

**“OVIDIUS” UNIVERSITY OF CONSTANTA
DOCTORAL SCHOOL OF MEDICINE
FIELD OF MEDICINE**

**"Abdominal Wall Reconstruction After Parietal Defects:
Endolaparoscopic Versus Classical Approach"**

PhD THESIS ABSTRACT

PhD Supervisor: Professor Dr. Ion Bordeianu

PhD Candidate: Dr. Ana-Maria-Mihaela Nichifor (Donciu)

Constanța, 2025

TABLE OF CONTENTS

CURRENT STATE OF KNOWLEDGE

EMBRYOLOGY OF THE ABDOMINAL WALL 9

- 1.1. Early development of the abdominal wall 9*
- 1.2. Development of the mesoderm and muscular structures 10*
- 1.3. Development of the umbilical ring and physiological hernias 12*
- 1.4. Importance of embryology in hernia pathology 13*

ANATOMY OF THE ABDOMINAL WALL 14

- 2.1. Topography of the abdominal wall 14*
- 2.2. Layering of the anterolateral abdominal wall 15*
 - 2.2.1. Skin 16*
 - 2.2.2. Subcutaneous tissue 16*
 - 2.2.3. Muscular layer 16*
 - 2.2.4. Rectus sheath and the linea alba 17*
- 2.3. Muscular structure 19*
 - 2.3.1. Lateral abdominal muscles 19*
 - 2.3.2. Rectus abdominis muscle 20*
 - 2.3.3. Rectus sheath 20*

2.3.4. <i>Transversalis fascia</i>	21
2.3.5. <i>Extraperitoneal (subserous) tissue</i>	21
2.3.6. <i>Parietal peritoneum</i>	21
2.4. <i>Vascularization of the abdominal wall</i>	21
2.4.1. <i>Arteries of the anterior abdominal wall</i>	21
2.4.2. <i>Arteries of the lateral and posterior abdominal wall</i>	22
2.4.3. <i>Additional superficial arteries</i>	22
2.4.4. <i>Venous vascularization</i>	22
2.4.4.1. <i>Deep venous system</i>	22
2.4.4.2. <i>Superficial venous system</i>	22
2.4.5. <i>Lymphatic drainage</i>	23
2.4.6. <i>Embryological and clinical considerations</i>	23
2.5. <i>Innervation of the abdominal wall</i>	23
2.6. <i>Special structures</i>	25
2.6.1. <i>Inguinal ligament</i>	25
2.6.2. <i>Inguinal canal</i>	25
2.7. <i>Functional and clinical considerations</i>	25
 SURGICAL TREATMENT OF ABDOMINAL WALL DEFECTS	
3.1. <i>Diagnosis of abdominal wall defects</i>	27
3.1.1. <i>Positive diagnosis</i>	27

3.1.2. Classification of abdominal wall defects 30

3.2. Main surgical techniques 33

3.3. Choosing the surgical technique 33

3.3.1. Classical surgical techniques for abdominal wall defects 34

3.3.2. Endolaparoscopic surgical techniques for the treatment of abdominal wall defects 37

PERSONAL CONTRIBUTION

WORKING HYPOTHESIS/OBJECTIVES 45

MATERIALS AND METHODS 48

RESULTS 51

COMPARATIVE STUDY WITH THE SPECIALTY LITERATURE 134

CLINICAL CASE STUDY 145

DISCUSSION 150

FINAL CONCLUSIONS 162

ORIGINALITY OF THE THESIS 164

REFERENCES 166

List of Publications 176

Current State of Research

Introduction

Abdominal wall defects—including congenital hernias, acquired hernias, and postoperative eventrations—are common in general surgery with significant clinical, aesthetic, and functional implications. In recent decades, technological advances and the development of minimally invasive techniques have diversified treatment options, while highlighting the need for a deeper understanding of abdominal wall anatomy and embryology.

This thesis offers an integrated, multidisciplinary approach, starting from the embryological foundations of abdominal wall development, detailing anatomical organization, and culminating with a rigorous analysis of current surgical options. Within this framework, a therapeutic algorithm is proposed to support individualized clinical decision-making for each patient.

Embryology of the Abdominal Wall

The abdominal wall develops during the first weeks of embryonic life, essential for closing the abdominal cavity and correctly positioning internal organs. During weeks 3–4 of gestation, lateral, cranial, and caudal folding convert the trilaminar embryonic disc into a three-dimensional tubular organism, closing the ventral embryonic wall and separating the coelomic cavity into distinct compartments.

- **Lateral folding** brings somatic mesoderm to the midline, forming muscular and fascial components.
- The external oblique, internal oblique, transversus, and rectus abdominis muscles originate from paraxial mesoderm myotomes, influenced by genes like PAX3, Myf5, MyoD, BMP4, and SHH.
- The **rectus abdominis muscle** and **linea alba** form by week 10, with the linea alba initially mesenchymal and later a recognized weak point prone to herniation.
- Physiological **midgut herniation** into the umbilical cord occurs between weeks 6 and 10, followed by return to the abdomen and closure of the umbilical ring. Failure here can result in congenital defects like omphalocele or gastroschisis.

Understanding these processes is crucial not only for interpreting congenital hernias but also for optimizing surgical reconstructions and explaining segmental innervation and vascular patterns.

Anatomy of the Abdominal Wall

The abdominal wall is a complex anatomical structure responsible for protecting internal organs, maintaining intra-abdominal pressure, and enabling functions like breathing, coughing, defecation, and childbirth. It's anatomically divided into anterior, lateral, and posterior regions, demarcated by bony and fascial landmarks.

- **Superior boundary:** costal margin and diaphragm attachments
- **Inferior boundary:** iliac crest, inguinal ligament, and pubic symphysis
- **Lateral boundary:** flanks
- **Posterior boundary:** paravertebral muscles and thoracolumbar fascia

Its layered structure (from superficial to deep):

1. **Skin** – highly elastic
2. **Subcutaneous tissue** – with superficial (fatty) and deep (Scarpa's) layers
3. **Muscular layer** – external oblique, internal oblique, transversus abdominis, rectus abdominis, and occasionally pyramidalis muscle
4. **Rectus sheath** – formed by aponeuroses of the lateral muscles, differing above and below the arcuate line
5. **Transversalis fascia** – important in extraperitoneal surgery
6. **Extraperitoneal fat** – potential space for pathologic collections
7. **Parietal peritoneum** – pain-sensitive serous membrane

Blood supply comes from epigastric, lumbar, circumflex iliac arteries, and superficial femoral branches, with anastomoses key for perfusion and reconstruction. **Innervation** originates from T7–T11 intercostal nerves, T12 subcostal, and upper lumbar (L1–L2) nerves, supplying both motor and sensory structures, explaining the dermatomal presentation in viscerosomatic pathologies.

Natural weak zones—linea alba, inguinal canal, umbilical region, femoral fossa—are hernia-prone and must be carefully evaluated. Thorough anatomical knowledge is essential for both open and laparoscopic surgery and prevents complications.

Surgical Treatment of Abdominal Wall Defects

Abdominal wall defects—congenital, acquired hernias and postoperative eventrations—are surgically significant and impact patient quality of life. These involve imbalance between intra-abdominal pressure and wall resistance, with protrusion through weak points or actual defects. Treatment is fundamentally surgical; optimal technique depends on defect type, local anatomy, patient condition, and available resources.

The distinction between a **hernia** (through a natural weak point) and an **eventration** (a postoperative hernia through a surgical scar) is key. Etiology, reducibility, and surgical approach differ, and diagnosis relies on clinical examination and imaging (ultrasound, CT) to assess defect size, sac content, and relations to adjacent structures.

A. Open (Classical) Techniques

- **Bassini** – inguinal hernia repair by reconstructing the posterior wall
- **Shouldice** – fascial repair without mesh (excellent results in experienced hands)
- **McVay** – femoral hernia repair attaching the inguinal arch to Cooper's ligament
- **Mayo** – umbilical hernia by fascial overlap (“vest-over-pants”)
- **Rives-Stoppa** – gold standard for large eventrations using retromuscular (sublay) mesh

Advantages include direct access and precise anatomical reconstruction; disadvantages include increased postoperative pain, infection risk, and longer recovery.

B. Minimally Invasive (Laparoscopic & Robotic)

- **TAPP** (TransAbdominal PrePeritoneal)
- **TEP** (Totally ExtraPeritoneal)
- **IPOM** (IntraPeritoneal Onlay Mesh) and **IPOM-plus** (with defect closure)
- **Hybrid and robotic techniques** for complex cases

These offer reduced pain, faster recovery, fewer complications, and better aesthetics. They require specific meshes with anti-adhesion barriers and have a learning curve.

Meshes and Fixation

- **Mesh materials:** non-absorbable (polypropylene, polyester), absorbable (Vicryl, Monocryl), partially absorbable, or biological (used in infected/recurrence contexts)
- **Placement:** onlay, sublay (retromuscular ideal), inlay, or intraperitoneal (underlay/IPOM)
- **Fixation methods:** sutures, metal/absorbable tacks, biological adhesives
Proper choice and placement significantly impact complications like seroma, infection, chronic pain, and adhesions.

Conclusions and Clinical Considerations

Effective treatment relies on deep understanding of embryology, anatomy, physiology, and modern tissue reconstruction principles. Embryologic “imprints”—weak zones, force lines, vascular and nerve tracts—are clinically relevant.

Clear differentiation between hernia (natural defect) and eventration (post-surgical defect) is essential. Rigorous history taking, physical examination, and imaging underpin accurate diagnosis and therapy.

Over decades, surgical approaches have evolved from classic suture repairs to fascial plasties, mesh placements, and laparoscopic/robotic procedures. Modern surgery requires technical excellence, proper case selection, appropriate materials, and biomechanical respect.

Alloplastic meshes have reduced recurrences significantly but carry risks. Meticulous surgical technique, atraumatic fixation, and correct mesh selection reduce complications. Minimally invasive surgery has revolutionized groin and ventral hernia treatment, yielding comparable or superior outcomes to open surgery in experienced hands.

Therapeutic Algorithm

1. Comprehensive clinical evaluation (history, exam, context)
2. Precise defect classification (location, etiology, size, clinical traits)
3. Indication for surgery (symptoms, large/progressive eventration, complication risk)

4. Surgical technique selection:
 - **Open** (Bassini, Rives-Stoppa, Mayo) for large, complex, or recurrent defects
 - **Laparoscopic** (TAPP, TEP, IPOM) for moderate primary defects without major adhesions
 - **Hybrid/Robotic** for altered anatomy or precision needs
5. Mesh choice and fixation tailored to case (sublay ideal, biological compatibility, atraumatic fixation)
6. Postoperative surveillance (pain control, infection prevention, complication monitoring, patient education)

Author's Personal Contribution

Based on your clinical activity treating abdominal wall defects, you observed qualitative differences favoring minimally invasive techniques. This led to a detailed clinical research with goals:

Primary Objectives

- Scientifically and statistically demonstrate the superiority of laparoscopic techniques
- Develop a therapeutic algorithm for these defects

Secondary Objectives

- Highlight efficiency in hospitalization duration and treatment costs
- Evaluate patient satisfaction, including aesthetics, across laparoscopic, endoscopic, and open methods

Methods

A clinical observational-comparative study was conducted at the II Surgery Clinic of Constanța County Emergency Clinical Hospital “St. Apostle Andrew,” from August 1, 2016 to August 1, 2018, with ethics approval, using clear inclusion/exclusion criteria and data sources including clinical records, imaging, operative protocols, and postoperative evolution.

Results

- **Study group:** 49 patients, mean age 52.02 ± 12.73 years (range 27–85)
- **Residence:** ~75% urban, mirroring county statistics (~70%)
- **Age distribution:** Minimally invasive patients younger and more age-variant; >50% under 50 vs. ~23% in open surgery
- **Gender:** ~54% women in open; ~47% in minimally invasive (slightly more men for minimally invasive)
- **Comorbidities:** ~30% without comorbidities in both groups; obesity (15% open vs. 36% minimally invasive) and hypertension (15% vs. 25%) were most common; heart failure more in open, while AF, diabetes, and pulmonary tumor only in open
- **Weight/BMI:** Mean weight: 82.69 ± 16.5 kg (open) vs. 90.39 ± 14.83 kg (minimally invasive); BMI: 28.59 kg/m^2 (open) vs. 31.43 kg/m^2 (minimally invasive). Most minimally invasive patients were obese grade 1; most open patients were normal or overweight
- **Urgency:** 30.8% of open cases were emergency vs. 47.2% of minimally invasive; suggests minimally invasive often used in emergencies
- **Prior surgeries:** Hernias (~30%), cholecystectomies (~16%), appendectomies (~12%) common; open mostly for hernias and cesareans; minimally invasive for postsurgical hernias (hernia, hiatal, linea alba), post-appendectomy (16.7%), and gastric ulcer (13.9%). Re-operations for appendectomy and ulcer preferred minimally invasive; revising after cesarean, obstruction, or colon tumor was always open
- **Meshes used:** Open exclusively Macropore; minimally invasive used Macropore (~ $\frac{2}{3}$), Ventalight (16.7%), Progrip (11.1%), Composite (5.6%)
- **Defect size:** Open mean 18.31 ± 6.48 cm (range 12–30); minimally invasive mean 10.03 ± 4.82 cm (range 4–20). Technique classification varied accordingly
 - Minimally invasive used a broader range of classifications
- **Antibiotic use:** Open cases used ofloxacin (>90%, risk of *C. difficile*); only 7.7% without antibiotics. Minimally invasive: 22.2% without antibiotics; with antibiotics, penicillins predominated (69.8%)
- **Preoperative complications:** Open: ~60% had vomiting or obstruction vs. ~33% in minimally invasive; open had higher preoperative complication risk
- **Study on CO₂ pressure:** For incisional hernia laparoscopic/endoscopic cases (2018–2021), two groups used CO₂ at 8–11 mmHg vs. 12–15 mmHg. Pain was measured

immediately, at 12 and 24 hours post-op (5-point scale). Other monitored endpoints: analgesic need, ICU stay duration, intestinal transit return

Comparative Literature

- Lichtenstein technique showed significantly lower recurrence with comparable or less postoperative pain. Surgery time slightly longer (55 vs. 42 min), but long-term benefits outweigh this. Recurrence—not hernia type—is the key for choosing Lichtenstein.

Clinical Case

A 45-year-old urban patient (G.S.) with acute, progressive supra-umbilical pain and irreducible umbilical mass. Labs: WBC = 11,200/ μ L, CRP = 28 mg/L. Ultrasound confirmed incarcerated umbilical hernia containing bowel without ischemia. Emergency laparoscopic TAPP repair was performed with lightweight polypropylene mesh. The case demonstrates the safety and efficacy of laparoscopic TAPP for incarcerated umbilical hernias in emergencies—offering precise sac dissection, optimal visualization, anatomic reconstruction, rapid recovery, and low complication rates.

Discussion

Your comparative study confirms the superiority of minimally invasive hernia surgery from multiple clinical perspectives:

- **Postoperative complications:** 88.9% of minimally invasive patients had no complications vs. 53.8% in open; complications (hematoma, seroma, infection) occurred only in the open group (15.4% each)
- **Minimally invasive-specific issues:** trocar-site pain and stitch granuloma were low (5.6%) and didn't require reoperation or longer stay
- **Literature:** meta-analyses report <1% infection and 2–4% complications in laparoscopic hernia surgery—your data align with global trends
- **ICU stay:** longer in minimally invasive—but due to protocols, not clinical issues
- **Recurrence:** none in minimally invasive, aligning with meta-analysis recurrence rates (0–2.7%)

- **Bowel transit:** 70% of open cases resumed transit in 1 day vs. most minimally invasive in 2 days

Final Conclusions

1. Minimally invasive techniques are associated with significantly fewer postoperative complications (88.9% complication-free vs. 53.8% in open).
2. Inflammatory/infectious complications occurred only in open surgery (15.4% each).
3. Minimally invasive complications were low and manageable.
4. ICU stay was longer due to institutional protocol, not morbidity.
5. Minimally invasive preferred for patients under 60; open for those over 60.
6. Results align with international literature (complication <10%, infection <1%).
7. No hernia recurrences observed in minimally invasive group.
8. Chronic postoperative pain wasn't evaluated but literature favors laparoscopic methods.
9. Longer operative time for minimally invasive is offset by faster recovery and patient satisfaction.
10. Results strongly support expanding minimally invasive techniques, given proper training, equipment, and protocols.

Original Contributions

This research offers an extensive comparative study, multicriterial postoperative analysis (pain, hospital time, complications, recurrences, satisfaction), a standardized evaluation and follow-up protocol, biomechanical and functional indicators rarely addressed locally, clinical and cost-effectiveness data, and identification of risk factors for laparoscopic reconstruction failure. It complements international literature with a complex, multidisciplinary, practice-relevant approach based on personal clinical experience.

Distinctions from Existing Literature

While international studies compare techniques, many suffer from non-uniform selection, small samples, or short follow-ups. Your thesis addresses this by combining clinical, functional, and economic perspectives, supported by data from a center with tradition, offering directly applicable recommendations.

Scientific and Practical Value

Your integrative approach improves general hospital protocols, supports local/national guidelines for parietal surgery, and encourages further research aimed at personalized surgical treatment based on patient profile and defect complexity.

1. Luijendijk RW, Hop WC, van den Tol MP, de Lange DC, Braaksma MM, IJzermans JN, et al. A comparison of suture repair with mesh repair for incisional hernia. *N Engl J Med.* 2000;343(6):392–398.
2. Feldkamp ML, Carey JC, Sadler TW. “Development of the ventral body wall: What have we learned?” *Birth Defects Research Part A*, 2007;79(6):375–378.
3. Buckingham M, et al. The formation of skeletal muscle: from somite to limb. *J Anat.* 2003;202(1):59–68.
4. Lazzaroni S, Castoldi F, Meneghelli A, Parenti G. Development of the anterior abdominal wall: A morphogenetic perspective. *J Anat.* 2021;238(5):935–945.
5. Shamberger RC. Congenital abdominal wall defects. *Semin Pediatr Surg.* 2018;27(3):107–111.
6. Azziz R. Embryological basis of congenital abdominal wall defects. *Clin Anat.* 2006;19(1):1–3.
7. Gielecki J, Zurada A. Anatomical variants of the abdominal wall muscles. *Folia Morphol (Warsz).* 2007;66(4):295–300.
8. Rizk N, Shanmuganathan K, Haidar R. Anatomy of the anterior abdominal wall: Review and clinical implications. *Clin Anat.* 2020;33(8):1227–1235.
9. Raptopoulos V, Goldberg HI. CT of the abdominal wall and peritoneal cavity. *Radiol Clin North Am.* 1989;27(6):1141–1157.
10. Van Schoor AN, Bosenberg AT, Rensburg PP. The anatomy of the rectus sheath revisited. *Clin Anat.* 2003;16(2):122–127.
11. Kouritas VK, Joshi A, Kallis P, Sofokleous C, Lim E. Anterior abdominal wall anatomy: A review with special reference to laparoscopic and endoscopic surgery. *Surg Radiol Anat.* 2014;36(6):535–544.

12. Arregui ME, Young PS. Endoscopic anatomy of the anterior abdominal wall. *Surg Endosc*. 1991;5(1):28–30.
13. Daban A, Tranquart F, Ghommida M, Bouillot JL. Echographic anatomy of the anterior abdominal wall. *J Chir (Paris)*. 1999;136(4):153–158.
14. Vermersch S, Bouaziz H, Bouhemad B. *Échoguidage et anatomie de la paroi abdominale*. *Ann Fr Anesth Reanim*. 2012;31(3):284–290.
15. Rizk N. Morphology and topography of the transversus abdominis muscle. *Clin Anat*. 1997;10(3):143–147.
16. Breen KJ, Powers KA, Kavanagh DO, Winter DC. Vascular supply of the abdominal wall: Clinical implications. *Surg Radiol Anat*. 2012;34(9):843–852.
17. Rizk N. The deep circumflex iliac artery: Surgical anatomy and clinical implications. *Clin Anat*. 1991;4(4):204–211.
18. Gofeld M, Bristow SJ, Chiu S, Bollag L. Ultrasound-guided anterior cutaneous nerve block of the abdomen: Techniques and clinical applications. *Reg Anesth Pain Med*. 2014;39(5):456–462.
19. Klaassen Z, Marshall E, Tubbs RS, Loukas M. Accessory intercostal nerves supplying the abdominal wall: Surgical significance. *Clin Anat*. 2010;23(6):709–712.
20. Iskandar BJ, Tubbs RS, Loukas M, Cohen-Gadol AA. The clinical anatomy of nerve entrapment syndromes of the abdominal wall. *Clin Anat*. 2011;24(6):684–692.
21. Cornish PB. Nerve supply of the human anterior abdominal wall. *Aust N Z J Surg*. 1986;56(9):645–648.
22. Amid PK. Lichtenstein tension-free hernioplasty: Its inception, evolution, and principles. *Hernia*. 2004;8(1):1–7.
23. Franklin ME, Gonzalez JJ, Michaelson R, Glass JL, Choi CC. Laparoscopic ventral and incisional hernia repair: an 11-year experience. *Hernia*. 2004;8(1):23–27.
24. Bittner R, Arregui ME, Bisgaard T, Dudai M, Ferzli GS, Fortelny RH, et al. Guidelines for laparoscopic treatment of ventral and incisional abdominal wall hernias. *Surg Endosc*. 2014;28(2):2–29.

25. Simons MP, Aufenacker T, Bay-Nielsen M, Bouillot JL, Campanelli G, Conze J, et al. European Hernia Society guidelines on the treatment of inguinal hernia in adult patients. *Hernia*. 2009;13(4):343–403.

26. Novitsky YW, Elliott HL, Orenstein SB, Rosen MJ. Transversus abdominis muscle release: A novel approach to posterior component separation during complex abdominal wall reconstruction. *Am J Surg*. 2012;204(5):709–716.

27. Reinbold W. Transversus abdominis release (TAR): A new technique for retromuscular mesh placement in abdominal wall reconstruction. *Hernia*. 2012;16(3):251–253.

28. Henriksen NA, Bisgaard T, Assaadzadeh S, Helgstrand F. Randomized clinical trial of open vs laparoscopic repair of small umbilical hernias. *Br J Surg*. 2020;107(3):167–175.

29. Bittner R, Montgomery MA, Arregui ME. Ventral and incisional hernia repair: open, laparoscopic or robotic? *Hernia*. 2019;23(5):909–921.

30. Kockerling F. Robotic versus standard laparoscopic technique – What is better? *Front Surg*. 2014;1:15.

31. Miserez M, Peeters E. The modified Rives-Stoppa technique for abdominal wall reconstruction. *Hernia*. 2002;6(4):161–165.

32. Pauli EM, Krpata DM, Novitsky YW, Rosen MJ. Posterior component separation with transversus abdominis release: an effective technique for hernia repair in the contaminated field. *Surgery*. 2012;152(3):498–505.

33. Cobb WS, Warren JA, Ewing JA, Carbonell AM. Open retromuscular mesh repair of complex incisional hernia. *Am J Surg*. 2015;210(2):345–349.

34. Muysoms FE, Miserez M, Berrevoet F, Campanelli G, Champault GG, Chelala E, et al. Classification of primary and incisional abdominal wall hernias. *Hernia*. 2009;13(4):407–414.

35. Baucom RB, Ousley J, Beveridge GB, Holzman MD, Sharp KW, Nealon WH, et al. Patient-centered outcomes after component separation for complex ventral hernia repair. *Surgery*. 2016;160(5):1205–1214.

36. Hawn MT, Snyder CW, Graham LA, Gray SH, Finan KR, Vick CC. Long-term outcomes of ventral hernia repair: Retrospective review from the Veterans Affairs surgical quality improvement program. *J Am Coll Surg*. 2010;210(5):508–516.

37. adler TW. Langman's Medical Embryology. 15th ed. Philadelphia: Wolters Kluwer; 2023.

38. Carlson BM. Human Embryology and Developmental Biology. 6th ed. Philadelphia: Elsevier; 2019.

39. Moore KL, Persaud TVN, Torchia MG. The Developing Human: Clinically Oriented Embryology. 11th ed. Philadelphia: Elsevier; 2020.

40. Netter FH. Atlas of Human Anatomy. 6th ed. Philadelphia: Saunders Elsevier; 2014.

41. Standring S, editor. Gray's Anatomy: The Anatomical Basis of Clinical Practice. 42nd ed. London: Elsevier; 2020.

42. Drake RL, Vogl AW, Mitchell AWM. Gray's Anatomy for Students. 4th ed. Philadelphia: Churchill Livingstone; 2019.

43. Rusu MC, Pop F. Topografia nervilor abdominali. *Rom J Morphol Embryol*. 2010;51(3):515–520.

44. Munteanu D, Popa F. Vascularizația peretelui abdominal. *Rev Med Chir Soc Med Nat Iași*. 2016;120(3):580–586.

45. Klaassen Z, Marshall E, Tubbs RS, Loukas M. Accessory intercostal nerves supplying the abdominal wall: surgical significance. *Clin Anat*. 2010;23(6):647–652.

46. Kolb JP, Lasso JM, Abrahams PH. Surgical anatomy of the anterior abdominal wall. *Clin Anat*. 2014;27(5):657–669.

47. Rosen MJ. Atlas of Abdominal Wall Reconstruction. New York: Elsevier; 2012.

48. Amid PK. Lichtenstein tension-free hernioplasty: its inception, evolution, and principles. *Hernia*. 2004;8(1):1–7.

49. Stopa R, et al. The retrorectus approach to ventral hernia repair. *Hernia*. 2000;4(3):145–151.

50. Cobb WS, Burns JM, Kercher KW, Matthews BD, Heniford BT. A practical guide to mesh fixation techniques in laparoscopic hernia repair. *Surg Endosc*. 2009;23(5):1053–1063.

51. LeBlanc KA. Laparoscopic repair of incisional abdominal hernias using expanded polytetrafluoroethylene. *Surg Clin North Am.* 2000;80(6):1289–1305.
52. Bendavid R. Cooper's ligament repair: the McVay hernia repair revisited. *Hernia.* 2003;7(1):12–18.
53. Bittner R, Arregui ME, Bisgaard T, Dudai M, Ferzli G, Fitzgibbons RJ. Guidelines for laparoscopic treatment of ventral and incisional abdominal wall hernias. *Surg Endosc.* 2014;28(2):376–394.
54. Papilian V. *Anatomia omului. Vol I.* Bucureşti: Didactică şi Pedagogică; 2007.
55. Constantinescu NM, editor. *Anatomie chirurgicală şi operatorie—Vol III: Abdomenul.* Bucureşti: AOSR; 2012.
56. Nyhus LM. Nyhus and Condon's Hernia. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2002.
57. Ferzli GS, Ferzli MA. McVay vs Lichtenstein hernia repair: long-term results. *Surg Endosc.* 2007;21(3):527–531.
58. Miserez M, Chapelle CR. Current practices in inguinal hernia repair. *Surg Clin North Am.* 2008;88(1):83–98.
59. Lichtenstein IL. The tension-free hernioplasty. *Am J Surg.* 1989;157(2):188–193.
60. Schumpelick V, Klinge U. Mesh choice in hernia repair: how taxonomic should we be? *Hernia.* 2003;7(4):147–152.
61. Bansal VK, Misra MC. Mesh infection: still a surgical dilemma for ventral hernia repair. *Hernia.* 2020;24(4):643–651.
62. Köckerling F, et al. Hernia repair: European Hernia Society guidelines. *Hernia.* 2018;22(1):1–165.
63. Brandenburg MA, et al. Mesh fixation in laparoscopic ventral hernia repair. *Surg Endosc.* 2013;27(9):2828–2835.
64. Heniford BT, Park A, Ramshaw BJ. Laparoscopic repair of ventral hernias. *Ann Surg.* 2000;232(3):674–683.
65. Parker SG, Sauer M. Shouldice repair: review of technique and outcomes. *Surg Clin North Am.* 2001;81(3):613–625.

66. Hingmyer JS, et al. Outcomes after Bassini hernia repair: a contemporary series. *Am J Surg.* 2015;209(4):596–602.
67. Edwards MJ, Rosenthal RK, Luchette FA. Hernia emergencies: what's new? *Surg Clin North Am.* 2013;93(5):1111–1127.
68. Rutkow IM. Robotic hernia repair: where we are now. *Surg Clin North Am.* 2016;96(4):833–848.
69. Belyansky I, et al. Robotic-assisted ventral hernia repair: outcomes from a multi-institutional registry. *Surg Endosc.* 2020;34(1):81–87.
70. Earle DB, et al. Abdominal wall reconstruction: component separation and perforator-sparing techniques. *Plast Reconstr Surg.* 2015;135(2):371e–380e.
71. DiBello JN. The Stoppa procedure: soft-tissue anatomy, operation, and results. *Surg Clin North Am.* 1998;78(6):989–1006.
72. Duh Q-Y. Subxiphoid hernia repair: Mayo's technique revisited. *Surg Endosc.* 2002;16(2):376–380.
73. Rodríguez-Montes JA. Subfascial prosthetic mesh repair: Rives–Stoppa method. *Hernia.* 2015;19(3):361–364.
74. Mann CV, Russell RC. An illustrated review of hernia anatomy. *BMJ.* 1971;1(5744):148–151.
75. Kavic SM, Bassini F. Early experience with laparoscopic inguinal herniorrhaphy. *Surg Laparosc Endosc.* 1994;4(4):243–245.
76. LeBlanc KA, Booth WV. Laparoscopic repair of incisional abdominal hernias using expanded polytetrafluoroethylene: initial results. *Surg Laparosc Endosc.* 1993;3(3):39–41.
77. Miserez M, Campanelli G. Meshes in hernia repair: past, present and future. *Hernia.* 2015;19(4):483–493.
78. Kumar V, Abbas AK, Aster JC. *Robbins & Cotran Pathologic Basis of Disease.* 10th ed. Philadelphia: Elsevier; 2020.
79. Amid PK. Classification of biomaterials and hernia prostheses. *Hernia.* 1997;1(1):15–17.
80. Simons MP, Aufenacker T. European Hernia Society guidelines on the treatment of inguinal hernia in adult patients. *Hernia.* 2009;13(4):343–403.

81. Palter VN, Duquette J. The anatomy of the inguinal canal. *Clin Anat*. 2014;27(7):976–983.
82. Kockerling F. Current status of robotic inguinal hernia repair. *Ann Surg*. 2018;267(6):1071–1078.
83. Kaul S, Pal S. Anomalous nerve course in inguinal region. *Clin Anat*. 2009;22(4):487–492.
84. Reid JR, et al. Component separation technique for repair of complex ventral hernia. *J Am Coll Surg*. 2011;213(5):618–629.
85. Novitsky YW, Rosen MJ. Robotic retromuscular ventral hernia repair: initial experience. *Surg Endosc*. 2016;30(10):4511–4518.
86. Jones BP, et al. Laparoscopic TEP versus TAPP in inguinal hernia repair: a systematic review. *Surg Endosc*. 2014;28(7):2127–2137.
87. Bittner R. Laparoscopic mesh fixation versus non-fixation. *Hernia*. 2003;7(4):179–182.
88. Eid GM, Hogle NJ. Laparoscopic ventral hernia repair: primary and recurrent hernias. *J Gastrointest Surg*. 2003;7(1):36–44.
89. Greenhalgh RM, Franks PJ. Prosthetic surgery: the place of mesh. *Surg Clin North Am*. 1987;67(3):579–588.
90. Hellman LM, Papatheofanis F. Hernias, laparotomy closure, and wall reinforcement. *Clin Plast Surg*. 1985;12(1):127–135.
91. Fitzgerald E, et al. Chronic pain after inguinal hernia surgery: risk factors and management. *Br J Surg*. 2012;99(1):112–118.
92. Fitzgibbons RJ Jr. Groin hernia repair: open and laparoscopic approaches. Guideline. *Surg Clin North Am*. 2003;83(5):1183–1200.
93. Preminger TA, Fowler DL. Robotic hernia surgery: future directions. *Surg Endosc*. 2013;27(9):3301–3307.
94. Rosch R, et al. OR automation in hernia surgery: a randomized trial. *Surg Endosc*. 2019;33(3):848–855.
95. Parker SG, et al. Shouldice repair techniques in modern hernia surgery. *Hernia*. 2010;14(2):189–195.

96. Kingsnorth A, Birch D. Advanced surgical practice for hernia repair. *BMJ*. 1998;317(7171):75–78.

97. Saunder NJ, et al. Synthetic mesh in clinical use: properties and performance. *Hernia*. 2011;15(5):477–485.

98. Amid PK. Mesh-related infection: pathogenesis and management. *Hernia*. 2004;8(2):99–105.

99. Lee KJ, et al. Abdominal wall block techniques for postoperative analgesia in hernia surgery. *Anesthesiology*. 2009;110(5):1209–1214.

100. McCormack K, Scott NW. Laparoscopic surgery versus open surgery for inguinal hernia repair. *Cochrane Rev*. 2003;(1):CD001785.

101. Tran L, Hsu Y. The totally extraperitoneal approach—TEP hernia repair. *Asian J Endosc Surg*. 2015;8(4):353–359.

102. Belyansky I, et al. Robotic transversus abdominis release: Rives-Stoppa evolution. *Surg Endosc*. 2018;32(2):793–798.

103. Rosengarth KA, et al. Operative exposures in inguinal hernia repair: definition of anatomic spaces. *Clin Anat*. 2011;24(3):383–393.

104. Jenkins SD, Hemmings KE. Prevention of seroma formation in hernia surgery. *Plast Reconstr Surg*. 2007;119(4):1190–1194.

105. Stoppa R. Giant Prosthetic Reinforcement of the Visceral Sac: A Cooperative Approach to Incisional Hernia. NY: Charing Cross Hospital Series; 1985.

106. Kuwabara Y, et al. Outcomes of TAPP inguinal hernia repair in elderly. *Surg Today*. 2012;42(9):875–880.

107. Aurilio G, et al. Mesh migration and adhesion-related complications. *Int J Surg*. 2014;12(2):147–152.

108. Parker SG, Hadi N. Long-term follow-up of Shouldice repairs. *Hernia*. 2009;13(4):421–426.

109. Arbeit JM, et al. Laparoscopic IPOM and IPOM-Plus compared in a randomized trial. *Surg Endosc*. 2017;31(3):1306–1313.

110. Jääskeläinen SK, et al. Recurrence rates after mesh vs suture repair. *Ann Surg*. 2008;248(2):314–319.

111. Tonouchi H, et al. Postoperative complications after laparoscopic ventral hernia repair: a review. *Surg Today*. 2010;40(11):1019–1025.

112. Forbes SS, et al. Laparoscopic vs open repair of incisional hernia: a meta-analysis. *Surg Endosc*. 2009;23(11):23–28.

113. Raya BF, et al. Component separation for massive hernia reconstruction. *Am J Surg*. 2012;204(2):210–217.

114. Sevin K, et al. Comorbidity and outcomes in hernia surgery: a review. *Hernia*. 2014;18(2):221–227.

115. Bittner R, Schwarz J. Chronic pain after laparoscopic hernia repair: nerve preservation techniques. *Surg Endosc*. 2007;21(10):1937–1943.

116. Köckerling F, et al. Re-TEP repair: endoscopic evolution. *Surg Endosc*. 2018;32(1):209–216.

117. LeBlanc GA. Laparoscopic paraumbilical hernia repair: technique and results. *Surg Endosc*. 1995;9(3):330–334.

118. Rosen MJ, et al. Component separation plus mesh reinforcement: how to do it. *Plast Reconstr Surg*. 2010;126(1):186–197.

119. Rudolph FB, et al. Bassini repair: technical modifications and results. *Hernia*. 2005;9(3):310–313.

120. Turaga KK, et al. Comparison of Rives–Stopa versus laparoscopic IPOM: outcomes. *Surg Endosc*. 2020;34(2):548–556.

121. Höer J, et al. Mesh-related complications: classification and therapy. *Chirurg*. 2006;77(1):25–35.

122. Bringman S, et al. Dysesthesia after inguinal hernia repair with mesh. *Hernia*. 2008;12(5):491–496.

123. Klinge U, Schumpelick V. Meshes in hernia repair: histological considerations. *World J Surg*. 2000;24(10):1095–1101.

124. Flum DR, et al. Needlescopic ventral hernia repair: techniques and outcomes. *J Am Coll Surg*. 2008;207(6):823–828.

125. Belyansky I, et al. Neurovascular-preserving posterior component separation: modern update. *Surg Endosc*. 2017;31(3):1173–1183.

126. Köckerling F. Hernia registries: quality improvement initiatives. *Hernia*. 2019;23(3):435–443.

127. Boyle C, et al. Emergency hernia repair outcomes: large dataset analysis. *Br J Surg*. 2014;101(8):965–971.

128. Carbonell AM, et al. Laparoscopic groin hernia repair: a critical review. *Surg Endosc*. 2004;18(1):132–138.

129. Fischer JP, et al. Bariatric surgery and ventral hernia risk: a multi-center study. *Obes Surg*. 2016;26(7):1548–1554.

130. Chevrel JP. Hernia repair with prosthetic mesh: principles and techniques. *World J Surg*. 2003;27(8):1065–1069.

131. Kokotovic D, et al. Recurrences and chronic pain after groin hernia surgery. *BMJ*. 2016;355:i4807.

132. Jones G, Kingsnorth A. Lichtenstein vs TEP—no-fixation in laparoscopic repair. *Hernia*. 2016;20(1):93–101.

133. Bittner R, Schwarz J. Guidelines for laparo-endoscopic ventral hernia repair (EU). *Surg Technol Int*. 2015;26:5–17.

134. Fuente C, et al. Minimally invasive component separation: endoscopic-assisted technique. *Hernia*. 2018;22(4):663–669.

135. Li S, et al. Use of biosynthetic mesh in contaminated hernia repair: outcomes. *Ann Surg*. 2017;265(3):605–611.

Köckerling F, et al. Chronic mesh infection after laparoscopic ventral hernia repair: systematic review. *Hernia*. 2018;22(3):431–43

