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Introduction

The p-Laplacian operator, also known as the p-harmonic operator and denoted by A,,, represents
one of the most studied operators in the theory of partial differential equations. Defined for
p € (1,00) by

Apu = div (|VuP~2Va) ,

this operator is nonlinear for any p # 2, while in the particular case p = 2, it coincides with the
Laplace operator.

Its importance is justified by numerous applications in physics and engineering: modeling
flows in porous media (the nonlinear Darcy law), behavior of plastic materials, nonlinear heat
transfer, glacier dynamics, or the description of Brownian motion. For details, see Benedikt et
al. [15], Lindqvist [29], and Barbu, Rehmeier and Réckner [10].

To introduce the classical eigenvalue problems associated with the p-Laplacian operator, we
consider a bounded domain ¢ RV, with N > 2, having smooth boundary 9. The eigenvalue
problem associated with the operator —A,, with Dirichlet boundary conditions is:

0 —Apu = AulP?u in Q,
(Pp) :
v = 0 on 0.

A real number ) is an eigenvalue of this problem if there exists u) € VVO1 P(2)\ {0} such that
/ |Vur[P"2Vuy - Vw dz = )\/ lux P 2upyw dz, Vw € Wol’p(Q).
Q Q

It is known that problem (PP) admits a sequence of eigenpairs (A, uy,), with
0<)\1<)\2§)\3§~-'—>OO,

obtained by variational methods, the most well-known being based on the Krasnosel’skii genus

and the Lusternik—Schnirelmann Principle (see Gasinski and Papageorgiou [26, Section 6.2]).
Except for the cases p = 2 or N = 1, it is unknown whether the spectrum consists solely of

these eigenvalues (see Gasinski and Papageorgiou [26, Sections 6.1 and 6.3]). Thus, the spectrum

of the operator —A,,, defined on the Sobolev space T/VO1 P(Q1), represents an open problem for
decades, except for the first eigenvalue \; (called the principal eigenvalue). This eigenvalue is
simple and has an associated eigenfunction strictly positive in Q (see Lé [28, Theorem 5.1]).
Moreover, A1 can be variationally characterized as the minimum of the Rayleigh quotient, that

is,
VulP

A1 = min 7f9’ |

weWg Q) Jo [ulP

)

(see Motreanu et al. [34, Proposition 9.6]).

Similar results also exist for other types of boundary conditions, such as Neumann, Robin,
or Steklov (see Lé [28]).

The operator —(A, + Ay), with p,¢ € (1,00), p # ¢, also known as the —(p, ¢)-Laplacian
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operator, represents a perturbation of the operator —A,. Unlike —A,,, this operator is nonho-
mogeneous. Consequently, the application of variational techniques leads, in certain cases, to
the determination of the entire set of eigenvalues. We will refer to these results in the following
sections.

The —(p, q)-Laplacian operator is a combination of two nonlinear diffusions of different orders,
reflecting the interaction of two transfer mechanisms with distinct regimes. Due to this structure,
it has numerous applications in mathematical physics. For example, in the case when p = 2 and
g > 1, the operator A 4 a,A,, with a; > 0, appears in the Born-Infeld theory for electrostatic
fields (see Bonheure, Colasuonno, and Fortunato [10], as well as Fortunato, Orsina and Pisani
[24]). Other applications of the (p, ¢)-Laplacian operator can be found in quantum physics (see
Benci et al. [13] and Benci, Fortunato and Pisani [14]), in reaction—diffusion systems (see Cherfils
and Il'yasov [17]), and also in nonlinear elasticity theory (see Marcellini [31] and Zhikov [39]).

Two-phase eigenvalue problems are also motivated by models arising from classical relativity.
An example in this regard is the operator

Qu = —div __Vu ,
V1= |Vul?

which appears as the mean curvature operator in the Lorentz—Minkowski space (see Bartnik and

Simon [11]). A first-order approximation of this operator is
—Au — A4u,
which corresponds to the —(2,4)-Laplacian operator (see Pompio and Watanabe [35]).

Given the vast applicability of the (p, ¢)-Laplacian operator, the literature dedicated to it,
including the study of associated eigenvalue problems, is already extensive and continues to
develop. We mention, in this regard, two relevant survey papers by Marano and Mosconi [30]
and by Barbu and Morosanu [5].

Literature Review

To motivate the topic addressed in this thesis and to highlight the obtained contributions, we
briefly present the three problems that will be analyzed in the following chapters. For simplicity,
in this chapter only, we denote them by (F;), i = 1, 3.

Consider in what follows a bounded domain Q ¢ RY, with N > 2, having a smooth boundary
01.

The first problem investigated is an eigenvalue problem defined in €2, which also includes
potentials with nonnegative weights of order p and ¢, as well as parametric boundary conditions:

—(Apu+ Aqu) + pr(@)|ulP"2u + po(@)[ul?2u = Aa(@)|ul "2u, T E€Q,
F— (@) |ul"Pu e (@) u|? e = AB(x)|u|" e, x € 89,

where p,q,r € (1,00) with p < ¢ and «, p; € L>® (), 5,7 € L*>°(9f2) are nonnegative functions
satisfying

(hag) : /adm—i—/ Bdo >0, (hy): /pidx—i—/ vido >0, i=1,2.
Q 0N Q oN

In the considered boundary condition, we used the notation

ou
OVpq

du

— p—2 q—2
= (V= + [vuf) 2
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where v is the outward unit normal to 9€2. This notation will also be used in what follows.
The second problem has a similar structure, but contains only potentials with nonnegative
weights of order ¢, so there is no longer symmetry between the exponents p and g:

—(Apu + Agu) + p(z)|u]?2u = Aa(z) |u]"2u, z€Q,
P): 0
P @)l u = M@, w00,

OVpq

where 1 < ¢ < r < p < oo and the functions «a, p € L>(Q), 8, € L*°(0N) are nonnegative and
satisfy the hypotheses (hqg), (hpy) introduced earlier in the presentation of problem (P).
The last problem studied is a nonlinear transmission eigenvalue problem, defined as follows:

—Apul + 71($)’U1|T_2U1 = )\\u1|p_2u1, in Ql,
—Aqug + yo () [us|*~2us = Muz|92ug, in Qg,
) 0 0
(Pg) : Ul = ua, ﬂ — ﬂ, on ]:‘7
ovp Oy
0
S+ Ba)lusl Pz = 0, on %,

where € is a subdomain with smooth boundary T', with Q1 C Q, and Qy := Q\ Q. It is
assumed that p,q,r,s,¢ € (1,00), v € L™(€;) for i = 1,2, and f € L*°(X) is nonnegative a.e.
on X. In the boundary conditions on I' and ¥, we have denoted

0
= |Vui|0_2Vui ‘vg, 0€{p,q}t, i€{l,2}, % = |VuQ|q_2Vuz v,

8ui
vy

where v, + v, = 0 are the outward unit normal on I', and v is the the outward unit normal on X.
Additional hypotheses concerning the exponents and coefficients will be specified in the chap-
ters dedicated to each problem.
We start with the case of Neumann-type boundary conditions. In this respect, we introduce
the eigenvalue problem

u — () on 9.

OVpq

—(Apu+ Aju) = Mu|T 2w in Q,
(PN):{ (Apu-+ Agu) = Au

A real number ) is an eigenvalue for (Py) if there exists uy € W := Whmax{r.a}(Q)\ {0} such
that

/ (|VU)\|”_2 + |Vu>\]q_2) Vuy - Vudr = )\/ lux|"2uyude Yu e W.
Q Q

In this case, the function u) is called an eigenfunction corresponding to the eigenvalue A, and
the pair (A, uy) is called an eigenpair of the problem (Py).

For p > 2 and ¢ = 2, Mihailescu [32, Theorem 1.1] showed that the spectrum of problem
(Px) is {0} U (AN (p,2), 00), where

Vu|?d
/\N(p,2)::{ inf M; /udx:0}>0.
Q

weW\{0}  [qu?dx

For p < 2, Farcaseanu et al. [19, Theorem 1.1] identified the entire set of eigenvalues for (Py) as
the set {0} U (A (p,2),00). Mihailescu and Morosanu [33] treated the general case p € (1, 00),
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q > 2, obtaining the spectrum {0} U (AV(p, ¢), 00), where

Vul|?d
AN (p, q) :z{ inf Jo [Vul' dz /Q|u]q2udx:0} > 0. (2)

ueW\{0} [q [ul9dz’
Let us consider the eigenvalue problem associated with the Steklov (p, ¢)-Laplacian operator

—(Apu+ Agu) =0 in Q,

: 0
(Ps) T MulT%u  on 990.
OVpq
Costea and Morosanu [18, Theorem 3.1] for the case p € (1,00),q € [2,00) determined the

spectrum of problem (Ps) as the set {0} U (A%(p, q), 00), where

Vul?d
A%(p,q) =4 inf M; / lu|"2udo =0 > 0.
weW\{0} [y lultdo’  Joo

In the case of the Robin (p, ¢)-Laplacian operator, we have the following eigenvalue problem

—(Apu + Agu) = Aul??u  in Q,

Pg) : 0
(Pr) g + BlulT2u =0 on 99,
OVpq
where p,q € (1,00), p # ¢, and [ is a positive constant.

Problem (Pg) was studied by Gyulov and Morosanu [27], who determined an interval of
eigenvalues (Af(p, q), \o) and moreover proved that there are no eigenvalues in the interval
(=00, A (p, q)].

The above constants are positive and defined by

Vul|?dz + u|?do do
Mip,q) .= inf Jo IVl B o4 < Ap = BIBQ . (3)
ueW\{0} Jo lul? dx Jo da

The authors stated as an open problem the existence of eigenvalues in the interval [Ag, 00).

We also mention the work of Papageorgiou et al. [30], where a more general eigenvalue

problem than (Pg) is analyzed for the case 1 < p < ¢. In this work, the operator —(A, + Ay)
is perturbed by a g-order potential with an indefinite weight ¢ € L5(Q)), where s < % ifg< N

and s = 1 if ¢ > N. The constant 3 is replaced by a function 3 € Wh*(9Q), B > 0, B # 0,
satisfying the condition

/de—l— Bdo > 0.
Q onN

Using an approach similar to that in [27], the authors obtain a comparable result (see [30,
Theorem 1]).

The study of eigenvalue problems with boundary conditions of the type considered in prob-
lems (P;) and (P2) was initiated by Von Below and Francois [12], in the particular case of the
Laplace operator for « = 1 and 8 > 0 a continuous function on 9f).

This problem is known in the literature as the dynamic type eigenvalue problem, because it
appears in the study of parabolic equations with dynamic boundary conditions (see [25]).

Starting from this linear model, subsequent research focused on extending it to nonlinear
contexts with operators of p-Laplacian or (p, ¢)-Laplacian type.
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In this context, we consider the following generalized eigenvalue problem:
—(Apu+ Agu) = Aa(x) [ul"?u  in Q,

(Pgen) : ou s
Gy = AB(z) |ul"""u on 09,

where p,q,r € (1,00) with p # ¢, and «, 8 are nonnegative functions satisfying the hypothesis
(hag) formulated within problem (Py).
It is well known that the eigenfunctions of problem (Pyen) belong to the set

C, = {u ew:; / o lu| " 2ude +/ Blul""2udo = 0} .
Q onN

In the case r = ¢, Barbu and Morosanu [7, Theorem 1] showed that the set of eigenvalues of
problem (Pyen) is equal to {0} U (A(p, q), 00), where

o Jo |Vu|? dx
uEC MOy [ oful? da + fag Blultdo

0 < X(pv q) =

This result generalizes both the previous cases obtained for problems (Py) and (Ps), as well
as the result obtained by Abreu and Madeira [1] for problem (Pgen) with ¢ =2 and p € (1, 00),

p#2.

If r # ¢, we assume, without loss of generality, that 1 < p < ¢. Barbu and Morosanu [3]
proved that if either 1 <r<p<g<oo,orl<g<p<r<ooandr € (1,(1(]]\,\77:(]1)) for ¢ < N,

then the set of eigenvalues of problem (Pyen) is [0, 00).

On the other hand, in [0], the same authors showed that if 1 < p < r < ¢ < oo, with
r < % for ¢ < N, then there exist two strictly positive constants, 0 < Ay < A*, such that
any A € {0} U[X*,00) is an eigenvalue of (Pgen), while the same problem has no eigenvalues in

A€ (—oo, M)\ {0}

In what follows, we will highlight the original results obtained within this thesis for the
first two problems, (P;) and (P»), which extend or generalize the contributions already existing
in the literature.

More precisely, in the works of Barbu, Burlacu, and Morosanu [2, 1], where the previously
introduced problems (P;) and (P;) were studied, we generalized and/or extended the results
obtained for problems (Py) and (Ps) in the works [18, 19, 27, 32, 33, 36]. Indeed, by choosing

the functions a or 3 equal to zero or one, respectively, one recovers the Neumann or Steklov type
boundary conditions.

Regarding the results obtained in [6, 7, 8], these were extended in [1] by studying the spec-
trum of problem (P»), where we introduced potentials of order ¢ in the equation and/or on the
boundary. Using Krasnosel’skii genus and the Lusternik—Schnirelmann Principle, we gave a pos-
itive answer to the open problem from [27], showing that problem (Pg) has eigenvalues greater
than Ag.

On the other hand, the introduction of potentials of order p in problem (P;), alongside those
of order ¢, led to the conclusion that, in the case of problem (Pg), the presence of a potential of
order p in the equation ensures a complete characterization of its spectrum. Thus, if we choose

r=q, a=1, pp=0inQ, B=v =0, 2 =const.>0 on 01,

and the weight p; > 0 a.e. in Q, with [, p1(x) dz > 0, then, accordlng to Theorem 2.1.1(b), the

spectrum of the problem is exactly the 1nterva1 ()\q, o0), where )\ > 0 is defined as in formula
(3), with -9 instead of 3, according to the notations.
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The obtained results show that not only the perturbation of the operator —A, by —A,, but
also the perturbation of the equation or of the boundary conditions with potential-type terms of
order p can lead to obtain a continuous spectrum for the problem, while in the absence of such
perturbations there are no results that fully characterize this spectrum.

Next, we present recent work dedicated to nonlinear transmission problems, similar to problem
(P3). Transmission problems have various applications in fluid mechanics, physics, chemistry,
biology, hence the importance of their study (see Fife [20], Nicaise [35]).

Recall, for example, that Figueiredo and Montenegro [21] investigated a transmission problem
with critical exponential growth, more precisely, the nonlinearities behave like exp(ags?) as
|s| — oo, for a constant g > 0. The authors proved that the following elliptic transmission
problem in R?

—Au; = f(x,u1) in Qy,
—Aug = g(xz,u2) in Qo

0 0
Uuip = ug, %:TZ; Onr,

has a nontrivial solution.
Also, the transmission problem with critical growth

—Au; = Af(z,u;) in Q,
—Aug = |UQ‘2*72U,2 in Qg,

— aul _ 8’&2
up = U2, Gt =g on T,

ug =0 on X,

was studied by the same authors in [22]. They showed that for sufficiently large A, the prob-
lem admits a nontrivial solution. Other existing results for nonlinear transmission problems
approached by variational methods can be found in [23, 33].

A similar problem to (P3) was investigated by Barbu et al. in [9]. The authors considered
a bounded domain Q@ ¢ RY, N > 2, with a Lipschitz boundary 9, which is divided into two
Lipschitz subdomains, €1 and 9. In other words, Q = €y U Qo UT'. It is assumed that the
boundary 0f2 is split into two parts, 021 and 0€)s, such that 0y =T'1 UT and 0Q =T9 UT.
In this setting, the following eigenvalue problem was considered:

—Apul =\ ‘U1’p72’u,1 in 4,
—AqUQ =A ‘UQ’q_ZUQ in Qo,
% =0 onl}y, % =0 onlI)y, (0.1)
vy, Oy,
Ul = Ug % = % onI'
\ ’ 81/p 8Vq ’

where on the boundary, %, r = p,q, denotes the conormal derivatives of the operators in-

volved in the problem, similarly to those in the formulation of problem (P3). Using the Lus-
ternik—Schnirelmann Principle, the authors proved the existence of a sequence of eigenvalues of
the above problem tending to infinity.

The nonlinear transmission problem (P;), investigated by us in the work Barbu,
Burlacu and Morosanu [3], generalizes this result by including undefined potentials in the two
subdomains, which are configured differently from the case presented above. Moreover, if 5 = 0,
then the conditions on ¥ become of Neumann type. Furthermore, using similar arguments, cases
with generalized Dirichlet or Neumann boundary conditions, as well as different partitions of the
domain (including those of the type considered in [9]), can also be studied.
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Motivation and Objectives of the Thesis

The study of eigenvalues for nonlinear operators of the (p, ¢)-Laplacian has significant develop-
ment in recent decades, both theoretically and in the context of applications.

The motivation of this thesis is based on the need to extend the current framework of
the theory, especially in the following directions:
(i) the simultaneous consideration of two nonlinear diffusion operators of different orders, of p-
and ¢-Laplacian with p # g;
(ii) the inclusion of potentials with nonnegative weights in the equation and/or on the boundary;
(iii) the treatment of generalized boundary conditions, in which the parameter appears both in
the equation and in the boundary condition;
(iv) the analysis of a transmission problem between two subdomains governed by different dif-
ferential operators.

Based on these general directions, the objectives of the thesis are the following:

1 The study of an eigenvalue problem with parametric boundary conditions, in which po-
tentials with nonnegative weights of order p and ¢ appear, both in the equation and on
the boundary. This problem, denoted by (P;), extends the classical Neumann and Steklov
cases;

2 The investigation of an asymmetric version, (P»), in which only the potentials of order ¢
are present, removing the symmetry between the components of order p and ¢q. The aim is
to characterize the spectrum depending on the relative positioning of p, ¢, and r;

3 The analysis of a transmission problem (F3), in which the domain is divided into two
disjoint subdomains €2; and €29, with p- and ¢-Laplacian operators acting separately, con-
nected through continuity conditions on the solution and the flux on the common interface
I

4 The proof of the existence of sequences of eigenvalues tending to infinity and, in some cases,
the complete characterization of the spectrum depending on the involved parameters;

5 The extension of recent results from the literature by using the following variational
methods: direct methods, the fibering method, min-max methods based on Krasnosel’skii
genus and the Lusternik-Schnirelmann Principle applied on C'— Banach manifolds.

Structure of the Thesis

The thesis begins with a chapter of Preliminaries presenting the classical notions and results
used in proving the results of the subsequent chapters, grouped into two sections: Lebesgue
spaces and Sobolev spaces, Definitions, Properties and Some Results from Variational Calculus
are included.

The next chapter (Chapter 1 in this summary) is devoted to the study of an eigenvalue prob-
lem for the (p, ¢)-Laplacian operator, in the presence of potentials with nonnegative weights of
order p and ¢, both in the equation and in the boundary conditions. The problem analyzed,
denoted above by (P;), generalizes the Neumann and Steklov cases through the appearance of
the spectral parameter A both in the domain 2 and on its boundary. After formulating the
problem and stating the main hypotheses, some auxiliary results and the energy functional J
corresponding to the studied problem are introduced. Its properties (differentiability, coerciv-
ity, semicontinuity), which are essential for subsequent proofs, are investigated. The analysis
branches depending on the position of the exponent r relative to p and ¢q. For r € {p,q}, a
complete characterization of the spectrum is obtained, being of the form (d, occ), where d > 0
depends on p or ¢. In the case r = ¢, the approach uses the Nehari manifold and the Lagrange
Multipliers Rule. For the cases » < p and r € (q, ¢«), the spectrum is (0,00), and the proofs



Introduction

rely on the coercivity of the functional and classical variational techniques. The most delicate
case, 1 € (p,q) with r < p,, is treated via the fibering method, leading to the determination of
an interval of eigenvalues of the form [A*,00), with A* > 0, while for A < A, < A* the problem
admits no nontrivial solutions. Here, for 6 € {p, ¢}, we have denoted 6, = (N —1)8/(N — 6) for
f < N and 0, = co for 8 > N, the critical exponents that follow.

The results presented in this chapter were obtained within the work of Barbu, Burlacu and
Morosanu [2].

The following chapter contains the study of an asymmetric version of the previously investi-
gated problem, denoted above by (P,), in which only potentials of order ¢ appear, thus removing
the symmetry with respect to the exponents p and q. This asymmetric structure leads to a more
detailed investigation of the spectral behavior depending on the positioning of the exponents p,
q, and 7, requiring the treatment of ten distinct cases. After presenting the problem, hypothe-
ses, and main theorems, an auxiliary problem is introduced whose first eigenvalue is essential
in proving next results. In eight of the cases, the entire set of eigenvalues of the problem is
determined. These are approached via direct methods or by using the Nehari manifold method.
For the case when ¢ < p and r € (¢,p), a min-max method based on Krasnosel’skii genus and
the Lusternik—Schnirelmann Principle is used. This yields the existence of a sequence of eigen-
values tending to infinity, without being able to conclude that this sequence describes the entire
spectrum of the problem. At the same time, this technique allows the extension of some recent
results from the literature (especially [27]) regarding the existence of eigenvalues larger than a
constant \g.

The results of this chapter were published in the article by Barbu, Burlacu and Morosanu
[1]-

Chapter 3 is dedicated to the study of the transmission problem (P3), in which the p- and ¢-
Laplacian operators act in disjoint subdomains of a domain €2, connected by continuity conditions
on the solution and flux equilibrium. After the precise formulation of the problem and stating
the hypotheses, the functional space W is introduced, equivalent to the space of functions with
components in W1P(1) and W14(€s), with equal traces on the interface T'. A family of C'-class

submanifolds M, p > 0, each having infinite genus, is introduced in W, making them suitable for
the application of the Lusternik—Schnirelmann Principle. Then, an energy functional associated
with the problem, denoted 7, is defined, and it is shown that its critical points conditioned by
the submanifolds introduced before correspond to weak solutions of the problem. It is proved
that the functional 7 is coercive on these submanifolds and satisfies the Palais—Smale condition,
which allows obtaining a sequence of eigenpairs of the problem (P;) tending to infinity. This
result is presented in Theorem 3.1.1. The chapter is structured into three sections, the last two:
Section 2.2 is dedicated to preliminary results (including the proof of the properties regarding
the infinite genus of the sets M,, p > 0, and the coercivity of J on them) and Section 2.3
contains the proof of the main result.

This chapter is based on the work of Barbu, Burlacu and Morosanu [3].

The thesis concludes with a short chapter containing possible research directions and dissem-
ination of the results.

Keywords: Eigenvalues, (p,q)-Laplacian, Nehari manifold, C*'-manifold, variational meth-
ods, nonlinear eigenvalue problem, Krasnosel’skii genus, nonlinear transmission problem, Lus-
ternik—Schnirelmann Principle, Sobolev spaces.



Chapter 1

On an Eigenvalue Problem for the (p, g)-Laplacian
with Potentials of Order p and ¢

In this chapter, we present the original results obtained in collaboration with L. Barbu and G.
Morosanu published in An. St. Univ. Ovidius Constanta [2].

Among the most important results, we mention: Theorems 1.1.1 and 1.1.2, Lemmas 1.2.1-
1.2.3, 1.3.1-1.3.5 and 1.4.1-1.4.8.

To simplify the notation, we will omit the symbols dz and do in integrals, when the context
is clear and there is no ambiguity.

1.1 Formulation of the Problem

and Presentation of the Main Results
In this section, we recall the problem formulated in the Introduction, establish the notations
used and state the main results of the chapter.

Let © ¢ RY, N > 2, be a bounded domain with smooth boundary 9Q. We consider the
eigenvalue problem associated with the operator Au = —(Apu + Aju)

(1.1)

A+ p1 (@) |ulP~2u + pa()|u]?2u = Aa(z)|u]""2u, x € Q,
2 (@) P+ ya(2) a2 = AB@)ul 2, @ € 09,

In this chapter, we assume the following hypotheses hold

(hpgr) P, 4, 7€ (1,00), p < g;
(hag) a € L>®(Q2) and B € L*°(09) are nonnegative functions that satisfy

/adm+/,8da>0; (1.2)

Q o0



1.1. Formulation of the Problem and Main Results Chapter 1

(hpivs) pi € L°(Q) and v; € L*(09), i = 1,2, are nonnegative functions that satisfy

/pidx+/'y¢da>0,i:1,2. (1.3)

Q o0

The solutions u of problem (1.1) belong to the space W := W14(Q) (since ¢ > p) and satisfy
equation (1.1); in the sense of distributions, while the boundary condition (1.1), is satisfied in
the sense of the trace.

Definition 1.1.1. A real number X is called an eigenvalue of problem (1.1) if there exists uy €
W\ {0} such that for every u € W, the following equality holds:

/( ‘ Vuy ’p—2+ ‘ Vuy ’q—2 )VU)\ -Vu + / (pl ’ Uy ‘p_Q +p2 ’ Uy ‘q_Q )uAu
Q

Q
+/(71 [ un P72 492 |y |72 Juru = )\<04/ |y [772 qur/ﬁ |y [72 uw).
Q o9

o

(1.4)

The function uy is called an eigenfunction corresponding to the eigenvalue A, associated with
problem (1.1).

We introduce the following notations:

Kyfu) = [ (I9uP+ plu?) + [ lul

Q o0

Kq(u) == / (IVul? + palul?) +/72‘u’q 1 (1.5)

Q [219]

%WNZ/@WW+/BWWVu€W49€@AﬁL

Q o0
- K ~ K
WPSES S VIC I N <10} (1.6)
weW\zZ kq(u) weW\2Z kp(u)
w l1—w
P Y =GO 1C) M G W
ueEW\Z kr(u) pwq v (1 7)
g q-p
w = , I':= T
q—p (r—p)=<(qg—r)~

Let us note that all eigenfunctions u) corresponding to an eigenvalue A > 0 satisfy the
condition k,(uy) > 0, thus all eigenfunctions corresponding to problem (1.1) will belong to the
set W\ Z, where

Z:={ueW; k.(u) =0}.
The main results of this chapter are the following two theorems.

Theorem 1.1.1 ([2]). Assume that the hypotheses (hpgr), (hag), (hpiy;) are satisfied.
(a) If r = p, then A\, > 0 and the set of eigenvalues of problem (1.1) is the interval (A, 00);
(b) If r = q, then Ay > 0 and the set of eigenvalues of problem (1.1) is the interval (A\q, 00).

10



1.2. Auxiliary Results Chapter 1

Theorem 1.1.2 ([2]). Assume that the hypotheses (hpgr), (hag), and (h,,,,) are satisfied.
(a) If (r < p) or (7“ > q with r < ¢q(N —1)/(N — q) = ¢« in the case q < N), then the set of
eigenvalues of problem (1.1) is the interval (0,00);
(b) If p<r < qwithr <p(N —1)/(N —p) = ps in the case p < N, then 0 < A < A* and every
A € [\, 00) is an eigenvalue of problem (1.1).

Moreover, for any X € (—oo, \y), problem (1.1) has only the trivial solution.

Furthermore, the two constants A, and A* can be expressed as follows:

1 1
K K LRy (u) + LKy (u
No= it Be R e p(l) LK, (w)

1.2 Auxiliary Results

This section gathers several technical results that will be used in the proofs of the theorems
presented earlier.

Lemma 1.2.1 ([2]). Assume that hypothesis (hop) is satisfied. If
9, 7 e (1,00) and [f< 0, if 0 < N},

then 1
| u o=l Vu | Loy +(ki(u)™ ¥V ue W)
18 a norm on Wl’e(Q), equivalent to the standard one.

In the following, for 8 > 1, we consider the following eigenvalue problem:

—Agu + p(2)|u)’2u = Ma(z)|u|2u in Q,
]Vu|0_2% + 'y(x)|u|0_2u = )\B(az)]u|6_2u on 01},

where p € L*°(Q) and v € L>®(09Q) are given nonnegative functions that satisfy

/p +/7 > 0. (1.10)
Q o0

We define the following C'-class functional:

Koy(u)
kg(u)

O : WH(Q)\ Zg = (0,00), Op(u) = VueWwh(Q)\ 2,

where
Kofuw) = [ (19’ + plal’) + [ ofal"
Q o0

Lemma 1.2.2 ([2]). Assume that hypothesis (hag) is satisfied, and that p € L>°(2), v € L*(0Q)
are nonnegative functions that satisfy (1.10). Then, there exists u, € WH9(Q)\ 2y such that

eg(u*) =Xy = @g(u) > 0.

inf
WEW 6 (Q)\ Z,

Moreover, \g is the smallest eigenvalue of problem (1.9), and uy is an eigenfunction corresponding
to the eigenvalue Ag.

11



1.3. Proof of Theorem 1.1.1 Chapter 1

For A > 0, we define the energy functional associated with problem (1.1):

1 1 A
In:W =R, T(u) = ;}Kp(u) + aKq(u) - ;kzr(u), VueW. (1.11)
The coercivity of the functional Jy on W is studied in the following lemma.

Lemma 1.2.3 ([2]). Assume that the hypotheses (hpgr), (hag), (hp.~,) are satisfied. Then, for
any r € (1,q), the functional Jy is coercive on W, i.e.,

lim Jy(u) = oc.

l[ul| =00

1.3 Proof of Theorem 1.1.1

In this section, we assume that the hypotheses (hpqr), (hag) and (hp,,) are satisfied and will use
them without further mention in the intermediate results.

1.3.1 Proof of Theorem 1.1.1 (a) (Case r = p)
The proof of Theorem 1.1.1 (a) is based on the following two lemmas.

Lemma 1.3.1 ([2]). If r = p, then /)\\p > 0 and there are no eigenvalues of problem (1.1) in the
interval (—oo, Ap]. Moreover, the following inequality holds:

T — inf i Kq(u) + S Kp(u)
p =

-\, 1.12
ueW\ 2 S (u) b (1.12)

Lemma 1.3.2 ([2]). If r = p, then every A > Xp is an eigenvalue of problem (1.1).

Using Lemmas 1.3.1 and 1.3.2, Theorem 1.1.1 (a) is completely proven.

1.3.2 Proof of Theorem 1.1.1 (b) (Case r = q)
We observe that, in the case r = ¢, the functional 7, takes the following form:

In: W =R, Ii(u) = ;Kp(u) + ;Kq(u) - fl\kzq(u) VueW. (1.13)

In this case, the functional J is no longer coercive on W, so a different method must be
used. To this purpose, for A > 0, we define the Nehari manifold:

Ny = {u e W\ {0}; (F(u),u) = 0} ={ue W\ {0}; Kp(u)+ Kq(u) — Akg(u) = 0} .

Lemma 1.3.3 ([2]). If r = q, then /)\\q > 0 and there are no eigenvalues of problem (1.1) in the
interval (—oo, \g]. Moreover, the following equality holds:
~ L EKp(u) + Kq(u)

N, = inf =\, 1.14
Tz k) ’ (114)

12



1.4. Proof of Theorem 1.1.2 Chapter 1

Lemma 1.3.4 ([2]). Let A > Xq. If r = q, then there exists a point u. € Ny at which Jy attains
its minimum over the Nehari manifold Ny, and

= inf > 0.
my = inf I (u)
Lemma 1.3.5 ([2]). Let A > Xq. If r = q then the minimizer u. € Ny from Lemma 1.3.4 is an

eigenfunction of problem (1.1) corresponding to the eigenvalue .

Using Lemmas 1.3.3, 1.3.4 and 1.3.5, Theorem 1.1.1 (b) is fully proven.

1.4 Proof of Theorem 1.1.2

The proof of Theorem 1.1.2 is based on the following lemmas, in which we assume the hypotheses
(hpgr), (hp,) and (heg) without stating them in each lemma.

1.4.1 Proof of Theorem 1.1.2 (a) (Case r < p)

Lemma 1.4.1 ([2]). If r < p then any A > 0 is an eigenvalue of problem (1.1).

1.4.2 Proof of Theorem 1.1.2 (a) (Case r € (q,q.))

Let A > 0 be a fixed real number. Since in the case r € (g, ¢,) the functional Jy is no longer
coercive on W, we define a new Nehari manifold as follows:

N = {u e W0} (JA(u),u) = Kp(w) + Kq(u) = Mer(u) = 0} . (1.15)

Lemma 1.4.2 ([2]). Assume that the conditions ¢ < r and (r < g(N—1)/(N—q) = ¢« if ¢ < N)
are satisfied. Then there exists a point u, € Ny at which the functional Jy attains its minimum

over the manifold .//\7,\ and
my = inf J\(u) > 0.
uENA

Lemma 1.4.3 ([2]). Assume that ¢ < r and (r < q, if ¢ < N). Then the minimizer u, € Ny
from Lemma 1.4.2 is an eigenfunction of problem (1.1) corresponding to the eigenvalue A.

In conclusion, using Lemmas 1.4.1 through 1.4.3, Theorem 1.1.2 (a) is fully proven.

1.4.3 Proof of Theorem 1.1.2 (b) (Case r € (p,q))

The proof of this result requires a different approach compared to the previous cases, since the
functional 7 is neither coercive on W nor bounded below on the Nehari manifold.

We will prove Theorem 1.1.2 (b), as in previous cases, using a series of lemmas that assume
the hypotheses (hpgr), (hp,~,) and (hqg) without stating them in each lemma.

Lemma 1.4.4 ([2]). Assume thatp <r < q andr <p. ifp < N. Then 0 < A, < \*.

Lemma 1.4.5 ([2]). Assume thatp <r < q and r < p. if p < N. Then, the constants \. and
X* defined in relation (1.7) can be equivalently expressed as:

LK (u) + 1K, (u
N Kp(w) + Ky(w) oo p(u) + 5 Kq( )'

) 1.16
ueW\ 2 kr (u) uEW\ 2 1k (u) (1.16)

13



1.4. Proof of Theorem 1.1.2 Chapter 1

We define the functional

o:W\Z—(0,00), P(u):=T Yue W\ Z.

Lemma 1.4.6 ([2]). We assume that p < r < q and r < ps if p < N. Then there exists
us € W\ Z such that

A = O(uy) = ueiélvf\z(p(u)'

Lemma 1.4.7 ([2]). We assume that p < r < q andr < ps if p < N. If u, € W\ Z is the
minimizer found in Lemma 1.4.6, then

1

u* = (;) ), € W 2, (1.17)

where t(uy) is an eigenfunction of problem (1.1) corresponding to the eigenvalue \*.
Moreover,

In-(u*) = 0.

Lemma 1.4.8 ([2]). We assume that p < r < q and r < py if p < N. Then any number
A € (A\*,00) is an eigenvalue of problem (1.1) and for each A € (—oo, As) \ {0}, problem (1.1)
has only the trivial solution.

In conclusion, using Lemmas 1.4.4, 1.4.5, 1.4.7 and 1.4.8, the proof of Theorem 1.1.2 (b) is
complete.

14



Chapter 2

On an Eigenvalue Problem
for the (p, ¢)-Laplacian with ¢-Type Potentials

This chapter is dedicated to presenting the results obtained in collaboration with L. Barbu and
G. Morosanu published in Mediterr. J. Math. [1].
We list the most important among them: Theorems 2.1.1-2.1.3, Lemma 2.2.1, Lemmas 2.3.1-
2.3.6, as well as Lemmas 2.4.1-2.4.2.

For the sake of simplicity, in what follows we will omit the measure elements dx and do from
integrals where there is no risk of confusion.

2.1 Problem Formulation and Main Results

In this section we recall the problem formulated in the Introduction, establish the notations used
hereafter and state the main results of the chapter.

Let Q ¢ RN, with N > 2, be a bounded domain with smooth boundary 9. We consider in
Q) the eigenvalue problem associated to the operator

_Ap - Aq

—(Apu+ Agu) + p(@)|ul?%u = () |u]""2u in Q,
a‘?}:q + y(2)|u|9%u = A\B(z)|u|""%u on ON.

The entire analysis in this chapter relies on the following hypotheses:

(hpgr) Py € (1,00), p#g;
(hag) o€ L®(2) and € L*>(0N) are given nonnegative functions satisfying

/Qa+/396>0; (2.2)

(hpy) p € L>®(Q) and v € L*(0N) are given nonnegative functions such that

/Qp—k/mv>0; (2.3)

15



2.1. Problem Formulation and Main Results Chapter 2

(h) If r = q, then there does not exist a positive constant kg such that
p=koa ae in) and y=kyB a.e. on .

Imposing the above hypotheses and analyzing the position of r relative to p and ¢, we can
fully describe the spectrum of the problem stated above in eight out of the ten possible cases. In
the other two cases, we obtain only subsets of the spectrum (see Theorems 2.1.1-2.1.3 presented
below).

Since we only assumed p # ¢, the solution u of problem (2.1) is an element of the Sobolev
space W := Whmax{p.at(Q) which satisfies equation (2.1); in the distributional sense and the
boundary condition (2.1), in the trace sense. In this sense, we have the following definition.

Definition 2.1.1. (i) A function uw € W is called a weak solution of problem (2.1) if
/(]Vu\p_2 + |Vu|T™?)Vu - Vo + / plu|? 2 uv + / w2 uw
Q Q oN

—A(/au|r2uv+/ B\u|r72uv> Yo e W.
Q o0

(ii) A real number X is called an eigenvalue of problem (2.1) if it admits a nontrivial weak
solution uy € W\ {0}. In this case, the function uy is called an eigenfunction corresponding to
the eigenvalue A and the pair (\,uy) is called an eigenpair of problem (2.1).

(2.4)

All eigenfunctions of problem (2.1) satisfy the relation

jr(uA) > 0,
where
jrta) = [ atul+ [ Bl vaew (2.5)
Q a0
hence they belong to the set
WA\Z, Z:={ueW:j(u) =0} (2.6)

We also introduce the following constants, which will play an important role in the results
obtained below:

Jo(IVul? + plul?) + foq vIul? Ao = M‘

A, = inf . 3 0 - . 2.7
1= o) i) 27

Moreover, for any o > 0, we define the set
My i={ueW:j.(u) =0} (2.8)

The main results of the chapter are the following three theorems.

Theorem 2.1.1 ([1]). Assume that the hypotheses (hpqr), (hag) and (hyy) are satisfied.

If r = q and the assumption (h) holds, then the constants Ay and \g defined in (2.7) are positive.
Moreover, Ay < Ao and any X € (Mg, o) is an eigenvalue of problem (2.1). Furthermore, problem
(2.1) has only trivial solutions for X in the interval (—oo, Ag].

Theorem 2.1.2 ([1]). Assume that the hypotheses (hpqr), (hag) and (hyy) are satisfied. In each
of the following cases

(@) r=p; (b) max{p, ¢} <r <max{p.,q.}; (¢) r<min{p,q}; (d) p<r<g,

16
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the set of eigenvalues of problem (2.1) is the interval (0, 00).

Theorem 2.1.3 ([1]). Assume that the hypotheses (hpqr), (hag) and (h,y) are satisfied. If r = q
or q < r < p, then for every o > 0 the problem (2.1) has infinitely many pairs of eigen-solutions
of the form

(A, tun) E Rx My, with Ay, =00 as n— 0.

2.2 Auxiliary Results

For clarity we use the following notations:

Ke(u) == /Q Val, €e{pal kylu) = /ﬂ plul? + /mﬂurq, wew. (29

Next, we state an auxiliary result in order to prove the theorems stated earlier.
For 6 > 1, consider the following eigenvalue problem

{ —Agu + p(2)|u)f2u = Ma(2)|u| 2w in Q, (2.10)

[Vul 255 + (@) [ul’?u = AB(@)[ul’"*u on 90,

We define the C''-functional

Ky(u) + ko(u)

e 00 u) =
O WH(@)\ 25 = (0.00), ) := =1

Vu € WH9(Q)\ 2.

The following lemma provides an important characterization of the minimum value of the
functional © on the set W19 (Q) \ Zy.
Lemma 2.2.1 ([4]). There exists u, € WH9(Q)\ 2y such that

O(uy) = Ag := inf (C] 0. 2.11
()=hoi= _ inf 0> (2.11)

Moreover, \g is the smallest eigenvalue of problem (2.10) and u, is an eigenfunction correspond-
g to the eigenvalue Xg.

2.3 Proof of Theorems 2.1.1 and 2.1.2

The proof of the results in this section will be carried out with the help of intermediate lemmas,
where we assume that the hypotheses (hpqr), (hap) and (h,y) are satisfied. Moreover, in the
particular case r = ¢, we will also assume that hypothesis (h) holds.

Lemma 2.3.1 ([1]). If r = q, then Ay > 0 and there are no eigenvalues of problem (2.1) in the
interval (—oo, Ag4]. Moreover,

(2.12)

The following lemma expresses an inequality relation between the variational constants de-
fined in (2.7).

Lemma 2.3.2 ([1]). If r = q, then Ay < Xp.

17



2.3. Proof of Theorems 2.1.1 and 2.1.2 Chapter 2

Let A > 0. Consider the functional J,, : W — R, of class C', defined by

Tonl) = K0 + 2 () + o) = (). (213)

Regarding the coercivity of the functional 7., we have the following result.
Lemma 2.3.3 ([1]). Assume that one of the following two conditions is satisfied:
(1) 1<r<gqand\>0;
(17) m=q <p and X € (Ag, No).
Then the functional J,) is coercive on the space W, i.e.,

lim  Jp\(u) = oc.

[[ul| =00

Assuming the conditions of Lemma 2.3.3 hold, we obtain the following result regarding the
existence of eigenvalues for problem (2.1).

Lemma 2.3.4 ([1]). (i) If r < q, then every real number X > 0 is an eigenvalue of prob-
lem (2.1);

(i1) If r = q < p, then every real number X € (Aq, Xo) is an eigenvalue of problem (2.1).

Next, we present the complementary cases to those considered in Lemma 2.3.4.
If » > qorr =¢q > p, we cannot expect the functional J,, to remain coercive on W.
Therefore, for A > 0, we consider the Nehari manifold associated with it, defined as

Nox = A{u € WAA{0} = (F\(u), u) = Kp(u) + Kq(u) + kq(u) — Ajr(u) = 0}.
Lemma 2.3.5 ([1]). Assume that one of the following two hypotheses is fulfilled:
(i) r=q>pand X € (Ag, No);

(ii) r # q, max{p,q} <r < max{p., g} and A > 0, where p, and q. are the critical exponents
defined later.

Then there exists us, € N,y at which the functional J,y attains its minimum on the manifold
Ny, e,
m, ;= inf u) > 0.
A WEN jrx\( )

The last result necessary for the proof of Theorems 2.1.1 and 2.1.2 shows that the minimum
uy € N, obtained in Lemma 2.3.5 is, in fact, a critical point of the functional 7.

Lemma 2.3.6 ([1]). (i) If r = ¢ > p, then any real number X\ € (Ay, \o) is an eigenvalue of
problem (2.1);

(13) Ifr # q and max{p, q} < r < max{p, g}, then any real number A € (0, 00) is an eigenvalue
of problem (2.1).

In conclusion, using Lemma 2.3.4 and Lemma 2.3.6, Theorems 2.1.1 and 2.1.2 are fully proved.

18



2.4. Proof of Theorem 2.1.3 Chapter 2

2.4 Proof of Theorem 2.1.3

We analyze the case ¢ < r < p, where the functional 7, is neither coercive on the space W nor
bounded below on the manifold N,..

If r = g and A > Ay, as we noted in the previous section, we will need to consider other
arguments to deduce that problem (2.1) has eigenvalues A\ > Ag.
Consequently, to obtain the multiplicity result stated in Theorem 2.1.3, we will use the notion
of genus in the sense of Krasnosel’skii.

One of the most important properties of the manifold M, is stated in the following result.

Lemma 2.4.1 ([1]). For every positive integer k, there exists a compact, symmetric set K C M,
such that its genus satisfies v(K) = k.

Consider the following functional 7 : W — R, defined by
1 1
J(u) = EKP(U) + g(Kq(u) + kg(u)) YueW. (2.14)

An important property of the functional defined above is given by the following lemma.

Lemma 2.4.2 ([1]). If r = q or q < r < p, then the functional J restricted to the manifold M,
satisfies the Palais—Smale condition. That is, every sequence {u,} C M, such that the sequence
{J (un)} is bounded and

j,//\/lg (un) — 07

contains a convergent subsequence.

Finally, using the Lusternik—Schnirelmann Principle and the lemmas above, one can conclude
that there exists an infinite sequence of critical points

+u,, n>1,
for the functional J in M,.
To each critical point +u, correspond Lagrange multipliers \,, thus yielding an infinite
sequence of eigenpairs of problem (2.1) of the form

(An, tuy) € (0,00) X My, n > 1.

Moreover, the sequence A\, — 0o as n — 0o, which completes the proof of Theorem 2.1.3.
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Chapter 3

A Nonlinear Transmission Eigenvalue Problem
with a Neumann—Robin Type Boundary Condition

This chapter gathers a series of results obtained in collaboration with L. Barbu and G. Morosanu,
published in Math. Methods Appl. Sci. [3].

Among these, we mention: Theorem 3.1.1, Lemmas 3.2.1, 3.2.2, as well as Lemmas 3.3.1-
3.3.3.

For the sake of simplifying notations, we will omit the measures dx and do in integrals
whenever the context is clear and no ambiguity arises.

3.1 Problem Formulation
and Presentation of the Main Results

In this section, we recall the problem mentioned in the Introduction, establish the necessary
notations and state the main result of the chapter.

Let @ ¢ RY, N > 2 be a bounded domain with smooth boundary X, and let ©; be a
subdomain with smooth boundary I" such that Q; C Q and Q9 = Q\ Q.

We consider in €2 the following transmission eigenvalue problem:

—Apur + yi(z)|ur|""2u1 = Aug[P~2u;  in O,
*Aq’UQ + 72($)|u2|3_2u2 = >\|u2|q_2u2 in Qo,

3.1
up = ug, %:gz: onT, (3:-1)
B2 1 B()|uz| " 2uz = 0 on ¥,

where ) is a real parameter.
Throughout the chapter, we will assume that the following hypotheses hold:

pig;m5,C€(Loo), p<q (<,
(h1) r<p(l+%) ifr>pandp<N, (3.2)
s<q(l4+ %) ifs>gandq<N.

(h2) v € L™®(), i=12  pelL>*Z%), [f>0ae onX.
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For 1 < # < oo, we denote the usual norms of the Lebesgue spaces L(Q;) and LY(X) by
|| ’ ”i@a i=1,2, respectively || ’ Hae‘
Obviously, the solutions w = (uj,u2) of problem (3.1) belong to the space

W= {ueW"(Q); ulg, € W"(Qy)},

where u; := u|q,, ¢ =1,2. On W we consider the usual norm

[ull = flualls + fluzlle Vu = (u1,u2) € W, (3:3)
where the norms || - ||;, ¢ = 1,2 are defined by
[urlle = Vurllp + lutllip,  uzlle = [[Vuzll2g + [[uzll2g- (3.4)

The space W defined above can be identified with the space
W= {t = (u1,u2) € WP(Q1) x WH(Qy);  uy = up on r}, (3.5)
which implies that W is a reflexive Banach space.

Definition 3.1.1. A real number X is called an eigenvalue of problem (3.1) if the problem admits

a weak solution wy = (uix, uzy) € W \ {(0,0)}.
In this case, uy is called an eigenfunction associated to the eigenvalue A and the pair (X, uy) is
called an eigenpair of problem (3.1).

The following result follows by an argument similar to the one used in [9, Proposition 1.1]. It
provides a characterization of the eigenvalues of problem (3.1).

Proposition 3.1.1 ([3]). A real number X is an eigenvalue of problem (3.1) if and only if there
exists Uy = (1, usy) € W\{(0,0)} such that for every (vi,vs) € W the following equality holds:

/ |VUI)\‘p_2VU1)\ -Vui —I—/ |Vu2,\|q_2Vu2,\ - Vg
Ql QZ

+/ ’Yl‘ul)\‘r_Qul)\Ul‘i‘/ Yo |ugx|*~2ugva
Ql 92

(3.6)
+/ ﬂ|u2/\|<72ug)\1}2 do
by
=A ( ura [P uiavr + UQ,\\q_2U2sz> :
Oy Qy
Let p > 0. Consider the subset M, of the space W defined by
_ — 1 , 1 .
M¢=§F4mwgewzf g P+ = \W|:4. (3.7)
p Ql q Q2

The main result of this chapter is the following theorem.

Theorem 3.1.1. ([3]) Assume hypotheses (hi) and (ha) hold. Then, for every p > 0, there
exists a sequence of eigenpairs

(>\na i(uln’ u?n))n

of problem (3.1), with
((ulna u2n))n C Mp
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3.2. Auxiliary Results Chapter 3

and
Ap — +00  as n — oo.

3.2 Auxiliary Results

In this section we present some properties of the set M, defined in (3.7), which are used in the
proof of the main result.
We introduce the following notations:

qu ul,uQ /|Vu1|p /|V’LL2|q

krsc(u, ug) := / |+ / Yolua|® + / |ugl®, (3.8)
T 0 S
| 1 1 )
Jpq(u1,ug) == — lur|P + = lug|?  Y(u1,ug) € w.
P Jo, q.Jq,

We define a C1-class functional J : W — R by
T (W) = Kpg(u1, ug) + kpsc(u1, ug) Vi = (ug,ug) € W. (3.9)

Clearly, the function jp, : W — Ris of class Cl. Due to the fact that for every u = (up,uz2) €
M, we have (j,,(u),u) # 0, it follows that p is a regular value of this functional. Therefore,

M, = jp_q1 (p) is a Banach C'-submanifold of W with codimension 1.
Moreover, the tangent space at a point © = (u, uz) € M, is given by the equality

TaM, = ker j,, (). (3.10)

We define the Cl-functional J : W — R again by

j(ﬂ) = qu(ul,uQ) + krsc(ul,UQ) Yu = (ul,ug) cW. (3.11)

Clearly, J € C*(M,,R).
We denote by Juq, the restriction of J to M, and by j/’wp (w) the differential of J at uw € M,

relative to M,, i.e., the restriction of J'(u) to the tangent space Tz M.
Lemma 3.2.1 ([3]). At any point u € M,, the differential of J relative to M, satisfies the

equality N
(T (@),

ﬂd@ZTQ—Mm%@,wM@A@:UW)>. (3.12)

)

)
2

The following lemma establishes that M, has infinite genus.

Lemma 3.2.2 ([3]). For every positive integer k, there exists a symmetric and compact subset
K c M, such that y(K) = k.

3.3 Proof of Theorem 3.1.1

In this section, we assume that hypotheses (hi) and (hg) are satisfied and we will use them
without further mention.
The proof of Theorem 3.1.1 follows as a consequence of some intermediate results.
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3.3. Proof of Theorem 3.1.1 Chapter 3

Lemma 3.3.1 ([3]). The functional Jr, is coercive, i.e.,

lim j(ul, 'LLQ) = 4-00.

[[(w1,u2) || =00, (u1,u2)EM,
An important role in the proof of the main result is played by the following inequality.

Lemma 3.3.2 ([3]). Let K := K, : W — W* be the derivative of the functional Ky, defined in
(3.8)1. Then, for every u = (ui,u2),v = (vi,v2) € W, the following inequality holds:

(K(@) — K@), ) = (IVaal,” = IVedllf, ") (V] — Vo)

+ (IVu2lg,” = 1Veall3, ") (IVuzllzg = [Ve2l2q) (3.13)
> 0.

Lemma 3.3.3 ([3]). The functional J satisfies the Palais-Smale condition relative to the man-

ifold M,.

The existence of an infinite number of critical points +u,, n > 1, for the functional J on the
set M, is a consequence of Lemmas 3.2.2, 3.3.1, 3.3.3 and the Lusternik—Schnirelmann theorem.

To each critical point +u,, n > 1, corresponds a Lagrange multiplier \,, which leads to an
infinite sequence of eigenpairs (A, +u,), n > 1, of problem (3.1).

Finally, it is shown that A\, — oo, thus completing the proof of Theorem 3.1.1.
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General Conclusions

Closing Remarks

The results obtained in this thesis contribute to the extension of the spectral theory for nonlinear
operators of (p, q)-Laplacian in the presence of potentials of order ¢ and/or p, as well as general-
ized boundary conditions. The study of the two problems presented in Chapters 1 and 2 allowed
the derivation of complete or partial characterizations of the spectrum, through the application
of combined variational methods adapted to the considered context.

Moreover, the analysis in Chapter 3 of a nonlinear transmission problem, where the p- and ¢-
Laplacian operators act on different subdomains, addressed a topic less explored in the literature
but with important theoretical potential.

Future Research Directions

The results presented in this thesis suggest several possible directions for further research. Among
these, we mention:

(i) Obtaining similar results to those in Chapters 1 and 2 in the case where potentials with
indefinite weights (i.e., those that may change sign) are introduced. In such cases, some
of the arguments used in this work no longer apply, thus requiring the use of alternative
techniques;

(ii) The analysis of transmission problems with multiple subdomains and different elliptic op-
erators in each subdomain, including cases where the subdomains interact via nonlinear
flux conditions;

(iii) Investigation of eigenvalue problems associated with the operators studied in this work in

the context of unbounded domains, for example, on RV or on R¥ \ Q, where Q ¢ RV is a
bounded domain.

Dissemination of Results

The results obtained within this thesis have been disseminated through the following published
articles and conference presentations:

Published Articles

L. Barbu, A. Burlacu, G. Morosanu, An eigenvalue problem involving the (p, q)-Laplacian
with a parametric boundary condition, Mediterr. J. Math. 20(4), art. no. 232, 2023 (Q1
JIF quartile, Q2 AIS quartile).

https://doi.org/10.1007/s00009-023-02431-0
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L. Barbu, A. Burlacu, G. Morosanu, On a nonlinear transmission eigenvalue problem with
a Neumann—Robin boundary condition, Math. Methods Appl. Sci., 46(17), 18375-18386,
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L. Barbu, A. Burlacu, G. Morosanu, On an eigenvalue problem associated with the (p,q)-
Laplacian, An. St. Univ. Ovidius Constanta, 32(1), 45-63, 2024 (Q2 JIF quartile, Q4 AIS
quartile).

https://doi.org/10.2478 /auom-2024-0003

Conference Presentations

International Conferences

FEigenvalues of (p,q)-Laplacian under Robin-Steklov Boundary Condition, The 10th Inter-
national Scientific Conference-Sea Conf, Mircea cel Batran Naval Academy, May 16-18,
2024 (oral presentation);

https://www.anmb.ro/ro/conferinte/sea-conf/

Continuous Spectrum for an Eigenvalue Problem Governed by the (p,q)-Laplacian, ICATA-
International Conference on Approximation Theory and Its Applications, Lucian Blaga
University of Sibiu, July 17-20, 2024 (oral presentation);
https://conferences.ulbsibiu.ro/icata/

On a Nonlinear Transmission Eigenvalue Problem, The 11th International Scientific Con-
ference -Sea Conf, Mircea cel Batran Naval Academy, May 15-17, 2025 (oral presentation);
https://www.anmb.ro/ro/conferinte /sea-conf/

Transmission Eigenvalue Problems with Neumann-Robin Boundary Conditions Involving
the p- and q-Laplacian, The 6th International Conference on Mathematics and Its Appli-
cations in Science and Engineering, University of Plovdiv, July 15-17, 2025 (oral presenta-
tion);

https://www.icmase.com/

Analysis of a Generalized Robin-Steklov Figenvalue Problem with (p,q)-Laplacian, The 6th
International Conference on Mathematics and Its Applications in Science and Engineering,
University of Plovdiv, July 15-17, 2025 (oral presentation).

https://www.icmase.com/

National Conferences

An Eigenvalue Problem Involving the (p, q)-Laplacian with a Parametric Boundary Con-
dition, Mathematics Communications Session, Faculty of Mathematics and Computer Sci-
ence, Ovidius University of Constanta, December 10, 2022 (oral presentation);
https://fmi.univ-ovidius.ro/sesiunea-de-comunicari-matematice-2022/

On an Eigenvalue Problem Associated with the (p, q)-Laplacian, Mathematics Commu-
nications Session, Faculty of Mathematics and Computer Science, Ovidius University of
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