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Introduction

The p-Laplacian operator, also known as the p-harmonic operator and denoted by ∆p, represents
one of the most studied operators in the theory of partial differential equations. Defined for
p ∈ (1,∞) by

∆pu := div
(
|∇u|p−2∇u

)
,

this operator is nonlinear for any p ̸= 2, while in the particular case p = 2, it coincides with the
Laplace operator.

Its importance is justified by numerous applications in physics and engineering: modeling
flows in porous media (the nonlinear Darcy law), behavior of plastic materials, nonlinear heat
transfer, glacier dynamics, or the description of Brownian motion. For details, see Benedikt et
al. [15], Lindqvist [29], and Barbu, Rehmeier and Röckner [10].

To introduce the classical eigenvalue problems associated with the p-Laplacian operator, we
consider a bounded domain Ω ⊂ R

N , with N ≥ 2, having smooth boundary ∂Ω. The eigenvalue
problem associated with the operator −∆p with Dirichlet boundary conditions is:

(P 0
D) :

{
−∆pu = λ|u|p−2u in Ω,

u = 0 on ∂Ω.

A real number λ is an eigenvalue of this problem if there exists uλ ∈ W 1,p
0 (Ω) \ {0} such that

∫

Ω
|∇uλ|

p−2∇uλ · ∇w dx = λ

∫

Ω
|uλ|

p−2uλw dx, ∀w ∈ W 1,p
0 (Ω).

It is known that problem (P 0
D) admits a sequence of eigenpairs (λn, un), with

0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞,

obtained by variational methods, the most well-known being based on the Krasnosel’skĭı genus
and the Lusternik–Schnirelmann Principle (see Gasinski and Papageorgiou [26, Section 6.2]).

Except for the cases p = 2 or N = 1, it is unknown whether the spectrum consists solely of
these eigenvalues (see Gasinski and Papageorgiou [26, Sections 6.1 and 6.3]). Thus, the spectrum

of the operator −∆p, defined on the Sobolev space W 1,p
0 (Ω), represents an open problem for

decades, except for the first eigenvalue λ1 (called the principal eigenvalue). This eigenvalue is
simple and has an associated eigenfunction strictly positive in Ω (see Lê [28, Theorem 5.1]).
Moreover, λ1 can be variationally characterized as the minimum of the Rayleigh quotient, that
is,

λ1 = min
u∈W 1,p

0 (Ω)

∫
Ω |∇u|p∫
Ω |u|p

,

(see Motreanu et al. [34, Proposition 9.6]).
Similar results also exist for other types of boundary conditions, such as Neumann, Robin,

or Steklov (see Lê [28]).
The operator −(∆p + ∆q), with p, q ∈ (1,∞), p ̸= q, also known as the −(p, q)-Laplacian
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Introduction

operator, represents a perturbation of the operator −∆p. Unlike −∆p, this operator is nonho-
mogeneous. Consequently, the application of variational techniques leads, in certain cases, to
the determination of the entire set of eigenvalues. We will refer to these results in the following
sections.

The −(p, q)-Laplacian operator is a combination of two nonlinear diffusions of different orders,
reflecting the interaction of two transfer mechanisms with distinct regimes. Due to this structure,
it has numerous applications in mathematical physics. For example, in the case when p = 2 and
q > 1, the operator ∆ + aq∆q, with aq > 0, appears in the Born–Infeld theory for electrostatic
fields (see Bonheure, Colasuonno, and Fortunato [16], as well as Fortunato, Orsina and Pisani
[24]). Other applications of the (p, q)-Laplacian operator can be found in quantum physics (see
Benci et al. [13] and Benci, Fortunato and Pisani [14]), in reaction–diffusion systems (see Cherfils
and Il’yasov [17]), and also in nonlinear elasticity theory (see Marcellini [31] and Zhikov [39]).

Two-phase eigenvalue problems are also motivated by models arising from classical relativity.
An example in this regard is the operator

Qu := − div

(
∇u√

1− |∇u|2

)
,

which appears as the mean curvature operator in the Lorentz–Minkowski space (see Bartnik and
Simon [11]). A first-order approximation of this operator is

−∆u−∆4u,

which corresponds to the −(2, 4)-Laplacian operator (see Pompio and Watanabe [38]).
Given the vast applicability of the (p, q)-Laplacian operator, the literature dedicated to it,

including the study of associated eigenvalue problems, is already extensive and continues to
develop. We mention, in this regard, two relevant survey papers by Marano and Mosconi [30]
and by Barbu and Moros,anu [5].

Literature Review

To motivate the topic addressed in this thesis and to highlight the obtained contributions, we
briefly present the three problems that will be analyzed in the following chapters. For simplicity,
in this chapter only, we denote them by (Pi), i = 1, 3.

Consider in what follows a bounded domain Ω ⊂ R
N , with N ≥ 2, having a smooth boundary

∂Ω.
The first problem investigated is an eigenvalue problem defined in Ω, which also includes

potentials with nonnegative weights of order p and q, as well as parametric boundary conditions:

(P1) :





−(∆pu+∆qu) + ρ1(x)|u|
p−2u+ ρ2(x)|u|

q−2u = λα(x)|u|r−2u, x ∈ Ω,

∂u

∂νpq
+ γ1(x)|u|

p−2u+ γ2(x)|u|
q−2u = λβ(x)|u|r−2u, x ∈ ∂Ω,

where p, q, r ∈ (1,∞) with p < q and α, ρi ∈ L∞(Ω), β, γi ∈ L∞(∂Ω) are nonnegative functions
satisfying

(hαβ) :

∫

Ω
αdx+

∫

∂Ω
β dσ > 0, (hργ) :

∫

Ω
ρi dx+

∫

∂Ω
γi dσ > 0, i = 1, 2.

In the considered boundary condition, we used the notation

∂u

∂νpq
:=
(
|∇u|p−2 + |∇u|q−2

)∂u
∂ν

, (1)
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Introduction

where ν is the outward unit normal to ∂Ω. This notation will also be used in what follows.
The second problem has a similar structure, but contains only potentials with nonnegative
weights of order q, so there is no longer symmetry between the exponents p and q:

(P2) :





−(∆pu+∆qu) + ρ(x)|u|q−2u = λα(x)|u|r−2u, x ∈ Ω,

∂u

∂νpq
+ γ(x)|u|q−2u = λβ(x)|u|r−2u, x ∈ ∂Ω,

where 1 < q < r < p < ∞ and the functions α, ρ ∈ L∞(Ω), β, γ ∈ L∞(∂Ω) are nonnegative and
satisfy the hypotheses (hαβ), (hργ) introduced earlier in the presentation of problem (P1).

The last problem studied is a nonlinear transmission eigenvalue problem, defined as follows:

(P3) :





−∆pu1 + γ1(x)|u1|
r−2u1 = λ|u1|

p−2u1, in Ω1,

−∆qu2 + γ2(x)|u2|
s−2u2 = λ|u2|

q−2u2, in Ω2,

u1 = u2,
∂u1
∂νp

=
∂u2
∂νq

, on Γ,

∂u2
∂ν

+ β(x)|u2|
ζ−2u2 = 0, on Σ,

where Ω1 is a subdomain with smooth boundary Γ, with Ω1 ⊂ Ω, and Ω2 := Ω \ Ω1. It is
assumed that p, q, r, s, ζ ∈ (1,∞), γi ∈ L∞(Ωi) for i = 1, 2, and β ∈ L∞(Σ) is nonnegative a.e.
on Σ. In the boundary conditions on Γ and Σ, we have denoted

∂ui
∂νθ

:= |∇ui|
θ−2∇ui · νθ, θ ∈ {p, q}, i ∈ {1, 2},

∂u2
∂ν

:= |∇u2|
q−2∇u2 · ν,

where νp+ νq = 0 are the outward unit normal on Γ, and ν is the the outward unit normal on Σ.
Additional hypotheses concerning the exponents and coefficients will be specified in the chap-

ters dedicated to each problem.
We start with the case of Neumann-type boundary conditions. In this respect, we introduce

the eigenvalue problem

(PN ) :

{
−(∆pu+∆qu) = λ|u|q−2u in Ω,
∂u
∂νpq

= 0 on ∂Ω.

A real number λ is an eigenvalue for (PN ) if there exists uλ ∈ W := W 1,max{p,q}(Ω) \ {0} such
that ∫

Ω

(
|∇uλ|

p−2 + |∇uλ|
q−2
)
∇uλ · ∇u dx = λ

∫

Ω
|uλ|

q−2uλu dx ∀u ∈ W.

In this case, the function uλ is called an eigenfunction corresponding to the eigenvalue λ, and
the pair (λ, uλ) is called an eigenpair of the problem (PN ).

For p > 2 and q = 2, Mihăilescu [32, Theorem 1.1] showed that the spectrum of problem
(PN ) is {0} ∪ (λN (p, 2),∞), where

λN (p, 2) :=

{
inf

u∈W\{0}

∫
Ω |∇u|2 dx∫
Ω u2 dx

;

∫

Ω
u dx = 0

}
> 0.

For p < 2, Fărcăs,eanu et al. [19, Theorem 1.1] identified the entire set of eigenvalues for (PN ) as
the set {0} ∪ (λN (p, 2),∞). Mihăilescu and Moros,anu [33] treated the general case p ∈ (1,∞),
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q > 2, obtaining the spectrum {0} ∪ (λN (p, q),∞), where

λN (p, q) :=

{
inf

u∈W\{0}

∫
Ω |∇u|q dx∫
Ω |u|q dx

;

∫

Ω
|u|q−2u dx = 0

}
> 0. (2)

Let us consider the eigenvalue problem associated with the Steklov (p, q)-Laplacian operator

(PS) :





−(∆pu+∆qu) = 0 in Ω,

∂u

∂νpq
= λ|u|q−2u on ∂Ω.

Costea and Moros,anu [18, Theorem 3.1] for the case p ∈ (1,∞), q ∈ [2,∞) determined the
spectrum of problem (PS) as the set {0} ∪ (λS(p, q),∞), where

λS(p, q) :=

{
inf

u∈W\{0}

∫
Ω |∇u|q dx∫
∂Ω |u|q dσ

;

∫

∂Ω
|u|q−2u dσ = 0

}
> 0.

In the case of the Robin (p, q)-Laplacian operator, we have the following eigenvalue problem

(PR) :





−(∆pu+∆qu) = λ|u|q−2u in Ω,

∂u

∂νpq
+ β|u|q−2u = 0 on ∂Ω,

where p, q ∈ (1,∞), p ̸= q, and β is a positive constant.
Problem (PR) was studied by Gyulov and Moros,anu [27], who determined an interval of

eigenvalues (λR(p, q), λ0) and moreover proved that there are no eigenvalues in the interval
(−∞, λR(p, q)].

The above constants are positive and defined by

λR(p, q) := inf
u∈W\{0}

∫
Ω |∇u|q dx+ β

∫
∂Ω |u|q dσ∫

Ω |u|q dx
< λ0 := β

∫
∂Ω dσ∫
Ω dx

. (3)

The authors stated as an open problem the existence of eigenvalues in the interval [λ0,∞).
We also mention the work of Papageorgiou et al. [36], where a more general eigenvalue

problem than (PR) is analyzed for the case 1 < p < q. In this work, the operator −(∆p + ∆q)

is perturbed by a q-order potential with an indefinite weight ζ ∈ Ls(Ω), where s < N
q
if q ≤ N

and s = 1 if q > N . The constant β is replaced by a function β ∈ W 1,∞(∂Ω), β ≥ 0, β ̸≡ 0,
satisfying the condition ∫

Ω
ζ dx+

∫

∂Ω
β dσ > 0.

Using an approach similar to that in [27], the authors obtain a comparable result (see [36,
Theorem 1]).

The study of eigenvalue problems with boundary conditions of the type considered in prob-
lems (P1) and (P2) was initiated by Von Below and François [12], in the particular case of the
Laplace operator for α = 1 and β > 0 a continuous function on ∂Ω.

This problem is known in the literature as the dynamic type eigenvalue problem, because it
appears in the study of parabolic equations with dynamic boundary conditions (see [25]).

Starting from this linear model, subsequent research focused on extending it to nonlinear
contexts with operators of p-Laplacian or (p, q)-Laplacian type.
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In this context, we consider the following generalized eigenvalue problem:

(Pgen) :





−(∆pu+∆qu) = λα(x) |u|r−2u in Ω,

∂u

∂νpq
= λβ(x) |u|r−2u on ∂Ω,

where p, q, r ∈ (1,∞) with p ̸= q, and α, β are nonnegative functions satisfying the hypothesis
(hαβ) formulated within problem (P1).

It is well known that the eigenfunctions of problem (Pgen) belong to the set

Cr :=

{
u ∈ W ;

∫

Ω
α |u|r−2u dx+

∫

∂Ω
β |u|r−2u dσ = 0

}
.

In the case r = q, Barbu and Moros,anu [7, Theorem 1] showed that the set of eigenvalues of

problem (Pgen) is equal to {0} ∪ (λ̃(p, q),∞), where

0 < λ̃(p, q) := inf
u∈Cq\{0}

∫
Ω |∇u|q dx∫

Ω α |u|q dx+
∫
∂Ω β |u|q dσ

.

This result generalizes both the previous cases obtained for problems (PN ) and (PS), as well
as the result obtained by Abreu and Madeira [1] for problem (Pgen) with q = 2 and p ∈ (1,∞),
p ̸= 2.

If r ̸= q, we assume, without loss of generality, that 1 < p < q. Barbu and Moros,anu [8]

proved that if either 1 < r < p < q < ∞, or 1 < q < p < r < ∞ and r ∈
(
1, q(N−1)

N−q

)
for q < N ,

then the set of eigenvalues of problem (Pgen) is [0,∞).
On the other hand, in [6], the same authors showed that if 1 < p < r < q < ∞, with

r < q(N−1)
N−q

for q < N , then there exist two strictly positive constants, 0 < λ∗ < λ∗, such that

any λ ∈ {0} ∪ [λ∗,∞) is an eigenvalue of (Pgen), while the same problem has no eigenvalues in
λ ∈ (−∞, λ∗) \ {0}.

In what follows, we will highlight the original results obtained within this thesis for the
first two problems, (P1) and (P2), which extend or generalize the contributions already existing
in the literature.
More precisely, in the works of Barbu, Burlacu, and Moros,anu [2, 4], where the previously
introduced problems (P1) and (P2) were studied, we generalized and/or extended the results
obtained for problems (PN ) and (PS) in the works [18, 19, 27, 32, 33, 36]. Indeed, by choosing
the functions α or β equal to zero or one, respectively, one recovers the Neumann or Steklov type
boundary conditions.

Regarding the results obtained in [6, 7, 8], these were extended in [4] by studying the spec-
trum of problem (P2), where we introduced potentials of order q in the equation and/or on the
boundary. Using Krasnosel’skii genus and the Lusternik–Schnirelmann Principle, we gave a pos-
itive answer to the open problem from [27], showing that problem (PR) has eigenvalues greater
than λ0.

On the other hand, the introduction of potentials of order p in problem (P1), alongside those
of order q, led to the conclusion that, in the case of problem (PR), the presence of a potential of
order p in the equation ensures a complete characterization of its spectrum. Thus, if we choose

r = q, α = 1, ρ2 = 0 in Ω, β = γ1 = 0, γ2 = const. > 0 on ∂Ω,

and the weight ρ1 ≥ 0 a.e. in Ω, with
∫
Ω ρ1(x) dx > 0, then, according to Theorem 2.1.1(b), the

spectrum of the problem is exactly the interval (λ̂q,∞), where λ̂q > 0 is defined as in formula
(3), with γ2 instead of β, according to the notations.
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The obtained results show that not only the perturbation of the operator −∆q by −∆p, but
also the perturbation of the equation or of the boundary conditions with potential-type terms of
order p can lead to obtain a continuous spectrum for the problem, while in the absence of such
perturbations there are no results that fully characterize this spectrum.

Next, we present recent work dedicated to nonlinear transmission problems, similar to problem
(P3). Transmission problems have various applications in fluid mechanics, physics, chemistry,
biology, hence the importance of their study (see Fife [20], Nicaise [35]).
Recall, for example, that Figueiredo and Montenegro [21] investigated a transmission problem
with critical exponential growth, more precisely, the nonlinearities behave like exp(α0s

2) as
|s| → ∞, for a constant α0 > 0. The authors proved that the following elliptic transmission
problem in R

2 



−∆u1 = f(x, u1) in Ω1,

−∆u2 = g(x, u2) in Ω2,

u1 = u2,
∂u1

∂ν1
= ∂u2

∂ν2
on Γ,

u2 = 0 on Σ,

has a nontrivial solution.
Also, the transmission problem with critical growth





−∆u1 = λf(x, u1) in Ω1,

−∆u2 = |u2|
2∗−2u2 in Ω2,

u1 = u2,
∂u1

∂ν1
= ∂u2

∂ν2
on Γ,

u2 = 0 on Σ,

was studied by the same authors in [22]. They showed that for sufficiently large λ, the prob-
lem admits a nontrivial solution. Other existing results for nonlinear transmission problems
approached by variational methods can be found in [23, 33].

A similar problem to (P3) was investigated by Barbu et al. in [9]. The authors considered
a bounded domain Ω ⊂ R

N , N ≥ 2, with a Lipschitz boundary ∂Ω, which is divided into two
Lipschitz subdomains, Ω1 and Ω2. In other words, Ω = Ω1 ∪ Ω2 ∪ Γ. It is assumed that the
boundary ∂Ω is split into two parts, ∂Ω1 and ∂Ω2, such that ∂Ω1 = Γ1 ∪ Γ and ∂Ω2 = Γ2 ∪ Γ.
In this setting, the following eigenvalue problem was considered:





−∆pu1 = λ |u1|
p−2u1 in Ω1,

−∆qu2 = λ |u2|
q−2u2 in Ω2,

∂u1
∂νp

= 0 on Γ1,
∂u2
∂νq

= 0 on Γ2,

u1 = u2,
∂u1
∂νp

=
∂u2
∂νq

on Γ,

(0.1)

where on the boundary, ∂u
∂νr

, r = p, q, denotes the conormal derivatives of the operators in-

volved in the problem, similarly to those in the formulation of problem (P3). Using the Lus-
ternik–Schnirelmann Principle, the authors proved the existence of a sequence of eigenvalues of
the above problem tending to infinity.

The nonlinear transmission problem (P3), investigated by us in the work Barbu,
Burlacu and Moros,anu [3], generalizes this result by including undefined potentials in the two
subdomains, which are configured differently from the case presented above. Moreover, if β = 0,
then the conditions on Σ become of Neumann type. Furthermore, using similar arguments, cases
with generalized Dirichlet or Neumann boundary conditions, as well as different partitions of the
domain (including those of the type considered in [9]), can also be studied.
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Motivation and Objectives of the Thesis

The study of eigenvalues for nonlinear operators of the (p, q)-Laplacian has significant develop-
ment in recent decades, both theoretically and in the context of applications.

The motivation of this thesis is based on the need to extend the current framework of
the theory, especially in the following directions:
(i) the simultaneous consideration of two nonlinear diffusion operators of different orders, of p-
and q-Laplacian with p ̸= q;
(ii) the inclusion of potentials with nonnegative weights in the equation and/or on the boundary;
(iii) the treatment of generalized boundary conditions, in which the parameter appears both in
the equation and in the boundary condition;
(iv) the analysis of a transmission problem between two subdomains governed by different dif-
ferential operators.

Based on these general directions, the objectives of the thesis are the following:

1 The study of an eigenvalue problem with parametric boundary conditions, in which po-
tentials with nonnegative weights of order p and q appear, both in the equation and on
the boundary. This problem, denoted by (P1), extends the classical Neumann and Steklov
cases;

2 The investigation of an asymmetric version, (P2), in which only the potentials of order q
are present, removing the symmetry between the components of order p and q. The aim is
to characterize the spectrum depending on the relative positioning of p, q, and r;

3 The analysis of a transmission problem (P3), in which the domain is divided into two
disjoint subdomains Ω1 and Ω2, with p- and q-Laplacian operators acting separately, con-
nected through continuity conditions on the solution and the flux on the common interface
Γ;

4 The proof of the existence of sequences of eigenvalues tending to infinity and, in some cases,
the complete characterization of the spectrum depending on the involved parameters;

5 The extension of recent results from the literature by using the following variational
methods: direct methods, the fibering method, min-max methods based on Krasnosel’skĭı
genus and the Lusternik-Schnirelmann Principle applied on C1− Banach manifolds.

Structure of the Thesis

The thesis begins with a chapter of Preliminaries presenting the classical notions and results
used in proving the results of the subsequent chapters, grouped into two sections: Lebesgue
spaces and Sobolev spaces, Definitions, Properties and Some Results from Variational Calculus
are included.

The next chapter (Chapter 1 in this summary) is devoted to the study of an eigenvalue prob-
lem for the (p, q)-Laplacian operator, in the presence of potentials with nonnegative weights of
order p and q, both in the equation and in the boundary conditions. The problem analyzed,
denoted above by (P1), generalizes the Neumann and Steklov cases through the appearance of
the spectral parameter λ both in the domain Ω and on its boundary. After formulating the
problem and stating the main hypotheses, some auxiliary results and the energy functional Jλ

corresponding to the studied problem are introduced. Its properties (differentiability, coerciv-
ity, semicontinuity), which are essential for subsequent proofs, are investigated. The analysis
branches depending on the position of the exponent r relative to p and q. For r ∈ {p, q}, a
complete characterization of the spectrum is obtained, being of the form (d,∞), where d > 0
depends on p or q. In the case r = q, the approach uses the Nehari manifold and the Lagrange
Multipliers Rule. For the cases r < p and r ∈ (q, q∗), the spectrum is (0,∞), and the proofs
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Introduction

rely on the coercivity of the functional and classical variational techniques. The most delicate
case, r ∈ (p, q) with r < p∗, is treated via the fibering method, leading to the determination of
an interval of eigenvalues of the form [λ∗,∞), with λ∗ > 0, while for λ < λ∗ < λ∗ the problem
admits no nontrivial solutions. Here, for θ ∈ {p, q}, we have denoted θ∗ = (N − 1)θ/(N − θ) for
θ < N and θ∗ = ∞ for θ ≥ N , the critical exponents that follow.

The results presented in this chapter were obtained within the work of Barbu, Burlacu and
Moros,anu [2].

The following chapter contains the study of an asymmetric version of the previously investi-
gated problem, denoted above by (P2), in which only potentials of order q appear, thus removing
the symmetry with respect to the exponents p and q. This asymmetric structure leads to a more
detailed investigation of the spectral behavior depending on the positioning of the exponents p,
q, and r, requiring the treatment of ten distinct cases. After presenting the problem, hypothe-
ses, and main theorems, an auxiliary problem is introduced whose first eigenvalue is essential
in proving next results. In eight of the cases, the entire set of eigenvalues of the problem is
determined. These are approached via direct methods or by using the Nehari manifold method.
For the case when q < p and r ∈ (q, p), a min-max method based on Krasnosel’skĭı genus and
the Lusternik–Schnirelmann Principle is used. This yields the existence of a sequence of eigen-
values tending to infinity, without being able to conclude that this sequence describes the entire
spectrum of the problem. At the same time, this technique allows the extension of some recent
results from the literature (especially [27]) regarding the existence of eigenvalues larger than a
constant λ0.

The results of this chapter were published in the article by Barbu, Burlacu and Moros,anu
[4].

Chapter 3 is dedicated to the study of the transmission problem (P3), in which the p- and q-
Laplacian operators act in disjoint subdomains of a domain Ω, connected by continuity conditions
on the solution and flux equilibrium. After the precise formulation of the problem and stating

the hypotheses, the functional space W̃ is introduced, equivalent to the space of functions with
components in W 1,p(Ω1) and W 1,q(Ω2), with equal traces on the interface Γ. A family of C1-class

submanifoldsMρ, ρ > 0, each having infinite genus, is introduced in W̃ , making them suitable for
the application of the Lusternik–Schnirelmann Principle. Then, an energy functional associated
with the problem, denoted J , is defined, and it is shown that its critical points conditioned by
the submanifolds introduced before correspond to weak solutions of the problem. It is proved
that the functional J is coercive on these submanifolds and satisfies the Palais–Smale condition,
which allows obtaining a sequence of eigenpairs of the problem (P3) tending to infinity. This
result is presented in Theorem 3.1.1. The chapter is structured into three sections, the last two:
Section 2.2 is dedicated to preliminary results (including the proof of the properties regarding
the infinite genus of the sets Mρ, ρ > 0, and the coercivity of J on them) and Section 2.3
contains the proof of the main result.

This chapter is based on the work of Barbu, Burlacu and Moros,anu [3].

The thesis concludes with a short chapter containing possible research directions and dissem-
ination of the results.

Keywords: Eigenvalues, (p, q)-Laplacian, Nehari manifold, C1-manifold, variational meth-
ods, nonlinear eigenvalue problem, Krasnosel’skĭı genus, nonlinear transmission problem, Lus-
ternik–Schnirelmann Principle, Sobolev spaces.
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Chapter 1

On an Eigenvalue Problem for the (p, q)-Laplacian

with Potentials of Order p and q

In this chapter, we present the original results obtained in collaboration with L. Barbu and G.
Moros,anu published in An. S

,

t. Univ. Ovidius Constant
,

a [2].
Among the most important results, we mention: Theorems 1.1.1 and 1.1.2, Lemmas 1.2.1–

1.2.3, 1.3.1–1.3.5 and 1.4.1–1.4.8.
To simplify the notation, we will omit the symbols dx and dσ in integrals, when the context

is clear and there is no ambiguity.

1.1 Formulation of the Problem
and Presentation of the Main Results

In this section, we recall the problem formulated in the Introduction, establish the notations
used and state the main results of the chapter.

Let Ω ⊂ R
N , N ≥ 2, be a bounded domain with smooth boundary ∂Ω. We consider the

eigenvalue problem associated with the operator Au = −(∆pu+∆qu)

{
Au+ ρ1(x)|u|

p−2u+ ρ2(x)|u|
q−2u = λα(x)|u|r−2u, x ∈ Ω,

∂u
∂νpq

+ γ1(x)|u|
p−2u+ γ2(x)|u|

q−2u = λβ(x)|u|r−2u, x ∈ ∂Ω.
(1.1)

In this chapter, we assume the following hypotheses hold

(hpqr) p, q, r ∈ (1,∞), p < q;

(hαβ) α ∈ L∞(Ω) and β ∈ L∞(∂Ω) are nonnegative functions that satisfy

∫

Ω

α dx+

∫

∂Ω

β dσ > 0; (1.2)

9



1.1. Formulation of the Problem and Main Results Chapter 1

(hρiγi
) ρi ∈ L∞(Ω) and γi ∈ L∞(∂Ω), i = 1, 2, are nonnegative functions that satisfy

∫

Ω

ρi dx+

∫

∂Ω

γi dσ > 0, i = 1, 2. (1.3)

The solutions u of problem (1.1) belong to the space W := W 1,q(Ω) (since q > p) and satisfy
equation (1.1)1 in the sense of distributions, while the boundary condition (1.1)2 is satisfied in
the sense of the trace.

Definition 1.1.1. A real number λ is called an eigenvalue of problem (1.1) if there exists uλ ∈
W \ {0} such that for every u ∈ W , the following equality holds:

∫

Ω

(
| ∇uλ |p−2+ | ∇uλ |q−2

)
∇uλ · ∇u+

∫

Ω

(
ρ1 | uλ |p−2 +ρ2 | uλ |q−2

)
uλu

+

∫

∂Ω

(
γ1 | uλ |p−2 + γ2 | uλ |q−2

)
uλu = λ

(
α

∫

Ω

| uλ |r−2 uλu+

∫

∂Ω

β | uλ |r−2 uλu
)
.

(1.4)

The function uλ is called an eigenfunction corresponding to the eigenvalue λ, associated with
problem (1.1).

We introduce the following notations:

Kp(u) :=

∫

Ω

(
|∇u|p + ρ1|u|

p
)
+

∫

∂Ω

γ1|u|
p ,

Kq(u) :=

∫

Ω

(
|∇u|q + ρ2|u|

q
)
+

∫

∂Ω

γ2|u|
q ,

kθ(u) :=

∫

Ω

α|u|θ +

∫

∂Ω

β|u|θ ∀ u ∈ W, θ ∈ {p, q, r},

(1.5)

λ̂q := inf
u∈W\Z

Kq(u)

kq(u)
, λ̂p := inf

u∈W\Z

Kp(u)

kp(u)
, (1.6)

λ∗ := inf
u∈W\Z

Γ
Kp(u)

ωKq(u)
1−ω

kr(u)
, λ∗ =

r

pωq1−ω
λ∗,

ω :=
q − r

q − p
, Γ :=

q − p

(r − p)1−ω(q − r)ω
.

(1.7)

Let us note that all eigenfunctions uλ corresponding to an eigenvalue λ > 0 satisfy the
condition kr(uλ) > 0, thus all eigenfunctions corresponding to problem (1.1) will belong to the
set W \ Z, where

Z := {u ∈ W ; kr(u) = 0}.

The main results of this chapter are the following two theorems.

Theorem 1.1.1 ([2]). Assume that the hypotheses (hpqr), (hαβ), (hρiγi
) are satisfied.

(a) If r = p, then λ̂p > 0 and the set of eigenvalues of problem (1.1) is the interval (λ̂p,∞);

(b) If r = q, then λ̂q > 0 and the set of eigenvalues of problem (1.1) is the interval (λ̂q,∞).
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1.2. Auxiliary Results Chapter 1

Theorem 1.1.2 ([2]). Assume that the hypotheses (hpqr), (hαβ), and (hρiγi
) are satisfied.

(a) If
(
r < p

)
or
(
r > q with r < q(N − 1)/(N − q) = q∗ in the case q < N

)
, then the set of

eigenvalues of problem (1.1) is the interval (0,∞);
(b) If p < r < q with r < p(N − 1)/(N − p) = p∗ in the case p < N, then 0 < λ∗ < λ∗ and every
λ ∈ [λ∗,∞) is an eigenvalue of problem (1.1).

Moreover, for any λ ∈ (−∞, λ∗), problem (1.1) has only the trivial solution.
Furthermore, the two constants λ∗ and λ∗ can be expressed as follows:

λ∗ = inf
u∈W\Z

Kp(u) +Kq(u)

kr(u)
, λ∗ = inf

u∈W\Z

1
p
Kp(u) +

1
q
Kq(u)

1
r
kr(u)

. (1.8)

1.2 Auxiliary Results

This section gathers several technical results that will be used in the proofs of the theorems
presented earlier.

Lemma 1.2.1 ([2]). Assume that hypothesis (hαβ) is satisfied. If

θ, r̃ ∈ (1,∞) and
[
r̃ < θ∗ if θ < N

]
,

then
∥ u ∥θ,r̃:=∥ ∇u ∥Lθ(Ω) +

(
kr̃(u)

) 1

r̃ ∀ u ∈ W 1,θ(Ω)

is a norm on W 1,θ(Ω), equivalent to the standard one.

In the following, for θ > 1, we consider the following eigenvalue problem:

{
−∆θu+ ρ(x)|u|θ−2u = λα(x)|u|θ−2u in Ω,

|∇u|θ−2 ∂u
∂ν

+ γ(x)|u|θ−2u = λβ(x)|u|θ−2u on ∂Ω,
(1.9)

where ρ ∈ L∞(Ω) and γ ∈ L∞(∂Ω) are given nonnegative functions that satisfy

∫

Ω

ρ +

∫

∂Ω

γ > 0. (1.10)

We define the following C1-class functional:

Θθ : W
1,θ(Ω) \ Zθ → (0,∞), Θθ(u) :=

Kθ(u)

kθ(u)
∀ u ∈ W 1,θ(Ω) \ Zθ,

where

Kθ(u) :=

∫

Ω

(
|∇u|θ + ρ|u|θ

)
+

∫

∂Ω

γ|u|θ.

Lemma 1.2.2 ([2]). Assume that hypothesis (hαβ) is satisfied, and that ρ ∈ L∞(Ω), γ ∈ L∞(∂Ω)

are nonnegative functions that satisfy (1.10). Then, there exists u∗ ∈ W 1,θ(Ω) \ Zθ such that

Θθ(u∗) = λθ := inf
u∈W 1,θ(Ω)\Zθ

Θθ(u) > 0.

Moreover, λθ is the smallest eigenvalue of problem (1.9), and u∗ is an eigenfunction corresponding
to the eigenvalue λθ.
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1.3. Proof of Theorem 1.1.1 Chapter 1

For λ > 0, we define the energy functional associated with problem (1.1):

Jλ : W → R, Jλ(u) =
1

p
Kp(u) +

1

q
Kq(u)−

λ

r
kr(u), ∀ u ∈ W. (1.11)

The coercivity of the functional Jλ on W is studied in the following lemma.

Lemma 1.2.3 ([2]). Assume that the hypotheses (hpqr), (hαβ), (hρiγi
) are satisfied. Then, for

any r ∈ (1, q), the functional Jλ is coercive on W , i.e.,

lim
∥u∥→∞

Jλ(u) = ∞.

1.3 Proof of Theorem 1.1.1

In this section, we assume that the hypotheses (hpqr), (hαβ) and (hρiγi
) are satisfied and will use

them without further mention in the intermediate results.

1.3.1 Proof of Theorem 1.1.1 (a) (Case r = p)

The proof of Theorem 1.1.1 (a) is based on the following two lemmas.

Lemma 1.3.1 ([2]). If r = p, then λ̂p > 0 and there are no eigenvalues of problem (1.1) in the

interval (−∞, λ̂p]. Moreover, the following inequality holds:

λ̃p := inf
u∈W\Z

1
q
Kq(u) +

1
p
Kp(u)

1
p
kp(u)

= λ̂p. (1.12)

Lemma 1.3.2 ([2]). If r = p, then every λ > λ̂p is an eigenvalue of problem (1.1).

Using Lemmas 1.3.1 and 1.3.2, Theorem 1.1.1 (a) is completely proven.

1.3.2 Proof of Theorem 1.1.1 (b) (Case r = q)

We observe that, in the case r = q, the functional Jλ takes the following form:

Jλ : W → R, Jλ(u) =
1

p
Kp(u) +

1

q
Kq(u)−

λ

q
kq(u) ∀ u ∈ W. (1.13)

In this case, the functional Jλ is no longer coercive on W , so a different method must be
used. To this purpose, for λ > 0, we define the Nehari manifold:

Nλ =
{
u ∈ W \ {0}; ⟨J ′

λ(u), u⟩ = 0
}
= {u ∈ W \ {0}; Kp(u) +Kq(u)− λkq(u) = 0} .

Lemma 1.3.3 ([2]). If r = q, then λ̂q > 0 and there are no eigenvalues of problem (1.1) in the

interval (−∞, λ̂q]. Moreover, the following equality holds:

λ̃q := inf
u∈W\Z

q
p
Kp(u) +Kq(u)

kq(u)
= λ̂q. (1.14)
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1.4. Proof of Theorem 1.1.2 Chapter 1

Lemma 1.3.4 ([2]). Let λ > λ̂q. If r = q, then there exists a point u∗ ∈ Nλ at which Jλ attains
its minimum over the Nehari manifold Nλ, and

mλ := inf
u∈Nλ

Jλ(u) > 0.

Lemma 1.3.5 ([2]). Let λ > λ̂q. If r = q then the minimizer u∗ ∈ Nλ from Lemma 1.3.4 is an
eigenfunction of problem (1.1) corresponding to the eigenvalue λ.

Using Lemmas 1.3.3, 1.3.4 and 1.3.5, Theorem 1.1.1 (b) is fully proven.

1.4 Proof of Theorem 1.1.2

The proof of Theorem 1.1.2 is based on the following lemmas, in which we assume the hypotheses
(hpqr), (hρiγi

) and (hαβ) without stating them in each lemma.

1.4.1 Proof of Theorem 1.1.2 (a) (Case r < p)

Lemma 1.4.1 ([2]). If r < p then any λ > 0 is an eigenvalue of problem (1.1).

1.4.2 Proof of Theorem 1.1.2 (a) (Case r ∈ (q, q∗))

Let λ > 0 be a fixed real number. Since in the case r ∈ (q, q∗) the functional Jλ is no longer
coercive on W , we define a new Nehari manifold as follows:

N̂λ =
{
u ∈ W \ {0}; ⟨J ′

λ(u), u⟩ = Kp(u) +Kq(u)− λkr(u) = 0
}
. (1.15)

Lemma 1.4.2 ([2]). Assume that the conditions q < r and (r < q(N−1)/(N−q) = q∗ if q < N)

are satisfied. Then there exists a point u∗ ∈ N̂λ at which the functional Jλ attains its minimum

over the manifold N̂λ and
mλ := inf

u∈N̂λ

Jλ(u) > 0.

Lemma 1.4.3 ([2]). Assume that q < r and (r < q∗ if q < N). Then the minimizer u∗ ∈ N̂λ

from Lemma 1.4.2 is an eigenfunction of problem (1.1) corresponding to the eigenvalue λ.

In conclusion, using Lemmas 1.4.1 through 1.4.3, Theorem 1.1.2 (a) is fully proven.

1.4.3 Proof of Theorem 1.1.2 (b) (Case r ∈ (p, q))

The proof of this result requires a different approach compared to the previous cases, since the
functional Jλ is neither coercive on W nor bounded below on the Nehari manifold.

We will prove Theorem 1.1.2 (b), as in previous cases, using a series of lemmas that assume
the hypotheses (hpqr), (hρiγi

) and (hαβ) without stating them in each lemma.

Lemma 1.4.4 ([2]). Assume that p < r < q and r < p∗ if p < N . Then 0 < λ∗ < λ∗.

Lemma 1.4.5 ([2]). Assume that p < r < q and r < p∗ if p < N . Then, the constants λ∗ and
λ∗ defined in relation (1.7) can be equivalently expressed as:

λ∗ = inf
u∈W\Z

Kp(u) +Kq(u)

kr(u)
, λ∗ = inf

u∈W\Z

1
p
Kp(u) +

1
q
Kq(u)

1
r
kr(u)

. (1.16)
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1.4. Proof of Theorem 1.1.2 Chapter 1

We define the functional

Φ : W \ Z → (0,∞), Φ(u) := Γ
Kp(u)

ωKq(u)
1−ω

kr(u)
∀u ∈ W \ Z.

Lemma 1.4.6 ([2]). We assume that p < r < q and r < p∗ if p < N . Then there exists
u∗ ∈ W \ Z such that

λ∗ = Φ(u∗) = inf
u∈W\Z

Φ(u).

Lemma 1.4.7 ([2]). We assume that p < r < q and r < p∗ if p < N . If u∗ ∈ W \ Z is the
minimizer found in Lemma 1.4.6, then

u∗ =

(
q

p

) 1

q−p

t(u∗)u∗ ∈ W \ Z, (1.17)

where t(u∗) is an eigenfunction of problem (1.1) corresponding to the eigenvalue λ∗.
Moreover,

Jλ∗(u∗) = 0.

Lemma 1.4.8 ([2]). We assume that p < r < q and r < p∗ if p < N . Then any number
λ ∈ (λ∗,∞) is an eigenvalue of problem (1.1) and for each λ ∈ (−∞, λ∗) \ {0}, problem (1.1)
has only the trivial solution.

In conclusion, using Lemmas 1.4.4, 1.4.5, 1.4.7 and 1.4.8, the proof of Theorem 1.1.2 (b) is
complete.
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Chapter 2

On an Eigenvalue Problem

for the (p, q)-Laplacian with q-Type Potentials

This chapter is dedicated to presenting the results obtained in collaboration with L. Barbu and
G. Moros,anu published in Mediterr. J. Math. [4].
We list the most important among them: Theorems 2.1.1–2.1.3, Lemma 2.2.1, Lemmas 2.3.1–
2.3.6, as well as Lemmas 2.4.1–2.4.2.

For the sake of simplicity, in what follows we will omit the measure elements dx and dσ from
integrals where there is no risk of confusion.

2.1 Problem Formulation and Main Results

In this section we recall the problem formulated in the Introduction, establish the notations used
hereafter and state the main results of the chapter.

Let Ω ⊂ R
N , with N ≥ 2, be a bounded domain with smooth boundary ∂Ω. We consider in

Ω the eigenvalue problem associated to the operator

−∆p −∆q

{
−(∆pu+∆qu) + ρ(x)|u|q−2u = λα(x)|u|r−2u in Ω,
∂u
∂νpq

+ γ(x)|u|q−2u = λβ(x)|u|r−2u on ∂Ω.
(2.1)

The entire analysis in this chapter relies on the following hypotheses:

(hpqr) p, q, r ∈ (1,∞), p ̸= q;

(hαβ) α ∈ L∞(Ω) and β ∈ L∞(∂Ω) are given nonnegative functions satisfying

∫

Ω
α+

∫

∂Ω
β > 0; (2.2)

(hργ) ρ ∈ L∞(Ω) and γ ∈ L∞(∂Ω) are given nonnegative functions such that

∫

Ω
ρ+

∫

∂Ω
γ > 0; (2.3)
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2.1. Problem Formulation and Main Results Chapter 2

(h) If r = q, then there does not exist a positive constant k0 such that

ρ = k0 α a.e. in Ω and γ = k0 β a.e. on ∂Ω.

Imposing the above hypotheses and analyzing the position of r relative to p and q, we can
fully describe the spectrum of the problem stated above in eight out of the ten possible cases. In
the other two cases, we obtain only subsets of the spectrum (see Theorems 2.1.1–2.1.3 presented
below).

Since we only assumed p ̸= q, the solution u of problem (2.1) is an element of the Sobolev

space W := W 1,max{p,q}(Ω), which satisfies equation (2.1)1 in the distributional sense and the
boundary condition (2.1)2 in the trace sense. In this sense, we have the following definition.

Definition 2.1.1. (i) A function u ∈ W is called a weak solution of problem (2.1) if

∫

Ω
(|∇u|p−2 + |∇u|q−2)∇u · ∇v +

∫

Ω
ρ|u|q−2uv +

∫

∂Ω
γ|u|q−2uv

= λ
(∫

Ω
α|u|r−2uv +

∫

∂Ω
β|u|r−2uv

)
∀v ∈ W.

(2.4)

(ii) A real number λ is called an eigenvalue of problem (2.1) if it admits a nontrivial weak
solution uλ ∈ W \ {0}. In this case, the function uλ is called an eigenfunction corresponding to
the eigenvalue λ and the pair (λ, uλ) is called an eigenpair of problem (2.1).

All eigenfunctions of problem (2.1) satisfy the relation

jr(uλ) > 0,

where

jr(u) :=

∫

Ω
α|u|r +

∫

∂Ω
β|u|r ∀u ∈ W, (2.5)

hence they belong to the set

W \ Z, Z := {u ∈ W : jr(u) = 0}. (2.6)

We also introduce the following constants, which will play an important role in the results
obtained below:

Λq := inf
u∈W\Z

∫
Ω(|∇u|q + ρ|u|q) +

∫
∂Ω γ|u|q

jr(u)
, λ0 :=

∫
Ω ρ+

∫
∂Ω γ

jr(1)
. (2.7)

Moreover, for any σ > 0, we define the set

Mσ := {u ∈ W : jr(u) = σ}. (2.8)

The main results of the chapter are the following three theorems.

Theorem 2.1.1 ([4]). Assume that the hypotheses (hpqr), (hαβ) and (hργ) are satisfied.
If r = q and the assumption (h) holds, then the constants Λq and λ0 defined in (2.7) are positive.
Moreover, Λq < λ0 and any λ ∈ (Λq, λ0) is an eigenvalue of problem (2.1). Furthermore, problem
(2.1) has only trivial solutions for λ in the interval (−∞,Λq].

Theorem 2.1.2 ([4]). Assume that the hypotheses (hpqr), (hαβ) and (hργ) are satisfied. In each
of the following cases

(a) r = p; (b) max{p, q} < r < max{p∗, q∗}; (c) r < min{p, q}; (d) p < r < q,
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2.2. Auxiliary Results Chapter 2

the set of eigenvalues of problem (2.1) is the interval (0,∞).

Theorem 2.1.3 ([4]). Assume that the hypotheses (hpqr), (hαβ) and (hργ) are satisfied. If r = q
or q < r < p, then for every σ > 0 the problem (2.1) has infinitely many pairs of eigen-solutions
of the form

(λn,±un) ∈ R×Mσ with λn → ∞ as n → ∞.

2.2 Auxiliary Results

For clarity we use the following notations:

Kξ(u) :=

∫

Ω
|∇u|ξ, ξ ∈ {p, q}, kq(u) :=

∫

Ω
ρ|u|q +

∫

∂Ω
γ|u|q, u ∈ W. (2.9)

Next, we state an auxiliary result in order to prove the theorems stated earlier.
For θ > 1, consider the following eigenvalue problem

{
−∆θu+ ρ(x)|u|θ−2u = λα(x)|u|θ−2u in Ω,

|∇u|θ−2 ∂u
∂ν

+ γ(x)|u|θ−2u = λβ(x)|u|θ−2u on ∂Ω.
(2.10)

We define the C1-functional

Θ : W 1,θ(Ω) \ Zθ → (0,∞), Θ(u) :=
Kθ(u) + kθ(u)

jθ(u)
∀u ∈ W 1,θ(Ω) \ Zθ.

The following lemma provides an important characterization of the minimum value of the
functional Θ on the set W 1,θ(Ω) \ Zθ.

Lemma 2.2.1 ([4]). There exists u∗ ∈ W 1,θ(Ω) \ Zθ such that

Θ(u∗) = λθ := inf
u∈W 1,θ(Ω)\Zθ

Θ(u) > 0. (2.11)

Moreover, λθ is the smallest eigenvalue of problem (2.10) and u∗ is an eigenfunction correspond-
ing to the eigenvalue λθ.

2.3 Proof of Theorems 2.1.1 and 2.1.2

The proof of the results in this section will be carried out with the help of intermediate lemmas,
where we assume that the hypotheses (hpqr), (hαβ) and (hργ) are satisfied. Moreover, in the
particular case r = q, we will also assume that hypothesis (h) holds.

Lemma 2.3.1 ([4]). If r = q, then Λq > 0 and there are no eigenvalues of problem (2.1) in the
interval (−∞,Λq]. Moreover,

Λq = Λ̃q := inf
u∈W\Z

1
q

(
Kq(u) + kq(u)

)
+ 1

p
Kp(u)

1
q
jq(u)

. (2.12)

The following lemma expresses an inequality relation between the variational constants de-
fined in (2.7).

Lemma 2.3.2 ([4]). If r = q, then Λq < λ0.
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2.3. Proof of Theorems 2.1.1 and 2.1.2 Chapter 2

Let λ > 0. Consider the functional Jrλ : W → R, of class C1, defined by

Jrλ(u) =
1

p
Kp(u) +

1

q

(
Kq(u) + kq(u)

)
−

λ

r
jr(u). (2.13)

Regarding the coercivity of the functional Jrλ, we have the following result.

Lemma 2.3.3 ([4]). Assume that one of the following two conditions is satisfied:

(i) 1 < r < q and λ > 0;

(ii) r = q < p and λ ∈ (Λq, λ0).

Then the functional Jrλ is coercive on the space W , i.e.,

lim
∥u∥→∞

Jrλ(u) = ∞.

Assuming the conditions of Lemma 2.3.3 hold, we obtain the following result regarding the
existence of eigenvalues for problem (2.1).

Lemma 2.3.4 ([4]). (i) If r < q, then every real number λ > 0 is an eigenvalue of prob-
lem (2.1);

(ii) If r = q < p, then every real number λ ∈ (Λq, λ0) is an eigenvalue of problem (2.1).

Next, we present the complementary cases to those considered in Lemma 2.3.4.
If r > q or r = q > p, we cannot expect the functional Jrλ to remain coercive on W .

Therefore, for λ > 0, we consider the Nehari manifold associated with it, defined as

Nrλ = {u ∈ W \ {0} : ⟨J ′
rλ(u), u⟩ = Kp(u) +Kq(u) + kq(u)− λjr(u) = 0}.

Lemma 2.3.5 ([4]). Assume that one of the following two hypotheses is fulfilled:

(i) r = q > p and λ ∈ (Λq, λ0);

(ii) r ̸= q, max{p, q} ≤ r < max{p∗, q∗} and λ > 0, where p∗ and q∗ are the critical exponents
defined later.

Then there exists u∗ ∈ Nrλ at which the functional Jrλ attains its minimum on the manifold
Nrλ, i.e.,

mrλ := inf
u∈Nrλ

Jrλ(u) > 0.

The last result necessary for the proof of Theorems 2.1.1 and 2.1.2 shows that the minimum
u∗ ∈ Nrλ obtained in Lemma 2.3.5 is, in fact, a critical point of the functional Jrλ.

Lemma 2.3.6 ([4]). (i) If r = q > p, then any real number λ ∈ (Λq, λ0) is an eigenvalue of
problem (2.1);

(ii) If r ̸= q and max{p, q} ≤ r < max{p∗, q∗}, then any real number λ ∈ (0,∞) is an eigenvalue
of problem (2.1).

In conclusion, using Lemma 2.3.4 and Lemma 2.3.6, Theorems 2.1.1 and 2.1.2 are fully proved.
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2.4. Proof of Theorem 2.1.3 Chapter 2

2.4 Proof of Theorem 2.1.3

We analyze the case q < r < p, where the functional Jrλ is neither coercive on the space W nor
bounded below on the manifold Nrλ.

If r = q and λ ≥ λ0, as we noted in the previous section, we will need to consider other
arguments to deduce that problem (2.1) has eigenvalues λ ≥ λ0.
Consequently, to obtain the multiplicity result stated in Theorem 2.1.3, we will use the notion
of genus in the sense of Krasnosel’skĭı.

One of the most important properties of the manifold Mσ is stated in the following result.

Lemma 2.4.1 ([4]). For every positive integer k, there exists a compact, symmetric set K ⊂ Mρ

such that its genus satisfies γ(K) = k.

Consider the following functional J : W → R, defined by

J (u) =
1

p
Kp(u) +

1

q

(
Kq(u) + kq(u)

)
∀u ∈ W. (2.14)

An important property of the functional defined above is given by the following lemma.

Lemma 2.4.2 ([4]). If r = q or q < r < p, then the functional J restricted to the manifold Mσ

satisfies the Palais–Smale condition. That is, every sequence {un} ⊂ Mσ such that the sequence
{J (un)} is bounded and

J ′
Mσ

(un) → 0,

contains a convergent subsequence.

Finally, using the Lusternik–Schnirelmann Principle and the lemmas above, one can conclude
that there exists an infinite sequence of critical points

±un, n ≥ 1,

for the functional J in Mσ.
To each critical point ±un correspond Lagrange multipliers λn, thus yielding an infinite

sequence of eigenpairs of problem (2.1) of the form

(λn,±un) ∈ (0,∞)×Mσ, n ≥ 1.

Moreover, the sequence λn → ∞ as n → ∞, which completes the proof of Theorem 2.1.3.
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Chapter 3

A Nonlinear Transmission Eigenvalue Problem

with a Neumann–Robin Type Boundary Condition

This chapter gathers a series of results obtained in collaboration with L. Barbu and G. Moros,anu,
published in Math. Methods Appl. Sci. [3].

Among these, we mention: Theorem 3.1.1, Lemmas 3.2.1, 3.2.2, as well as Lemmas 3.3.1–
3.3.3.

For the sake of simplifying notations, we will omit the measures dx and dσ in integrals
whenever the context is clear and no ambiguity arises.

3.1 Problem Formulation
and Presentation of the Main Results

In this section, we recall the problem mentioned in the Introduction, establish the necessary
notations and state the main result of the chapter.

Let Ω ⊂ R
N , N ≥ 2 be a bounded domain with smooth boundary Σ, and let Ω1 be a

subdomain with smooth boundary Γ such that Ω1 ⊂ Ω and Ω2 = Ω \ Ω1.
We consider in Ω the following transmission eigenvalue problem:





−∆pu1 + γ1(x)|u1|
r−2u1 = λ|u1|

p−2u1 in Ω1,

−∆qu2 + γ2(x)|u2|
s−2u2 = λ|u2|

q−2u2 in Ω2,

u1 = u2,
∂u1

∂νp
= ∂u2

∂νq
on Γ,

∂u2

∂ν
+ β(x)|u2|

ζ−2u2 = 0 on Σ,

(3.1)

where λ is a real parameter.
Throughout the chapter, we will assume that the following hypotheses hold:

(h1)





p, q, r, s, ζ ∈ (1,∞), p ≤ q, ζ < q∗,

r < p
(
1 + p

N

)
if r > p and p < N,

s < q
(
1 + q

N

)
if s > q and q < N.

(3.2)

(h2) γi ∈ L∞(Ωi), i = 1, 2, β ∈ L∞(Σ), β ≥ 0 a.e. on Σ.
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3.1. Problem Formulation and Presentation of the Main Results Chapter 3

For 1 < θ ≤ ∞, we denote the usual norms of the Lebesgue spaces Lθ(Ωi) and Lθ(Σ) by
∥ · ∥iθ, i = 1, 2, respectively ∥ · ∥∂θ.

Obviously, the solutions u = (u1, u2) of problem (3.1) belong to the space

W :=
{
u ∈ W 1,p(Ω); u|Ω2

∈ W 1,q(Ω2)
}
,

where ui := u|Ωi
, i = 1, 2. On W we consider the usual norm

∥u∥ := ∥u1∥1 + ∥u2∥2 ∀u = (u1, u2) ∈ W, (3.3)

where the norms ∥ · ∥i, i = 1, 2 are defined by

∥u1∥1 := ∥∇u1∥1p + ∥u1∥1p, ∥u2∥2 := ∥∇u2∥2q + ∥u2∥2q. (3.4)

The space W defined above can be identified with the space

W̃ :=
{
ũ = (u1, u2) ∈ W 1,p(Ω1)×W 1,q(Ω2); u1 = u2 on Γ

}
, (3.5)

which implies that W is a reflexive Banach space.

Definition 3.1.1. A real number λ is called an eigenvalue of problem (3.1) if the problem admits

a weak solution ũλ = (u1λ, u2λ) ∈ W̃ \ {(0, 0)}.
In this case, ũλ is called an eigenfunction associated to the eigenvalue λ and the pair (λ, ũλ) is
called an eigenpair of problem (3.1).

The following result follows by an argument similar to the one used in [9, Proposition 1.1]. It
provides a characterization of the eigenvalues of problem (3.1).

Proposition 3.1.1 ([3]). A real number λ is an eigenvalue of problem (3.1) if and only if there

exists ũλ = (u1λ, u2λ) ∈ W̃ \{(0, 0)} such that for every (v1, v2) ∈ W̃ the following equality holds:

∫

Ω1

|∇u1λ|
p−2∇u1λ · ∇v1 +

∫

Ω2

|∇u2λ|
q−2∇u2λ · ∇v2

+

∫

Ω1

γ1|u1λ|
r−2u1λv1 +

∫

Ω2

γ2|u2λ|
s−2u2λv2

+

∫

Σ
β|u2λ|

ζ−2u2λv2 dσ

= λ

(∫

Ω1

|u1λ|
p−2u1λv1 +

∫

Ω2

|u2λ|
q−2u2λv2

)
.

(3.6)

Let ρ > 0. Consider the subset Mρ of the space W̃ defined by

Mρ :=
{
ũ = (u1, u2) ∈ W̃ :

1

p

∫

Ω1

|u1|
p +

1

q

∫

Ω2

|u2|
q = ρ

}
. (3.7)

The main result of this chapter is the following theorem.

Theorem 3.1.1. ([3]) Assume hypotheses (h1) and (h2) hold. Then, for every ρ > 0, there
exists a sequence of eigenpairs (

λn,±(u1n, u2n)
)
n

of problem (3.1), with (
(u1n, u2n)

)
n
⊂ Mρ
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3.2. Auxiliary Results Chapter 3

and
λn → +∞ as n → ∞.

3.2 Auxiliary Results

In this section we present some properties of the set Mρ, defined in (3.7), which are used in the
proof of the main result.

We introduce the following notations:

Kpq(u1, u2) :=
1

p

∫

Ω1

|∇u1|
p +

1

q

∫

Ω2

|∇u2|
q,

krsζ(u1, u2) :=
1

r

∫

Ω1

γ1|u1|
r +

1

s

∫

Ω2

γ2|u2|
s +

1

ζ

∫

Σ
|u2|

ζ ,

jpq(u1, u2) :=
1

p

∫

Ω1

|u1|
p +

1

q

∫

Ω2

|u2|
q ∀(u1, u2) ∈ W̃ .

(3.8)

We define a C1-class functional J : W̃ → R by

J (ũ) = Kpq(u1, u2) + krsζ(u1, u2) ∀ũ = (u1, u2) ∈ W̃ . (3.9)

Clearly, the function jpq : W̃ → R is of class C1. Due to the fact that for every ũ = (u1, u2) ∈
Mρ, we have ⟨j′pq(ũ), ũ⟩ ≠ 0, it follows that ρ is a regular value of this functional. Therefore,

Mρ = j−1
pq (ρ) is a Banach C1-submanifold of W̃ with codimension 1.

Moreover, the tangent space at a point ũ = (u1, u2) ∈ Mρ is given by the equality

TũMρ = ker j′pq(ũ). (3.10)

We define the C1-functional J : W̃ → R again by

J (ũ) = Kpq(u1, u2) + krsζ(u1, u2) ∀ũ = (u1, u2) ∈ W̃ . (3.11)

Clearly, J ∈ C1(Mρ,R).
We denote by JMρ

the restriction of J to Mρ and by J ′
Mρ

(ũ) the differential of J at ũ ∈ Mρ

relative to Mρ, i.e., the restriction of J ′(ũ) to the tangent space TũMρ.

Lemma 3.2.1 ([3]). At any point ũ ∈ Mρ, the differential of J relative to Mρ satisfies the
equality

J ′
Mρ

(ũ) = J ′(ũ)− λ(ũ)j′pq(ũ), where λ(ũ) =
⟨J ′(ũ), ũ⟩

⟨j′pq(ũ), ũ⟩
. (3.12)

The following lemma establishes that Mρ has infinite genus.

Lemma 3.2.2 ([3]). For every positive integer k, there exists a symmetric and compact subset
K ⊂ Mρ such that γ(K) = k.

3.3 Proof of Theorem 3.1.1

In this section, we assume that hypotheses (h1) and (h2) are satisfied and we will use them
without further mention.

The proof of Theorem 3.1.1 follows as a consequence of some intermediate results.

22



3.3. Proof of Theorem 3.1.1 Chapter 3

Lemma 3.3.1 ([3]). The functional JMρ
is coercive, i.e.,

lim
∥(u1,u2)∥→∞,(u1,u2)∈Mρ

J (u1, u2) = +∞.

An important role in the proof of the main result is played by the following inequality.

Lemma 3.3.2 ([3]). Let K := K ′
pq : W̃ → W̃ ∗ be the derivative of the functional Kpq defined in

(3.8)1. Then, for every ũ = (u1, u2), ṽ = (v1, v2) ∈ W̃ , the following inequality holds:

⟨K(ũ)−K(ṽ), ũ− ṽ⟩ ≥
(
∥∇u1∥

p−1
1p − ∥∇v1∥

p−1
1p

)(
∥∇u1∥1p − ∥∇v1∥1p

)

+
(
∥∇u2∥

q−1
2q − ∥∇v2∥

q−1
2q

)(
∥∇u2∥2q − ∥∇v2∥2q

)

≥ 0.

(3.13)

Lemma 3.3.3 ([3]). The functional J satisfies the Palais–Smale condition relative to the man-
ifold Mρ.

The existence of an infinite number of critical points ±ũn, n ≥ 1, for the functional J on the
set Mρ is a consequence of Lemmas 3.2.2, 3.3.1, 3.3.3 and the Lusternik–Schnirelmann theorem.

To each critical point ±ũn, n ≥ 1, corresponds a Lagrange multiplier λn, which leads to an
infinite sequence of eigenpairs (λn,±ũn), n ≥ 1, of problem (3.1).

Finally, it is shown that λn → ∞, thus completing the proof of Theorem 3.1.1.
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General Conclusions

Closing Remarks

The results obtained in this thesis contribute to the extension of the spectral theory for nonlinear
operators of (p, q)-Laplacian in the presence of potentials of order q and/or p, as well as general-
ized boundary conditions. The study of the two problems presented in Chapters 1 and 2 allowed
the derivation of complete or partial characterizations of the spectrum, through the application
of combined variational methods adapted to the considered context.

Moreover, the analysis in Chapter 3 of a nonlinear transmission problem, where the p- and q-
Laplacian operators act on different subdomains, addressed a topic less explored in the literature
but with important theoretical potential.

Future Research Directions

The results presented in this thesis suggest several possible directions for further research. Among
these, we mention:

(i) Obtaining similar results to those in Chapters 1 and 2 in the case where potentials with
indefinite weights (i.e., those that may change sign) are introduced. In such cases, some
of the arguments used in this work no longer apply, thus requiring the use of alternative
techniques;

(ii) The analysis of transmission problems with multiple subdomains and different elliptic op-
erators in each subdomain, including cases where the subdomains interact via nonlinear
flux conditions;

(iii) Investigation of eigenvalue problems associated with the operators studied in this work in
the context of unbounded domains, for example, on R

N or on R
N \ Ω, where Ω ⊂ R

N is a
bounded domain.
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https://doi.org/10.1007/s00009-023-02431-0
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[18] N. Costea, G. Moroşanu, Steklov-type eigenvalues of ∆p +∆q, Pure Appl. Funct. Anal., 3(1)(2018), 75-89.
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[22] G.M. Figueiredo, M. Montenegro, On a Nonlinear Elliptic Transmission Problem with Critical Growth, J.
Convex Anal., 20(2013), 947–954.

[23] G. M. Figueiredo, G. Siciliano, Normalized Solutions for an Horizontal Transmission Problem, Appl. Anal.,
100(15)(2021), 3174-3181.

[24] D. Fortunato, L. Orsina, L. Pisani, Born-Infeld Type Equations for Electrostatic Fields, J. Math. Phys,. 43
(2002), 5698-5706.

[25] G. François, Spectral Asymptotics Stemming from Parabolic Equations under Dynamical Boundary Condi-
tions, Asymptot. Anal., 46(1)(2006), 43-52.

[26] L. Gasinski, N.S. Papageorgiou, Nonlinear Analysis, Chapman and Hall/CRC Taylor and Francis Group,
Boca Raton, 2005.
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