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[bookmark: _Toc171856217]DATE generale
          În domeniul diabetologiei pediatrice, cercetările științifice încă nu au ajuns la un consens definitiv. Există multe teorii disponibile. O serie de studii urmăresc să demonstreze implicarea stresului oxidativ în dezechilibrul aterosclerotic, incriminat ca precursor clinic al afectării vasculare. [1-5]Glicarea neenzimatică, autooxidarea glucozei și modificările activității căii poliolului sunt toate surse de stres oxidativ crescut atunci când există hiperglicemie. Acest lucru are un impact asupra organismului în general [1,2,3]. La pacienții cu predispoziție genetică, diabetul de tip 1 predomină în copilărie și se caracterizează prin caracter autoimun, cu distrugerea progresivă a celulelor beta-pancreatice și lipsa de insulină. [1-10]
[bookmark: _Hlk170654350]           Cu toate acestea, în primul deceniu de evoluție a diabetului, datele internaționale aduc în discuție importanța menținerii balanței oxidant-antioxidant la parametrii optimi, pentru a preveni urmările pe termen lung ale hiperglicemiei[1-10]. Eliberarea locală a elementelor pro-oxidante determină vasodilatația endotelială. Stresul, mesele hipercalorice și hiperglicemia cresc nivelul factorilor oxidanți, crescând dificultatea în menținerea echilibrului intern. Acestora li se adaugă: hipercolesterolemia, poluarea, schimbările climatice, fumatul activ sau pasiv, etc. Apariția afecțiunilor vasculare este determinată de combinația acestor componente. Dar, în absența altor factori, afectarea vasculară endotelială este greu de demonstrat la copilul diabetic în prima decadă de evoluție a diabetului [1-10].
          Copiii cu diabet zaharat de tip 1 au prezentat niveluri mai mari de stres oxidativ (SOD și GSH, MDA) în comparație cu copiii sănătoși [10]. Datele analizate din punct de vedere enzimatic au fost analizate porționat, trunchiat și incomplet. Implicarea stressului oxidativ este analizată complet la adultul diabetic, dar la vârsta pediatrică cercetările încă nu au ajuns la un consens [7-10]. Debutul precoce și durata lungă până la instalarea complicațiilor, uneori în viața de adult, a determinat ca partea pediatrică să nu fie complet analizată. Cu toate acestea, studiile încep să demonstreze că perioada pediatrică de evoluție a diabetului zaharat are nivel constant crescut de stres oxidativ. Datorită rezultatelor prezentate, este important să luăm în considerare impactul crescut al stresului oxidativ asupra copiilor cu diabet zaharat de tip 1 [1-10]
          Actualul proiect de cercetare se bazează pe aceste componente sau structuri. Am subliniat conceptele prezentate în literatura de specialitate și le-am comparat cu situațiile subiecților din regiunea noastră (sud-estul României).
1. [bookmark: _Toc171856221][bookmark: _Hlk176546116]Introducere
          Diabetul zaharat reprezintă o afecțiune metabolică caracterizată prin diminuarea progresivă a  secreției de insulină.  Rezultatul este instalarea hiperglicemiei, însoțită ulterior de manifestările clasice, specifice diabetului: poliurie, polidipsie, polifagie, glicozurie, scădere ponderală. [11]
          Pe scurt, diabetul zaharat este definit ca fiind o afecțiune complexă al cărui element definitoriu este hiperglicemia și urmările acesteia.[11,12]
          Diabetul zaharat prezintă o extindere epidemică în ultimii 20 de ani. Populația de vârstă pediatrică, cu diabet tip de 1 este vizată în mod particular.  Evoluția acestuia este încă intens analizată. Extinderea este alarmantă. Impactul asupra tuturor indivizilor nu poate fi ignorat nici de medici, nici de corpurile cu răspundere socială. În țara noastră, procentul copiilor și adolescenților cu diabet zaharat este mai mic comparativ cu populația Europei. Totuși, ultimele date epidemiologice arată o tendință clară de creștere a diabetului la vârste mici. Studiile internaționale încearcă anticiparea eventualelor complicații micro și macrovasculare. Mai exact, se încearcă stabilirea  posibilului moment al declanșării primelor modificări induse de diabetul zaharat de tip 1 la copiii în vederea stabilirii conduitei terapeutice adecvate pentru a preveni  instalarea complicațiilor și, prin urmare, creșterea calității și a speranței de viață. [13,14]
Elementul comun al celor 2 tipuri clasice de diabet este reprezentat de hiperglicemie.
Diabetul zaharat este determinat de inițierea unui proces de distrucție a celulelor β-pancreatice din cadrul insulelor Langerhans, rezultând imposibilitatea asigurării necesarului de insulină și instalarea hiperglicemiei. Declanșarea acestui proces este incomplet cunoscută, factorii implicații fiind multiplii (genetici, imuni, de mediu, etc) [12, 15, 16, 17, 18]
          Inițial se declanșează un proces cronic inflamator la nivelul pancreasului, cu eliberarea de citokine pro-inflamatorii și specii reactive la oxigen. Punctul declanșator este adesea o infecție virală, cu răsunet clinic intermediar sau cel mai adesea ușor. Se observă o depășire inițială a procesului declanșator, fără urmări majore. Primul pas este determinat de instalarea unui proces cronic de inflamație la nivelul pancreasului. Cel mai adesea acesta are ca punct de plecare o infecție virală, cu răsunet clinic mediu sau ușor. Copilul depăseșește aparent episodul, dar la nivelul pancreasului inflamația persistă. Cu alte cuvinte, infecția virală cu impact asupra insulelor Langerhans și, respectiv a celulelor β-pancreatice, determină un proces de distrucție treptată, de inflamație, urmat de instalarea hiperglicemiei. [14, 15, 16, 17, 18]
2. [bookmark: _Toc171856228]Diabetul zaharat tip 1
[bookmark: _Toc171856229]Definiție
          Diabetul zaharat de tip 1 este declanșat secundar acțiunii autoanticorpilor împotriva celulelor β-pancreatice ceea ce determină scăderea marcată a producției de insulină și instalarea hiperglicemiei. Această afecțiune cronică, autoimună, necesită menținerea glicemiei în parametrii, cu risc minim de hipoglicemie. Echilibrul glicemic este afectat de tipul de alimente și modalitatea de preparare, dozele de insulină, orarul meselor, stres, exercițiile fizice, etc. Educația pacientului și a familiei este cheia, la fel ca și o recunoaștere a stadiilor normale de dezvoltare și a provocărilor pe care aceasta le aduce în contextul vieții de zi cu zi cu o boală cronică. Cu îngrijire și sprijin adecvat, copiii și adolescenții cu diabet zaharat de tip 1 se pot aștepta să ducă o viață lungă și împlinită. [82, 83, 84]
          Ritmul de distrugere a celulelor β- pancreatice este variabil, fiind rapid la unii copii (în special, dar nu exclusiv la vârstă mică) și lentă la alții (în principal, dar nu exclusiv la adulți). Majoritatea copiilor se prezintă în cetoacidoză diabetică, celelalte manifestări patognomonice (poliurie, polidipsie, polifagie, scădere ponderală) pot fi neobservate de părinte, în special la copilul de vârstă mai mare, care este independent, iar părintele nu mai deține controlul absolut al meselor, schimbatului, mersului la toaletă, al consumului de lichide.[85, 86, 87]
in unele pompe [82].
3. [bookmark: _Toc171856237][bookmark: _Toc171856239]Stresul oxidativ și injuria celulară
          În celulele sănătoase, producția de ROS este controlată în mod strict, dar supraproducția în timpul disfuncției metabolice poate duce la leziuni ale celulelor. În ciuda faptului că atât O2−, cât și NO sunt destul de inerți, atunci când se combină, creează peroxinitrit foarte reactiv, care atacă și inhibă atât proteinele, cât și lipidele. În plus, atât NO, cât și O2− pot ataca centrii de fier-sulf ai enzimelor și a altor proteine, eliberând atomii de fier. Acest lucru inhibă activitățile enzimelor și proteice. Biotina sintetaza, aconitaza ciclului acidului tricloracetic și complecșii I-III din lanțul de transfer de electroni sunt printre numeroasele proteine importante care sunt extrem de sensibile la acest tip de inhibare [141,142,143].
          Formarea adductelor de acid nucleic, lipidelor și proteinelor necesită utilizarea unui număr de substraturi biologice care conțin grupări metilen reactive. Această reacție în lanț este complexă. Deoarece intermediarii din reacția în lanț au o capacitate oxidativă extrem de ridicată, pot provoca daune celulare mari. În trecut, chimia acestor reacții a fost examinată [143,144,145]. Țintele principale ale atacului și peroxidării ROS sunt lipidele prezente în reticulul endoplasmatic, mitocondrii și membranele plasmatice. Peroxizii lipidici, produsii finali ai peroxidării lipidelor, pot fi toxici pentru o celulă și necesită îndepărtarea cu ajutorul GSH, așa cum este descris mai jos. În mod similar, acizii nucleici și proteinele pot fi oxidați sau nitrozați.                            Acumularea de proteine inactive poate supraîncărca capacitatea celulei de a le recicla, iar deteriorarea ADN-ului poate activa mecanismele de apoptoză. Cu toate acestea, acești produși finali, de obicei, nu au efect toxic direct asupra celulei. În plus, acumularea de proteine duce la o reducere semnificativă a activității normale. Încetinirea transportului axonal poate provoca apoptoză și o scădere a eliberării factorilor de creștere și a intermediarilor din sinapsă în corpul celular [146]. Modificarea oxidativă a factorilor de transcripție reduce expresia anumitor proteine, cum ar fi factorul inhibitor al apoptozei, complexul I și Bcl-2, dar crește expresia proteinelor de stres, care pot fi proapoptotice, cum ar fi ciclooxigenaza 2, poli-ADP riboză și polimeraza[146,147,148,149].
          Producția de ROS în toate celulele poate juca un rol în diferențiere și dezvoltare. Stresul oxidativ potențează factorii de creștere, componentele de răspuns la stres și căile de apoptoză, deoarece statutul redox poate avea un impact semnificativ asupra expresiei genice [150]. Dar mecanismele de semnalizare a stresului oxidativ distrug unele enzime implicate în procesul respirator al glucozei, precum: citokinele, citocrom c oxidaza [151]. Înțelegerea modului în care intermediarii reactivi ai oxigenului controlează genele prezintă o expansiune rapidă. Capacitatea unei celule de a răspunde la stres, prin modificarea expresiei genelor poate oferi o țintă terapeutică semnificativă, odată ce mecanismele sunt mai clar înțelese [151].
          În diviziunea celulară,  modificările ADN-ului care provoacă instabilitate genomică și mutații, fapt care reprezintă cea mai semnificativă consecință a stress-ului oxidativ [152]. Deteriorarea proteinelor și lipidelor poate fi mai dăunătoare decât deteriorarea ADN-ului în celulele nedivizate, cum ar fi neuronii, deoarece acest lucru poate împiedica proteinele să efectueze transportul și semnalizarea axonală [145].
4. [bookmark: _Toc171856240]Stresul oxidativ și celulele β-pancreatice
          Pierderea echilibrului dintre cele doua elemente ale esențiale ale procesului oxidativ (echilibrul oxidant/antioxidant) declanșeaza cascada unuor fenomene negative cunoascută sub numele de stres oxidativ. Rezultatul acestei interacțiuni negative constă în eliberarea unor elemente negative cunoscute sau descrise cu denumirea de specii reactive de oxigen. Completarea tabloului stresului oxidativ este descrisă prin generarea de specii reactive de oxigen într-un sistem celular și depășirea capacității antioxidante de aparare a organismului. Persistența acestor fenomene determină efecte asupra tuturor elementelor metabolice: lipide, proteine, carbohidrați. [63, 69, 70, 71].  
          Stresul oxidativ este asociat cu mecanismele de deteriorare a țesuturilor moleculare și celulare, care sunt implicate într-o gamă largă de afecțiuni [63, 153].  Multă atenție a fost acordată rolului stresului oxidativ în ultimul timp. S-a demonstrat că stresul oxidativ este implicat în patogeneza și progresia complicațiilor diabetice secundare. Aceasta include creșterea frecvenței complicațiilor și perturbarea funcției insulinei [63, 153]. În plus, există dovezi care susțin rolul speciilor reactive de oxigen și al stresului oxidativ în dezvoltarea complicațiilor diabetului de tip 1, cum ar fi retinopatia, nefropatia, neuropatia și boala coronariană [63, 154, 155].
          S-a descoperit, de asemenea, că stresul oxidativ provocat de speciile reactive de oxigen și azot are un rol semnificativ în modul în care funcționează celulele și, prin urmare, joacă un rol în patogenia diabetului zaharat de tip 1[156]. Datorită nivelurilor reduse de antioxidanți endogeni, celulele insulare sunt foarte susceptibile la stresul [157]. Celulele sunt foarte sensibile la stresul oxidativ datorită capacității lor antioxidante scăzute. Pentru speciile reactive de oxigen și alți oxidanți, metabolismul celular și canalele de potasiu (adenozin-5'-trifosfat) din celulele β sunt esențiale. Deoarece ablația genetică a canalelor de potasiu (adenozin-5'-trifosfat) atenuează efectele stresului oxidativ asupra funcției celulelor β, modificările activității canalului de potasiu de către oxidanți sunt esențiale pentru disfuncția indusă de oxidanți [158].
          Stresul oxidativ poate deteriora celulele β-pancreatice și poate reduce sensibilitatea la insulină. În urma stresului oxidativ, anumite tipuri de oxigen reactive pot pătrunde prin membranele celulare și pot dăuna celulelor β-pancreatice [159]. Acidul dezoxiribonucleic mitocondrial și funcția celulelor pancreatice pot fi afectate de speciile reactive de oxigen produse din acizi grași liberi [160]. O serie de specii reactive de oxigen derivate din mitocondrii și oxizi de azot (NOx) au fost asociate cu distrugerea celulelor și, în cele din urmă, cu apariția diabetului zaharat de tip 1. În plus, creșterea glucozei poate accelera ciclul Krebs în mitocondriile celulelor beta, ceea ce duce la producerea de specii de oxigen reactive [161]. Pe lângă secreția de insulină, superoxidul scurs din mitocondrii poate contribui la formarea peroxidului de hidrogen, care este capabil să perturbe   metabolismul glucozei [162].
5. [bookmark: _Toc171856241]Stresul oxidativ și hiperglicemia
          În diabetul zaharat se produc specii reactive de oxigen de origine mitocondrială și non-mitocondrială. Patru procese moleculare cruciale care contribuie la deteriorarea oxidativă a țesutului cauzată de hiperglicemie sunt accelerate de speciile reactive de oxigen. Produsele finale ale acestor patru căi sunt fluxul crescut al căii hexozaminei, activarea căii proteinei kinazei C, fluxul crescut al căii poliolului și calea sorbitol-aldozo reductază. [163].
          Alterarea acțiunii insulinei induce apariția și patogenia complicațiilor diabetului zaharat. Hiperglicemia, care stimulează producerea de radicali liberi, este esențială pentru declanșarea tuturor manifestărilor [162, 164, 165, 166, 167]. Stresul oxidativ este considerat a fi un proces normal sau fiziologic al organismului, cu rolul esențial de a menține un proces metabolic normal. Condiția este ca activitatea antioxidantă și oxidantă să rămână echilibrată. [165, 166] La nivel celular, dezechilibrele cauzate de perturbarea balanței antioxidant-oxidant sunt mai mari. La nivelul insulei Langerhans, efectele sunt cele mai mari. Ca urmare, celulele beta-pancreatice, care au cel mai jos nivel de apărare antioxidantă, sunt cele mai afectate. Cu toate acestea, mecanismul este complicat și implică hiperglicemia, care în mod secundar provoacă o producție enzimatică mai mare de lipide, proteice și carbohidrați [165, 166]
          Neutrofilele și macrofage, care sunt produse în timpul arderilor respiratorii care sunt necesare pentru eliberarea de antigene, produc specii reactive la oxigen (ROS). Supraproducția de superoxide mitocondriale la nivelul endoteliului vascular este rezultatul schimbărilor metabolice cauzate de producția excesivă a ROS. [167, 168, 169].Stresul oxidativ servește ca un mediator în diabetul zaharat, inducând insulino-rezistență, menținând hiperglicemia – factorul trigger – și promovând afectarea vasculară, crescând riscul de complicații micro- și macrovasculare. [164, 169, 170, 171, 172]. În plus față de creșterea cantității de produși finali ai glicării avansate, creșterea expresiei receptorilor pentru produșii finali ai glicării și activarea enzimatică excesivă intracelulară, hiperglicemia indusă prin calea poliolului poate provoca o serie de efecte negative asupra țesuturilor. [170, 171].
[bookmark: _Hlk149650792]          Pierderea funcției celulelor beta-pancreatice este parțial mediată de procesul inflamator caracteristic diabetului zaharat de tip 1. [172] 
6. [bookmark: _Toc171856242]Stresul oxidativ și peroxidarea lipidică
          Printr-o reacție de dismutare indusă de superoxid dismutaza asupra anionului superoxid este produs peroxidul de hidrogen (H2O2). La rândul său, peroxidul de hidrogen este divizat în prezența ionilor metalici, în cel mai reactiv radical -radicalul hidroxil (•OH). Acesta oxidează acele lipide formate din legături duble de tip carbon-carbon, rezultând acizii grași polinesaturați sau PUFA. Astfel, PUFA reprezintă o categorie de aczi grași ușor peroxidabil, cum ar fi acidul arahidonic sau acidul docosahexaeonic. [176] Cascada descompunerii continuă, astfel din acidul arahidoni rezultă o serie de peroxizi/ radicali ce vor forma endoperozi. Din endoperoxizi se vor general o varietate de reactivi intermediari, iar dintre aceștia se remarcă malondialdehida. [176, 177, 178]
[bookmark: _Toc171856243]Malondialdehida
          Malondialdehida (MDA) reprezentă un biomarker frecvent utilizat în evaluarea nivelului de peroxidare lipidică. Al 2-lea marker utilizat adesea este 8-izoPGF2α[12, 14]. Intră in categoria aldehidelor rezultate in peroxidării enzimatice și eliberarea de radicali liberi după catalizarea acizilor grași polinesaturați. [179, 180].
          Caracteristicile principale ale malondialdehidei sunt reprezentate de reactivitatea crescută și capacitatea de a crea derivați cu o gamă variată de molecule biologice, de a se lega de ADN și de fragmente proteice. MDA circulă liber sau neconsolidat, legat de diverse molecule (legături covante), ca de exemplu de: aminoacizi solubili, acizi nucleici, lipoproteine, proteine. În funcție de nivelul plasmatic, MDA prezintă și forme totale consolidate sau neconsolidate. Devine ușor de măsurat prin probe de laborator uzuale, deoarce majoritatea concentrațiilor plasmatice circulă legat de proteine [176, 177]. Cea mai ușoară metodă de detecție și cea mai frecvent utilizată se bazează pe o reacție cu acidul tiobarbituric (TBA), dar cu specificitate variabilă, putând fi influențată de compuși ce conțin grupări carbonil [176, 180].
          MDA este cel mai analizat derivat al peroxidării lipidelor, cu efecte toxice și mutagene importante [181]. Biosinteza tromboxanului A2 poate elibera enzimatic, secundar MDA [182].  Imediat după producerea acesteia, procesul de metabolizare continua, în special la nivel mitocondrial [181]. Este utilizată ca bio marker al stresului oxidativ într-o gamă variată de afecțiuni (diabet zaharat, cancer, boli pulmonare sau atopie), putând fi dozat dintr-o varietate de probe biologice: sânge, urină, respirație [181, 183].  
          Diabetul zaharat tip 1 la copil este o entitate clinică și parțial paraclinică diferită de adult. Literatura internațională studiază și la ora actuală implicarea peroxizilor lipidici și ai derivaților acesteia în declanșarea complicațiilor diabetului zaharat. Accelerarea procesului de peroxidare lipidică reprezintă primul pas în modificare homeostaziei medicului intern și modificarea balanței antioxidanților enzimatici/neenzimatici [164, 184]. Ito et al în 2019, Ramesh et al în 2019, Pînzaru et al în 2023 publică despre impactul major al peroxidării lipidelor asupra pacienților cu diabet.  [176, 185, 186].
7. [bookmark: _Toc171856244]Stresul oxidativ și activitatea enzimatică intracelulară
          Prevenirea deteriorării membranei celulare este realiză de o gamă largă de antioxidanți naturali, al căror scop este de a elimina radicalii liberi, astfel prevenind deteriorarea oxidativă. Balanța oxidativă cuprinde mecanisme atât antioxidante, cât și oxidante. Menținerea homeostazei este realizată prin realizarea unui echilibru în mod echilateral al balanței. Cel mai întâlnite elemente sunt o serie de enzime intracelulare, precum: superoxid dismutaza, glutation peroxidaza, catalaza. Enzimele enumerate anterior sunt parte integrativă a mecanismului de protecție împotriva distrugerilor induse de de stresul oxidativ [12].
[bookmark: _Toc171856245]Superoxid dismutaza 
          Superoxid dismutaza intră în categoria enzimelor care duc la dismutarea anionului superoxid, fiind scindat în oxigen sub formă moleculară și peroxid de oxigen. ROS induce o serie de daune celulare și histopatologice importante, pe care SOD are capacitatea de a le limita prin convertirea radicalilor superoxizi în peroxid de hidrogen, a căror transformare continuă sub acțiunea altor enzime, ajungând în forma finală de oxigen și apă. [164, 187,188, 189]. SOD se prezintă sub 3 forme: Cu-Zn-SOD sau SOD 1 (din citosol), Mn-SOD sau SOD2 (din mitocondrii), EC-SOD sau SOD 3 (din spațiul extracelular) [164, 190]. Supraexpraexpresia SOD sau suplimentarea cu antioxidanți, chiar și mimetici, al căror scop este de a depăși stresul oxidativ, de a reduce impactul ROS și de a crește acțiunea enzimelor antioxidante, s-a demonstrat că pot preveni complicațiile diabetul zaharat [191].
          În matricea extracelulară se găsește în cantitate foarte mare EC-SOD, predominant la nivelul pancreasului, mușchilor scheletici, vase de sânge, având funcția de absorbant extracelular principal al radicalilor superoxidici [164, 192].  Aceasta are capacitatea de a crește cu până la șase ori activitatea superoxid dismutazei, neparticipând la distrucția celulelor β-pancreatice. Cel mai concret se remarcă beneficiile superoxid dismutazei atunci când atinge valori înalte, ducând la scăderea stresului oxidativ, scăderea marcată a eliberării din mitocondrii a citocromului de tip C și a apoptozei neuronale, iar în studiile experimentale pe animale, în special șoareci, intervine major la nivel renal prezentând afectarea membranei glomerale induse de diabetul zaharat [164, 193].  Statusul SOD este evaluat în literatura internațională recentă, astfel Kim et al publică în 2013 un raport complex în care evidențiază legătura directă a SOD extracelular cu starea metabolică a pielii diabeticilor, iar Lucchesi et al notează asocierea experimentală pe soareci între nivelulrile foarte mici ale SOD extracelulară și injuria hepatică [194, 195]. 
[bookmark: _Toc171856246]Glutation peroxidaza
          Rolul antioxidanților în prevenirea stresului oxidativ constă în reducerea sau întârzierea anumitor molecule expuse direct acestor fenomene oxidative, ca de exemplu ADN, lipide, proteine, carbohidrați. Cele două mari categorii în care sunt împărțiți antioxidanții, așa cum este expus și mai sus, sunt antioxidanți enzimati și neenzimatici. Glutation peroxidaza face parte din categoria antioxidanților enzimatici. [196].
          Forma de glutation peroxidaza dependentă de seleniu acționează împreună cu superoxid dismutaza în a proteja diverse structuri împotriva procesului oxidativ, precum proteinele și membranele celulare. Datele internaționale din literatura de specialitate, au oferit răspunsuri conflictuale sau vagi legate de acțiunea glutation peroxidazei în diabet. [12]. Djordjevic et al publică o analiză importantă legată de acțiunea glutation peroxidazei la gravidele cu diabet de tip 1, evidențiind o creștere semnificativă a valorilor la toate cele 90 de persoane incluse în studiu [197]. În schimb, Dominguez et al. [198] a descoperit că glutation peroxidaza este scăzută la copiii și adolescenții cu diabet zaharat tip 1 în fază incipientă. Activitatea enzimatică este afectată semnificativ de diabetul zaharat de tip 1. Aceasta este cazul, în special al glutation peroxidazei și glutation reductazei. Concentrațiile mari ale acestor stucturi enzimatice sunt întâlnite în interiorul celulelor care participă în mod activ în metabolizarea peroxidului în apă și transformarea glutationului disulfit din nou în glutation peroxidază. [199, 200].
8. [bookmark: _Toc171856255]Descrierea studiului 
a. [bookmark: _Toc171856256]Motivaţia alegerii temei 
          Diabetul zaharat de tip 1, așa cum am descris la începutul lucrării, cunoaște o răspândire galopantă, atât la nivel global, cât și regional. Elementul de interes maxim, din punct de vedere al menținerii calității vieții la parametrii cât mai apropiați de cei ai populației generale, este reprezentat de anticiparea și întârzierea instalării complicațiilor 
Metodele noi de monitorizare glicemică continuă, precum și utilizarea unor tipuri noi de insulină și administrarea acestora cu ajutorul pompelor fac posibilă menținerea euglicemiei  mult mai ușor, prin urmare fac posibilă menținerea echilibrului metabolic la nivel normal. 
          Cu toate acestea, absența complianței la tratament și stil de viață adecvat, în special în perioadele de prepuberate / pubertate sau absența educației din interiorul familie fac totuși posibile derapaje metabolice majore. Surprinderea modificărilor subclinice, prin intermediul analizei stresului oxidativ dau posibilitatea medicului să intervină în timpul util pentru a da “semnale de alarmă” și de acționa în favoarea pacientului. 
b. [bookmark: _Toc171856257]Obiectivele studiului 
          Dezvoltarea tratamentului medical din ultimul secol mută interesul medical către descoperirea de noi metode de prevenire a complicațiilor, astfel că, stresul oxidativ devine unul dintre cele mai intens dezbătute subiecte. Dezechilibrul  Redox se caracterizează prin  apariția de radicali liberi (sau producerea în exces) și între scăderea capacității de a produce antioxidanți. [301] Oxidarea poate avea loc atât în interiorul, cât și în exteriorul celulei. Impactul este major, indiferent de zona afectată, localizare intracelulară (cu consecințe de tip necroză) sau localizare extracelulară (cu efecte citotoxice) [302]. Pediatria cunoaște o expansiune importantă în ultimul secol, probabil pentru că a fost „ neglijată” din punct de vedere al cercetării. Astfel, se încearcă acoperirea lacunelor  în ceea ce privește evoluția diabetului zaharat la copiii din țara noastră.


Puncte majore de interes:
a. Cunoașterea balanței stresului oxidativ la debutul diabetului Analizarea acestuia în raport cu vârsta de debut și perioada de evoluție a diabetului zaharat. Pe teritoriul tării noastre nu sunt date disponibile. 
b. Evaluarea controlului metabolic periodic și stabilirea corelaței între elementele antioxidante și oxidative în raport cu valorile glicemice. Evaluarea nu a fost analizată în țara noastră
c. Demonstrarea relației directe între necesarul insulinic, modalitatea de monitorizare și administrare a tratamentului, greutatea corporală, tensiunea, valorile glicemice. 
          Aplicarea unui tratament medical de înaltă calitate este esențială pentru a preveni dezvoltarea complicațiilor caracteristice diabetului pe termen lung, în special pentru pacienții cu debut la vârstă mică. Astfel, speranța de viață este lungă și trebuie menținută o anumită calitate a vieții. La schimb, pacientul și familia acestuia au nevoie de informații adecvate despre tratament și prevenirea complicațiilor. Pe teritoriul țării noastre, cunoștințele limitate despre procesul de evoluție determină un act medical bazat pe literatura de specialitate, fără a cunoaște particularitățile propriilor pacienți. Tot literatura de specialitate este folosită pentru a informa familia cu privire la posibilele complicații.
9. [bookmark: _Toc171856258]Material și metodă
a. [bookmark: _Toc171856259]	Diviziunea loturilor studiate
          Am analizat un lot de 78 de pacienți diagnosticați cu diabet zaharat tip 1 (insulino-dependent) care au fost internați în Clinica de Pediatre (Compartiment Diabetologie Pediatrică) a Spitalului Clinic Județean de Urgență Constanța din ianuarie 2015 până în ianuarie 2020. Acești pacienți au fost diagnosticați conform criteriilor internaționale stabilite de Asociația Americană de Diabetologie. 
          Hiperglicemia și prezența autoanticorpilor cu caracteristici patologice autoimune, cum ar fi anticorpii anti-glutamat decarboxilaza (GAD-II), anticorpii anti-tirozinfosfataza IA2 și anticorpii anti-insulina, au fost elementele principale de diagnostic.
Anterior începutului studiului, participanții au fost copii diagnosticați cu diabet zaharat de tip 1 Alte criterii impuse:
· Durata minimă de evoluție a diabetului - 5 ani
· Grupa de vârstă acceptată: 5-16 ani
· Numărul de pacienți: 78
· Ambele sexe
· Tratament: exclusiv insulinic
Criteriile de excludere au fost reprezentate de prezența altor afecțiuni asociate sau preexistente, cum ar fi alte boli autoimune sau alte afecțiuni organice, urmarea unui alt tratament în afară de insulină și microalbuminurie decelabilă.  
Alte criterii de excludere:
· Vârsta în afara targetului
· Durata de evoluție a diabetului sub 5 ani
· Prezența altor boli autoimune asociate, cum ar fi psoriazis, boală celiacă, dermatite, tiroidite, etc. 
· Antecedente personale pozitive pentru afecțiuni cardiovasculare, diabetul indus după traumatisme care au necesitat rezecții parțiale de pancreas sau de alt tip de boală decât cea cu status autoimun
· Retardul mental
          Pentru a sublinia controlul metabolic, am folosit valorile hemoglobinei glicozilate, evaluarea completă a profilului lipidic și sumarul de urină, cu accent pe glicozurie și corpi cetonici.
Am ales, de asemenea, să măsurăm peroxidarea lipidică prin măsurarea malondialdehidei, rezultatul final al procesului de oxidare a lipidelor, statusul oxidativ intracelular prin măsurarea glutation peroxidazei și superoxid dismutazei.
10. [bookmark: _gjdgxs][bookmark: _Toc171856264]Rezultatele studiului 
a. [bookmark: _Toc171856265]Structura grupului de studiu 
Studiu a fost de tip retrospectiv, observational, nerandomizat pe un eșantion de 78 de copii diagnosticați cu diabet zaharat tip 1, eșantion reprezentativ pentru o populație de copii diagnosticați cu diabet zaharat, diagnosticați și tratați în cadrul Clinicii de Pediatrie a Spitalului Județean de Urgență, Constanța, Compartimentul de Diabetologie Pediatrică. 
[bookmark: _Toc171856328]Tabel VII Structura grupului analizat 
	
	2011
	2012
	2013
	2014
	2015
	2016
	2017
	2018
	2019
	Total

	Copii diagnosticați cu diabet incluși în studiu
	10
	20
	10
	9
	8
	2
	9
	4
	6
	78

	Total copii diagnosticați cu diabet zaharat
	14
	26
	21
	18
	15
	12
	12
	17
	22
	157


Din acest tabel se poate extrapola perioada de evoluție a diabetului zaharat. Pacienții au fost incluși progresiv în studiu, la împlinirea a cinci ani de evoluție a diabetului de la diagnostic. 
          Repartiția pe sexe evidențiază predominanța sexului masculin 41 dintre subiecți sau 51% din  lotul analizat, comparativ cu sexul feminin, care este format din 37 de subiecți sau 49%. Distribuția este uniformă, procentele fiind apropiate. 
În tabelul anterior este redistribuit lotul, conform mediului de proveniență și analizat prin procentul cumulativ, evidențiind ca 79,5% sunt din mediul urban și 20,5 % din  mediul rural. 


b. [bookmark: _4d34og8][bookmark: _2s8eyo1][bookmark: _17dp8vu][bookmark: _Toc171856276]Markeri de stres oxidativ

          Autooxidarea glucozei și glicarea proteinelor neenzimatice sunt două dintre numeroasele mecanisme care provoacă niveluri crescute de stres oxidativ la copiii cu diabet zaharat [309].  Organismele trebuie să mențină un echilibru vital între utilizarea mecanismelor de apărare antioxidante și producția de radicali liberi de oxigen în condiții fiziologice normale.
[bookmark: _3rdcrjn][bookmark: _Toc171856277][bookmark: _Hlk173065191]          Aceste sisteme de apărare protejează împotriva efectelor periculoase ale radicalilor liberi [310].  Stresul oxidativ este o stare fiziologică care apare atunci când există un dezechilibru între oxidanți și antioxidanți. Stresul oxidativ este un component esențial al căilor moleculare și celulare care contribuie la deteriorarea țesuturilor în numeroase afecțiuni umane [90, 311].
Controlul metabolic
Dezechilibrele metabolice sunt cel mai adesea marcate de episoade de cetoacidoză. Lotul analizat de noi evidențiază că 53/78 dintre subiecți au prezentat o medie de 1-2 episoade/an.  Distribuția lotului analizat în funcție de controlul metabolic (control care înglobează valorile hemoglobinei glicate, profilul lipidic, valorile glicemice, aportul insulinic zilnic) evidențiază metoda de diviziune a lotului supus analizei, grupul I având un control metabolic bun, 42/78 sau 53,8% vs grupul II, având control metabolic slab, 36/78 sau 46,2%. 

[bookmark: _Toc171856301][bookmark: _Hlk168565311]Figura 12 Distribuția lotului în funcție de controlul metabolic
[bookmark: _Toc171856278]Distribuția lotului în funcție de valorile malondialdehidei serice
Valoarea normală a malondialdehidei este <1 umol/L. Lotul inclus în analiză prezintă 56,4% (44 dintre subiecți) cu valori normale, iar 43,6% (34 dintre subiecți) prezintă valori crescute. Valoarea medie a grupului este de 2,45 micromoli/L, deși numeric ponderea pacienților cu valori normale este mai mare. 
După o evoluție minimă a diabetului de cinci ani de la debutul diabetului zaharat se observă modificările induse de stresul oxidativ. Astfel, malondialdehida prezintă valori normale 56,4% din tre subiecți, iar 43,6% deja au modificări pe această linie. 

[bookmark: _Toc171856303]Figura 14 Distribuția lotului în funcție de valoarea malondialdehidei la intrarea în studiu
Controlul metabolic bun însumează un număr de 42 de subiecți din 78. Valoarea medie fiind ușor crescută față de limita superioară 1,1 micromoli/L. Grupul secundar, cu control metabolic slab reprezentat de 36/78 subiecți, prezintă o valoare medie de 3,76 micromoli/L.  
Conturarea echilibrului metabolic este efectuată cu ajutorul valorii hemoglobinei glicozilate. S-a efectuat analiza în paralel a malondialdehida cu valoarea hemoglobinei glicozilate



Pentru o mai bună conturare a lotului analizat s-a decis evaluarea elementelor care pot contitui baza modificărilor observate în cazul malondialdehidei. Profilul lipidic constituit din; trigliceride, LDL colesterol, HDL colesterol și colesterol total au fost analizate în paralel cu valorile malondialdehidei.
[image: ]
[bookmark: _Toc171856305]Figura 16 Distribuția lotului în funcție de valoarea trigliceridelor raportate la valoarea malondialdehidei

Așa cum se observă în figura de mai sus, pe măsură ce valorile malondialdehidei cresc, tinde să crească și valoarea trigliceridelor. 
Legătura dintre aceste elemente vine să sublinieze dependența relațională între stresul oxidativ și echilibrul lipidic. Creșterea valorilor malondialdehidei, interpretată ca și element negativ, comparat cu creșterea unidirecțională a trigliceridelor și colesterolului, întăresc ideia că un control metabolic slab atrage după sine accelerarea modificărilor balanței oxidative, cu conturarea cadrului perfect de declanșare a complicațiilor vasculare cu efecte subclinice, încă din primii ani de evoluție ai diabetului. 


La subiecții cu o valoare crescută  a malondialdehidei probabilitatea ca și capacitate antioxidantă totală să fie scăzută este de aproximativ 10 ori mai mică, efect cu importanță statistică. 
[image: ]
[bookmark: _Toc171856310]Figura 21 Distribuția lotului ilustrată prin  cuantificarea valorilor malondialdehidei raportate la capacitatea antioxidantă totală
[bookmark: _Toc171856364]Tabel XLIII Influența valorii malondialdehidei (numeric) asupra capacității antioxidante totale
	Predictor
	N
	Event N
	OR (95% CI)1
	Valoare p

	MDA Numeric
	78
	35
	0.36 (0.18 to 0.58)
	<0.001

	1 OR = Odds Ratio, CI = Interval de încredere


Statistic se observă că o creștere cu o  unitate a malondialdehidei atrage după sine o scădere de aproximativ 3 ori a capacității antioxidante totale. Element cu semnificație statistică. 

[bookmark: _Toc171856279]Distribuția lotului în funcție de valorile superoxid dismutazei
Reprezintă primul element de apărare antioxidantă evaluat. Acesta a fost analizat în funcție de caracteristice lotului și ulterior comparat cu ceilalți parametrii ai studiului. 
[bookmark: _Toc171856365]Tabel XLIV Distribuția lotului în funcție de valorile superoxid dismutazei
	
	Frecvență absolută
	Frecvență Relativă
	Procent Valid
	Frecvență Cumulativă

	Valid
	Scăzută
	36
	46.2
	46.8
	46.8

	
	Normală
	30
	38.5
	39.0
	85.7

	
	Crescută
	11
	14.1
	14.3
	100.0

	
	Total
	77
	98.7
	100.0
	

	Date lipsă
	System
	1
	1.3
	
	

	Total
	78
	100.0
	
	



Valorile superoxid dimutazei evidențiază un număr de 36/78 subiecți (46,2%) având valori scăzute, 30/78 subiecți (38,5%) au prezentat valori normale, iar 11/78 subiecți (14,12%) prezintă valori crescute. 
 
[image: ]
[bookmark: _Toc171856313]Figura 24 Evidențierea grafică a valorilor superoxid dismutazei raporate la dozele de insulină administrate


[bookmark: _Toc171856374]Tabel LIII Testarea normalității distribuției superoxid dismutazei raporată la capacitatea antioxidantă totală - Crosstabulation
	
	Capacitatea antioxidantă totală
	Total

	
	Scăzută
	Normală
	Crescută
	

	Superoxid dismutaza
	Scăzută
	Număr
	27
	5
		4
	36

	
	
	% din Capacitatea antioxidantă totală
	87.1%
	45.5%
	11.4%
	46.8%

	
	Normală
	Număr
	24
	2
	4
	30

	
	
	% din Capacitatea antioxidantă totală
	68.6%
	18.2%
	12.9%
	39.0%

	
	Crescută
	Număr
	7
	4
	0
	11

	
	
	% din Capacitatea antioxidantă totală
	20.0%
	36.4%
	0.0%
	14.3%

	Total
	Număr
	35
	11
	31
	77

	
	% din Capacitatea antioxidantă totală
	100.0%
	100.0%
	100.0%
	100.0%


Se observă o corelație negativă. Valorile normale ale superoxid dismutazei sunt asociate în 87,1% cu valori scăzute ale capacității antioxidante totale, în 68,6% cu valori normale și 20% cu valori crescute. Valorile scăzute ale superoxid dismutazei sunt asociate în 11,4% cu valori crescute, în 12,9% cu valori normale. Nici un subiect din lotul cu valori crescute ale superoxid dismutazei nu a prezentat valori crescute ale capacității antioxidante totale. Comparativ cu subiecții care au prezentat niveluri scăzute ale superoxid dismutazei, la subiecții cu nivel normal, statistic capacitatea antioxidantă este scăzută de 32 de ori. La subiecții cu nivel crescut al superoxid dismutazei distribuția valorilor este de 14 ori mai mare. Ambele elemente au semnificație statistică importantă. 
[bookmark: _35nkun2][image: ]
[bookmark: _Toc171856314]Figura 25 Distribuția valorilor superoxid dismutazei raportate la capacitatea antioxidantă totală
[bookmark: _Toc171856280]Distribuția lotului în funcție de valorile glutation peroxidazei
Valorile glutation peroxidazei evidențiază un număr de 36/78 subiecți (46,2%) având valori scăzute, 37/78 subiecți (47,4%) au prezentat valori normale, iar 5/78 subiecți (6,4%) prezintă valori crescute.


[bookmark: _Toc171856315][bookmark: _Hlk168577785]Figura 26 Distribuția lotului în funcție de valorile glutation peroxidazei în raport cu controlul metabolic
[bookmark: _Hlk169188985]Lotul analizat este caracterizat de aport insulinic crescut la subiecții cu valori scăzute ale glutation peroxidazei. Analiza curbei Kruskal-Wallis H a arătat că dozele mari de insulină, calculate pe kgc, analizate în paralel cu nivelul glutation peroxidazei corespund cu acuratețe markerilor, evidențiind un potențial de diagnostic semnificativ statistic p <0.001. Analiza în palalel între subiecții cu control metabolic bun și control metabolic slab sau nesatisfăcător sunt confirmate de analiza Kolmogorov-Smirnova la cei cu valori scăzute ale glutation peroxidazei de 0.160 vs. valori medii 0.175 vs. valori scăzute 0.380
Diviziunea lotului în funcție de capacitatea antioxidantă totală evidențiază o distribuție a glutation peroxidazei ca fiind scăzută la 30/78 (96,8%), normală la 30/78 (85,7%), iar crescută 4/78 (11,4%). 


[bookmark: _Toc171856318]Figura 29 Distribuția lotului în funcție de glutation peroxidaza raporată la capacitatea antioxidantă totală
Analiza statistică evidențiază valorile normale ale glutation peroxidazei sunt asociate cu valori scăzute ale capacității oxidative totale în procent de 50%, scăzute 41,70% și crescute în 8%. Valorile scăzute ale glutation peroxidazei sunt asociate cu valori ale capacității antioxidante totale: scăzute: 2,90%, normale 85,70% și crescute 11,40%. Valorile crescute ale glutation peroxidazei sunt asociate cu valori ale capacității antioxidante totale: scăzute în 96,80% și crescute în 3%. 
[bookmark: _Toc171856282]Distribuția lotului în funcție de valorile capacității antioxidante totale
[bookmark: _Toc171856389]Tabel LXVIII Capacitatea antioxidantă totală
	
	Frecvență absolută
	Frecvență Relativă
	Procent Valid
	Frecvență Cumulativă

	Valid
	Scăzută
	35
	44.9
	44.9
	44.9

	
	Normală
	12
	15.4
	15.4
	60.3

	
	Crescută
	31
	39.7
	39.7
	100.0

	
	Total
	78
	100.0
	100.0
	



Valorile capacității antioxidante totale evidențiază un număr de 35/78 subiecți (44,9%) având valori scăzute, 12/78 subiecți (15,4%) au prezentat valori normale, iar 31/78 subiecți (39,7%) prezintă valori crescute.


[bookmark: _Toc171856319][bookmark: _4i7ojhp][bookmark: _Toc171856283]Figura 30 Distribuția lotului în funcție de valorile capacității antioxidante totale în raport cu controlul metabolic
Analiza lotului din punct de vedere al distribuției lotului în funcție de indicele de masă corporală nu a adus informații semnificativ statistice (p>0,05).  Vârsta și sexul nu au indus modificări semnificativ statistice. Analiza comparativă în funcție de valoarea trigliceridelor (p<0.302), a colesterolului total și al HDL/LDL-colesterolului nu au evidențiat rezultate cu semnificație statistică. La pacienții cu o valoare a trigliceridelor în dinamică crescută, se observă o scădere de 10 ori mai mică a capacității AO, efectul fiind cu semnificație statistică.  Valorile HbA1c (p<0,01) nu au prezentat corelații statistice semnificative cu capacitatea antioxidantă totală. Datele analizate sunt regăsite și în literatura de specialitate a adultului [389,390,391], fără a stabili o legătură semnificativ statistică.  Wahba et al și Peerapatdit et al analizează capacitatea antioxidantă totală din persepctiva hiperglicemiei și a urmărilor acesteia. Evidențiind date corespunzătoare cu cele din studiul nostru. Mai mult de 3 episoade de cetoacidoză/an, traduse prin fluctuații glicemice, atrag după sine o scădere a capacității antioxidante totale [392,393].
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[bookmark: _Toc171856321]Figura 32 Distribuția lotului în funcție de valorile capacității antioxidante totale raportate la hemoglobina glicozilată
Analiza în palalel între subiecții cu control metabolic bun și control metabolic slab sau nesatisfăcător sunt confirmate de analiza Kolmogorov-Smirnova la cei cu valori scăzute ale capacității antioxidante totale de 0.120 vs. valori medii 0.100 vs. valori scăzute 0.132
[bookmark: _Toc171856396]Tabel LXXV Valoarea capacității antioxidante totale în funcție de controlul metabolic - Crosstabulation
	
	Control Metabolic
	Total

	
	Bun
	Slab
	

	Capacitatea antioxidantă totală
	Scăzută
	Număr
	0
	31
	31

	
	
	% din Control Metabolic
	0.0%
	86.1%
	39.7%

	
	Normală
	Număr
	7
	5
	12

	
	
	% din Control Metabolic
	16.7%
	13.9%
	15.4%

	
	Crescută
	Număr
	35
	0
	35

	
	
	% din Control Metabolic
	83.3%
	0.0%
	44.9%

	Total
	Număr
	42
	36
	78

	
	% din Control Metabolic
	100.0%
	100.0%
	100.0%


[bookmark: _Hlk169188546]
Diviziunea lotului în funcție de controlul metabolic evidențiază în grupul cu control metabolic bun o distribuție a capacității antioxidante totale ca fiind scăzută la 35/78 (83,3%), normală la 7/78 (16,7%), iar crescută 0/78. În grupul cu control metabolic slab valoarea este scăzută la 0/78, valoare normală au 5/78 (13,9%), iar valoare crescută 31/78 (86,1%). 
Abordarea direcției de analiză către monitorzarea capacității antioxidante totale poate deschide o nouă perspectivă asupra diabetului zaharat la copil și implicațiile stres-ului oxidativ. Această lucrare a abordat capacitatea antioxidantă totală la copiii cu diabet zaharat fără complicații diagnosticate.
          Așa cum am subliniat anterior, capacitatea antioxidantă totală nu a fost utilizată până în prezent ca marker de stres oxidativ la copii. Se va încerca un paralelism în literatura de specialitate a adultului diagnosticat cu diabet zaharat de tip 1. Modificări importante au fost notate cu precăderea în diabetul zaharat de tip II. Există totuși o corelație semnificativ statistică între fluctuațiile glicemice, cu precădere cu hiperglicemia [388].  
11. [bookmark: _Toc171856284]Concluzii
1. Diabetul zaharat tip 1 este o afecțiune cronică, caracterizată prin hiperglicemie și/sau fluctuații glicemice care stau la baza modificărilor oxidative, cu răsunet clinic. 
2. Hiperglicemia este cea care determină modificări de tip translațional neenzimatic. 
3. Stresul oxidativ este definit de balanța oxidant/antioxidant. Înțelegerea importanței dezechilibrului celor două talere este evaluată bidirecțional, pentru suprinderea elementului destabilizator. 
4. Malondialdehida este folosită ca marker important al oxidării lipidelor. Rezultatele obținute dovedesc implicarea în dezvoltarea stresului oxidativ. A fost analizat în paralel cu profilul lipidic. Cele două elemente ajută la definirea controlului metabolic nesatisfăcător sau slab prin însumarea rezulatelor celor două. 
5. Superoxid dismutaza prezintă valori scăzute, chiar și la subiecții cu control metabolic bun. Este dovada că substratul modificărilor enzimatice este imprimat de fluctuațiile glicemice și nu de boală în sine. 
6. Glutation peroxidaza este cel mai ambiguu dintre markerii de stres oxidativ. Dozările peroxidazei nu reflectă fidel statusul oxidativ, necesitând asocierea cu alte elemente enzimatice pentru conturarea stării antioxidante. 
7. Capacitatea antioxidantă totală reperezintă un marker neutilizat în activitatea pediatrică, care merită inclus în schema de evaluare paraclinică a copiilor cu diabet, aducând același bagaj informațional ca și ceilalți markeri de stres oxidativ. Devine mai important, deoarcele dezechilibrele acestuia anunță accelerarea stresului oxidativ, comparativ cu ceilalți care necesită elemente din contrabalanță pentru a certifica perturbările. 
8. Relația control metabolic – stres oxidativ reprezintă formula de monitorizare a evoluției clinice a copiilor cu diabet, în vederea prevenirii complicațiilor cronice caracteristice diabetului zaharat de tip 1.
9. Perioada pubertară trebuie considerată o etapă diferită în evoluția diabetului zaharat, în cadrul căreia modificările hormonale impun o monitorizare paraclinică minuțioasă. 
10. Caracteristica particulară a lotului analizat este reprezentată de menținerea unui IMC liniar, chiar cu tendință la scădere ponderală. 
11. S-a obținut un control metabolic bun, conform standardelor internaționale, utilizând exclusiv un regim insulinc intensiv, fără mijloace moderne de monitorizare continuă a glicemiei sau de administrare a insulinei
12. Balanța oxidativă cuprinde mecanisme atât antioxidante, cât și oxidante. Menținerea homeostazei este realizată prin realizarea unui echilibru în mod echilateral al balanței.

[bookmark: _Toc171856285]Elemente de originalitate:
1. Capacitatea antioxidantă totală nu a fost folosită ca marker de stres oxidativ până la momentul actual. Literatura de specialitate a adultului oferă informații, dar acestea nu pot fi pliate complet pe profilul pacientului pediatric
2. Doazarea markerilor de stres oxidativ: malondialdehida, superoxid dismutaza, glutation peroxidaza și capacitatea antioxidantă totală nu au fost folosiți împreună pentru evidențierea balanței stresului oxidativ la copiii cu diabet zaharat de tip 1.
3. Stabilirea conexiunii între greutatea corporală-doze de insulină-valori glicemice-markeri de stres oxidativ. Legătura nu a fost analizată complet pentru pacienții pediatrici. 
          S-au colectat date utile despre evoluția pacienților cu diabet zaharat de tip 1 din Dobrogea. Prin urmare, cu ajutorul acestora, putem modifica/adapta/anticipa conduita terapeutică, tratamentul și complicațiile în funcție de caracteristicile populației din zona noastră, fără a ne baza exclusiv pe rezultatele literaturii de specialitate. În prezent, nu există cercetări exacte care să abordeze starea oxidativă și antioxidativă în evoluția diabetului de tip 1 la copii și adolescenți.
          Pacienții diabetici prezintă leziuni oxidative importante ale lipidelor și proteinelor, leziuni care sunt demonstrate prin analiza hidroperoxizilor, lipoperoxizilor și produșilor proteici de oxidare. Aceste modificări au crescut semnificativ în primii 5 ani de evoluție și tind să prezinte creșteri în dinamică. Există o legătură semnificativă între capacitatea de oxidare atât a lipidelor, cât și a proteinelor și, chiar și între nivelurile plasmatice ale lipidelor oxidabile. Puterea antioxidantă a plasmei prezintă un trend descendent. Aceste constatări indică faptul că în primii 5 ani de terapie cu insulină, homeostazia metabolică și oxidantă cunosc o degradare progresivă. Ca urmare, daunele oxidative biomoleculare cauzate de hiperglicemie cresc exponențial pe măsură ce ne îndepărtăm de momentul debutului. La fel ca ideea că toxicitatea hiperglicemiei și lipotoxicitatea sunt legate, hiperlipidemia asociată diabetului zaharat este legată de procesele de oxidare a lipidelor și proteinelor. Stresul oxidativ este un mecanism care contribuie la disfuncția microvasculară. În concluzie, un control riguros al lipidelor și al statusului glicometabolic pot fi benefice, ducând la  reducerea efectelor oxidative asupra țesuturilor care sunt supuse hiperglicemie.
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