

UNIVERSITY “OVIDIUS” OF CONSTANTA  
DOCTORAL SCHOOL OF MEDICINE  
FIELD OF MEDICINE  
ACADEMIC YEAR 2023 – 2024

## **PHD THESIS**

## **SUMMARY**

PhD supervisor: **Prof. Univ. Dr. Sorin Rugină**

PhD student : **Dr. Ciprian Constantin Popoiag**

UNIVERSITY “OVIDIUS” OF CONSTANTA  
DOCTORAL SCHOOL OF MEDICINE  
FIELD OF MEDICINE  
ACADEMIC YEAR 2023 – 2024

**EVALUATION OF FUNCTIONAL, PSYCHOLOGICAL, AND QUALITY  
OF LIFE IMPACT IN PATIENTS WITH MULTIDRUG-RESISTANT  
TUBERCULOSIS**

**DOCTORAL THESIS ABSTRACT**

PhD supervisor: **Prof. Univ. Dr. Sorin Rugină**

PhD student : **Dr. Ciprian Constantin Popoiag**

# TABLE OF CONTENTS

## LIST OF ABBREVIATIONS AND SYMBOLS

|                                           |    |
|-------------------------------------------|----|
| INTRODUCTION .....                        | 6  |
| <b>I. CURRENT STATE OF KNOWLEDGE</b>      |    |
| 1.General Information .....               | 6  |
| 1.1 Brief History .....                   | 6  |
| 1.2 Epidemiology .....                    | 7  |
| 2. Multidrug-Resistant Tuberculosis ..... | 8  |
| 2.1 Definition .....                      | 8  |
| 2.2 Types of Chemoresistance .....        | 8  |
| 2.3 Mechanisms of Occurrence .....        | 8  |
| 2.4 Diagnostic Methods .....              | 9  |
| <b>II. PERSONAL CONTRIBUTION</b>          |    |
| 3. General Objectives .....               | 12 |
| 4. General Methodology .....              | 12 |
| 5. Results .....                          | 13 |
| 6. Discussions .....                      | 27 |
| 7. Conclusions .....                      | 28 |
| 8. Originality of the Thesis .....        | 28 |
| BIBLIOGRAPHY .....                        | 30 |
| Appendices .....                          | 35 |
| LIST OF PUBLISHED SCIENTIFIC WORKS .....  | 37 |

## Keywords

**ADN** – Deoxyribonucleic Acid (DNA)

**ARN** – Ribonucleic Acid (RNA)

**BAAR** – Acid-fast Bacilli (AFB)

**BPOC** – Chronic Obstructive Pulmonary Disease (COPD)

**Bdq** – Bedaquiline

**BRICS** – Brazil, Russia, India, China, and South Africa

**CO2** – Carbon Dioxide

**DASS-21R** – Depression Anxiety Stress Scales

**DST** – Drug Susceptibility Testing

**E** – Ethambutol

**Gyr A** – DNA Gyrase A

**Gyr B** – DNA Gyrase B

**H** – Isoniazid

**HIV** – Human Immunodeficiency Virus

**IMC** – Body Mass Index (BMI)

**InhA** – Acyl-Carrier-Protein Reductase

**KatG** – Catalase-Peroxidase

**Km** – Kanamycin

**LPA** – Line Probe Assays

**Lzn** – Linezolid

**M** – Mycobacterium

**mARN** – Messenger RNA (mRNA)

**MDR** – Multidrug Resistance

**MGIT** – Mycobacterial Growth Indicator Tube

**MIC** – Minimum Inhibitory Concentration

**M. TB** – Mycobacterium Tuberculosis

**Nipro NTM + MDRTB 2** – Nipro NTM + MDRTB 2 Detection Kit

**OMS** – World Health Organization (WHO)

**PAS** – Para-aminosalicylic Acid

**PCR** – Polymerase Chain Reaction (PCR)

**PNPSCT** – National Program for Tuberculosis Prevention, Surveillance, and Control

**Pre TB XDR** – Pre-Extensively Drug-Resistant Tuberculosis

**rpoB** – RNA Polymerase Beta

**R** – Rifampicin

**RR** – Rifampicin Resistance

**SGRQ** – Saint George Respiratory Questionnaire

**SL-LPA** – Second-Line Line Probe Assays

**SLIDs** – Second-Line Drug Resistance-Associated Intergenic Regions

**TB** – Tuberculosis

**DR TB** – Drug-Resistant Tuberculosis

**DS TB** – Drug-Sensitive Tuberculosis

**MDR TB** – Multidrug-Resistant Tuberculosis

**RR TB** – Rifampicin-Resistant Tuberculosis

**XDR TB** – Extensively Drug-Resistant Tuberculosis

**UE** – European Union (EU)

**VSH** – Erythrocyte Sedimentation Rate (ESR)

**WHO** – World Health Organization

**Xpert MTB/RIF** – Xpert MTB/RIF Test (Cepheid)

**Z** – Pyrazinamide

**ZEE** – European Economic Area (EEA)

## I.CURRENT STATE OF KNOWLEDGE

### Introduction

Tuberculosis (TB) represents one of the most serious threats to global public health, responsible for millions of deaths annually. Although it is a preventable and treatable disease, TB remains a major issue in many parts of the world, particularly in resource-limited regions and among vulnerable populations.

Approximately one-quarter of the global population is latently infected with *Mycobacterium tuberculosis*, with the risk of developing active disease during their lifetime. The prolonged duration of treatment, the difficulty in managing it, and the associated socio-economic conditions make Multidrug-Resistant Tuberculosis (MDR-TB) one of the most challenging pathologies of the 20th and 21st centuries.

I have chosen to investigate the symptomatology, functional impact, psychological effects, and quality of life of patients with Multidrug-Resistant Tuberculosis to highlight a human and social dimension of this condition. While existing studies have often explored the clinical, paraclinical, and epidemiological aspects of MDR-TB, a more in-depth examination is warranted to analyze the effects on mental health and quality of life of patients.

This research aims to highlight the psycho-social impact of infection with a drug-resistant strain by identifying criteria for evaluating levels of depression, anxiety, and stress, correlated with data on the frequency and severity of respiratory symptoms, the patient's ability to engage in physical activities, and the effects of the disease on daily life.

### 1.General Information

#### 1.1 Brief History

Tuberculosis has been contemporaneous with human evolution, with some studies suggesting that the disease emerged approximately 3 million years ago. The oldest evidence of tuberculosis in humans includes remains found in what is now Turkey, at Atlit Yam, an underwater site in the Mediterranean Sea, dating back approximately 9,000 years.

Research on *Homo erectus* skeletons suggests the presence of tuberculosis around 1.6 million years ago. Other evidence includes paleopathological analyses of skeletons from ancient Egypt, indicating the presence of tuberculosis around 3,000 years BCE [1, 2, 3, 4].

## 1.2 Epidemiology

### Global

Approximately 3.7% of new TB cases globally are infected with multidrug-resistant strains (MDR-TB), while around 20% of patients who have been previously treated have MDR-TB. The estimated proportion of new MDR/RR-TB cases was 3.9% in 2015 and 3.6% in 2021, with the proportion of previously treated cases being 20% in 2015 and 18% in 2021 [5]. Additionally, about 9% of MDR-TB cases are extensively drug-resistant tuberculosis (XDR-TB). By March 2013, at least one case of XDR-TB had been reported in 84 countries.

In 2011, the global incidence of MDR-TB cases was approximately 500,000, with 60% of these cases recorded in BRICS countries [6]. People with HIV have a 20-fold higher risk of developing active TB compared to those without HIV [7].

### Europe

The estimated incidence of multidrug-resistant tuberculosis (MDR-TB) patients in the European Region of the World Health Organization (WHO) varies considerably. In 2012, the incidence was reported at 1.6 cases per 100,000 people in the 29 countries of the European Union/European Economic Area (EU/EEA) [8].

### Romania

Romania has the highest incidence of MDR-TB in the EU, with nearly a quarter (23.4%) of reported patients in 2017 and a TB notification rate six times higher than the EU average. Together with Lithuania, Romania accounts for more than 70% of the total number of XDR-TB cases in the EU, and Romania is responsible for 23.5% of all TB cases reported in the EU.

Although the incidence of TB has steadily decreased in the general population (71.7 in 2015, 64.8 in 2016, and 62.8 in 2017), it remains high among vulnerable populations, such as incarcerated individuals, the homeless, and those dependent on drugs [9].

## **2. Multidrug-Resistant Tuberculosis (MDR-TB)**

### **2.1 Definition**

Tuberculosis (TB) is a bacterial infection caused by *\*Mycobacterium tuberculosis\**, primarily affecting the lungs but potentially involving other organs as well.

Multidrug-Resistant Tuberculosis (MDR-TB) is defined as resistance to at least Isoniazid (H) and Rifampicin (R), two of the most effective first-line anti-TB drugs, which are considered major drugs. This condition necessitates the use of second-line anti-TB medications, which are less potent, more toxic, more expensive, and require a longer treatment duration [10].

Extensively Drug-Resistant Tuberculosis (XDR-TB) is defined as MDR-TB associated with resistance to any Fluoroquinolone and any second-line injectable drug.

### **2.2 Types of Drug Resistance:**

- Monoresistance: Defined as tuberculosis caused by a strain resistant to a single first-line anti-tuberculosis drug (Isoniazid, Rifampicin, Ethambutol, or Pyrazinamide).
- Polyresistance: Resistance to more than one first-line anti-tuberculosis drug other than Isoniazid and Rifampicin.
- Isoniazid-Resistant TB (HrTB): Resistance to Isoniazid with susceptibility to Rifampicin [11].
- Rifampicin-Resistant Tuberculosis ( RR TB): Defined as resistance to Rifampicin detected using genotypic or phenotypic methods, with or without resistance to other first-line TB drugs [12].
- Multidrug-Resistant Tuberculosis ( MDR TB): Defined as disease caused by *\*Mycobacterium tuberculosis\** resistant to Isoniazid (H) and Rifampicin (R), but with susceptibility to Fluoroquinolones (Levofloxacin and Moxifloxacin) and Group A drugs (Bedaquiline or Linezolid) [11, 13, 14, 15, 16].
- Pre-XDR-TB: Resistance to Isoniazid, Rifampicin, and a Fluoroquinolone [17].
- Extensively Drug-Resistant Tuberculosis (XDR-TB): Defined as resistance to at least Isoniazid and Rifampicin, any Fluoroquinolone, and at least one other drug from "Group A" [11].

### **2.3 Mechanism of Occurrence**

Primary resistance occurs when a patient is infected *de novo* with a strain of *\*Mycobacterium tuberculosis\** that is already resistant to first-line drugs. This means that the tuberculosis bacilli have evolved to be resistant to the antibiotics used in standard treatment even before treatment begins [16].

Sequential drug resistance most commonly arises from fragmented or inadequate treatment due to socio-economic factors and administrative issues. However, there are situations where drug resistance occurs despite excellent adherence to treatment [17].

#### Predisposing Factors for the Development of Secondary Drug Resistance:

- Deficient Implementation of Guidelines
- Inadequate Training of Healthcare Personnel
- Insufficient Patient Education
- Lack of Treatment Supervision
- Inefficient Management of Adverse Drug Reactions
- Socio-economic Status
- Lack of Awareness About T
- Poor Adherence to Treatment
- Adverse Effects\*
- Associated Conditions: HIV, Diabetes Mellitus, Malnutrition, Malabsorption, Mental Illness
- Drug Abuse [11]

## 2.4 Diagnostic Methods

### Phenotypic Methods

Phenotypic culture methods are based on evaluating the ability of *M. tuberculosis* to grow in culture media containing a critical concentration of anti-TB agents (indicating resistance) or, conversely, its inability to grow in such media (indicating susceptibility). The critical concentration generally differs from the Minimum Inhibitory Concentration (MIC) [18].

### Solid Cultures

To perform phenotypic drug susceptibility testing (DST) of *M. tuberculosis*, the bacteria are initially cultivated in various solid or liquid culture media. Löwenstein-Jensen is one of the most frequently used solid media worldwide. Solid culture is known for its relatively high sensitivity in identifying drug-resistant strains, particularly when high-quality specimens are used [19].

A significant drawback of solid culture is the long waiting time for results, which can range from 4 to 8 weeks, potentially delaying the initiation of treatment [20]. Additionally, solid culture requires strict laboratory conditions and rigorous contamination control, with improper handling potentially affecting results [21].

## Liquid Cultures

Rapid culture techniques, such as BACTEC/MBBACT, represent an automated liquid culture system used for diagnosing tuberculosis, including multidrug-resistant TB (MDR-TB). BACTEC 960 monitors changes in the absorption of radiation by the incubation medium caused by CO<sub>2</sub> production by bacteria during growth. These changes are detected and recorded automatically, signaling bacterial growth [22, 23, 24, 25].

Advantages of using the BACTEC 960 system include a shorter diagnostic time, which can be around 1-2 weeks compared to 4-8 weeks for solid cultures [26].

## Molecular (Genotypic) Methods

Molecular (genotypic) methods detect specific DNA mutations in the *\*M. tuberculosis\** genome associated with resistance to certain anti-TB drugs. These molecular methods offer significant advantages for programmatic TB management, particularly in terms of speed, standardized testing, capacity to process a large number of samples, and reduced laboratory requirements [27].

Molecular tests for detecting resistance to Rifampicin alone or in combination with Isoniazid have been recommended by WHO since 2008. These tests include: Xpert MTB/RIF (Cepheid, Sunnyvale, CA, USA), commercial line probe assays (LPA), MTBDRplus (Hain Lifescience, Nehren, Germany), and the Nipro NTM+MDRTB 2 detection kit (Nipro Corporation, Tokyo, Japan).

The GeneXpert MTB/RIF system uses real-time PCR technology to amplify MTB-specific DNA and identify mutations in the *rpoB* gene associated with Rifampicin resistance. The sputum sample is pretreated with a reagent that lyses the bacteria and releases DNA. This sample is then placed into the GeneXpert cartridge, where amplification and detection of specific DNA occur [28, 29].

The sensitivity and specificity of the GeneXpert MTB/RIF test are key indicators of its reliability. Studies have shown that GeneXpert has a sensitivity of approximately 98% for detecting TB and a specificity of 99%. For Rifampicin resistance, sensitivity is approximately 95%, and specificity is nearly 98%. These high values make it an essential tool for rapid and accurate TB diagnosis [30, 31].

Line Probe Assay (LPA) is a molecular diagnostic method used for the rapid detection of *\*Mycobacterium tuberculosis\** and drug resistance. For sputum-negative samples, accuracy is compromised, and thus, direct testing of sputum-negative samples is not recommended [27].

LPA works by extracting DNA from sputum or other clinical specimens, followed by amplification of target gene regions through PCR. PCR products are then hybridized on membranes containing specific probes for drug-resistance-associated genes. Hybridization signals are visualized as bands, allowing for the rapid identification of MTB and specific mutations [30, 32].

LPA targets several genes associated with drug resistance, including *rpoB*, *katG*, *inhA*, and *gyrA*. Detection of mutations in these genes allows for rapid diagnosis of drug resistance and appropriate treatment adjustments [33, 34].

LPA provides rapid results, usually within 1-2 days, compared to traditional culture methods, which can take several weeks. Another major advantage is its ability to simultaneously detect resistance to multiple drugs [35].

## II. PERSONAL CONTRIBUTION

### 3. General Objectives

In our study, we aim to investigate the impact of Multidrug-Resistant Tuberculosis (MDR TB) on mental health and quality of life, compared to patients with Drug-Sensitive TB (DS TB), to provide a transparent perspective on the emotional impact of this severe form of tuberculosis on affected patients.

The primary goal of the research is to identify statistically significant factors by evaluating levels of depression, anxiety, and stress among patients with MDR TB using the DASS-21R self-assessment questionnaire. Additionally, we aim to determine how MDR TB affects quality of life by analyzing respiratory symptoms, limitations in daily activities, and the overall impact of the disease, using the SGRQ questionnaire, correlated with clinical evidence and demographic profiles, to develop predictive statistical models.

### 4. General Methodology

A retrospective study was conducted involving 224 patients from the Dobrogea region, divided into two groups: one with Drug-Sensitive TB (149 patients) and the other with Multidrug-Resistant TB (MDR TB) (75 patients), diagnosed between 2010 and 2020.

The necessary data were extracted from patient records, MDR TB registers, and the computerized system. The data provided included demographic details, smoking status, number of relapses, HIV status, time from new case to MDR TB diagnosis, drug resistance profile, diagnostic methods, treatment regimens, adverse reactions, radiological forms, and paraclinical investigations.

Patients diagnosed with DS TB and MDR TB were selected based on inclusion criteria. After obtaining informed consent, they were contacted by phone to participate in completing the DASS-21 and SGRQ questionnaires.

The DASS-21R (Depression, Anxiety, and Stress Scales - 21 items) is a brief psychometric instrument used to assess symptoms of depression, anxiety, and stress.

The SGRQ (St. George's Respiratory Questionnaire) is a standardized tool used to assess the impact of chronic respiratory diseases on patients' quality of life. It was developed to measure both symptoms and limitations in daily activities caused by conditions such as Chronic Obstructive Pulmonary Disease (COPD) and asthma. SGRQ contains 50 questions grouped into three main domains: symptoms, activity, and impact.

Descriptive statistical analysis was used to describe the variables studied. For continuous variables, the mean, standard deviation, median, range, minimum, and maximum values were calculated. Categorical variables were presented as counts and percentages.

To analyze associations between exposure and outcome, the Chi-square test was used for categorical variables. When the expected number of values below 5 exceeded 20%, the Odds Ratio was employed.

Predictive statistical models for the association of depression scores among patients with MDR TB and DS TB were developed using multiple linear regression to predict patients' depression scores. This approach allowed us to quantify the impact of each independent variable on the final outcome. It enabled the analysis of the influence of multiple independent variables (Bacteriological Status, Age, and Gender) on a continuous dependent variable (scores for depression, anxiety, stress, and impact).

In the first stage, we described the study variables using appropriate statistical measures. For continuous variables, we calculated the mean, standard deviation, median, range, minimum, and maximum to obtain a general overview of data distribution.

For continuous variables, we compared different groups using parametric or non-parametric tests, depending on data distribution. Distribution was assessed using the Shapiro-Wilk test and visual inspection of histograms. If the data were normally distributed, we used the Independent Samples t-test (for comparing two groups) or ANOVA (for comparing more than two groups). If distribution significantly deviated from normality, non-parametric tests were employed (Mann-Whitney U for two groups and Kruskal-Wallis H for more than two groups).

For categorical variables, results were presented as counts and percentages. To identify relationships between categorical variables and depression scores, the Chi-square test was used.

Analyses were performed using IBM SPSS Statistics Edition 28, with charts created in the same program or in Microsoft Office Excel.[36]

## 5. Results

The study cohort included 224 tuberculosis patients. Of these, 66.5% were included in the group with drug-sensitive TB (DS TB), while patients with multidrug-resistant TB (MDR TB) represented 33.5% of the total cohort (Table 1).

**Table 1 Distribution of Patients by Drug Sensitivity**

| BK status |       | Frequency | Percent | Valid Percent | Cumulative Percent |
|-----------|-------|-----------|---------|---------------|--------------------|
| Valid     | DS TB | 149       | 66.5    | 66.5          | 66.5               |

|        |     |       |       |       |
|--------|-----|-------|-------|-------|
| MDR TB | 75  | 33.5  | 33.5  | 100.0 |
| Total  | 224 | 100.0 | 100.0 |       |

Regarding the depression score, the mean value was approximately twice as low for DS TB patients, being  $11.83 \pm 5.13$  compared to  $23.87 \pm 6.18$  for MDR TB patients. (table 2)

**Table 2 Descriptive Analysis of Depression Score**

| BK status | N   | Deviation |          | Median | Range Variation | of      |         |
|-----------|-----|-----------|----------|--------|-----------------|---------|---------|
|           |     | Median    | Standard |        |                 | Minimum | Maximum |
| DS TB     | 149 | 11.83     | 5.130    | 12.00  | 30              | 0       | 30      |
| MDR TB    | 75  | 23.87     | 6.180    | 24.00  | 32              | 6       | 38      |
| Total     | 224 | 15.86     | 7.911    | 14.00  | 38              | 0       | 38      |

The Chi-square test applied to examine the association between the type of TB identified and the depression category indicated that there is a statistically significant association ( $p<0.001$ ), with patients in the MDR TB group exhibiting a higher proportion of more severe depression categories. (Table 3)

### **3 Chi-square test association depression – bacteriological BK status**

|                   |                      |    | Statistical Significance (p) (2-tails) |
|-------------------|----------------------|----|----------------------------------------|
|                   | Value                | Df |                                        |
| Chi-square        | 119.345 <sup>a</sup> | 4  | <0.001                                 |
| Likelihood Ratio  | 142.512              | 4  | <0.001                                 |
| Valid Cases Count | 224                  |    |                                        |

---

a. 0 cells (0.0%) have expected values less than 5. The minimum expected value is 7.70.

Regarding the anxiety component, the mean score for patients in the MDR TB group was nearly twice as high at  $20.37 \pm 7.96$  compared to the anxiety score for patients in the DS TB group, which was  $12.85 \pm 5.29$ . (4)

**Table 4 Descriptive Analysis of the Anxiety Score**

---

| BK Status | N   | Media | Deviation Standard | Median | Range | of Variation | Minimum | Maximum |
|-----------|-----|-------|--------------------|--------|-------|--------------|---------|---------|
| DS TB     | 149 | 12.85 | 5.292              | 12.00  | 24    |              | 2       | 26      |
| MDR TB    | 75  | 20.37 | 7.964              | 22.00  | 28    |              | 8       | 36      |
| Total     | 224 | 15.37 | 7.233              | 14.00  | 34    |              | 2       | 36      |

---

The observed differences are statistically significant, with the p-value calculated using the Chi-square test being less than 0.001 (Table 5).

**Tabel 5 Chi-square test for testing the association between anxiety category and bacteriological BK status**

---

|                       |                     |   | Statistical Significance<br>(p) (2-tails) |
|-----------------------|---------------------|---|-------------------------------------------|
| Chi-square            | 63.751 <sup>a</sup> | 4 | <0.001                                    |
| Likelihood Ratio      | 68.752              | 4 | <0.001                                    |
| Mantel- Haenszel Test | 43.905              | 1 | <0.001                                    |
| Valid cases number    | 224                 |   |                                           |

---

---

a. 0 cells (0.0%) have expected values less than 5. The minimum expected value is 6.70.

Regarding the stress component score, patients in the MDR TB group had an average value more than twice as high ( $26.21 \pm 7.03$ ) compared to patients in the DS TB group ( $12.81 \pm 4.86$ ). (6)

**Table 6 Descriptive Statistical Analysis of Stress Score**

| BK Status | N   | Media | Standard deviation | Mediana | Range Variation | of | Minimum | Maximum |
|-----------|-----|-------|--------------------|---------|-----------------|----|---------|---------|
| DS TB     | 149 | 12.81 | 4.860              | 12.00   | 26              | 2  | 28      |         |
| MDR TB    | 75  | 26.21 | 7.033              | 26.00   | 28              | 14 | 42      |         |
| Total     | 224 | 17.29 | 8.503              | 16.00   | 40              | 2  | 42      |         |

The observed differences are statistically significant, with  $\backslash(p < 0.001\backslash)$ . (Table 7)

**Tabel 7 Chi-square test for association between bacteriological BK status and stress category**

---

|                       |                      | Statistical Significance |               |
|-----------------------|----------------------|--------------------------|---------------|
|                       | Value                | df                       | (p) (2-tails) |
| Chi-square            | 138.407 <sup>a</sup> | 4                        | <0.001        |
| Likelihood ratio      | 163.409              | 4                        | <0.001        |
| Mantel- Haenszel Test | 134.570              | 1                        | <0.001        |
| Valid cases number    | 224                  |                          |               |

a. 0 cells (0.0%) have expected values less than 5. The minimum expected count is 5.02.

Comparing symptom scores (SGRQ) between patients with drug-susceptible TB (DS TB) and multidrug-resistant TB (MDR TB) reveals significant differences. Patients with MDR TB have a significantly higher mean symptom score ( $64.59 \pm 9.45$ ) compared to those with DS TB ( $42.08 \pm 9.23$ ). The median symptom scores also confirm this observation, with medians of 42.05 for the DS TB group and 64.44 for the MDR TB group. (Table 8)

**Table 8 Descriptive Statistical Analysis of SGRQ – Symptom Score**

| BK Status | N   | Media   | Deviation |         |                 |         |         |  |
|-----------|-----|---------|-----------|---------|-----------------|---------|---------|--|
|           |     |         | Standard  | Mediana | Range variation | Minimum | Maximum |  |
| DS TB     | 149 | 42.0863 | 9.22807   | 42.0528 | 48.47           | 23.70   | 72.17   |  |
| MDR TB    | 75  | 64.5915 | 9.45486   | 64.4377 | 43.98           | 40.91   | 84.89   |  |
| Total     | 224 | 49.6215 | 14.12409  | 46.7698 | 61.19           | 23.70   | 84.89   |  |

The t-test has a statistically significant result ( $p<0.001$ ), with a mean difference of 22.5 points and a 95% Confidence Interval (CI) ranging from 19.9 to 24.1 points.

**Table 9 T-test – Comparison of Symptom Scores on SGRQ by Bacteriological Status**

|                                           | SGRQ – Symptom scores            |                   |              |           |
|-------------------------------------------|----------------------------------|-------------------|--------------|-----------|
|                                           | Homogenous                       |                   | Heterogenous |           |
|                                           | Variants                         | Variants          |              |           |
| Levene's Test for Equality of Variances   | F                                |                   | 0.603        |           |
|                                           | P                                |                   | 0.438        |           |
| T-Test for Equality of Means              | T                                |                   | -17.084      | -16.947   |
|                                           | Df                               |                   | 222          | 145.279   |
|                                           | Statistical (p)                  | semnification     | <0.001       | <0.001    |
|                                           |                                  | 1 tail<br>2 tails | 0.000        | 0.000     |
|                                           | Mean difference                  |                   | -22.50524    | -22.50524 |
|                                           | Standard Error of the Difference |                   | 1.31730      | 1.32795   |
| Confidence Interval of the difference 95% | Inferior limit                   | -25.10124         | -25.12983    |           |
|                                           | Superior limit                   | -19.90923         | -19.88064    |           |

Activity Score falls into the same range, with higher values in patients with MDR TB. Thus, the average score for these patients was  $70.26 \pm 23.79$ , whereas for DS TB patients, the mean value was  $41.52 \pm 18.03$  points. (Table 10)

**Table 10 Descriptive Statistical Analysis of SGRQ – Activity Score**

| BK Status | N   | Media   | Standard deviation | Mediana | Range | Minimum | Maximum |
|-----------|-----|---------|--------------------|---------|-------|---------|---------|
| DS TB     | 149 | 41.5233 | 18.02666           | 37.1516 | 74.41 | 6.21    | 80.62   |
| MDR TB    | 75  | 70.2633 | 23.79958           | 80.4069 | 76.63 | 18.12   | 94.75   |
| Total     | 224 | 51.1460 | 24.25726           | 43.9749 | 88.54 | 6.21    | 94.75   |

The Mann-Whitney U test result is statistically significant ( $p<0.001$ ), with observed differences between the two groups being statistically significant, showing lower activity scores for DS TB patients. (Table 11)

**Table 11 Mann-Whitney U Test – SGRQ – Activity Score**

| SGRQ – Activity score |           |
|-----------------------|-----------|
| Mann-Whitney U        | 2073.500  |
| Wilcoxon W            | 13248.500 |
| Z                     | -7.684    |
| p (2-tails)           | <0.001    |

a. Grouping Variable: Bacteriological Status BK

In the case of the impact score, we observed that the average values are relatively close, with DS TB patients having an average of  $33.09 \pm 15.88$ , and MDR TB patients having

an average impact score of  $39.14 \pm 17.61$ . In both cases, there is a noticeable variability in the scores, as indicated by the relatively high standard deviation (Table 12).

**Table 12: Descriptive Statistical Analysis of SGRQ – Impact Score**

| BK Status | N   | Media   | Standard  |         | Range | Minimum | Maximum |
|-----------|-----|---------|-----------|---------|-------|---------|---------|
|           |     |         | Deviation | Mediana |       |         |         |
| DS TB     | 149 | 33.0950 | 15.88072  | 37.6712 | 95.13 | 1.98    | 97.11   |
| MDR TB    | 75  | 39.1415 | 17.60960  | 42.2939 | 80.74 | 10.09   | 90.83   |
| Total     | 224 | 35.1195 | 16.68709  | 38.1056 | 95.13 | 1.98    | 97.11   |

Thus, it is observed that the differences between the two groups regarding the impact score are statistically significant, with higher scores for patients with MDR TB (Table 13).

**Table 13: Mann-Whitney U Test – SGRQ Impact Score**

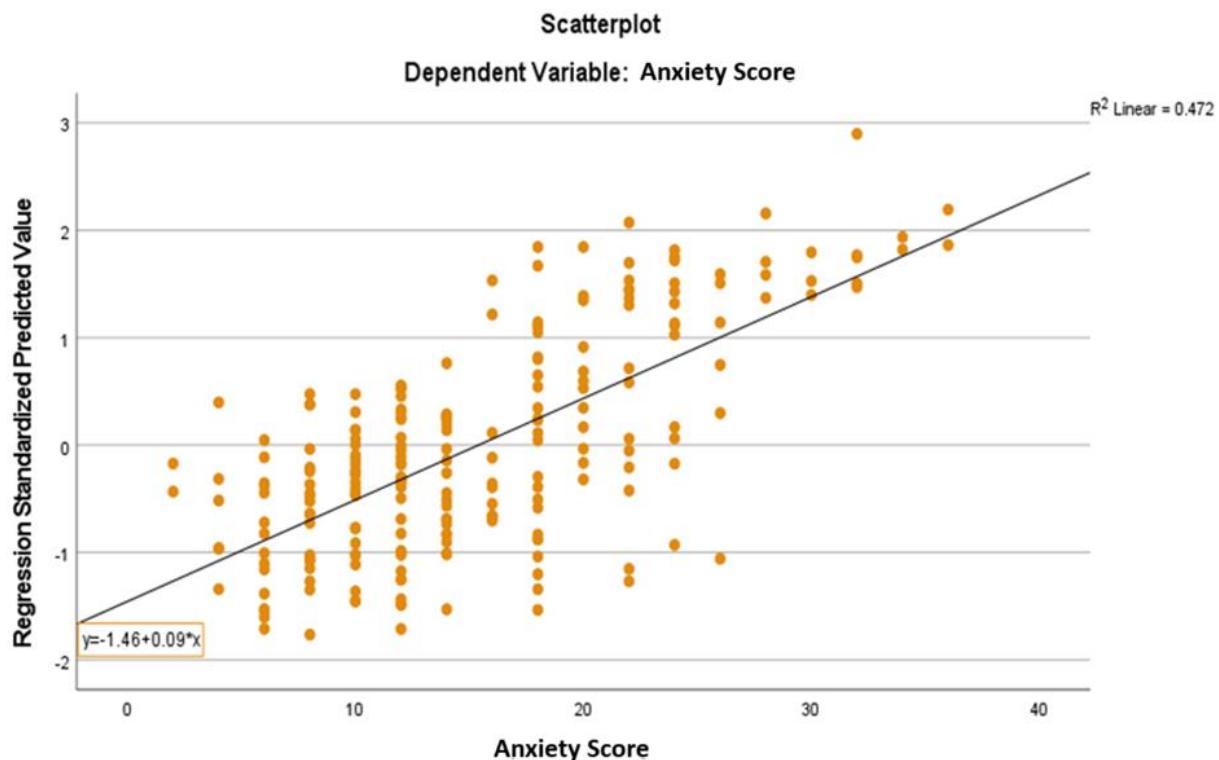
| SGRQ - Scor Impact |           |
|--------------------|-----------|
| Mann-Whitney U     | 4214.500  |
| Wilcoxon W         | 15389.500 |
| Z                  | -3.000    |
| p (2-tails)        | 0.003     |

a. Grouping Variable: BK Bacteriological Status

By analyzing the independent role of each variable included in the statistical model, we found that only some of these variables independently predict the depression score. Based on the data in Table 14, we found that BK bacteriological status, age, sex, and the number of relapses before the confirmation of MDR TB/XDR TB diagnosis are statistically significant predictors. The regression coefficients and standard errors are provided in the table.



**Figure 1: Scatterplot of the Variance in Depression Score Explained by the Multiple Linear Regression Model**

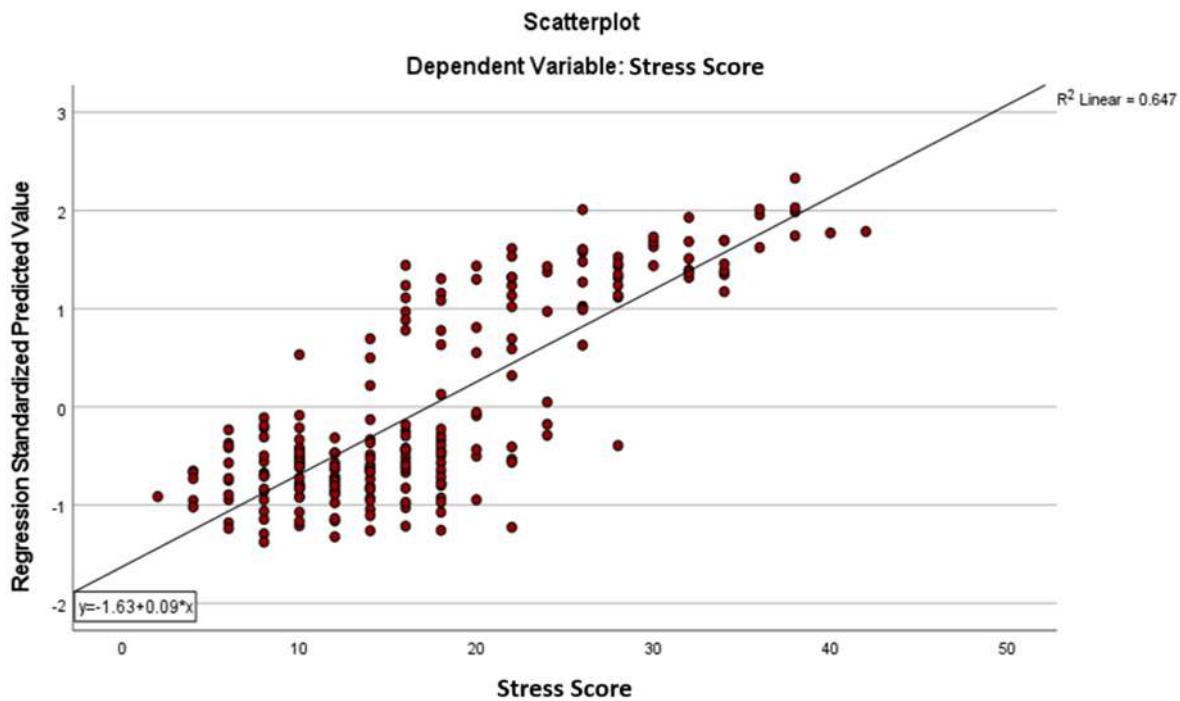

**Table 14: Regression Coefficients – Depression Score**

| Model                                                                 | Unstandardized Coefficients |                | Standardized Coefficients | t          | P      | 95% Confidence Interval for B |                |
|-----------------------------------------------------------------------|-----------------------------|----------------|---------------------------|------------|--------|-------------------------------|----------------|
|                                                                       | B                           | Standard error | Beta                      |            |        | Inferior limit                | Superior limit |
| 1(Constant)                                                           | 2.193                       | 2.274          |                           | 0.964      | 0.336  | -2.289                        | 6.675          |
| BK status                                                             | 8.491                       | 1.546          | 0.503                     | 5.493      | <0.001 | 5.444                         | 11.538         |
| Age                                                                   | 0.129                       | 0.027          | 0.213                     | 4.711      | <0.001 | 0.075                         | 0.183          |
| Origin                                                                | -0.416                      | 0.699          | -0.026                    | -<br>0.595 | 0.552  | -1.793                        | 0.961          |
| Sex                                                                   | 1.845                       | 0.760          | 0.106                     | 2.427      | 0.016  | 0.346                         | 3.344          |
| Social status                                                         | 0.303                       | 0.214          | 0.063                     | 1.418      | 0.158  | -0.118                        | 0.725          |
| Number of Relapses Before the Confirmation of MDR TB/XDR TB Diagnosis | 2.142                       | 0.575          | 0.192                     | 3.727      | <0.001 | 1.009                         | 3.275          |

|                                |        |       |        |       |       |        |       |
|--------------------------------|--------|-------|--------|-------|-------|--------|-------|
| Radiological form              | -0.303 | 0.274 | -0.048 | -     | 0.271 | -0.843 | 0.237 |
| Duration of Treatment (Months) | 0.164  | 0.126 | 0.109  | 1.297 | 0.196 | -0.085 | 0.413 |

By analyzing the independent role of each variable included in the statistical model, we found that only some of these variables independently predict the anxiety score. Based on the data in Table 15, we determined that BK bacteriological status, age, and the number of relapses before the confirmation of MDR TB/XDR TB diagnosis are statistically significant predictors. The regression coefficients and standard errors are provided in the table.

**Figure 2: Scatterplot of the Variance in Anxiety Score Explained by the Multiple Linear Regression Model**




**Table 15 Regression Coefficients – Anxiety Score**

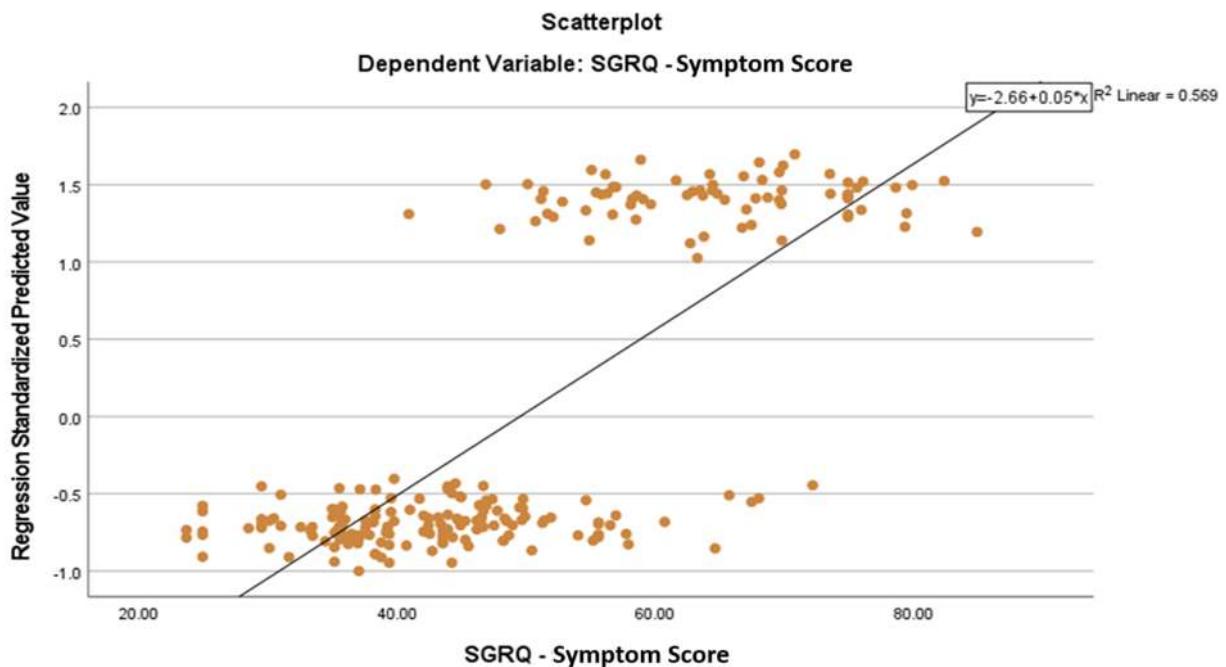
| Model                                                                 | Unstandardized Coefficients |                | Standardized Coefficients |        | 95% Confidence Interval for B |                |                |
|-----------------------------------------------------------------------|-----------------------------|----------------|---------------------------|--------|-------------------------------|----------------|----------------|
|                                                                       | B                           | Standard Error | Beta                      | t      | p                             | Inferior limit | Superior limit |
| 1 (Constant)                                                          | -1.641                      | 2.447          |                           | -0.671 | 0.503                         | -6.465         | 3.182          |
| BK Status                                                             | 5.932                       | 1.663          | 0.385                     | 3.566  | <0.001                        | 2.653          | 9.211          |
| Age                                                                   | 0.235                       | 0.029          | 0.426                     | 7.988  | <0.001                        | 0.177          | 0.293          |
| Origin                                                                | 0.916                       | 0.752          | 0.063                     | 1.218  | 0.224                         | -0.566         | 2.398          |
| Sex                                                                   | 0.912                       | 0.818          | 0.057                     | 1.115  | 0.266                         | -0.701         | 2.525          |
| Social status                                                         | 0.017                       | 0.230          | 0.004                     | 0.074  | 0.941                         | -0.437         | 0.471          |
| Number of Relapses Before the Confirmation of MDR TB/XDR TB Diagnosis | 1.410                       | 0.618          | 0.138                     | 2.280  | 0.024                         | 0.191          | 2.630          |
| Radiological Form                                                     | -0.131                      | 0.295          | -0.023                    | -0.445 | 0.657                         | -0.713         | 0.450          |
| Duration of Treatment (Months)                                        | 0.015                       | 0.136          | 0.011                     | 0.113  | 0.910                         | -0.253         | 0.284          |

a. Dependent Variable: Anxiety Score

By analyzing the independent role of each variable included in the statistical model, we found that only some of these variables independently predict the stress score. Based on the data in Table 16, we determined that BK bacteriological status, age, and sex are statistically significant predictors. The regression coefficients and standard errors are provided in the table.



**Figure 3: Scatterplot of the Variance in Stress Score Explained by the Multiple Linear Regression Model**


**Table 16: Regression Coefficients – Stress Score**

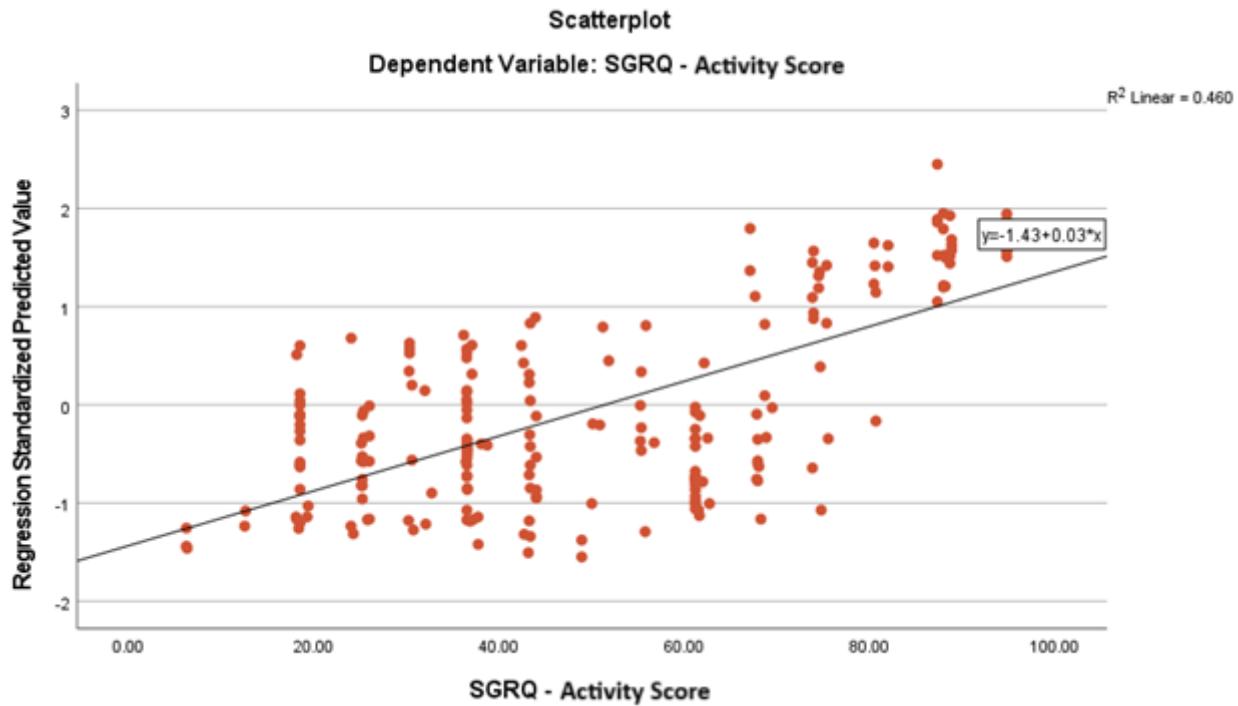
| Model        | Unstandardized Coefficients |                | Standardized Coefficient | 95% Confidence Interval for B |                  |                |                |
|--------------|-----------------------------|----------------|--------------------------|-------------------------------|------------------|----------------|----------------|
|              | B                           | Standard error |                          | t                             | p                | Inferior limit | Superior limit |
| 1 (Constant) | 0.717                       | 2.353          |                          | 0.305                         | 0.761            | -3.922         | 5.356          |
| BK status    | 11.503                      | 1.600          | 0.634                    | 7.190                         | <b>&lt;0.001</b> | 8.349          | 14.656         |
| Age          | 0.159                       | 0.028          | 0.246                    | 5.631                         | <b>&lt;0.001</b> | 0.103          | 0.215          |
| Origin       | -0.289                      | 0.723          | -0.017                   | -<br>0.400                    | 0.690            | -1.714         | 1.136          |
| Sex          | 2.776                       | 0.787          | 0.148                    | 3.528                         | <b>&lt;0.001</b> | 1.225          | 4.327          |

|                                                                       |        |       |        |       |       |        |       |
|-----------------------------------------------------------------------|--------|-------|--------|-------|-------|--------|-------|
| Social status                                                         | 0.205  | 0.221 | 0.040  | 0.925 | 0.356 | -0.232 | 0.641 |
| Number of Relapses Before the Confirmation of MDR TB/XDR TB Diagnosis | 1.133  | 0.595 | 0.094  | 1.905 | 0.058 | -0.039 | 2.306 |
| Radiological form                                                     | -0.185 | 0.284 | -0.027 | -     | 0.514 | -0.744 | 0.374 |
| Duration of Treatment (Months)                                        | 0.090  | 0.131 | 0.056  | 0.686 | 0.493 | -0.168 | 0.348 |

a. Dependent Variable: Stress Score

By analyzing the independent role of each variable included in the statistical model, we found that only some of these variables independently predict the symptom score. Based on the data, we determined that BK bacteriological status is the only statistically significant predictor. The regression coefficients and standard errors are provided in Table 17.




**Figure 4: Scatterplot of the Variance in SGRQ – Symptom Score Explained by the Multiple Linear Regression Model**

**Table 17: Regression Coefficients – SGRQ Symptom Score**

| Model                                                                 | Unstandardized Coefficients |                | Standardized Coefficients |       | 95% Confidence Interval for B |                |                |
|-----------------------------------------------------------------------|-----------------------------|----------------|---------------------------|-------|-------------------------------|----------------|----------------|
|                                                                       | B                           | Standard error | Beta                      | t     | p                             | Inferior limit | Superior limit |
| 1 (Constant)                                                          | 42.274                      | 4.276          |                           | 9.887 | <0.001                        | 33.845         | 50.702         |
| BK status                                                             | 22.898                      | 2.907          | 0.768                     | 7.877 | <0.001                        | 17.168         | 28.628         |
| Age                                                                   | 0.039                       | 0.051          | 0.036                     | 0.756 | 0.451                         | -0.062         | 0.140          |
| Origin                                                                | -1.876                      | 1.314          | -0.067                    | -     | 0.155                         | -4.465         | 0.714          |
|                                                                       |                             |                |                           | 1.428 |                               |                |                |
| Sex                                                                   | -0.700                      | 1.430          | -0.023                    | -     | 0.625                         | -3.519         | 2.118          |
|                                                                       |                             |                |                           | 0.490 |                               |                |                |
| Social Status                                                         | 0.345                       | 0.402          | 0.041                     | 0.857 | 0.392                         | -0.448         | 1.138          |
| Number of Relapses Before the Confirmation of MDR TB/XDR TB Diagnosis | -1.153                      | 1.081          | -0.058                    | -     | 0.287                         | -3.283         | 0.978          |
|                                                                       |                             |                |                           | 1.066 |                               |                |                |
| Radiological Form                                                     | 0.280                       | 0.515          | 0.025                     | 0.544 | 0.587                         | -0.736         | 1.296          |
| Duration of Treatment (Months)                                        | 0.008                       | 0.238          | 0.003                     | 0.034 | 0.973                         | -0.461         | 0.477          |

a. Dependent Variable: Symptom Score

By analyzing the independent role of each variable included in the statistical model, we found that only some of these variables independently predict the activity score. Based on the data in Table 18, we determined that BK bacteriological status and age are statistically significant predictors. The regression coefficients and standard errors are provided in the table.



**Figure 5: Scatterplot of the Variance in SGRQ – Activity Score Explained by the Multiple Linear Regression Model**

**Table 18: Regression Coefficients – SGRQ Activity Score**

| Model         | Unstandardized Coefficients |                | Standardized Coefficients |        | 95% Confidence Interval for B |                |                |
|---------------|-----------------------------|----------------|---------------------------|--------|-------------------------------|----------------|----------------|
|               | B                           | Standard error | Beta                      | t      | p                             | Inferior limit | Superior limit |
| 1 (Constant)  | 9.688                       | 8.273          |                           | 1.171  | 0.243                         | -6.620         | 25.996         |
| BK Status     | 26.570                      | 5.624          | 0.515                     | 4.724  | <0.001                        | 15.484         | 37.657         |
| Age           | 0.638                       | 0.099          | 0.346                     | 6.419  | <0.001                        | 0.442          | 0.834          |
| Origin        | -0.391                      | 2.542          | -0.008                    | -0.154 | 0.878                         | -5.402         | 4.620          |
| Sex           | 0.839                       | 2.766          | 0.016                     | 0.303  | 0.762                         | -4.614         | 6.292          |
| Social Status | -0.036                      | 0.778          | -0.002                    | -0.046 | 0.964                         | -1.570         | 1.499          |

|                                                                       |        |       |        |        |       |        |       |
|-----------------------------------------------------------------------|--------|-------|--------|--------|-------|--------|-------|
| Number of Relapses Before the Confirmation of MDR TB/XDR TB Diagnosis | 1.765  | 2.091 | 0.052  | 0.844  | 0.400 | -2.357 | 5.887 |
| Radiological form                                                     | -0.539 | 0.997 | -0.028 | -0.540 | 0.589 | -2.505 | 1.427 |
| Duration of Treatment (Months)                                        | 0.008  | 0.460 | 0.002  | 0.017  | 0.986 | -0.899 | 0.915 |

Regression Coefficients – Activity Score

## 6. DISCUSSIONS

Sharma et al. (2013) investigated the mental health of patients with MDR and DS TB, concluding that MDR TB patients had higher scores on the anxiety and depression scales according to the DASS 21 R assessment, similar to the values observed in our study [37]. Pachi et al. (2013) observed that MDR TB patients had significantly higher depression scores, which can be explained by additional stress factors such as the prolonged duration of treatment and uncertainty about prognosis [38].

Patients with MDR TB had an average anxiety score of  $20.37 \pm 7.96$ , nearly double that of DS TB patients, who had an average score of  $12.85 \pm 5.29$ . This difference reflects the stress and uncertainty associated with managing this more severe and difficult-to-treat form of the disease.

Dhingra et al. (2017) identified higher anxiety scores in MDR TB patients and emphasized that anxiety is often exacerbated by the long duration of treatment and fear of treatment failure [39]. In the DS TB patient group, over two-thirds exhibited normal stress levels, indicating a better ability to manage the disease and a lower psychological impact. Approximately one-quarter of these patients had low stress levels, suggesting minimal emotional disturbance in this group. The near absence of severe and extremely severe cases in this group highlights the relatively stable emotional state of DS TB patients.

Doherty et al. (2013) emphasized that MDR TB patients are subjected to a higher level of stress compared to chemoresponsive forms [40]. MDR TB patients had an average symptom score of  $64.59 \pm 9.45$ , significantly higher than the average score of  $42.08 \pm 9.23$  in DS TB patients, suggesting that MDR TB patients experience much greater severity of respiratory symptoms, which may be related to the complexity of treatment and a poorer response to therapy.

Baral et al. (2016) also identified higher symptom scores in MDR TB patients compared to those with DS TB, demonstrating the increased severity of respiratory symptoms in this group [41].

## 7. Conclusions

1. BK Bacteriological Status: This is the most consistent predictor with a statistically significant role in increasing depression, anxiety, and stress scores, as well as symptom, activity, and impact scores.
2. Depression Scores: The average depression score was approximately twice as high for MDR TB patients compared to DS TB patients. Among DS TB patients, 30% exhibited mild or moderate depression, and about 5% were classified with severe or extremely severe depression. In MDR TB patients, the distribution was as follows: 29.3% had moderate depression, 37.3% had severe depression, and 32% had extremely severe depression.
3. Anxiety Levels: The majority of MDR TB patients (60.0%) had extremely severe anxiety levels compared to only 11.4% of DS TB patients.
4. Stress Scores: The average stress score was twice as high for MDR TB patients. Among DS TB patients, two-thirds had normal stress levels, and 25% had elevated stress levels, compared to MDR TB patients, where severe (37.3%), moderate (24%), and extremely severe (20%) stress levels predominated.
5. Symptom Scores: MDR TB patients had a significantly higher average symptom score, suggesting increased severity of respiratory symptoms compared to the DS TB group.

## 8. Originality of the Thesis

The doctoral thesis achieved the scientific research objectives set. Our study highlighted that patients diagnosed with multidrug-resistant tuberculosis (MDR-TB) develop significantly higher levels of anxiety and depression compared to those with chemoresponsive forms of TB. This observation is based on the elevated scores obtained in psychological assessments using the DASS 21R scale, indicating a greater psychological burden among MDR-TB patients. The difference can be explained by the longer duration of treatment, its complexity, associated stigma, and uncertainty about prognosis, all contributing to the intense psychological stress experienced by these patients.

BK bacteriological status, age, and sex were identified as key factors in the development of significantly higher levels of anxiety, depression, and stress, associated with a massive impact on quality of life and activities as evaluated by the SGRQ questionnaire, in MDR-TB patients compared to the DS TB group. Thus, BK bacteriological status proved to be a significant predictor across all categories, demonstrating its major influence on both

mental and physical health, associated with a higher likelihood of developing symptoms of depression, anxiety, and stress, and having a negative impact on symptomatology and quality of life, in accordance with the existing literature.

For the first part, 130 bibliographic references were consulted, analyzing the history of *M. tuberculosis* infection, epidemiology, definition, mechanisms of chemoresistance, diagnosis, treatment, and side effects.

The original contribution included developing patient inclusion criteria, data collection, statistical analysis, drawing statistically significant conclusions, and comparing them with the existing literature.

Limitations encountered include data accuracy or availability issues, difficult access to medical information, human factors (inability or refusal to participate), and the relatively small number of patients.

### **Action Plan**

To address this issue at a national level, we propose an action plan involving a collaborative network among various health entities and specialists. The action plan will focus on reducing depression and anxiety among MDR TB patients through an integrated and personalized approach.

## Bibliography

1. D. H. G. Shapiro et al. (2004). "Evolution of *Mycobacterium tuberculosis*." *Journal of Clinical Microbiology*, 42(12), 5826-5830.
2. R. A. K. Rees et al. (2016). "Ancient DNA analysis reveals that *Mycobacterium tuberculosis* was present in human populations 3 million years ago." *Nature*, 538, 223-227.
3. G. L. Clark et al. (2003). "Paleopathological evidence of tuberculosis in Neolithic populations of the eastern Mediterranean." *American Journal of Physical Anthropology*, 122(1), 64-77.
4. H. G. Houghton et al. (2012). "Ancient Egyptian Tuberculosis: Evidence from the 3rd Millennium BCE." *International Journal of Osteoarchaeology*, 22(4), 321-329.
6. Multidrug-resistant tuberculosis (MDR-TB) Fact Sheet, WHO  
[https://web.archive.org/web/20131025074305/http://www.who.int/tb/challenges/mdr/MDR\\_TB\\_FactSheet.pdf](https://web.archive.org/web/20131025074305/http://www.who.int/tb/challenges/mdr/MDR_TB_FactSheet.pdf)
7. Institute of Medicine (US). Facing the Reality of Drug-Resistant Tuberculosis in India: Challenges and Potential Solutions: Summary of a Joint Workshop by the Institute of Medicine, the Indian National Science Academy, and the Indian Council of Medical Research. Washington (DC): National Academies Press (US); 2012. 3, The Global Burden of Drug-Resistant TB. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK100388/> (<https://doi.org/10.1186/s12879-020-05749-2>)
8. World Health Organization. (2013). *Global tuberculosis report 2013*. World Health Organization. Retrieved from [https://www.who.int/tb/publications/global\\_report/gtbr13\\_main.pdf](https://www.who.int/tb/publications/global_report/gtbr13_main.pdf)
9. Munteanu I, Cioran N, van Hest R, Abubakar I, Story A, Chiotan D, de Vries G, Mahler B. Tuberculosis Surveillance in Romania Among Vulnerable Risk Groups Between 2015 and 2017. *Ther Clin Risk Manag*. 2022 Apr 20;18:439-446. doi: 10.2147/TCRM.S347748. PMID: 35478731; PMCID: PMC9035834.
10. Ahuja, S. D., Ashkin, D., Avendano, M., Boulware, D., & Raviglione, M. C. (2014). Multidrug-resistant tuberculosis: Epidemiology, diagnosis, and management. *The Lancet Respiratory Medicine*, 2(8), 563-572.

28. Global tuberculosis report 2016 World Health Organization (WHO)

<https://www.who.int/publications/i/item/9789241549639>

11. Ministerul Sănătății al României. (2023). Ghid de diagnosticare și tratament al tuberculozei rezistente la medicamente. SRP.

<https://srp.ro/ghiduri/GHID%20MDR%202023.pdf>

12. World Health Organization (WHO). (2021). "WHO Announces Updated Definitions of Extensively Drug-Resistant Tuberculosis". <https://www.who.int/news/item/27-01-2021-who-announces-updated-definitions-of-extensively-drug-resistant-tuberculosis>

13. Jang JG, Chung JH. Diagnosis and treatment of multidrug-resistant tuberculosis. *Yeungnam Univ J Med.* 2020 Oct;37(4):277-285. doi: 10.12701/yujm.2020.00626. Epub 2020 Sep 4. PMID: 32883054; PMCID: PMC7606956.

14. WHO Regional Office for Europe/European Centre for Disease Prevention and Control. Tuberculosis surveillance and monitoring in Europe 2019 – 2017 data. Copenhagen: WHO Regional Office for Europe; 2019.&nbsp;

15. National Institute for Health and Care Excellence (NICE). (2020). Tuberculosis: Diagnosis and Management. London: NICE.

16. Romanian Ministry of Health. (2017). Ghid național pentru diagnosticul și tratamentul tuberculozei. București: Ministerul Sănătății.

<https://marius-nasta.ro/wpcontent/uploads/2023/04/Ghid%20metodologic%20TB.pdf>

17. Wade MM, Zhang Y. Mechanisms of drug resistance in *Mycobacterium tuberculosis*. *Front Biosci.* 2004 Jan 1;9:975-94. doi: 10.2741/1289. PMID: 14766424. 32. Somasundaram, S., Ram, A., & Sankaranarayanan, L. (2014). "Isoniazid and Rifampicin as Therapeutic Regimen in the Current Era: A Review". *\*Journal of Tuberculosis Research\**, 2, 40–51.

18. Yussof KA, García JI, Schami A, Garcia-Vilanova A, Kelley HV, Wang SH, Rendon A, Restrepo BI, Yotebieng M, Torrelles JB. Tuberculosis Phenotypic and Genotypic Drug Susceptibility Testing and Immunodiagnostics: A Review. *Front Immunol.* 2022 Jul 7;13:870768. doi: 10.3389/fimmu.2022.870768. PMID: 35874762; PMCID: PMC9301132.

19. Lawson L, Emenyonu N, Abdurrahman ST, Lawson JO, Uzoewulu GN, Sogaolu OM, Ebisike JN, Parry CM, Yassin MA, Cuevas LE. Comparison of *Mycobacterium tuberculosis* drug susceptibility using solid and liquid culture in Nigeria. *BMC Res Notes*. 2013 May 30;6:215. doi: 10.1186/1756-0500-6-215. PMID: 23721428; PMCID: PMC3691748.
20. Singh S, Dey B, Sachdeva KS, Kabra SK, Chopra KK, Chaudhary VK, Sharma P, Katoch VM. Challenges in tuberculosis diagnosis and management: recommendations of the expert panel. *J Lab Physicians*. 2015 Jan-Jun;7(1):1-3. doi: 10.4103/0974-2727.154778. PMID: 25949051; PMCID: PMC4411802.
21. Muntean, M., et al. (2021). "Evaluating the efficiency of solid culture methods in Romanian laboratories." *Romanian Journal of Infectious Diseases*, 15(2), 44-50.
22. World Health Organization (WHO). (2022). Global tuberculosis report 2022. Geneva: WHO. [https://www.who.int/tb/publications/global\\_report/en/](https://www.who.int/tb/publications/global_report/en/)
23. Zhao P, Yu Q, Chen L, Zhang M. Evaluation of a liquid culture system in the detection of mycobacteria at an antituberculosis institution in China; A retrospective study. *J Int Med Res*. 2016 Oct;44(5):1055-1060. doi: 10.1177/0300060516655243. Epub 2016 Sep 29. PMID: 27688689; PMCID: PMC5536555.
24. Rabaan AA, Mutair AA, Albayat H, Alotaibi J, Sulaiman T, Aljeldah M, Shammary BRA, Alfaraj AH, Al Fares MA, Alwarthan S, Binjomah AZ, Alzahrani MS, Alhani HM, Almogbel MS, Abuzaid AA, Alqurainees G, Al Ibrahim F, Alhaddad AH, Alfaresi M, Al-Baghli N, Alhumaid S. Tools to Alleviate the Drug Resistance in *Mycobacterium tuberculosis*. *Molecules*. 2022 Oct 17;27(20):6985. doi: 10.3390/molecules27206985. PMID: 36296578; PMCID: PMC9606950.
25. Matthew K. O'Shea, Gavin C. K. W. Koh, Melinda Munang, Grace Smith, Arpan Banerjee, Martin Dedicoat, Time-to-Detection in Culture Predicts Risk of *Mycobacterium tuberculosis* Transmission: A Cohort Study, *Clinical Infectious Diseases*, Volume 59, Issue 2, 15 July 2014, Pages 177–185, <https://doi.org/10.1093/cid/ciu244>
26. . Franco-Duarte R, Černáková L, Kadam S, Kaushik KS, Salehi B, Bevilacqua A, Corbo MR, Antolak H, Dybka-Stepień K, Leszczewicz M, Relison Tintino S, Alexandrino de Souza VC, Sharifi-Rad J, Coutinho HDM, Martins N, Rodrigues CF. Advances in Chemical and Biological Methods to Identify Microorganisms-From Past to Present. *Microorganisms*. 2019

May 13;7(5):130. doi: 10.3390/microorganisms7050130. PMID: 31086084; PMCID: PMC6560418.

27. Mukherjee S, Perveen S, Negi A, Sharma R. Evolution of tuberculosis diagnostics: From molecular strategies to nanodiagnostics. *Tuberculosis (Edinb)*. 2023 May;140:102340. doi: 10.1016/j.tube.2023.102340. Epub 2023 Apr 5. PMID: 37031646; PMCID: PMC10072981.

28. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R, Milovic A, Jones M, O'Brien SM, Persing DH, Ruesch-Gerdes S, Gotuzzo E, Rodrigues C, Alland D, Perkins MD. Rapid molecular detection of tuberculosis and rifampin resistance. *N Engl J Med*. 2010 Sep 9;363(11):1005-15. doi: 10.1056/NEJMoa0907847. Epub 2010 Sep 1. PMID: 20825313; PMCID: PMC2947799.

29. Lawn SD, Mwaba P, Bates M, Piatek A, Alexander H, Marais BJ, Cuevas LE, McHugh TD, Zijenah L, Kapata N, Abubakar I, McNerney R, Hoelscher M, Memish ZA, Migliori GB, Kim P, Maeurer M, Schito M, Zumla A. Advances in tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test. *Lancet Infect Dis*. 2013 Apr;13(4):349-61. doi: 10.1016/S1473-3099(13)70008-2. Epub 2013 Mar 24. PMID: 23531388; PMCID: PMC4844338.

30. Marlowe, E. M., Bergh, D. H., & Sires, J. M. (2013). Evaluation of the Xpert MTB/RIF Assay for Detection of *Mycobacterium tuberculosis* from Respiratory Specimens in a Tuberculosis Prevalent Setting. *Diagnostic Microbiology and Infectious Disease*, 75(3), 307-312.

31. Jacobson, K. R., Theron, D., Victor, T. C., Streicher, E. M., Warren, R. M., & Murray, M. B. (2013). Treatment outcomes of multidrug-resistant tuberculosis: a systematic review and meta-analysis of published studies. *PLoS One*, 8(2), e83015.

32. Steingart KR, Schiller I, Horne DJ, Pai M, Boehme CC, Dendukuri N. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. *Cochrane Database Syst Rev*. 2014 Jan 21;2014(1):CD009593. doi: 10.1002/14651858.CD009593.pub3. Update in: *Cochrane Database Syst Rev*. 2019 Jun 07;6:CD009593. doi: 10.1002/14651858.CD009593.pub4. PMID: 24448973; PMCID: PMC4470349.

33. Brossier, F., Veziris, N., & Jarlier, V. (2006). Performance of MTBDRplus for detecting high/low levels of isoniazid resistance in *Mycobacterium tuberculosis* complex from sputum samples. *Journal of Clinical Microbiology*, 44(6), 2034-2038.

34. Schön, T., Miotto, P., Köser, C. U., Viveiros, M., Böttger, E. C., & Cambau, E. (2017). *Mycobacterium tuberculosis* drug-resistance testing: challenges, recent developments and perspectives. *Clinical Microbiology and Infection*, 23(3), 154-160.

35. Barnard, M., Albert, H., Coetze, G., O'Brien, R., & Bosman, M. E. (2008). Rapid molecular screening for multidrug-resistant tuberculosis in a high-volume public health laboratory in South Africa. *American Journal of Respiratory and Critical Care Medicine*, 177(7), 787-792.

36. Field A. *Discovering Statistics Using IBM SPSS Statistics*: SAGE Publications; 2013.)

37. Thomas BE, Shanmugam P, Malaisamy M, Ovung S, Suresh C, Subbaraman R, Adinarayanan S, Nagarajan K. Psycho-Socio-Economic Issues Challenging Multidrug Resistant Tuberculosis Patients: A Systematic Review. *PLoS One*. 2016 Jan 25;11(1):e0147397.  
(doi: 10.1371/journal.pone.0147397. PMID: 26807933; PMCID: PMC4726571)

38. Pachi A, Bratis D, Moussas G, Tselebis A. Psychiatric morbidity and other factors affecting treatment adherence in pulmonary tuberculosis patients. *Tuberc Res Treat*. 2013;2013:489865. doi: 10.1155/2013/489865. Epub 2013 Apr 15. PMID: 23691305; PMCID: PMC3649695.

39. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. *Lancet*. 2017 Sep 16;390(10100):1211-1259. doi: 10.1016/S0140-6736(17)32154-2. Erratum in: *Lancet*. 2017 Oct 28;390(10106):e38. doi: 10.1016/S0140-6736(17)32647-8. PMID: 28919117; PMCID: PMC5605509.

40. Skinner D, Claassens M. Why test for tuberculosis? A qualitative study from South Africa. *Public Health Action*. 2016 Dec 21;6(4):212-216. doi: 10.5588/pha.16.0049. PMID: 28123955; PMCID: PMC5176042.

41. Nicholson TJ, Hoddinott G, Seddon JA, Claassens MM, van der Zalm MM, Lopez E, Bock P, Caldwell J, Da Costa D, de Vaal C, Dunbar R, Du Preez K, Hesseling AC, Joseph K, Kriel

E, Loveday M, Marx FM, Meehan SA, Purchase S, Naidoo K, Naidoo L, Solomon-Da Costa F, Sloot R, Osman M. A systematic review of risk factors for mortality among tuberculosis patients in South Africa. *Syst Rev*. 2023 Feb 23;12(1):23. doi: 10.1186/s13643-023-02175-8. PMID: 36814335; PMCID: PMC9946877.

## Appendices

Table 1: Distribution of Patients by Chemosensitivity

Table 2: Descriptive Analysis of Depression Scores

Table 3: Chi-Square Test for Association Between Depression and BK Bacteriological Status

Table 4: Descriptive Analysis of Anxiety Scores

Table 5: Chi-Square Test for Association Between Anxiety Category and BK Bacteriological Status

Table 6: Descriptive Statistical Analysis of Stress Scores

Table 7: Chi-Square Test for Association Between BK Bacteriological Status and Stress Category

Table 8: Descriptive Statistical Analysis of SGRQ – Symptom Score

Table 9: t-Test for Comparing SGRQ Symptom Scores by BK Bacteriological Status

Table 10: Descriptive Statistical Analysis of SGRQ – Activity Score

Table 11: Mann-Whitney U Test for SGRQ – Activity Score

Table 12: Descriptive Statistical Analysis of SGRQ – Impact Score

Table 13: Mann-Whitney U Test for SGRQ – Impact Score

Table 14: Regression Coefficients – Depression Score

Table 15: Regression Coefficients – Anxiety Score

Table 16: Regression Coefficients – Stress Score

Table 17: Regression Coefficients – SGRQ Symptom Score

Table 18: Regression Coefficients – SGRQ Activity Score

## Figures

Figure 1: Scatterplot of the Variance in Depression Score Explained by the Multiple Linear Regression Model

Figure 2: Scatterplot of the Variance in Anxiety Score Explained by the Multiple Linear Regression Model

Figure 3: Scatterplot of the Variance in Stress Score Explained by the Multiple Linear Regression Model

Figure 4: Scatterplot of the Variance in SGRQ – Symptom Score Explained by the Multiple Linear Regression Model

Figure 5: Scatterplot of the Variance in SGRQ – Activity Score Explained by the Multiple Linear Regression Model

## LIST OF PUBLISHED SCIENTIFIC WORKS

1. "Prevalence of Depression and Anxiety in Patients with Multidrug-Resistant Tuberculosis: An Analysis With DASS-21R" **Popoiag Ciprian-Constantin**, Gache Alexandra-Cristiana, Iosif Alexandru-Cătălin and Rugină Sorin. ARS Medica Tomitana, BDI, vol.30, no.1, 2024, pp.1-5. <https://doi.org/10.2478/arsm-2024-0001>
2. "Fitness for Work in the Long Journey of Tuberculosis Infection to Chronic Posttuberculosis Disease Case Report and Literature Review", Arghir Ioan Anton, **Popoiag Ciprian Constantin**, Arghir Ana Adina, Ion Ileana, Tofolean Doina Ecaterina, Cambrea Simona Claudia, Fildan Ariadna Petronela, Trenchea Mihaela and Oțelea Marina Ruxandra. Romanian Journal of Occupational Medicine, vol.74, no.1, 2023, pp.16-22. BDI <https://doi.org/10.2478/rjom-2023-0003>
3. "The Long-Term Impact on Patients with MDR-TB Using the Saint George's Respiratory Questionnaire", **Popoiag Ciprian-Constantin**, Gache Alexandra-Cristiana, Iosif Alexandru-Catalin, Gache Teodor-Nicolae and Rugină Sorin. ARS Medica Tomitana, vol.30, no.1, 2024, pp.24-28. BDI <https://doi.org/10.2478/arsm-2024-0005>

