constante strict pozitive, 0 < A, < A*, astfel incat orice )\ € {0} U[A*, 00) este
valoare proprie a (Pgen), In timp ce, aceeasi problema nu are valori proprii in A € (—oo, Ax) \ {0}.

parte, in [0], aceiagi autori au aratat ca, daca 1 <p<r < g<oo,cur < q(

In ceea ce urmeazi, vom evidentia rezultatele originale obtinute in cadrul acestei teze
pentru primele doua probleme, (P;) si (P»), care extind sau generalizeaza contributiile deja
existente in literatura.

Mai exact, in lucrarile Barbu, Burlacu si Moroganu [2, 4], unde au fost studiate problemele (P;)
si, respectiv, (P,) introduse anterior, am generalizat si/sau extins rezultatele obtinute pentru

problemele (Py) si (Pg) din lucrarile [18, 19, 27, 32, 33, 30]. Intr-adevir, prin alegerea functiilor
« sau [ egale cu zero sau, respectiv, unu, se regasesc conditiile la limita de tip Neumann sau
Steklov. Referitor la rezultatele obtinute in lucrarile [0, 7, 8], acestea au fost extinse in [4] prin

studierea spectrului problemei (P»), unde am introdus potentiali de ordin ¢ in ecuatie si/sau pe
frontiera. Folosind genusul lui Krasnosel’skii si Principiul lui Lusternik—Schnirelmann, am oferit
un raspuns pozitiv la problema deschisa din [27], aratand ca problema (Pgr) are valori proprii
mai mari decat \g.

Pe de alta parte, introducerea potentialilor de ordin p in problema (P ), aldturi de cei de ordin
q, a dus la concluzia ca, in cazul problemei (Pg), prezenta unui potential de ordin p in ecuatie
asiguré caracterizarea completa a spectrului acesteia. Astfel, daca alegem r=q, a=1, pp=0
in Q, =2 =0, v = const. >0 pe 02 iar ponderea p; > 0 a.p.t. in , cu prl da: > 0,

atunci, conform Teoremei 2.1.1(b), spectrul problemei este exact intervalul ()\q, 00), unde )\q >0
este definit ca in formula (3), cu 72 in loc de 3, conform notatiilor.

Rezultatele obtinute arata ca nu doar perturbarea operatorului —A, prin —A,,, dar si per-
turbarea ecuatiei sau a conditiilor la limita cu termeni de tip potential de ordin p poate conduce
la obtinerea unui spectru continuu pentru problema, in timp ce in lipsa unor astfel de perturbari
nu exista rezultate care sa caracterizeze complet acest spectru.

In continuare, vom prezenta lucrari recente dedicate problemelor de transmisie neliniare,
similare problemei (P3). Problemele de transmisie au diverse aplicatii in mecanica fluidelor,
fizica, chimie, biologie, de aici si importanta studiului acestora (vezi Fife [20], Nicaise [35]).
Reamintim, de exemplu, faptul ca Figueiredo si Montenegro [21] au investigat o problema de
transmisie cu crestere exponentiala critica, mai precis, neliniaritatile au comportamente de tipul
exp(aps?) cand |s| — oo, pentru o constantd ag > 0. Autorii au demonstrat ci urméatoarea
problemi eliptica de transmisie in R?

—Auy = f(x,u1) in Q,
_AU/Q == g(.’L','U,Q) in QQ?

o) 0
ul = us, 8511 :a—fjj pe T,
us =0 pe X,

are o solutie netriviala.
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De asemenea, problema de transmisie cu crestere critica

—Au; = Af(z,u1) in Q,
—AUQ :‘ U9 ‘2*72 ug 1n Qg,

up = u2, %:% peF?
ug =0 pe X,
a fost studiata de aceiagi autori in [22]. S-a demonstrat ca, pentru A suficient de mare, problema
admite o solutie nenula. Alte rezultate existente pentru problemele neliniare de transmisie,
abordate cu argumente variationale, pot fi consultate in [23, 33].
O problema similara problemei (P3) a fost investigata de citre Barbu et al. in [9]. Autorii

au considerat un domeniu mirginit Q ¢ RY, N > 2, cu frontiera de tip Lipschitz 0, care este
impartit in doua subdomenii de tip Lipschitz, 21 si Q9. Cu alte cuvinte, 2 = Q1 U Qo UT'. Se
presupune ca frontiera 0€) este impartita in doua parti, 9 si 09, astfel incat 02y =T UT si
90 =Ty UT. In acest cadru, a fost consideratd urméitoarea problema de valori proprii:

(—Apup = A ]u1|p72u1 in Q,
—Aq'UQ =A ’U2|q72UQ in Qo,
0 0
8—1“ =0 pely, g1z =0 pely, (0.1)
Vp Oy,
8u1 (3u2 el
U1 = U _— = —
L 1 27 8Vp 81/(] p )

unde, pe frontiera, aa—“, r = p,q, desemneaza derivatele conormale ale operatorilor implicati
Vr

in problema, similare cu cele din formularea problemei (P3). Folosind principiul Lusternik -
Schnirelmann, autorii au demonstrat existenta unui sir de valori proprii ale problemei de mai sus
care tinde la infinit.

Problema neliniara de transmisie (P;), investigata de noi in lucrarea Barbu, Burlacu si
Morosanu [3], generalizeaza acest rezultat prin includerea unor potentiali nedefiniti in cele doua
subdomenii, care sunt configurate diferit fata de cazul prezentat mai sus. In plus, daca g = 0,
atunci conditiile pe ¥ devin de tip Neumann. Mai mult, folosind argumente similare, se pot
considera gi cazuri cu conditii la limitd generalizate, dar si partitionari diferite ale domeniului,
inclusiv de tipul celei din lucrarea [9].

Mbotivatia si obiectivele tezei

Studiul valorilor proprii pentru operatori neliniari de tip (p, ¢)-Laplacian a cunoscut in ultimele
decenii o dezvoltare semnificativa, atat in plan teoretic, cat si in contextul aplicatiilor.
Motivatia tezei de fata se bazeazd pe necesitatea extinderii cadrului actual al teoriei, In
special in urmatoarele directii:
(i) considerarea simultana a doi operatori neliniari de difuzie de ordine diferite, de tip p- si
g-Laplacian, cu p # ¢;
(ii) includerea potentialilor cu ponderi nenegative in ecuatie gi/sau pe frontiera;
(iii) tratarea unor conditii la limita generalizate, in care parametrul apare atat in ecuatie, cat
si In conditia de pe frontiera;
(iv) analiza unei probleme de transmisie intre dou& subdomenii guvernate de operatori diferentiali
diferiti.
Pe baza acestor directii generale, obiectivele tezei sunt urmatoarele:
1 Studiul unei probleme de valori proprii cu conditii la limita de tip parametric, in care apar
potentiali cu ponderi nenegative de ordin p si ¢, atat In ecuatie cat si pe frontiera. Aceasta
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problema, notata (P;), extinde cazurile clasice Neumann si Steklov;

2 Investigarea unei versiuni asimetrice, (P2), in care doar potentialii de ordin ¢ sunt prezenti,
elimindndu-se simetria dintre componentele de ordin p si ¢. Se urmareste caracterizarea
spectrului in functie de pozitionarea dintre p, q si r;

3 Analiza unei probleme de transmisie (P3), in care domeniul este impartit in doud sub-
domenii disjuncte €2y si €29, cu operatori p- si g-Laplacian actionand separat, legati prin
conditii de continuitate a solutiei si a fluxului pe interfata comuna I';

4 Demonstrarea existentei unor siruri de valori proprii care tind la infinit si, in unele cazuri,
caracterizarea completd a spectrului in functie de parametrii implicati;

5 Extinderea unor rezultate recente din literaturd prin utilizarea urmatoarelor metode
variationale: metode directe, metoda de fibrare, metode de tip min-max bazate pe genusul
lui Krasnosel’skii si Principiul Lusternik-Schnirelmann aplicat pe varietati Banach de clasa
Ct.

Structura tezei

Teza incepe cu un capitol de Preliminarii in care sunt prezentate notiunile si rezultatele clasice
utilizate In demonstrarea rezultatelor din capitolele urmatoare, grupate in doua sectiuni: Spatii
Lebesgue si spatii Sobolev, Definitii si proprietati, Cateva rezultate de calcul variational.

Capitolul urmator (Capitolul 1 in acest rezumat) este dedicat studiului unei probleme de val-
ori proprii pentru operatorul (p, ¢)-Laplacian, in prezenta unor potentiali cu ponderi nenegative
de ordin p si ¢, atat in ecuatie, cat si in conditiile la limita. Problema analizata, notata mai
sus cu (Py), generalizeaza cazurile Neumann gi Steklov, prin aparitia parametrului spectral A
atat in domeniul €2, cat i pe frontiera acestuia. Dupa formularea problemei si enuntarea princi-
palelor ipoteze, se introduc cateva rezultate auxiliare si functionala de energie 7, corespunzatoare
problemei studiate. Se investigheaza proprietatile acesteia (diferentiabilitate, coercivitate, semi-
continuitate) care sunt esentiale pentru demonstratiile ulterioare. Analiza se ramifica in functie
de pozitia exponentului r fata de p si q. Pentru r € {p, ¢}, se obtine caracterizarea completa a
spectrului, acesta fiind de forma (d, c0), unde d > 0 depinde de p sau de q. In cazul r = q, abor-
darea foloseste varietatea Nehari si Regula Multiplicatorilor lui Lagrange. Pentru cazurile r < p
si r € (q,qx), spectrul este (0,00), iar demonstratiile se bazeaza pe coercivitatea functionalei si
tehnici variationale clasice. Cazul cel mai delicat, r € (p,q), cu r < ps, este tratat prin metoda
de fibrare introdusa de Pohozaev [37], conducand la determinarea unui interval de valori proprii
de forma [A*,00), cu A* > 0, in timp ce pentru A < A\, < \* problema nu admite solutii nebanale.
Mai sus, am notat, pentru 6 € {p,q}, 0. = (N —1)8/(N — ) pentru § < N si 6, = co pentru
0 > N, exponentii critici de urma.

Rezultatele prezentate in acest capitol au fost obtinute in cadrul lucrarii Barbu, Burlacu
si Morosanu [2].

Urmatorul capitol cuprinde studiul unei versiuni asimetrice a problemei investigate anterior,
notatd mai sus cu (P,), in care apar doar potentiali de ordin ¢, eliminand astfel simetria in raport
cu exponentii p si ¢q. Aceasta structura asimetrica conduce la o investigare mai detaliata a com-
portamentului spectral, in functie de pozitionarea exponentilor p, g si , necesitand tratarea a zece
cazuri distincte. Dupa prezentarea problemei, a ipotezelor si formularea teoremelor principale,
este introdusa o problema auxiliara a carei prima valoare proprie este esentiala in demonstrarea
rezultatelor care urmeazi. In opt dintre cazuri este determinati intreaga multime de valori
proprii a problemei. Acestea sunt abordate prin metode directe sau prin utilizarea metodei va-
rietatii Nehari. Pentru cazul in care ¢ < p si r € (¢, p), se utilizeaza o metoda min-max bazata
pe genusul lui Krasnosel’skii si Principiul Lusternik - Schnirelmann. Se obtine astfel existenta
unui sir de valori proprii convergent la infinit, fara a putea concluziona ca acesta descrie intregul



Introducere

spectru al problemei. Totodata, aceasta tehnica permite extinderea unor rezultate recente din
literatura (in special [27]) privind existenta unor valori proprii mai mari decat o constanta de
prag Ag.

Rezultatele acestui capitol au fost publicate in articolul Barbu, Burlacu si Moroganu [4].

Capitolul 3 este consacrat studiului problemei de transmisie (P3), In care operatorii p-, re-
spectiv g-Laplacian actioneaza in subdomenii disjuncte ale unui domeniu §2, legate prin conditii
de continuitate a solutiei gi de echilibru al fluxului. Dupd formularea exactd a problemei si
precizarea ipotezelor, este introdus spatiul functional W echivalent cu spatiul de functii cu com-
ponente in WHP(Q) si WH9(Qy), cu urme egale pe interfata I'. Este introdusi o familie de

subvarietati M,, p > 0, de clasa C! in W, fiecare avand genusul infinit, ceea ce le face adec-
vate pentru aplicarea Principiului Lusternik—Schnirelmann. Se defineste apoi o functionala de
energie asociata problemei, notata 7, si se arata ca punctele sale critice conditionate de subva-
rietatile introduse corespund solutiilor slabe ale problemei. Se demonstreaza ca functionala J
este coerciva pe aceste subvarietati si satisface conditia Palais—Smale, fapt ce permite obtinerea
unui sir de valori proprii ale problemei (P3) care tind la infinit. Acest rezultat este prezentat
in Teorema 3.1.1. Capitolul este structurat in trei sectiuni, ultimele doua: Sectiunea 2.2 este
dedicata rezultatelor preliminare (inclusiv demonstrarea proprietatilor privind genusul infinit al
multimilor M, p > 0 si coercivitatea lui J pe acestea), iar Sectiunea 2.3 contine demonstrarea
rezultatului principal.

Acest capitol se bazeaza pe lucrarea Barbu, Burlacu i Morosanu [3].

Teza se incheie cu un scurt capitol care contine posibile directii de cercetare gi diseminarea
rezultatelor.

Cuvinte cheie: Valori proprii, (p,q)—Laplacian, varietate Nehari, C'—varietate, metode
variationale, problema neliniara de valori proprii, genusul lui Krasnosel’skii, problema neliniara
de transmisie, principiul Lusternik—Schnirelmann, spatii Sobolev.



Capitolul 1

Asupra unei probleme de valori proprii
pentru (p, g)-Laplacian cu potentiali de ordin p si ¢

In acest capitol sunt prezentate rezultatele originale obtinute in colaborare cu L. Barbu si G.
Morosanu, publicate in An. St. Univ. Ovidius Constanta [2].

Dintre cele mai importante amintim: Teoremele 1.1.1 gi 1.1.2, Lemele 1.2.1-1.2.3, 1.3.1-1.3.5
$i1.4.1-1.4.8.

In scopul simplificarii notatiilor, vom omite notatiile dx si do in integrale, atunci cand con-
textul este clar si nu apare ambiguitate.

1.1 Formularea problemei
si prezentarea rezultatelor principale

In aceasti sectiune reamintim problema formulatd in Introducere, stabilim notatiile utilizate si
enuntam principalele rezultate ale capitolului.

Fie Q ¢ RY, N > 2, un domeniu marginit cu frontiera neteda 99. Consideram problema de
valori proprii asociata operatorului Au = —(Apu + Aju)

(1.1)

Au+pi(z) | w P72 utpo(z) [u % u=Aa(z) [u]?u, zecQ,
Ou 4 ovi(@) [u P2 u+tya(x) [u T2 u=23(x) |ul"2u, x€aQ.

OVpq

In acest capitol, presupunem ca au loc urmatoarele ipoteze

(hpgr) P, @, 7 € (1,00), p <g;
(hag) a € L>®(Q) si B € L*™(09Q) sunt functii nenegative care verifica

/adw+/ﬁda>0; (1.2)

Q [2}9]



1.1. Formularea problemei si prezentarea rezultatelor principale Capitolul 1

(hpivs) pi € L(Q) siy € L*(09Q), i=1,2, sunt functii nenegative care satisfac
/pidx+/'y¢da>0,i:1,2. (1.3)
Q o0

Solutiile u ale problemei (1.1) apartin spatiului W := W14(Q) (deoarece ¢ > p), si verifica
ecuatia (1.1); in sensul distributiilor, iar conditia pe frontiera (1.1), in sensul urmei.

Definitia 1.1.1. Numadrul real X se numeste valoare proprie a problemei (1.1) daca existd uy €
W\ {0} astfel incat pentru orice uw € W are loc egalitatea

/( | Vuy [P+ | Vuy 772 ) Vuy - Vu + / (o1 [un [P72 4pa | un 1972 Jupu

° @ (1.4)
+/ (1 Lua P72 92 [ un 972 Juau = )\<04/ |y |72 u,\u+/ﬁ | uy |72 u,\u).
80 0 80

Functia uy se numeste functie proprie corespunzatoare valorii proprii A, asociata problemei (1.1).

Introducem urmatoarele notatii

Kp(u)::/(|Vu|p+p1|u|p)+/71|u|p,

Q o0
Kowi= [ (19uf+pult) + [ fult | L5)
Q o0
)= [alul’+ [Blul’ YueW. o€ par),
Q [2)9]
~ K,(u) ~ ) K,(u)
Ay 1= f 4 Ap = f P 1.6
= )Y uéélv\z k() (1.6)
)\* — inf FK ( ) Kq( ) , A* — Tl o
weW\ 2 K (u) g (1.7)
_a-r q—p
W= , I'i= - —.
q—p (r—p)=(g—r)

Sa observam faptul ca toate functiile proprii u), corespunzatoare unei valori proprii A > 0
satisfac conditia k,(uy) > 0, deci toate functiile proprii corespunzatoare problemei (1.1) vor
apartine multimii W\ Z, unde

Z:={ueW; k.(u) =0}.
Rezultatele principale ale capitolului sunt urmatoarele doua teoreme.

Teorema 1.1.1 ([2]). Presupunem cd ipotezele (hpgr), (hag), (hp,) sunt indeplinite.

(a ) Daca r = p, atunci A\, > 0, iar multimea valorilor proprii ale problemei (1.1) este intervalul
()‘p7 00);

(b) Daca r = q, atunci )\ > 0, iar mulfimea valorilor proprii ale problemei (1.1) este intervalul
(Ag; 00).

10



1.2. Rezultate auxiliare Capitolul 1

Teorema 1.1.2 ([2]). Presupunem ca ipotezele (hpgr), (hag) $i (Rpiy,) sunt indeplinite.
(a) Dacd (r <p) sau (r >q cur < q(N—1)/(N —q) = g« in cazul ¢ < N), atunci mulfimea
valorilor proprii ale problemei (1.1) este intervalul (0, 00);
(b) Dacap<r<qcur <pN—1)/(N—p)=psin cazul p < N, atunci 0 < A\, < \* i orice
A € [\, 00) este valoare proprie a problemei (1.1).

Mai mult, pentru orice X € (—oo, Ax) problema (1.1) are doar solutia triviala.

In plus, cele doud constante A, \* pot fi exprimate astfel

) Kp(u) + Kq(u) . S Kp(u) + %Kq(u)
Ay = inf —————= .
weEW\Z ky(u) u€W\Z %kT(u)
1.2 Rezultate auxiliare

Aceasta sectiune reuneste cateva rezultate tehnice care vor fi utilizate in demonstrarea teoremelor
prezentate anterioar.

Lema 1.2.1 ([2]). Presupunem ca ipoteza (hag) este indeplinita. Daca
6, 7 e (1,00) si [f<9* daci 0 < N],

atunct,
| u o=l Vu[lro) +(ki(u)™ ¥V ue W)

este 0 normd pe W9(Q), echivalentd cu cea standard.

In cele ce urmeaza, pentru 6 > 1, consideram urmatoarea problema de valori proprii

—Agu+p(z) | w2 u=Xa(z) |u|’2u inQ,
[ Vu 72 55 (@) [u "2 u=AB(@) | u "~ u pe 00,

unde p € L™®(Q) si v € L*>(092) sunt functii nenegative date, care satisfac

/p +/7 > 0. (1.10)
Q o0

Definim functionala de clasa C!

Qp : WH(Q)\ 2y — (0,00), Og(u) := []::((;‘)) Vuewh(Q)\ 2,

unde
Kow) = [ (19ul”+p]ul’)+ [ ]ul” .
Q o0

Lema 1.2.2 ([2]). Presupunem cd ipoteza (hog) este verificata, iar p € L®(Q), v € L*(09Q)
sunt functii nenegative care satisfac (1.10). Atunci, existd u, € W9(Q)\ Zy astfel incat

eg(u*) = )\9 = inf @g(u) > 0.

1
uEWL0(Q)\ 2,

Mai mult, \g este cea mai micd valoare proprie a problemei (1.9), iar u, este o functie proprie
corespunzatoare valorii proprii Ag.

11



1.3. Demonstratia Teoremei 1.1.1 Capitolul 1

Pentru A > 0 vom defini functionala de energie asociata problemei (1.1)

1 1 A
I W =R, Th(u) = ;}Kp(u) + EKq(u) — —ky(u), YueWw. (1.11)
T
Coercivitatea functionalei 7y pe W este studiatd in lema urmatoare.

Lema 1.2.3 ([2]). Presupunem ca ipotezele (hpgr), (hapg), (hp,y,) sunt indeplinite. Atunci,
pentru orice v € (1,q), functionala Jy este coerciva pe W, echivalent, lim Jy(u) = oco.
U||—o0

1.3 Demonstratia Teoremei 1.1.1

In aceastd sectiune vom presupune ci ipotezele (hpgr), (hag) si (hp.~,) sunt indeplinite si le vom
utiliza fara a le mai mentiona in rezultatele intermediare.

1.3.1 Demonstratia Teoremei 1.1.1 (a) (Cazul r = p)

Demonstratia Teoremei 1.1.1 (a) se bazeaza pe urmatoarele doua leme.

Lema 1.3.1 ([2]). Daca r = p, atunci Xp > 0 g1 nu exista valori proprii ale problemei (1.1) in
intervalul (—oo, A\p]. Mai mult, are loc inegalitatea

Ap = inf 4 :Xp. (1.12)

ueW\2 %k,‘p(u)

Lema 1.3.2 ([2]). Daca r = p, atunci orice X > /)\\p este o valoare proprie a problemei (1.1).

Utilizand Lemele 1.3.1 si 1.3.2, Teorema 1.1.1 (a) este complet demonstrata.

1.3.2 Demonstratia Teoremei 1.1.1 (b) (Cazul r = q)
Observam ca, in cazul r = ¢, functionala 7, are urmatoarea forma

I W =R, Th(u) = ;Kp(u) + ;Kq(u) - fl\kzq(u) VueW. (1.13)

In acest caz, functionala ), nu mai este coerciva pe W, asadar va trebui sa utilizam o alta
metoda. In acest scop, pentru A > 0, definim varietatea Nehari

Ny = {u e W\{0}; (Jx(u),u) =0} = {u € W\{0}; Kp(u) + Ky(u) — Mrg(u) = 0}

Lema 1.3.3 ([2]). Daca r = q, atunci Xq > 0 gi nu exista valori proprii ale problemei (1.1) in
intervalul (—oo, A\g|. In plus, are loc urmatoarea egalitate
LKy (u) + Kq(u)

Xg = inf =N 1.14
CT LAz kg(w) ’ (114)

Lema 1.3.4 ([2]). Fie A > Xq. Dacd r = q, atunci existd un punct u, € Ny unde Jy isi atinge
valoare minimd peste varietatea Ny, iar

my = inf Jy(u) > 0.

ueN
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1.4. Demonstratia Teoremei 1.1.2 Capitolul 1

Lema 1.3.5 ([2]). Fie A > Xq. Daca r = q, atunci minimul u, € Ny din Lema 1.3.4 este o
functie proprie a problemei (1.1) corespunzatoare valorii proprii A.

Folosind Lemele 1.3.3, 1.3.4 si 1.3.5, Teorema 1.1.1 (b) este complet demonstrata.

1.4 Demonstratia Teoremei 1.1.2

Demonstrarea Teoremei 1.1.2 se bazeaza pe urmatoarele leme in care presupunem ipotezele
(hpgr), (Pps:) st (hag), fara a le mentiona explicit in enunturi.

1.4.1 Demonstratia Teoremei 1.1.2 (a) (Cazul r < p)

Lema 1.4.1 ([2]). Daca r < p, atunci orice X > 0 este o valoare proprie a problemei (1.1).

1.4.2 Demonstratia Teoremei 1.1.2 (a) (Cazul r € (¢,q.))

Fie A > 0 un numar real fixat. Deoarece in cazul r € (g, ¢.), functionala J\ nu mai este coerciva
pe W, definim o noua varietate Nehari, astfel

Ny = {u € WA{0}; (FX (), u) = Kp(u) + Ko(u) = Ay (u) = 0} (1.15)

Lema 1.4.2 ([2]). Presupunem ca ipotezele ¢ < r si (r < g(N —1)/(N — q) = ¢« daca g < N)
sunt satisfacute. Atunci existd un punct u, € Ny in care functionala Jy isi atinge valoarea
minima peste varietatea Ny, my := inf Jy(u) > 0.

ueN

Lema 1.4.3 ([2]). Presupunem ca q <1 $i (r < ¢« daca ¢ < N). Atunci, minimul u, € Ny din
Lema 1.4.2 este o functie proprie a problemei (1.1), corespunzatoare valorii proprii .

In concluzie, folosind Lemele 1.4.1-1.4.3, Teorema 1.1.2 (a) este complet demonstrats.

1.4.3 Demonstratia Teoremei 1.1.2 (b) (Cazul r € (p,q))

Demonstratia acestui rezultat necesitd o abordare diferita fatd de celelalte cazuri, deoarece
functionala Jy nu este nici coerciva pe W gi nici marginita pe varietatea Nehari.

Demonstratia Teoremei 1.1.2 (b) o vom face, ca si in cazurile anterioare, cu ajutorul unor
leme care presupun ipotezele (hpqr), (hp,~;) si (hag), fard a le preciza in mod explicit in cadrul
fiecarui enunt,.

Lema 1.4.4 ([2]). Presupunem cap <r < q $ir < px daca p < N. Atunci, 0 < A, < A*.

Lema 1.4.5 ([2]). Presupunem cap <r < q §ir < px dacd p < N. Atunci constantele A\, $i \*
definite in relatia (1.7) pot fi exprimate in mod echivalent astfel

LK (W) + LK (u
N Kp(u) + Ky (u) . K()+qKq()‘

) 1.16
ueW\ 2 Ky (u) uEW\Z Lk (u) (1.16)

Definim functionala

o:W\Z— (0,00), ®(u):=T

13



1.4. Demonstratia Teoremei 1.1.2 Capitolul 1

Lema 1.4.6 ([2]). Presupunem cap <r < q $i r < px daca p < N. Atunci exista u, € W\ Z

astfel incdat A\ = ®(uy) = ivrll/f\z D (u).
ue

Lema 1.4.7 ([2]). Presupunem ca p < r < q si r < px daca p < N. Dacd u, € W\ Z este
minimul determinat in Lema 1.4.6, atunci

' = (DT yu, e W 2, (1.17)
p
unde t(u.) este o functie proprie a problemei (1.1) corespunzatoare valorii proprii A*.

In plus,
T (u*) = 0.

Lema 1.4.8 ([2]). Presupunem ci p < r < q i r < ps daca p < N. Atunci, orice numar
A € (\*,00) este o valoare proprie a problemei (1.1) si pentru fiecare X € (—oo, Ax)\ {0} problema
(1.1) are doar solutia triviala.

In concluzie, utilizand Lemele 1.4.4, 1.4.5, 1.4.7 si 1.4.8, demonstratia Teoremei 1.1.2 (b)
este completa.
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Capitolul 2

Asupra unei probleme de valori proprii
pentru (p, g)-Laplacian cu potentiali de tip ¢

Capitolul de fata este dedicat prezentarii rezultatelor obtinute in colaborare cu L. Barbu si G.
Morosanu, aparute in Mediterr. J. Math. [1].
Enumeram pe cele mai importante dintre acestea: Teoremele 2.1.1 —2.1.3, Lema 2.2.1, Lemele 2.3.1—
2.3.6, precum si Lemele 2.4.1-2.4.2.

Pentru simplificarea notatiilor, in continuare vom omite elementele de masura dx si do din
integrale, acolo unde nu exista risc de confuzie.

2.1 Formularea problemei
si prezentarea rezultatelor principale

In aceasts sectiune reamintim problema formulata in Introducere, stabilim notatiile utilizate in
continuare si enuntam rezultatele principale ale capitolului.

Fie Q ¢ RN, cu N > 2, un domeniu marginit, cu frontiera neteds 9. Consideram in Q
problema de valori proprii asociata operatorului —A, — A,

—(Apu+ Agu) +p(@) |u |72 u=Aa(x) |u|""?u inQ, 51
2y (@) [ 12w = AB(x) | u 2w pe O @)
intreaga analiza din acest capitol se sprijina pe ipotezele urmatoare
(hpqr) P, @, 7 € (1,00), p# g;
(hag) a € L>®(Q) si B € L*(09Q) sunt functii nenegative date care satisfac
/a + 8> 0; (2.2)
Q o0
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2.1. Formularea problemei si prezentarea rezultatelor principale Capitolul 2

(hpy) p € L>®() siy e L*°(0Q) sunt functii nenegative date astfel incat

/Qp +/69»y>0; (2.3)

(h) Daca r = ¢, atunci nu exista o constanta pozitiva ko astfel incat
p=koa apt.in Q si y=koB ap.t. pe 0.

Impunand ipotezele de mai sus si analizand pozitionarea lui 7 in raport cu p si ¢, putem descrie
complet spectrul problemei enuntate anterior in opt dintre cele zece cazuri posibile. In celelalte
doua cazuri, obtinem doar submultimi ale spectrului (a se vedea Teoremele 2.1.1-2.1.3 prezentate
mai jos).

Deoarece am presupus doar p # ¢, solutia u a problemei (2.1) este un element al spatiului
Sobolev W := Whmax{p.at(Q), care satisface ecuatia (2.1), in sensul distributiilor si conditia de

pe frontiera (2.1), in sensul urmei. In acest sens, avem urmatoarea definitie.

Definitia 2.1.1. (i) O functie u € W se numeste solutie slaba a problemei (2.1) daca
/(] Vu P72+ | Vu ]q_z)Vu-Vv—i-/p |u 772 uv—i—/ vl w72 ww
Q Q 0N

:A(/a\u|’”2uv —i—/ B!u!r’zu,\v)VUEW
Q o9

(ii) Numarul real A se numeste valoare proprie a problemei (2.1) daca aceasta admite o solutie

slaba nenula uy € W\ {0}. In acest caz, functia uy se numeste functie proprie corespunzatoare
valorii proprii A\, iar perechea (A, u)) se numeste pereche proprie a problemei (2.1).

(2.4)

Toate functiile proprii ale problemei (2.1) satisfac relatia j,(uy) > 0, unde

jr(u)::/Qa|u|r+/aQ,3|u|rVUEW, (2.5)

asadar, acestea apartin multimii
WA\ Z, Z:={ueW, j.(u) =0} (2.6)

Introducem, de asemenea, urmatoarele constante care vor juca un rol important in rezultatele
obtinute in continuare:

Vu |9 q q
Ay = inf Jo (IVult+plul®) + Joor ul? )\ " Jor +Joa7 (2.7)
weW\Z Jr(u) Jr(1)

In plus, pentru orice o > 0, definim multimea
My i={ueW; j(u)=o0}. (2.8)
Rezultatele principale ale capitolului sunt urmatoarele trei teoreme.

Teorema 2.1.1 ([!]). Presupunem ca ipotezele (hpqr), (hag) si (hpy) sunt satisfacute.
Daca r = q si presupunerea (h) are loc, atunci constantele Ay si Ao definite in (2.7) sunt pozitive.

Mai mult, Ay < o si orice X € (Ag, No) este o valoare proprie a problemei (2.1). In plus, problema
(2.1) are doar solutii triviale pentru A in intervalul (—oo, Ag).

16



2.2. Rezultate auxiliare Capitolul 2

Teorema 2.1.2 ([1]). Presupunem ca ipotezele (hpqr), (hag) si (hpy) sunt satisfacute. In fiecare
dintre urmatoarele cazuri

(a) r=p;

(b) max{p, ¢} < r < max{p,qs};

(c) r < min{p, ¢};

(d) p<r<yq,

multimea de valori proprii ale problemei (2.1) este intervalul (0,00).

Teorema 2.1.3 ([!]). Presupunem ca ipotezele (hpqr), (hag) $i (hpy) sunt satisfacute. Daca
r=q sau q < r < p, atunci pentru orice o > 0 problema (2.1) are o infinitate de solutii perechi
proprii de forma

Ay Tup) ERX M, cu Ay — o0 cind n— oo.

2.2 Rezultate auxiliare

Pentru claritate si concizie, folosim urmatoarele notatii
Ke(w= [ |Vul, e () byt = [ pluli+ [ yjupuew. @9
Q Q Q

In continuare, enuntam un rezultat auxiliar necesar pentru demonstrarea teoremelor enuntate
anterior.
Pentru 6 > 1, consideram urmatoarea problema de valori proprii

(2.10)

—Agu+p(x) |u®?u=Xa(z) |u|’?u inQ,
| Vu 072 0% 4+ y(z) | w2 u=A3(z) | u %2 u pe 09.

Definim functionald de clasa C!

Kop(u) + kg(u)

1,0
O Voue Wh(Q)\ 2.

0: W)\ 2y — (0,00), O(u):=

Urmatoarea lema ofera o caracterizare importanta a valorii minime a functionalei © pe multimea

Who(Q)\ Z,.
Lema 2.2.1 ([4]). Ezistd u, € WHY9(Q)\ Zy astfel incat

£) = A= inf . 2.11
Ow)=dyi= il O(u)>0 (211)

Mai mult, \g este cea mai micd valoare proprie a problemei (2.10), iar u. este o functie proprie
corespunzatoare valorii proprii Ag.

2.3 Demonstratia Teoremelor 2.1.1 si 2.1.2
Demonstrarea rezultatelor din aceasta sectiune se va realiza cu ajutorul unor leme intermediare,

in cadrul carora vom presupune ca ipotezele (hpg.), (hag) si (hpy) sunt indeplinite. In plus, in
cazul particular r = ¢, vom considera ca este satisfacuta si ipoteza (h).
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2.3. Demonstratia Teoremelor 2.1.1 gi 2.1.2 Capitolul 2

Lema 2.3.1 ([1]). Daca r = q, atunci Ay > 0 si nu exista valori proprii ale problemei (2.1) in
intervalul (—oo, Ag4]. Mai mult,

1 u u 1 u
Aq = K(] = 1nf q(Kq( )+ kq( )) + pr( )

! (2.12)
uEW\Z %jq(u)

Urmatoarea lema exprima o relatie de inegalitate intre constantele variationale definite in (2.7).
Lema 2.3.2 ([1]). Daca r = q, atunci Ay < Xo.

Fie A > 0. Consideram functionala 7, : W — R, de clasa C! definita astfel
1 1 A
Tra(u) = Ky(u) - (yfon) + hy(w)) = o). (213)

In ceea ce priveste coercivitatea functionalei 7.y, avem urmatorul rezultat.
Lema 2.3.3 ([!]). Presupunem ca este indeplinitd una dintre urmdtoarele doud conditii:
(1)) 1<r<gqsi>0;
(i) r=q<p si A€ (Ag, No)-

Atunci functionala J.) este coerciva pe spatiul W, echivalent

lim  Jp(u) = oo.

[[ul| =00

Presupunand ca sunt indeplinite conditiile din Lema 2.3.3 obtinem urmatorul rezultat privind
existenta valorilor proprii pentru problema (2.1).

Lema 2.3.4 ([1]). (i) Daca r < q, atunci orice numar real A > 0 este o valoare proprie a
problemei (2.1);

(13) Daca r = q < p, atunci orice numar real X € (Ay, Ao) este o valoare proprie a proble-

mei (2.1).

In continuare vom prezenta cazurile complementare cazurilor considerate in Lema 2.3.4.
Daca r > ¢ sau r = ¢ > p, nu ne putem astepta ca functionala 7.y sa ramana coerciva pe
W. De aceea, pentru A > 0, vom considera varietatea Nehari asociata acesteia, definita astfel

Noa = {u € WAA{0} (F/\(u), u) = Kp(u) + Kq(u) + kq(u) = Ajr(u) = 0}.
Lema 2.3.5 ([1]). Presupunem ca este indeplinita una dintre urmatoarele doud ipoteze:
(i) r=gqg>psi A€ (Ag, No);
(i) r # q, max{p,q} < r < max{ps, ¢} si A\ > 0, unde p. $i ¢« sunt exponentii critici de urmda.

Atunci existd u, € Ny\ in care functionala J,) isi atinge valoarea minimd pe varietatea Ny,
adica
mpy = inf Jpa(u) > 0.
UEN ;A
Ultimul rezultat necesar pentru demonstrarea Teoremelor 2.1.1 si 2.1.2 aratd ca minimul
uyx € N\ obtinut in Lema 2.3.5 este, de fapt, un punct critic al functionalei 7,y.

Lema 2.3.6 ([1]). (i) Daca r = q > p, atunci orice numar real X\ € (Ay, \o) este o valoare
proprie a problemei (2.1);
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2.4. Demonstratia Teoremei 2.1.3 Capitolul 2

(19) Daca r # q si max{p,q} < r < max{ps, ¢}, atunci orice numar real A € (0,00) este o
valoare proprie a problemei (2.1).

Concluzionand, folosind Lema 2.3.4 gi Lema 2.3.6, Teoremele 2.1.1 gi 2.1.2 sunt complet
demonstrate.

2.4 Demonstratia Teoremei 2.1.3

Vom analiza cazul ¢ < r < p in care functionala 7., nu mai este nici coerciva pe spatiul W si
nici marginita inferior pe varietatea N,.y.

Dacar = qsi A > Ao, dupa cum am observat in sectiunea anterioara, va trebui sa consideram
si alte argumente pentru a deduce faptul ca problema (2.1) are valori proprii A > A.
Ca urmare, pentru a obtine rezultatul de multiplicitate enuntat in Teorema 2.1.3, vom utiliza
notiunea de genus in sensul lui Krasnosel’skii.

Una dintre cele mai importante proprietati ale varietatii M, este enuntata in urmatorul
rezultat.

Lema 2.4.1 ([!]). Pentru orice numar intreg pozitiv k, existd o multime compacta, simetrica

K Cc M, astfel incat v(K) = k.

Consideram urmatoarea functionala 7 : W — R, definita prin
1 1
J:W =R, J(u) = ;Kp(u) + Q(Kq(u) + kq(u)) V u e W. (2.14)

O proprietate importanta a functionalei definite anterior este data de urmatoarea lema.

Lema 2.4.2 ([1]). Dacar = q sauq < r < p, atunci functionala J definita in (2.14) restrictionata
la M, satisface conditia Palais—Smale (echivalent, orice gir (un)n C M, cu proprietatea cd sirul
(T (un)), este marginit si Ty, (un) — 0, are un subsir convergent).

In final, folosind Principiul Lusternik—Schnirelmannse si lemele de mai sus, se poate con-
cluziona ca exista o infinitate de puncte critice 4w, n > 1, pentru functionala J in M,.

Acestor puncte critice =+ u, le sunt asociati multiplicatorii lui Lagrange A, rezultand astfel o
infinitate de perechi proprii ale problemei (2.1), de forma:

(A, £up) € (0,00) x My n > 1.

In plus, sirul A, — o0, ceea ce conduce la demonstrarea completa a Teoremei 2.1.3.
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Capitolul 3

O problema neliniara de valori proprii de transmisie
cu o conditie pe frontiera de tip Neumann-Robin

Acest capitol reunegte o serie de rezultate obtinute in colaborare cu L. Barbu gi G. Moroganu,
publicate in Math. Methods Appl. Sci. [3].
Dintre ele, amintim: Teorema 3.1.1, Lemele 3.2.1, 3.2.2, precum si Lemele 3.3.1-3.3.3.

In scopul simplificarii notatiilor, vom omite notatiile dz si do in integrale, atunci cand con-
textul este clar si nu apare ambiguitate.

3.1 Formularea problemei
si prezentarea rezultatelor principale

In aceasti sectiune reamintim problema prezentata in Introducere, formulam notatiile necesare
si enuntam rezultatul principal al capitolului.

Fie QcRY, N >2un domeniu marginit care are frontiera neteda X si {21 un subdomeniu
cu frontiera neteda I, astfel incat 0 C Q, iar Q9 = Q\ Q.

Consideram in ) urmatoarea problema de valori proprii de transmisie

—Apur +71(2) |ur "2 ur = A ug P72 ug in Q,
—Aq’UQ + ’}/2(33) ‘ U9 |S_2 Uy = A | U9 |q—2 uy In o,

(3.1)

Uy = uz, %:% per)

82+ B(x) | uz |2 ug =0 pe 3,
unde A este un parametru real.

Pe parcursul capitolului, presupunem ca sunt valabile urmatoarele ipoteze:
P:q;7, 8,6 € (1,00), p<q ¢ < gy
P y . .

(h1) 7’<p(1+N> dacar >psi p<N; (3.2)

s<q<1+%) daca s > ¢qsi g < N.
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3.1. Formularea problemei si prezentarea rezultatelor principale Capitolul 3

(h2) Vi € LOO(QZ)v 1= ]-a2a ﬁ € LOO(E)? B >0 a.p.t. pe X.

Pentru 1 < # < oo, vom nota normele uzuale ale spatiilor Lebesgue L%(Q;) si LY(Z) cu
|+ llig, @ = 1,2, respectiv || - ||gp-

Evident, solutiile uw = (u1,u2) ale problemei (3.1) apartin spatiului

W= {u e W(Q);ulo, € WH(Qs)},

unde u; = u|g,, ¢+ =1, 2. Pe W consideram norma uzuala

l =l [l + uz fl2 Vu = (ur,u2) € W, (3:3)
unde || - ||;, ¢ = 1,2, sunt definite prin
[uille = Vel + lutllips [luzllz = [[Vuzllzg + [[uzllog- (3-4)

Spatiul W definit anterior se identifica cu spatiul
W= {@ = (u1,up) € WHP(Q1) x WH9(Qa); uy = ug pe T}, (3.5)
ceea ce implica faptul cd W este un spatiu Banach reflexiv.

Definitia 3.1.1. Numarul real \ se numeste valoare proprie a problemei (3.1) dacd aceasta
admite o solutie slabd Uy = (u1x, usy) € W\ {(0,0)}.

In acest caz, uy se numeste functie proprie asociatd valorii proprii A, iar perechea (X, uy) se
numegte pereche proprie a problemei (3.1).

Urmatorul rezultat rezulta folosind un rationament similar celui folosit in [9, Proposition 1.1].
El ofera o caracterizare a valorilor proprii ale problemei (3.1).

Propozitia 3.1.1 ([3]). Numarul real \ este o valoare proprie a problemei (3.1) daca si numai

dacd existd Ty = (uix, uzy) € W\{(0,0)}, astfel inct pentru orice (vy,vy) € W are loc egalitatea

/ | Vuiy P72 Vugy - Vg +/ | Vaugy 972 Vugy, - Vg
Qy Qo

+/ Y [ uiy |72 uran +/ Yo | ugy |72 ugpve + / B | gy |72 ugave do (3.6)
Q4 Qq >

Q4 Qs

Fie p > 0. Consideram submultimea M, a spatiului W, pe care o definim astfel

- ~ 1 1
M, = {u = (u1,u2) € W; p/Ql | ug [P —i—q/ | ug |7= p}. (3.7)

2

Rezultatul principal al acestui capitol este urmatoarea teorema.

Teorema 3.1.1. ([3]). Presupunem ca ipotezele (hy) si (he) sunt indeplinite. Atunci, pen-
tru orice p > 0, existd un gir de perechi proprii ()\n,:lz(uln,uQn))n ale problemei (3.1), cu
(('LLln,UQn))n C M, si A\, = 00 cand n — oo.
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3.2. Rezultate auxiliare Capitolul 3

3.2 Rezultate auxiliare

In aceasti sectiune vom prezenta cateva proprietati ale multimii M, definita in (3.7), care sunt
utilizate In demonstrarea rezultatului principal.
Introducem urmatoarele notatii:

1 1

Kpn(unyuz) = [ 9w s [ vu e
P Jo, q.Jq,
1 1 L1 :

krsc(ui,ug) ==~ | mluw["+= [ ylul®+= [ |u2 5 (3.8)
r Q4 S Qs C )

. 1 » 1 g —

Jpg(ur, ug) == — | ug P 4+-— |ug |1V (u,uz) € W.

P Jo, q Jq,

Definim functionala de clasa C*, J : W — R,
T (@) = Kpg(u, ug) + kpsc(u1, uz) ¥V @ = (uy,ug) € W. (3.9)

Evident, functia j,, : W — R este de clasi C!. Datorita faptului ci, pentru orice u = (u1,uz) €
My, avem (j,.(u),u) # 0, deducem ca p este o valoare regulata a acesteia. Prin urmare,

M, = jpjll (p) este o subvarietate Banach de clasi C' in W, avand codimensiunea 1. In plus,
spatiul tangent intr-un punct u = (u1,u2) € M, este dat de egalitatea

TM, = ker j,, (). (3.10)
Definim functionala de clasa C', 7 : W — R,
T (W) = Kpg(ui, ug) + kpsc (w1, ug) ¥V @ = (ug,ug) € W. (3.11)

In mod evident, J € Cl(Mp,]R). Notam Jpq, restrictia functionalei J la M, si j/’\/[p(ﬁ)
diferentiala lui J in u € M, relativa la M, adica restrictia lui J'(u) la spatiul tangent T3 M.
Lema 3.2.1 ([3]). In orice punct i € M,, diferentiala lui J relativd la M, satisface egalitatea
(J'(w),u)

T, (@) = T (@) = @) jbg(@), unde (@) = T (3.12)

Urmatoarea lema stabilegte faptul ca M, are genusul infinit.

Lema 3.2.2 ([3]). Pentru orice numar intreg pozitiv k exista o submultime simetricd si compactd
K C M, astfel incat v(K) = k.

3.3 Demonstratia Teoremei 3.1.1

In aceasta sectiune presupunem ca ipotezele (hi) si (he) sunt indeplinite si le vom utiliza fara a
le mai mentiona ulterior.
Demonstratia Teoremei 3.1.1 va rezulta ca o consecinta a unor rezultate intermediare.

Lema 3.3.1 ([3]). Functionala Jr, este coercivd, adicd

im J(u1,ug) = oo.
Il (w1 ,u2)l|—00,(u1,u2)EM,,
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3.3. Demonstratia Teoremei 3.1.1 Capitolul 3

Un rol important in demonstrarea rezultatului principal il are urmatoarea inegalitate.
Lema 3.3.2 ([3]). Fie K:= K, : W* = R derivata functionalei K, definita in (3.8)1. Atunci,
pentru orice u = (ui,u2),v = (v1,v2) € W are loc urmatoarea inegalitate

(K(u) - K(©),u —v)
> (I VI, = 1 Vo I15,0) (1 Vel = 1 Vor ) (3.13)
(I Vuz 3, = 1oz 18,7) (I Vuz lag = 1 Vo2 fl2g ) = 0.
Lema 3.3.3 ([3]). Functionala J satisface conditia Palais—Smale in raport cu varietatea M.

Existenta unui numar infinit de puncte critice £u,, (n > 1) pentru functionala J pe multimea
M, este o consecinta a Lemelor 3.2.2, 3.3.1, 3.3.3 si a Teoremei Lusternik-Schnirelmann.

Fiecarui punct critic £u,, (n > 1) i se asociaza un multiplicator Lagrange \,,, ceea ce conduce
la o infinitate de perechi proprii (A, £u,), (n > 1), ale problemei (3.1).

In final, se aratd ci A\, — 0o si astfel demonstratia Teoremei 3.1.1 este completa.
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Concluzii generale

Cuvant de incheiere

Rezultatele obtinute in aceasta teza contribuie la extinderea teoriei spectrale pentru operatori
neliniari de tip (p, g)-Laplacian, in prezenta unor potentiali de ordin ¢ si/sau p, precum si a
conditiilor la limitd generalizate. Studiul celor doua probleme, prezentate in Capitolele 1 si 2,
a permis obtinerea unor caracterizari complete sau partiale ale spectrului, prin aplicarea unor
metode variationale combinate, adaptate contextului considerat.

Mai mult, analiza, in Capitolul 3, a unei probleme de transmisie neliniara, in care operatorii
p- si g-Laplacian actioneaza pe subdomenii diferite, a permis tratarea unui subiect mai putin
investigat in literatura, dar cu potential teoretic important.

Directii viitoare de cercetare

Rezultatele prezentate in aceasta teza ofera mai multe directii posibile de continuare a cercetarii.
Printre acestea mentionam:

(i) Obtinerea unor rezultate similare celor din Capitolele 1 i 2 in cazul in care se introduc

potentiali cu ponderi indefinite (mai exact, care pot schimba semnul). In astfel de cazuri,
o parte dintre argumentele folosite in lucrare nu mai pot fi aplicate, deci este necesara
utilizarea altor tehnici;

(ii) Analiza unor probleme de transmisie cu mai multe subdomenii si operatori eliptici diferiti
in fiecare subdomeniu, inclusiv cazuri in care subdomeniile interactioneaza prin conditii
neliniare de flux;

(iii) Investigarea problemelor de valori proprii asociate operatorilor din aceasta lucrare in con-
textul domeniilor nemarginite, de exemplu, pe RV sau pe RY \ Q, unde Q@ c RY este un
domeniu marginit.

Diseminarea rezultatelor

Rezultatele obtinute In cadrul acestei teze au fost diseminate prin urmatoarele articole publicate
si prezentari la conferinte:

Articole publicate

L. Barbu, A. Burlacu, G. Moroganu, An eigenvalue problem involving the (p, q)-Laplacian
with a parametric boundary condition, Mediterr, J. Math. 20(4), art. no. 232, 2023 (Q1
quartila JIF, Q2 quartila AIS).

https://doi.org/10.1007/s00009-023-02431-0
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3.3. Demonstratia Teoremei 3.1.1 Capitolul 3

L. Barbu, A. Burlacu, G. Moroganu, On a nonlinear transmission eigenvalue problem with
a Neumann—Robin boundary condition, Math. Methods Appl. Sci., 46(17), 18375-18386,
2023 (Q1 quartila JIF, Q3 quartila AIS).

https://doi.org/10.1002/mma.9563

L. Barbu, A. Burlacu, G. Morosanu, On an eigenvalue problem associated with the (p,q)-
Laplacian, An. St. Univ. Ovidius Constanta, 32(1), 4563, 2024 (Q2 quartila JIF, Q4
quartila AIS).

https://doi.org/10.2478 /auom-2024-0003

Prezentari la conferinte

Conferinte internationale

FEigenvalues of (p,q)-Laplacian under Robin-Steklov Boundary Condition, The 10th Inter-
national Scientific Conference-Sea Conf, Academia Navala Mircea cel Batran, 16-18 mai
2024 (prezentare orala);

https://www.anmb.ro/ro/conferinte/sea-conf/

Continuous Spectrum for an Eigenvalue Problem Governed by the (p,q)- Laplacian, ICATA-
International Conference on Approximation Theory and Its Applications, Universitatea
Lucian Blaga din Sibiu, 17-20 iulie 2024 (prezentare orala);
https://conferences.ulbsibiu.ro/icata/

On a Nonlinear Transmission Figenvalue Problem, The 11th International Scientific Conference-
Sea Conf, Academia Navala Mircea cel Batran, 15-17 mai 2025 (prezentare orala);
https://www.anmb.ro/ro/conferinte /sea-conf/

Transmission Eigenvalue Problems with Neumann-Robin Boundary Conditions Involving
the p- and q-Laplacian, The 6th International Conference on Mathematics and Its Appli-
cations in Science and Engineering, Universitatea din Plovdiv, 15-17 iulie 2025 (prezentare
orald);

https://www.icmase.com/

Analysis of a Generalized Robin-Steklov Figenvalue Problem with (p,q)-Laplacian, The 6th
International Conference on Mathematics and Its Applications in Science and Engineering,
Universitatea din Plovdiv, 15-17 iulie 2025 (prezentare orala).

https://www.icmase.com/

Conferinte nationale

An Eigenvalue Problem Involving the (p, q)-Laplacian with a Parametric Boundary Con-
dition, Sesiunea de Comunicari Matematice, Facultatea de Matematica si Informatica,
Universitatea Ovidius din Constanta, 10 decembrie 2022 (prezentare orald);
https://fmi.univ-ovidius.ro/sesiunea-de-comunicari-matematice-2022/

On an FEigenvalue Problem Associated with the (p, q)-Laplacian, Sesiunea de Comunicari
Matematice, Facultatea de Matematica si Informatica, Universitatea Ovidius din Constanta,
9 decembrie 2023 (prezentare orald).
https://fmi.univ-ovidius.ro/sesiunea-de-comunicari-matematice-2023/
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