

“OVIDIUS” UNIVERSITY OF CONSTANȚA
DOCTORAL SCHOOL OF MEDICINE
DOCTORAL FIELD OF RESEARCH: DENTAL MEDICINE
2020-2021

„PHARMACOLOGICAL, PHYTOCHEMICAL STUDIES
AND APPLICATIONS OF *LYTHRUM SALICARIA* L. SPECIES IN
OPTIMIZING METHODS FOR OBTAINING MUCOADHESIVE
MEMBRANES”

Abstract of PhD Thesis

PhD Coordinator,

Professor Badea Victoria

PhD Student,

Rizea (Iancu) Irina Mihaela

CONSTANȚA
2021

PhD Student,
Rizea (Iancu) Irina Mihaela

“OVIDIUS” UNIVERSITY OF CONSTANȚA

DOCTORAL SCHOOL OF MEDICINE

DOCTORAL FIELD OF RESEARCH: DENTAL MEDICINE

2020-2021

„PHARMACOLOGICAL, PHYTOCHEMICAL STUDIES
AND APPLICATIONS OF *LYTHRUM SALICARIA* L. SPECIES IN
OPTIMIZING METHODS FOR OBTAINING MUCOADHESIVE
MEMBRANES”

Abstract of PhD Thesis

PhD Coordinator,

Professor Badea Victoria

PhD Student,

Rizea (Iancu) Irina Mihaela

CONSTANȚA

2021

Motto and dedication,

"Nature resembles us, education distinguishes us" (Confucius)

For my daughter **Sofia-Elena**,
Any DREAM becomes a reality after a lot of work, perseverance, confidence in your own strength and
with the support of angels ... so don't forget to DREAM, to BELIEVE in yourself and your angels ...
because YOU can transform THE DREAM IN REALITY.
I love you my ladybug!

And for Primary Pharmacist **Mihaela-Carmen Bâte**,
My fairy-godmother, who always watches over me from heaven and who passed on to me, in addition
to her holy name, the love for this noble profession.
You will always remain in our souls!

My gratitudes,

First, I would like to thank my doctoral supervisor, namely Professor PhD Victoria Badea, for the unique opportunity given me to learn, improve, research under her parental, careful and correct guidance. She is a remarkable professional and a special person, who believed in me and supported me in all my difficult times. Without the guidance and kindness of my PhD coordinator, I would not have reached this wonderful moment in my life.

I also want to thank the references for the time and patience given in the analysis of the research included in my doctoral thesis.

I would like to express my deep gratitude to the Dean of the Faculty of Pharmacy of Constanța, Associate Professor PhD Laura Adriana Bucur, for her passion, professionalism and perseverance in the sincere and unconditional help she has given to me.

I would also like to thank the Vice-Dean of the Faculty of Pharmacy of Constanța, Associate Professor PhD Denisa Elena Dumitrescu for the advice and encouragement given from her heart.

An important person in my scientific and human evolution is represented by the Associate Professor PhD Verginica Schroder, who laid a foundation for my doctoral thesis, through the studies we worked on together, who adopted and received me in her life with a heart full of hope, optimism and love. I thank you sincerely and I hope you will always be proud of me.

I would like to remember a remarkable person, namely the Chemical Engineer PhD Manuela Rossemary Apetroaei, who lent me her knowledge and time introducing me to the fascinating world of chitosan biopolymer, thus helping me to find applications of the *Lythrum salicaria* L. plant extract. I am grateful for your support and friendship.

A thought of gratitude I would like to express to Associate Professor PhD Mariana Arcuș, this "plant encyclopedia" as I like to name her, which guided my doctoral research to the *Lythrum salicaria*

L plant., purple loosestrife, confirmed the identity of the species taken into account and helped me to the microscopic cross-section interpretations.

I would not have chosen the academic path if I had not received the offer to join a special family, that of the Department of Toxicology of the Faculty of Pharmacy, namely Professor PhD Eufemia Ștefănescu, Associate Professor PhD Horațiu Mireșan and Ms. Viița Botezan. Since 2009, they have believed in me as a person and as a professional, they have supported me and helped me to "grow" along them unconditionally, with kindness, understanding, encouragement, smiles and optimism. I have no words to express the gratitude and love I carry in my soul for these extraordinary people „my academic family”.

A successful collaboration I had with the Associate Professor PhD Radu George Cazacincu, to whom I would like to thank for the promptness and for providing us with the equipment and people dedicated to research at the *Magistra C&C Drug Factory* from Constanța in order to complete the doctoral thesis. In addition, I would like to thank sincerely my colleagues from the Department of Pharmaceutical Technology, namely the Associate Professor PhD Florentina Nicoleta Roncea and the Assistant Professor PhD Valeriu Iancu, who intervened fruitfully through work and support for technological analysis on *Lythri herba* aqueous extract.

Another wonderful collaboration I had with the team of the National Research-Development Institute for Biological Sciences Bucharest, Branch of the Biological Research Center "Stejarul" Piatra Neamț, namely Dr. CS III Ruxandra-Mihaela Cretu, Dr. CS III Camelia-Paula Ștefanache and Sr. CS III Aurică-Valentin Grigoraș. They performed the phytochemical analysis of the *Lythrum salicaria* L. aqueous plant extract in a professional way and for which I am deeply grateful.

To the University Professor PhD Dumitru Lupuleasa, a true mentor and model of academic conduct, I would like to thank him for the support and guidance provided throughout this training period.

I would like to thank all the teachers and auxiliaries within the Faculty of Pharmacy Constanța, who have supported me over time and received me in their united team.

I thank my parents, Primary Pharmacist Vasile Rizea and Dentist Georgeta Rizea, for their unconditional support, for the received education, for their advice and patience and my grandfather, Droghist Toma Lăcătușu, who, although is no longer with us, cried on the day I was admitted, at the Faculty of Pharmacy, thus embracing his beloved profession. I thank my godparents, the Huțu Elena and Mihai Ciprian family, another model of united and professional dentists family, my sister dentist Petre Laura, my parents in law Iancu Emil and Nicoleta, my best friend pharmacist Burdușel Emilia, my goddaughters Morar Ana-Maria and Păun Ruxandra Irina Teodora. I would also like to thank all the dear people in my life who have been along my side „for better and for worst”.

And to my beautiful family, Sofia-Elena and Valeriu, who love me and are proud of me as imperfect as I am, I want to confess them that THEY are my greatest achievement and that without their understanding, encouragement and love I wouldn't have managed to complete my research. I love you both!

CONTENTS

INTRODUCTION	ERROR! BOOKMARK NOT DEFINED.
CURRENT STATE OF KNOWLEDGE	ERROR! BOOKMARK NOT DEFINED.
CHAPTER 1 – GENERAL PRESENTATION OF <i>LYTHRUM SALICARIA</i> L. SPECIES...	ERROR! BOOKMARK NOT DEFINED.
1.1. BRIEF HISTORY REGARDING THE USE OF <i>LYTHRUM SALICARIA</i> L. SPECIES	ERROR! BOOKMARK NOT DEFINED.
1.2. <i>LYTHRUM SALICARIA</i> L. – BOTANICAL PARTICULARS	ERROR! BOOKMARK NOT DEFINED.
1.3. CHEMICAL COMPOSITION OF <i>LYTHRUM SALICARIA</i> L. SPECIES	ERROR! BOOKMARK NOT DEFINED.
1.4. PHARMACOLOGICAL ACTIVITY OF <i>LYTHRUM SALICARIA</i> L. SPECIES	ERROR! BOOKMARK NOT DEFINED.
PERSONAL CONTRIBUTION.....	ERROR! BOOKMARK NOT DEFINED.
CHAPTER 2 – PHARMACOGNOSTIC ANALYSIS OF THE <i>LYTHRUM HERBA</i> PLANT MATERIAL	ERROR! BOOKMARK NOT DEFINED.
2.1. OBTAINING OF THE <i>LYTHRUM HERBA</i> PLANT MATERIAL	ERROR! BOOKMARK NOT DEFINED.
2.2. MACROSCOPIC EXAMINATION OF THE <i>LYTHRUM HERBA</i> PLANT MATERIAL.....	ERROR! BOOKMARK NOT DEFINED.
2.3. MICROSCOPIC EXAMINATION OF THE <i>LYTHRUM HERBA</i> PLANT MATERIAL.....	ERROR! BOOKMARK NOT DEFINED.
2.4. PRELIMINARY CONCLUSIONS.....	ERROR! BOOKMARK NOT DEFINED.
CHAPTER 3 – QUALITATIVE CHEMICAL STUDY OF THE <i>LYTHRUM HERBA</i> PLANT MATERIAL ERROR! BOOKMARK NOT DEFINED.
3.1. IDENTIFICATION OF TANNINS AND ANTOCYANOSIDES	ERROR! BOOKMARK NOT DEFINED.
3.2. DETERMINATION OF PHENOLIC ACIDS, FLAVONOIDS AND TANINS BY THIN LAYER CROMATOGRAPHY (TLC)	ERROR! BOOKMARK NOT DEFINED.
3.3. PRELIMINARY CONCLUSIONS.....	ERROR! BOOKMARK NOT DEFINED.
CHAPTER 4 – DETERMINATION OF THE QUALITY OF THE <i>LYTHRUM HERBA</i> PLANT MATERIAL ERROR! BOOKMARK NOT DEFINED.
4.1. PRELIMINARY DETERMINATIONS	ERROR! BOOKMARK NOT DEFINED.
4.2. DETERMINATION OF ACTIVE COMPOUNDS CONTENTS OF THE <i>LYTHRUM HERBA</i> FLUID AQUEOUS EXTRACT	ERROR! BOOKMARK NOT DEFINED.
4.3. DETERMINATION OF ANTIOXIDANT CAPACITY OF THE <i>LYTHRUM HERBA</i> FLUID AQUEOUS EXTRACT	ERROR! BOOKMARK NOT DEFINED.
4.4. DETERMINATION OF ACTIVE COMPOUNDS CONTENTS OF THE <i>LYTHRUM HERBA</i> LYOPHILIZED AQUEOUS EXTRACT	ERROR! BOOKMARK NOT DEFINED.
4.5. PRELIMINARY CONCLUSIONS.....	ERROR! BOOKMARK NOT DEFINED.
CHAPTER 5 – CYTOTOXICITY ANALYSIS OF THE <i>LYTHRUM HERBA</i> EXTRACTS	ERROR! BOOKMARK NOT DEFINED.
5.1. INTRODUCTION..... ERROR! BOOKMARK NOT DEFINED.
5.2. WORKING HYPOTHESIS ERROR! BOOKMARK NOT DEFINED.
5.3. MATERIAL AND METHOD ERROR! BOOKMARK NOT DEFINED.
5.4. RESULTS AND DISCUSSIONS ERROR! BOOKMARK NOT DEFINED.
5.5. PRELIMINARY CONCLUSIONS..... ERROR! BOOKMARK NOT DEFINED.
CHAPTER 6 – APPLICATIONS OF LYOPHILIZED AQUEOUS EXTRACT - OBTAINING MUCOADESIVE MEMBRANES BY COMBINATIONS OF <i>LYTHRUM HERBA</i> EXTRACT WITH CHITOSAN BIOPOLYMER..... ERROR! BOOKMARK NOT DEFINED.
6.1. INTRODUCTION..... ERROR! BOOKMARK NOT DEFINED.
6.2. WORKING HYPOTHESIS ERROR! BOOKMARK NOT DEFINED.

6.3. MATERIAL AND METHOD	ERROR! BOOKMARK NOT DEFINED.
6.4. RESULTS AND DISCUSSIONS	ERROR! BOOKMARK NOT DEFINED.
6.5. PRELIMINARY CONCLUSIONS	ERROR! BOOKMARK NOT DEFINED.

**CHAPTER 7 – COMPLETE STUDY ON ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES FOR
LYTHRHI HERBA LYOPHILIZED AQUEOUS EXTRACT AND MEMBRANES ...**ERROR! BOOKMARK NOT DEFINED.

7.1. INTRODUCTION	ERROR! BOOKMARK NOT DEFINED.
7.2. MATERIAL AND METHOD	ERROR! BOOKMARK NOT DEFINED.
7.3. RESULTS	ERROR! BOOKMARK NOT DEFINED.
7.4. DISCUSSIONS	ERROR! BOOKMARK NOT DEFINED.
7.5. PRELIMINARY CONCLUSIONS	ERROR! BOOKMARK NOT DEFINED.

**CHAPTER 8 – GENOTOXICITY EVALUATION OF THE *LYTHRHI HERBA* AQUEOUS EXTRACT BY
THE SOS-CHROMO TEST METHOD**ERROR! BOOKMARK NOT DEFINED.

8.1. INTRODUCTION	ERROR! BOOKMARK NOT DEFINED.
8.2. WORKING HYPOTHESIS	ERROR! BOOKMARK NOT DEFINED.
8.3. MATERIAL AND METHOD	ERROR! BOOKMARK NOT DEFINED.
8.4. RESULTS AND DISCUSSIONS	ERROR! BOOKMARK NOT DEFINED.
8.5. PRELIMINARY CONCLUSIONS	ERROR! BOOKMARK NOT DEFINED.

**CHAPTER 9 – HEMOLYTIC ACTIVITY EVALUATION OF STANDARD CHITOSAN MEMBRANES
WITH *LYTHRHI HERBA* AQUEOUS EXTRACT**ERROR! BOOKMARK NOT DEFINED.

9.1. INTRODUCTION	ERROR! BOOKMARK NOT DEFINED.
9.2. WORKING HYPOTHESIS	ERROR! BOOKMARK NOT DEFINED.
9.3. MATERIAL AND METHOD	ERROR! BOOKMARK NOT DEFINED.
9.4. RESULTS AND DISCUSSIONS	ERROR! BOOKMARK NOT DEFINED.
9.5. PRELIMINARY CONCLUSIONS	ERROR! BOOKMARK NOT DEFINED.

CHAPTER 10 – GENERAL CONCLUSIONSERROR! BOOKMARK NOT DEFINED.

CHAPTER 11 – ORIGINALITY AND INNOVATIVE CONTRIBUTIONS OF THE THESISERROR!
BOOKMARK NOT DEFINED.

REFERENCE	ERROR! BOOKMARK NOT DEFINED.
INDEX OF FIGURES IN TEXT	ERROR! BOOKMARK NOT DEFINED.
INDEX OF TABLES IN TEXT	ERROR! BOOKMARK NOT DEFINED.
INDEX OF GRAPHICS IN TEXT	ERROR! BOOKMARK NOT DEFINED.
LIST OF ABBREVIATIONS USED IN THE DOCTORAL THESIS	ERROR! BOOKMARK NOT DEFINED.
LIST OF PUBLISHED PAPERS IN THE FIELD OF DOCTORAL THESIS	ERROR! BOOKMARK NOT DEFINED.

KEYWORDS: *LYTHRUM SALICARIA* L., LYOPHILIZED AQUEOUS EXTRACT, CHITOSAN, MUCOADESIVE MEMBRANES, *ARTEMIA SALINA* L., ANTIBACTERIAL ACTIVITY, GENOTOXICITY, HEMOLYTIC ACTIVITY.

INTRODUCTION

It is known that plants cannot defend themselves by fleeing or using active weapons when attacked by herbivores, be they molluscs, worms, insects or vertebrates. Under the attack of bacteria, the human species benefits from defense based on the innate and acquired immune system. Such an immune system does not exist in plants. However, the plants are over 400 million years old on this planet and have survived, although they have been attacked by herbivores and bacteria. Thousands of structurally different secondary metabolites have apparently evolved during plant development, as a means for plants to defend themselves against herbivores and bacteria, fungi and viruses [1-5]. Some secondary metabolites also serve to attract pollinating animals and insects or to protect against ultraviolet rays. From the point of view of evolutionary pharmacology, the secondary metabolites of plants represent an interesting library of bioactive compounds filtered by natural selection, which have been used by humans to treat infections and other health problems, or as spices, perfumes, poisons for arrows, toxins and pesticides [6]. Thus, the capitalization of plants led to the emergence of the first form of medicine, namely traditional medicine or phytotherapy.

Plants have always played an essential role in human life, being able to improve or treat various simple or severe diseases. Nowadays we notice a strong tendency to integrate traditional medicine in modern medicine and to introduce on the market along with synthetic pharmaceuticals a large number of products of herbal origin. This increased interest in returning to natural resources and making the most of them was the basis for choosing this theme. Poor oral hygiene, incomplete or incorrect treatment and the abuse of antibiotics have led to the development of bacterial resistance with the emergence of multidrug-resistant bacterial strains in the current pharmaceutical market and the more difficult eradication of pathogenic bacterial species.

Lythrum salicaria L. is a species found under the name of purple loosestrife or fairy flower in the Romanian flora, known worldwide since antiquity for its beneficial astringent and hemostatic properties in cases of diarrhea, hemorrhoids and hemorrhages [7-8]. *Lythri herba* plant material was registered in the European Pharmacopoeia in 2001, and according to its monography, the quantitative standardization of *Lythri herba* is based on the determination of the total tannin content, which should be at least 5% on

the dry mass [9]. Previous studies performed on the *Lythri herba* plant material showed that it has antioxidant, anti-inflammatory, anti-nociceptive and hemostatic activity [10-11], in vitro antibacterial and fungistatic activities [7, 12-13], on animal models has hypoglycemic effects [8] and has modulatory effects on the composition of the intestinal microbiota through its postbiotic metabolites (urolithines) [14].

Knowing the therapeutic value of the *Lythri herba* plant extract, the current study aims to achieve a pharmaceutical form with applicability in the pathology of the oral cavity. There is a growing scientific interest in the development of biodegradable films through basic and easy methods. Biopolymer films have become a very popular choice due to many different advantages. Biopolymers are biodegradable natural polymers, used in regenerative medicine, in implantable materials, in drug delivery systems ("carriers") or as artificial tissues for tissue engineering. Natural polymers such as cellulose, chitin, chitosan, gelatin and alginate are widely used in all medical fields [15 - 17].

In order to make a pharmaceutical form, chitosan was taken into account, known as a cationic biopolymer indispensable in its use as a carrier of therapeutic substances, due to its non-toxic, biodegradable, biocompatible, antibacterial and antioxidant nature [18]. At the same time, the aspects of abundant availability and low cost of chitosan were taken into account, attractive aspects for various fields in the food, medical and pharmaceutical industry [19]. Some of the most recent studies evaluate chitosan-based membranes in which plant extracts [20] or their secondary metabolites have been incorporated [21-22], precisely due to the very good ability of chitosan to form membranes [23].

Another important property of chitosan is mucoadhesivity, explained by its ability to interact with negatively charged mucins by electrostatic attraction [24], because chitosan is the only polysaccharide in the world positively charged by the presence of amino groups in its chemical structure [19]. Another great advantage of chitosan is its wide applicability in various fields of dentistry, starting from prevention and reaching the top branch, namely oral and maxillofacial surgery. [25].

Given the above presented, the purpose of the study was to make membranes from weakly acidic solutions of standard chitosan in which the *Lythri herba* lyophilized aqueous extract was incorporated in different concentrations. Subsequent studies tested the biocompatibility, cytotoxicity and genotoxicity of the *Lythri herba* aqueous extract, as well as the hemolytic capacity of these standard chitosan membranes impregnated with the aqueous extract of the plant species used.

CURRENT STATE OF KNOWLEDGE

This part of the doctoral thesis includes a chapter of overview of the plant species *Lythrum salicaria* L., purple loosestrife. We collected data from the literature starting from the history of therapeutic uses of the *Lythrum salicaria* L plant species, its botanical particularities, chemical composition and pharmacological properties.

PERSONAL CONTRIBUTION

This part of the thesis includes eight chapters of multidisciplinary research, in which information and working methods from pharmacognosy, microbiology, toxicology and genetics fields were completed. The personal part presented studies such as:

1. pharmacognostic analysis, qualitative and quantitative chemical analysis of the *Lythri herba* plant material,
2. cytotoxicity analysis of *Lythri herba* plant extracts,
3. applications of lyophilized aqueous extract - obtaining mucoadhesive membranes by combinations of *Lythri herba* extract with chitosan biopolymer,
4. study on antibacterial and antifungal activities for *Lythri herba* lyophilized aqueous extract and membranes,
5. genotoxicity evaluation of the *Lythri herba* aqueous extract by the SOS-CHROMO TEST method,
6. hemolytic activity evaluation of standard chitosan membranes with *Lythri herba* aqueous extract.

STUDY 1. PHARMACOGNOSTIC ANALYSIS, QUALITATIVE AND QUANTITATIVE CHEMICAL ANALYSIS OF THE *LYTHRI HERBA* PLANT MATERIAL

1.1.Obtaining the plant material

The plant material (floral tips of the *Lythrum salicaria* L. species) was harvested in August 2019 from the Pirates' Inn area, Năvodari, Constanța County, where the plant grows spontaneously. After harvesting, the plant material was cleaned of impurities, then a few specimens were kept in 70% alcohol to make cross sections, and the rest of the material was dried at room temperature, protected from sunlight, to be used in future phytochemical analyzes.

1.2.Macroscopic and microscopic examination of the *Lythri herba* plant material

1.2.1. Material and method

The working material is represented by the floral tops (*Lythri herba*) of the species *Lythrum salicaria* L., which was examined with the naked eye or with a magnifying glass (macroscopic analysis) and with the help of the Novex-Holland microscope (microscopic analysis in sections and powder) of the stem, leaf and flower.

1.2.2. Results and discussions

Both macroscopic examination and microscopic examination identified elements specific to the aerial part of the *Lythri herba* plant material, thus establishing the identity of the plant species used, namely *Lythrum salicaria* L., an aspect also confirmed by Associate professor Dr. Arcuș Mariana, head of the Department of Pharmaceutical Botany of the Faculty of Pharmacy from Constanța.

1.3. Qualitative chemical analysis of the *Lythri herba* plant material

1.3.1. Material and method

The extractive solutions of the *Lythri herba* plant material were subjected to the identification reactions common and / or specific to each group of active principles followed and to the separation method such as Thin Layer Chromatography (TLC).

1.3.2. Results and discussions

The result of the **identifications** shows that the *gallic tannins* are present, due to the appearance of blue in the reaction with iron (III) chloride and anthocyanosides by the appearance of red in the specific reaction of color change depending on pH. The results of the **Thin Layer Chromatography (TLC) method** revealed compounds from the *phenolic acid* class, the *flavonoid* class and the *tannin* class.

1.4. Quantitative chemical analysis of the *Lythri herba* plant material

1.4.1. Loss on drying determination of *Lythrum salicaria* L.

➤ Material and method

Dried and crushed flower tips represent the plant material and the method used for this preliminary determination is provided both in the European Pharmacopoeia 10.0th edition [106] and in the Romanian Pharmacopoeia X edition [115].

➤ Results and discussions

The value of the loss by drying determination is very important, because all subsequent determinations will relate to the mass of dried plant material. The value obtained in this study was within the limits imposed in the European Pharmacopoeia 10.0th edition [106].

1.4.2. Total ash determination

➤ Material and method

Dried and crushed flower tips of *Lythrum salicaria* L. represent the plant material and the method used for this preliminary determination is provided in the European Pharmacopoeia 10.0th edition [106].

➤ Results and discussions

The value obtained falls within the standards of the *Lythri herba* monography from the European Pharmacopoeia 10.0th edition of the percentage of total ash [106].

1.4.3. Determining water-soluble substances and 50% methanol study methods

➤ Material and method

The dried and pulverized floral tops of the *Lythri herba* plant material was used in this determination and the method performed is according to the Romanian Pharmacopoeia X edition [115].

➤ Results and discussions

As the focus point of the research is the obtaining of an oral product and given the small difference between water-soluble substances and 50% methanol-soluble substances, it is imperative the use of water as the main extraction solvent.

1.4.4. Determination of active compounds contents of the *Lythri herba* fluid aqueous extract

1.4.4.1. Determining total polyphenols content

➤ Material and method

The dried and pulverized floral tops of the *Lythri herba* plant material was used in this determination and we performed the Folin-Ciocâlteu adapted method according to the European Pharmacopoeia 10.0th edition [106].

Principle of the method: it represents a colorimetric method based on determining the intensity of the blue coloration of molybdenum oxides formed by the reduction by polyphenols of the reagent Folin-Ciocâlteu (phosphomolybdate-wolframic acid).

➤ Results and discussions

The value obtained from total polyphenols determination is much higher than the standard value from the Romanian Pharmacopoeia X edition for the *Cynarae folium* plant material monography and justifies further research with the determination of the content in other compounds [115].

1.4.4.2. Determining tannins content

➤ Material and method

The dried and pulverized floral tops of the *Lythri herba* plant material was used in this determination and we performed the Folin-Ciocâlteu method according to the European Pharmacopoeia 10.0th edition [106].

The principle of the method: the intensity of the blue coloration of the molybdenum oxides formed by the reduction by polyphenols of the Folin-Ciocâlteu reagent (phosphomolybdowolframic acid) is determined before and after the absorption of the tannins on the skin powder.

➤ Results and discussions

The value obtained from tannins determination falls within the standards of the European Pharmacopoeia 10.0th edition of at least 5 % tannins for the *Lythri herba* plant material and justifies further research with the determination of other natural compounds of interest [106].

1.4.4.3.Determining antocyanosides content

➤ Material and method

Dried and crushed flower tips of *Lythrum salicaria* L. represent the plant material and the method used for this determination is a colorimetric method provided in the European Pharmacopoeia 10.0th edition [106].

Principle of the method: the intensity of the red coloration of the oxonium salt formed by anthocyanosides in an acid medium is determined. The intensity of the red coloration is directly proportional to the anthocyanoside content expressed in cyanidol 3-glucoside.

➤ Results and discussions

The value obtained by anthocyanosides falls within the standards of the European Pharmacopoeia 10.0th edition provided in the monography of *Myrtilli fructus recens* plant material, a species considered to be the standard for the content of at least 0.3% of anthocyanins expressed in cyanidol 3-glucoside [106].

1.4.4.4.Determining polyphenolcarboxylic acids content

➤ Material and method

Dried and crushed flower tips of *Lythrum salicaria* L. represent the plant material and the method used for this determination is a colorimetric method provided in the European Pharmacopoeia 10.0 edition [106].

Principle of the method: the method is based on the property of polyphenolcarboxylic acids and their derivatives to form nitrosoderivatives with nitric acid, which is spontaneously isomerized to

isonitrosoderivatives (oxymes) which, due to their weak acidity, react with alkaline solutions to form red compounds.

➤ Results and discussions

The value obtained does not fall within the ranges of the European Pharmacopoeia 10.0th edition provided for the *Plantaginis lanceolatae folium* plant material, considered a standard plant species for a content of at least 1.5% in total o-dihydroxycinnamic acid derivatives expressed in acetoside [106].

1.4.4.5.Determining crude polyholosides content

➤ Material and method

The working material is represented by the *Lythri herba* fluid aqueous and alcoholic extracts and I used the gravimetric method for this determination.

➤ Results and discussions

Gravimetric analysis showed a very high content of crude polyholosides, the largest amount being present in the fluid aqueous extract, and the lowest amount was highlighted for the 70 % ethanolic extract.

1.4.5. Determination of antioxidant capacity of the *Lythri herba* fluid aqueous extract

➤ Material and method

The plant material used is represented by the dried and crushed floral tips of the plant *Lythrum salicaria* L., from Dobrogea, Romania, and the method used is the DPPH method (1,1'-diphenyl-2-picryl-hydrayl).

➤ Results and discussions

The results obtained represent the arithmetic means of three measurements performed; the values obtained when capturing free radicals DPPH show a directly proportional relationship between the antioxidant capacity and the concentration of solutions. The fluid aqueous extract had the scavenger capacity of high DPPH radical, and the IC₅₀ value (inhibitory concentration for 50 % of DPPH radicals) of the *Lythri herba* plant material obtained from the *Lythrum salicaria* L. species from Romania falls within the ranges found in the international literature.

1.4.6. Determination of active compounds contents of the *Lythri herba* lyophilized aqueous extract

➤ Material and method

The floral tips of the *Lythrum salicaria* L. species dried and crushed beforehand represent the plant material used, and the working method for obtaining the lyophilized aqueous extract is represented by

the concentration of the extract with the BUCHI R-215 rotary evaporator, followed by cryophilic drying with CHRIST ALPHA 1-2 B lyophilizer.

The working methods and calculation formulas used for the determination of loss on drying, content in total polyphenols, tannins and crude polyholosides have been set out above in sub-chapters 1.4.1., 1.4.4.1., 1.4.4.2. and 1.4.4.5. To weigh the loss on drying, three measurements were performed (P1, P2, P3), and the final value is the arithmetic mean of the values obtained, at which the standard deviation was calculated.

➤ Results and discussions

At the end of the lyophilization process, a significant amount of lyophilized aqueous extract of *Lythri herba* was obtained, which was transferred into a sealed glass vial and stored into a desiccator until the following determinations. The results of the determinations did not show significant differences in the active compounds identified from the two extracts; the advantages of stability over time and easy maneuverability, which the lyophilized aqueous extract has, support its use in subsequent determinations and tests.

STUDY 2. CYTOTOXICITY ANALYSIS OF *LYTHRI HERBA* PLANT EXTRACTS

2.1. Working hypothesis

The working hypothesis is that both the aqueous and the alcoholic extract of the *Lythri herba* plant material, from Dobrogea, has no cytotoxic potential. The aim of this study is to capitalize on the results obtained in various biomedical applications.

2.2. Material and method

The working material consisted of aqueous and alcoholic extractive solutions of the *Lythri herba* plant material, and the working method was represented by the BSLA (Brine shrimp lethality assay) test, performed according to the EBPI protocol (Environmental Bio-Detection Products Inc) with modifications regarding the control sample and according to toxicity protocol (Artoxkit M).

2.3. Results and discussions

According to Clarkson's toxicity criterion, non-toxicity is observed for both the aqueous and the alcoholic extract of *Lythri herba* plant material, and the mortality of the nauplii is correlated with the dose (concentration) and with the time of action of the extract on the tested organism. Induced toxicity values, expressed by lethal concentration (LC₅₀), were below the toxicity levels, according to Clarkson's toxicity criterion. The results of direct observations on larvae exposed to different concentrations of the evaluated extracts highlight the differences in manifestation at the cytological level. The highlighted

effect (in the case of BSLA the quantified effect is mortality) indicates the interaction between cellular mechanisms and the complex composition of the extract.

STUDY 3. APPLICATIONS OF LYOPHILIZED AQUEOUS EXTRACT - OBTAINING MUCOADHESIVE MEMBRANES BY COMBINATIONS OF *LYTHRHI HERBA* EXTRACT WITH CHITOSAN BIOPOLYMER

3.1. Working hypothesis

The working hypothesis of this study was that membranes of standard chitosan 1 % solubilized in acetic acid and lactic acid combined with aqueous extract of *Lythrum salicaria* L. could have biological properties, which would allow their use in the practice of dentistry.

3.2. Material and method

The lyophilized aqueous extract of the *Lythri herba* plant material and the chitosan biopolymer were used as working materials. We used an adaptation of the working method of Al-Dhubiab et al (2016) [190] with the calculation formula of Nair et al (2013) [191] to highlight the degree of hydration of membranes and epifluorescence microscopy (Optika Microscopes Italy, Series B-350, model B-353LD2) to highlight the arrangement of the extract in the chitosan matrix.

3.3. Results and discussions

Membranes with mucoadhesive properties were for the first time obtained from the combinations of standard chitosan 1% solubilized in acetic acid and lactic acid with the lyophilized aqueous extract of different concentrations of the *Lythri herba* plant material. The degree of hydration (%) of both types of membranes highlighted their ability to maintain constant hydration, stability and flexibility over time. Epifluorescence microscopic examination confirmed the presence of chitosan in membranes, as it has the ability to emit auto-fluorescence at specific wavelengths and gave clear details regarding the structural uniformity of membranes. The lack of uniformity in the membrane structure obtained by solubilizing chitosan in 1 % lactic acid in which the *Lythri herba* aqueous extract was incorporated led to the decision to continue the research only on the standard chitosan membrane solubilized in 1% acetic acid.

STUDY 4. STUDY ON ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES FOR *LYTHRHI HERBA* LYOPHILIZED AQUEOUS EXTRACT AND MEMBRANES

4.1. Working hypothesis

The working hypothesis of this study consisted in demonstrating the antibacterial and antifungal properties of the lyophilized aqueous extract and the membranes obtained from chitosan and *Lythri herba* aqueous extract.

4.2. Material and method

The bacteriological study proposed in the doctoral thesis was divided into two stages using as a working method an adaptation of the diffusimetric method. In the first stage, the aqueous lyophilized extract of the *Lythri herba* plant material was tested on lyophilized, stabilized and viable reference bacterial and fungal strains of the American Type of Culture Collection (ATCC). The second stage of the study consisted in testing the lyophilized aqueous extract and its membranes with the chitosan biopolymer on bacterial strains isolated from pathological products taken from the oral cavity, pharyngeal cavity and external auditory canal (softened dentin from tooth decay, purulent secretion from post-extraction alveolitis, otic secretion, gingival fluid taken from a wearer of fixed prosthetic works).

4.3. Results and discussions

The results of the first stage of the study showed that the 5% aqueous extract of the *Lythri herba* plant material showed antibacterial properties against the bacterial species *Enterococcus* sp., *Staphylococcus aureus*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa* and antifungal activity for both strains tested, *Candida albicans* and *Candida paralopsis*. In the second stage of the study, the results demonstrated moderate antibacterial activity of the 5 % aqueous extract for *Streptococcus mutans*, high antibacterial and antifungal activity for *Staphylococcus aureus* and *Candida albicans* and total resistance for *Escherichia coli*. Thermostation at 37 ° C for 24 hours resulted in dehydration of the chitosan membranes and the possibility was created that the active principles would not diffuse across the membrane into the culture medium; this observation is supported by the fact that the 5 % aqueous extract of the *Lythri herba* plant material tested separately has a demonstrated antibacterial effect.

STUDY 5. GENOTOXICITY EVALUATION OF THE *LYTHRI HERBA* AQUEOUS EXTRACT BY THE SOS-CHROMO TEST METHOD

5.1. Working hypothesis

The working hypothesis is that the *Lythrum salicaria* L. aqueous extract does not show genotoxicity. Like the cytotoxicity studies, the genotoxicity test on the aqueous extract obtained from the flower tips of the *Lythrum salicaria* L. species and combined with chitosan solutions were performed for the first time.

5.2. Material and method

The SOS Chromo test kit developed by EBPI (Environmental Bio-Detection Products Inc), standard chitosan solutions, oligochitosan (chitosan with small polymer chains), *Lythri herba* plant extract of different concentrations and combinations between chitosan and extract and UV-VIS spectrophotometer Jasco V-630 were used to assess genotoxicity.

5.3. Results and discussions

The results were evaluated quantitatively (directly or indirectly) using spectrometry, as they have a higher safety profile than the qualitative evaluation. The results obtained for the aqueous extractive solutions of the *Lythri herba* plant material, as well as for the combinations between them with chitosan demonstrated the lack of genotoxicity by induction factor values below 1.5.

STUDY 6. HEMOLYTIC ACTIVITY EVALUATION OF STANDARD CHITOSAN MEMBRANES WITH *LYTHRHI HERBA* AQUEOUS EXTRACT

6.1. Working hypothesis

The working hypothesis of this chapter is that membranes made by combining 1 % standard chitosan in acetic acid with aqueous *Lythri herba* extract do not produce hemolysis. The aim of the study is to demonstrate the absence of the hemolytic property of standard chitosan membranes solubilized in acetic acid by incorporating the aqueous extract of *Lythrum salicaria* L.

6.2. Material and method

To evaluate the hemolytic activity were used: the Biomaterial Hemolytic Assay test kit developed by EBPI (Environmental Bio-Detection Products Inc) and membranes made of 1 % standard chitosan with the aqueous extract of the *Lythri herba* plant material (0.5, 1, 2, 3 and 4 g / L). The principle of the method is based on the release of hemoglobin, at the direct contact between the biomaterial and the erythrocyte suspension, which can be measured spectrophotometrically.

6.3. Results and discussions

The hemolytic effect of membranes composed of 1 % standard chitosan in acetic acid and *Lythri herba* extract is inversely proportional to the increase in the concentration of the extract in the combination. The weakest hemolytic effect has the membrane obtained from the combination of the chitosan biopolymer with the 4 g/L lyophilized aqueous extract of the *Lythri herba* plant material.

GENERAL CONCLUSIONS

1. The macroscopic examinations performed could confirm that the plant used in our study was *Lythrum salicaria* L., and the identity of the *Lythri herba* plant material was thus established.
2. The microscopic examinations carried out in sections brought other details regarding the structure of the *Lythrum salicaria* L. plant from Dobrogea, besides those described in the specialized literature.
3. Microscopic characterization of the *Lythri herba* powder revealed elements specific to the aerial part, namely covering trichomes, anomocytic stomata, fragments of lacunar tissue with calcium oxalate clusters and numerous spherical pollen grains.
4. The qualitative chemical study revealed by specific identification reactions the existence of tannins and anthocyanosides, and the Thin Layer Chromatography (TLC) method revealed pharmacologically active compounds such as gallic acid, rutin, vitexin and hyperoside.
5. The results of this study demonstrate that there are no significant differences in the active compounds identified in the two extracts, and the advantages of stability over time and easy maneuverability of the lyophilized aqueous extract support its use in subsequent determinations and tests.
6. The difference between water-soluble and alcohol-soluble active principles is insignificant, which justifies the use of water as the main solvent for obtaining future extractive solutions.
7. The presence of total polyphenols in high concentration explains the antioxidant properties, and the presence of secondary metabolites confirmed in current research strengthen the importance of *Lythrum salicaria* L. from Romania in phytotherapy.
8. Evaluation of the cytotoxicity of *Lythri herba* extracts using the BSLA test demonstrated the absence of cytotoxic effects at 24 hours of both extracts, and the observed microscopic cytological changes correlated with the exposure time and the concentration of *Lythrum salicaria* L. plant extracts.
9. Knowing the aggressiveness of the synthetic solvents used in the extraction methods of active compounds from plants, we directed the research to the principle of "green technology", using water as the main solvent and to choosing a biopolymer for possible medical applications.
10. The results of the present research led to the obtaining membranes from *Lythri herba* aqueous plant extract and 1 % standard chitosan solubilized in both acetic acid and lactic acid for the first time.
11. Epifluorescence microscopic characterization of membranes identifies the chitosan biopolymer by its auto-fluorescent capacity and clearly highlights the details of the different arrangement by encapsulation of the *Lythri herba* aqueous plant extract by the chitosan matrix.

12. The study performed on chitosan membranes solubilized in acetic acid and lactic acid in which the aqueous extract of *Lythri herba* incorporated showed a similar and constant hydrating capacity.
13. The lack of uniformity in the structure of the membrane obtained by solubilizing 1 % standard chitosan in lactic acid and incorporating *Lythri herba* aqueous extract, visible both to the naked eye and microscopically, led to the decision to continue the research only on 1 % standard chitosan solubilized in acetic acid membrane.
14. The results of the bacteriological study demonstrated the existence of the antibacterial effect of the aqueous extract of *Lythri herba* on the reference strains from the group of *Gram-positive* cocci, *Gram-negative* bacilli and *Candida* strains.
15. The 5 % *Lythri herba* aqueous extract has antibacterial and antifungal effects comparable to the antibiotics and antifungals used in current practice.
16. The highest level of sensitivity of the 5 % *Lythri herba* aqueous extract proved to be on a bacterial species with established resistance, namely *Pseudomonas aeruginosa* and on *Candida paralopsis*.
17. The 5 % *Lythri herba* aqueous extract shown to have a moderate antibacterial effect on the cariogenic bacterial flora represented in this study by *Streptococcus mutans*.
18. Inhibitory effects on bacterial and fungal species specific to the oral cavity produced by the 5 % *Lythri herba* aqueous extract meet the limitation of the expansion of the phenomenon of resistance to antibiotics and antifungals, supporting the prospect of using this extract as a basis for obtaining pharmaceutical products use in the practice of dentistry.
19. The aqueous extractive solutions of the *Lythri herba* plant material and the aqueous extract solutions combined with standard chitosan have no genotoxic effects, and these results support the possibility of using these extracts in therapeutic practice.
20. The hemolytic effect of membranes composed of 1 % standard chitosan in acetic acid and *Lythri herba* extract is inversely proportional to the increase of the concentration of the extract in the combination, the membrane with the highest concentration of extract has no hemolytic properties is recommended as an alternative in dentistry.

REFERENCE

1. Seigler DS. Plant secondary metabolism. Springer Science & Business Media; 1998 Dec 31.
2. Wink M. Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. *Theoretical and applied genetics*. 1988 Jan 1;75(2):225-33.
3. Wink M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. *Phytochemistry*. 2003 Sep 1;64(1):3-19.
4. Wink M. Plant secondary metabolism: diversity, function and its evolution. *Natural Product Communications*. 2008 Aug;3(8):1934578X0800300801.
5. Wink M. Annual plant reviews, functions and biotechnology of plant secondary metabolites. John Wiley & Sons; 2010 Jan 26.
6. Wink M. Modes of action of herbal medicines and plant secondary metabolites. *Medicines*. 2015 Sep;2(3):251-86.
7. Rauha JP, Remes S, Heinonen M, Hopia A, Kähkönen M, Kujala T, Pihlaja K, Vuorela H, Vuorela P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. *International journal of food microbiology*. 2000 May 25;56(1):3-12.
8. Lamela M, Cadavid I, Gato A, Calleja JM. Effects of *Lythrum salicaria* in normoglycemic rats. *Journal of Ethnopharmacology*. 1985 Sep 1;14(1):83-91.
9. Piwowarski JP, Kiss AK. C-glucosidic Ellagitannins from *Lythri herba* (European Pharmacopoeia): Chromatographic Profile and Structure Determination. *Phytochemical Analysis*. 2013 Jul;24(4):336-48.
10. Tunalier Z, Koşar M, Küpeli E, Çalış İ, Başer KH. Antioxidant, anti-inflammatory, anti-nociceptive activities and composition of *Lythrum salicaria* L. extracts. *Journal of Ethnopharmacology*. 2007 Apr 4;110(3):539-47.
11. Pawlaczek I, Capek P, Czerchawski L, Bijak J, Lewik-Tsirigotis M, Pliszczak-Król A, Gancarz R. An anticoagulant effect and chemical characterization of *Lythrum salicaria* L. glycoconjugates. *Carbohydrate Polymers*. 2011 Aug 1;86(1):277-84.
12. Becker H, Scher JM, Speakman JB, Zapp J. Bioactivity guided isolation of antimicrobial compounds from *Lythrum salicaria*. *Fitoterapia*. 2005 Sep 1;76(6):580-4.
13. ÇİTOĞLU GS, ALTANLAR N. Antimicrobial activity of some plants used in folk medicine. *Ankara Üniversitesi Eczacılık Fakültesi Dergisi*. 2003;32(3):159-63.
14. Dadi TH, Vahjen W, Zentek J, Melzig MF, Granica S, Piwowarski JP. *Lythrum salicaria* L. herb and gut microbiota of healthy post-weaning piglets. Focus on prebiotic properties and formation of postbiotic metabolites in ex vivo cultures. *Journal of Ethnopharmacology*. 2020 Oct 28;261:113073.
15. Valencia-Gómez LE, Martel-Estrada SA, Vargas-Requena C, Rivera-Armenta JL, Alba-Baena N, Rodríguez-González C, Olivas-Armendáriz I. Chitosan/Mimosa tenuiflora films as potential cellular patch for skin regeneration. *International journal of biological macromolecules*. 2016 Dec 1;93:1217-25.
16. Sakthiguru N, Sithique MA. Fabrication of bioinspired chitosan/gelatin/allantoin biocomposite film for wound dressing application. *International journal of biological macromolecules*. 2020 Jun 1;152:873-83.
17. Sizílio RH, Galvão JG, Trindade GG, Pina LT, Andrade LN, Gonsalves JK, Lira AA, Chaud MV, Alves TF, Arguelho ML, Nunes RS. Chitosan/pvp-based mucoadhesive membranes as a promising

delivery system of betamethasone-17-valerate for aphthous stomatitis. *Carbohydrate polymers*. 2018 Jun 15;190:339-45.

18. İlk S, Ramanauskaitė A, Bilican BK, Mulerčikas P, Cam D, Onses MS, Torun I, Kazlauskaitė S, Baublys V, Aydin Ö, Zang LS. Usage of natural chitosan membrane obtained from insect corneal lenses as a drug carrier and its potential for point of care tests. *Materials Science and Engineering: C*. 2020 Jul 1;112:110897.
19. Hu Q, Luo Y. Polyphenol-chitosan conjugates: Synthesis, characterization, and applications. *Carbohydrate polymers*. 2016 Oct 20;151:624-39.
20. Kaya M, Khadem S, Cakmak YS, Mujtaba M, Ilk S, Akyuz L, Salaberria AM, Labidi J, Abdulqadir AH, Deligöz E. Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. *RSC advances*. 2018;8(8):3941-50.
21. Gursoy M, Sargin I, Mujtaba M, Akyuz B, Ilk S, Akyuz L, Kaya M, Cakmak YS, Salaberria AM, Labidi J, Erdem N. False flax (*Camelina sativa*) seed oil as suitable ingredient for the enhancement of physicochemical and biological properties of chitosan films. *International journal of biological macromolecules*. 2018 Jul 15;114:1224-32.
22. Hafsa J, ali Smach M, Khedher MR, Charfeddine B, Limem K, Majdoub H, Rouatbi S. Physical, antioxidant and antimicrobial properties of chitosan films containing *Eucalyptus globulus* essential oil. *LWT-Food Science and Technology*. 2016 May 1;68:356-64.
23. Bajić M, Ročnik T, Oberlintner A, Scognamiglio F, Novak U, Likozar B. Natural plant extracts as active components in chitosan-based films: A comparative study. *Food Packaging and Shelf Life*. 2019 Sep 1;21:100365.
24. Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. *Macromolecular bioscience*. 2011 Jun 14;11(6):748-64.
25. Cicciù M, Fiorillo L, Cervino G. Chitosan use in dentistry: A systematic review of recent clinical studies. *Marine drugs*. 2019 Jul;17(7):417
26. Moscovici M., Popa A., Vezeanu A., M., Marinescu M., C., Trofosila C., F., Manea V., Casarica A., Gheră D., M., Vlase R., I., Ștefanii A., Nichita C., Vulturescu V., --- Curs de utilizarea plantelor medicinale și aromatice în terapie, septembrie 2011
27. Houghton PJ. The role of plants in traditional medicine and current therapy. *The Journal of Alternative and Complementary Medicine*. 1995 Jun 1;1(2):131-43.
28. Donadio S, Maffioli S, Monciardini P, Sosio M, Jubes D. Antibiotic discovery in the twenty-first century: current trends and future perspectives. *The Journal of antibiotics*. 2010 Aug;63(8):423-30.
29. Shu YZ. Recent natural products based drug development: a pharmaceutical industry perspective. *Journal of natural products*. 1998 Aug 28;61(8):1053-71.
30. Desmartis, T.P., 1857. Sur les propriétés médicinales et les usages de quelques plantes indigènes. 2. Salicaire. *Rev. Thér. Midi* 11, 83–84.
31. Senning A. Elsevier's Dictionary of Chemoetymology: The Whys and Whences of Chemical Nomenclature and Terminology. Elsevier; 2006 Oct 30.
32. Valmont de Bomare, J.C., 1775. *Dictionnaire Raisonné Universel d'Histoire Naturelle*. Chez Brunet, Paris.
33. Linnaei, C., 1737. *Genera Plantarum*, Leiden
34. Martin, M., Martin, S., 1850. Recherches chimiques et médicales sur la salicaire. *Bull. Gen. Ther. Med. Chir.* 38 (66–68), 121–123.

35. Tournefort, J.P., 1694. *Elemens de botanique, ou methode pour connoître les plantes*. De l'Imprimerie Royale, Paris.
36. Hildegard von Bingen, 1903. *Causae et Curae*. Aedibus B.G. Teubneri, Lipsiae.
37. Pliny the Elder, 1906. *Naturalis Historia*. Teubner, Lipsiae.
38. Collin, E., 1903. *Précis de Matière Médicale*. Octave Doin, Paris.
39. Fouquet, H., Desgenettes, R., 1793,1828. *Mémoire sur la vertu anti-dysenterique de la salicaire*. J. Univers. Sci. Med. 49, 129–136.
40. Paluch, A., 1989. *Ziołolecznictwo ludowe w Polsce w XIX i początku XX wieku*. Polskie Towarzystwo Ludoznawcze, Wrocław.
41. Sagar, J.B.M., 1762. *De Salicaria*. Kirchberger.
42. Scherbius, M.J., 1791. *Dissertation sur les vertus medicinales douteuses de la salicaire*. J. Méd. Chir. Pharm. etc. 87, 131–133.
43. Campardon, C., 1878. *Sur l'usage therapeutique de la salicaire (Lythrum salicaria)*. Bull. Gen. Ther. Med. Chir. 94, 27–29.
44. Murray, J.A., 1793. *Apparatus Medicaminum tam Simplicium quam Praeparatorum et Compositorum*. J.C. Dieterich, Goettingae.
45. Dufour, M.H., 1917. *Traitment de l'enterite (diarrhee des nourrissons, enterite des adultes) par l'extrait fluide de salicaire*. L'Union Pharm., 369–370.
46. Dumont, J., 1920. *These de Bordeaux (1920)*. La Presse Med. 38, 379.
47. Dedieu, B., 1921. *These de Toulouse. Les gastro-enterites aigues des nourrissons et de leur traitement par le glucoside de la salicaire*. La Presse Med. 77, 772.
48. Maurin, M., 1922. *La salicaire et les enterites*. Bull. Sci. Pharmacol. 24, 149.
49. Lafon, J., 1962. *Essais qualitatifs physico-chimiques des drogues simples d'origine végétale figurant à la Pharmacopée française*.
50. Paris, R.R., Moyse, H., 1967. *Precis de Materie Medicale*. Masson & Cie, Paris.
51. Piwowarski JP, Granica S, Kiss AK. *Lythrum salicaria L.—Underestimated medicinal plant from European traditional medicine. A review*. Journal of ethnopharmacology. 2015 Jul 21;170:226-50.
52. Strasburger E., Noll F., Schenck H., Schimper a. f. W., 1978, "Lehrbuch der Botanik (31) Aufl., neuarbeitet von Denffer D., Ehrendorfer F., Megdefrau K., Ziegler H.", VEB Gustav Fischer Verlag, Jena
53. Sârbu I., Ivănescu L., Ștefan N., Mânză C., 2001, "Flora ilustrată a plantelor vasculare din estul României – Determinator", vol. I, Edit. Univ. "Al. I. Cuza", Iași, p. 292
54. Sârbu I., Ștefan N., Oprea A., 2013, „Plante vasculare din România – Determinator ilustrat de teren”, Edit. Victor B Victor, București, p. 354
55. Soó R., 1964, "A magyar flóra és vegetáció rendszertani — növényföldrajzi kézikönyve" (Systematic and geobotanical synopsis of the Hungarian flora and vegetation), " — Akadémiai Kiadó, Budapest.
56. *** „Flora României”, 1952-1976, vol. V, Ed. Acad. R.P.R.-R.S.R., p. 457-466.
57. <http://uintahcountyweeds.org/weedID.html>
58. <http://extension.umass.edu/landscape/weeds/lythrum-salicaria>

59. <http://www.weedinfo.ca/en/weed-index/view/id/LYTSA>
60. http://mediplantepirus.med.uoi.gr/pharmacology_en/plant_details.php?id284
61. <http://photos.comfeaturedlythrum-salicaria-purple-loosestrife-whorls-and-spikes-of-purple-red-flowers-and-lance-shaped-leaves-on-an-angled-steam-neil-fletcher--matthew-ward.htmlproduct=art-print>.
62. <https://www.forestryimages.org/browse/detail.cfm?imgnum=1291006>
63. Pârvu C., 2005, „Enciclopedia plantelor - plante din flora României”, vol. V, Ed. Tehnică, Bucureşti, pag 221-223
64. Rawinski TJ. The ecology and management of purple loosestrife (*Lythrum salicaria* L.) in central New York. Cornell University; 1982, pg. 88.
65. Shamsi SR, Whitehead FH. Comparative eco-physiology of *Epilobium hirsutum* L. and *Lythrum salicaria* L.: I. General biology, distribution and germination. *The Journal of Ecology*. 1974 Mar 1:279-90.
66. Shamsi SR. SOME EFFECTS OF DENSITY AND FERTILIZER ON GROWTH AND COMPETITION OF EPILOBIUM-HIRSUTUM AND LYTHRUM-SALICARIA. *Pakistan Journal of Botany*. 1976 Jan 1;8(2):213-20.
67. Shamsi S.R.A. and Whitehead F.H., 1974, „Comparative eco-physiology of *Epilobium hirsutum* L. and *Lythrum salicaria* L. II, IV, *Journal of Ecology*
68. Alexan M., Bojor O., Crăciun F., 1992: „Flora medicinală a României”, vol. I și II, Ed. Ceres, Bucureşti, p. 81-85, p. 212-213.
69. Istudor Viorica – Farmacognozie, fitochimie, fitoterapie vol.I, Ed. Medicală, Bucureşti 1998, pg.145-156, 290-300,187-203,118-131.
70. Ma XJ, Ji CR, Wang YM, Zhang GQ, Liu YZ. New Tannins from *Lythrum Salicaria* L. *Journal of Chinese Pharmaceutical Sciences*. 1996 Dec 15;5(4):225.
71. Granica S, Piwowarski JP, Kiss AK. Determination of C-glucosidic Ellagitannins in *Lythrum salicariaeherba* by Ultra-High Performance Liquid Chromatography Coupled with Charged Aerosol Detector: Method Development and Validation. *Phytochemical Analysis*. 2014 May;25(3):201-6.
72. Rauha JP, Wolfender JL, Salminen JP, Pihlaja K, Hostettmann K, Vuorela H. Characterization of the polyphenolic composition of purple loosestrife (*Lythrum salicaria*). *Zeitschrift für Naturforschung C*. 2001 Feb 1;56(1-2):13-20.
73. Møller C, Hansen SH, Cornett C. Characterisation of tannin-containing herbal drugs by HPLC. *Phytochemical analysis*. 2009 May;20(3):231-9.
74. Humadi SS, Istudor V. *Lythrum salicaria* (purple loosestrife). Medicinal use, extraction and identification of its total phenolic compounds. *Farmacia*. 2009 Mar 1;57(2):192-200.
75. Bencsik T, Barthó L, Sándor V, Papp N, Benkó R, Felinger A, Kilár F, Horváth G. Phytochemical evaluation of *Lythrum salicaria* extracts and their effects on guinea-pig ileum. *Natural product communications*. 2013 Sep;8(9):1934578X1300800916.
76. Paris RR, Paris M. BIOCHIMIE VEGETALE-SUR LES PIGMENTS ANTHOCYANIQUES DE LA SALICAIRE (LYTHRUM SALICARIA L). *COMPTE RENDUS HEBDOMADAIRE DES SEANCES DE L ACADEMIE DES SCIENCES*. 1964 Jan 1;258(1):361.
77. Martí T. ESTUDIO FARMACOGNOSTICO Y FARMACODINAMICO DE LYTHRUM SALICARIA L.

78. Manayi A, Khanavi M, Saeidnia S, Azizi E, Mahmoodpour MR, Vafi F, Malmir M, Siavashi F, Hadjiakhoondi A. Biological activity and microscopic characterization of *Lythrum salicaria* L. DARU Journal of Pharmaceutical Sciences. 2013 Dec;21(1):1-7.

79. Manayi A, Saeidnia S, Faramarzi MA, Samadi N, Jafari S, Vazirian M, Ghaderi A, Mirnezami T, Hadjiakhoondi A, Ardekani MR, Khanavi M. A comparative study of anti-Candida activity and phenolic contents of the calluses from *Lythrum salicaria* L. in different treatments. Applied biochemistry and biotechnology. 2013 May;170(1):176-84.

80. Manayi A, Saeidnia S, Ostad SN, Hadjiakhoondi A, Ardekani MR, Vazirian M, Akhtar Y, Khanavi M. Chemical constituents and cytotoxic effect of the main compounds of *Lythrum salicaria* L. Zeitschrift für Naturforschung C. 2013 Oct 1;68(9-10):367-75.

81. Manayi A, Saeidnia S, Shekarchi M, Hadjiakhoondi A, Shams AM, Khanavi M. Comparative study of the essential oil and hydrolate composition of *Lythrum salicaria* L. obtained by hydro-distillation and microwave distillation methods.

82. Fujita E, Saeki Y. Lythraceous alkaloids. Part VI. The structures of lythrancine-I,-II,-III, and-IV and lythrancepine-I,-II, and-III. Journal of the Chemical Society, Perkin Transactions 1. 1972:2141-6.

83. Kim GS, Lee SE, Jeong TS, Park CG, Sung JS, Kim JB, Hong YP, Kim YC, Song KS. Human Acyl-CoA: Cholesterol acyltransferase (hACAT)-inhibiting triterpenes from *Lythrum salicaria* L. Journal of The Korean Society for Applied Biological Chemistry. 2011 Aug;54(4):628-32.

84. Carruthers W, Coggins P, Weston JB. Nitrone cycloaddition: an approach to the cyclophane alkaloid (\pm)-lythranidine. Journal of the Chemical Society, Perkin Transactions 1. 1991 Jan 1(3):611-6.

85. Fuji K, Ichikawa K, Fujita E. Lythraceous alkaloids. Part 11. Total synthesis of (\pm)-lythranidine. Journal of the Chemical Society, Perkin Transactions 1. 1980:1066-9.

86. Gougeon MM, Laumonier J. De l'emploi thérapeutique de la salicaire et de son glucoside. L'Union Pharm. 1918;59:147-9.

87. Steinfeld AS. I. the Alkaloids of *Lythrum Salicaria* L. II. the Electrolytic Oxidation of Some Phenolic Tetrahydroisoquinolines. University of Connecticut; 1968.

88. Pawlaczek I, Czerchawski L, Kańska J, Bijak J, Capek P, Pliszczak-Król A, Gancarz R. An acidic glycoconjugate from *Lythrum salicaria* L. with controversial effects on haemostasis. Journal of ethnopharmacology. 2010 Aug 19;131(1):63-9.

89. Šutovská M, Capek P, Fraňová S, Pawlaczek I, Gancarz R. Antitussive and bronchodilatory effects of *Lythrum salicaria* polysaccharide-polyphenolic conjugate. International journal of biological macromolecules. 2012 Dec 1;51(5):794-9.

90. Vincent D, Segonzac G. Quelques données nouvelles sur la salicaire. *Lythrum salicaria*. 1954:1-2.

91. Brun Y, Wang XP, Willemot J, Sevenet T, Demenge P. Experimental study of antidiarrheal activity of Salicairine®. Fundamental & clinical pharmacology. 1998 Jan 2;12(1):30-6.

92. Ha JY, Kim YK, Lee KS, Min KR, Kim YS. Inhibitory effects of herbal extracts on CINC-1 induction in LPS-stimulated rat kidney epithelial NRK-52E cells. Natural Product Sciences. 1997;3(1):59-70.

93. Piwowarski JP, Kiss AK. Contribution of C-glucosidic ellagitannins to *Lythrum salicaria* L. influence on pro-inflammatory functions of human neutrophils. Journal of natural medicines. 2015 Jan;69(1):100-10.

94. Mantle D, Eddeb F, Pickering AT. Comparison of relative antioxidant activities of British medicinal plant species in vitro. Journal of Ethnopharmacology. 2000 Sep 1;72(1-2):47-51.

95. Lopez V, Akerreta S, Casanova E, García-Mina J, Cavero R, Calvo M. Screening of Spanish medicinal plants for antioxidant and antifungal activities. *Pharmaceutical Biology*. 2008 Jan 1;46(9):602-9.

96. Borchardt JR, Wyse DL, Sheaffer CC, Kauppi KL, Ehlke RG, Biesboer DD, Bey RF. Antimicrobial activity of native and naturalized plants of Minnesota and Wisconsin. *Journal of medicinal plants research*. 2008 May 31;2(5):098-110.

97. Sartory A, Quevauviller A, Richard P. De quelques phanerogrammes douees de proprietes antibiotiques in vitro. *Comptes rendus hebdomadaires des seances de l'Academie des sciences*. 1949 Feb 28;228(9):782-4.

98. Dulger B, Gonuz A. Antimicrobial activity of certain plants used in Turkish traditional medicine. *Asian Journal of Plant Sciences*. 2004.

99. Guclu E, Genc H, Zengin M, Karabay O. Antibacterial activity of *Lythrum salicaria* against multidrug-resistant *Acinetobacter baumannii* and *Pseudomonas aeruginosa*. *Annual Research & Review in Biology*. 2014:1099-105.

100. Spyropoulos NM. Action de l'infusion des racines de *Rubus ulmifolius*, de la Salicairine et du tannin sur la glycosurie phloridzique chez l'homme. *J. Physiol. Pathol. Gén.* 1930;28:69-71.

101. Torres IC, Suarez JC. A preliminary study of hypoglycemic activity of *Lythrum salicaria*. *Journal of natural products*. 1980 Sep;43(5):559-63.

102. Sharma N, Sharma VK, Seo SY. Screening of some medicinal plants for anti-lipase activity. *Journal of ethnopharmacology*. 2005 Mar 21;97(3):453-6.

103. Yoshida K, Hishida A, Iida O, Hosokawa K, Kawabata J. Flavonol caffeoyleglycosides as α -glucosidase inhibitors from *Spiraea cantoniensis* flower. *Journal of agricultural and food chemistry*. 2008 Jun 25;56(12):4367-71.

104. Bencsik, T., 2014, „Comparative Histological, Phytochemical, Microbiological and Pharmacological Characterization of Some *Lythrum salicaria* L. Populations”, p.51-52.

105. Bucur L., Istudor V., Jianu L., Vameșu S., 2002: „Analiza farmacognostică”, Ed. Ovidius Univ. Press, Constanța, p. 7-24.

106. *** „European Pharmacopoeia 10.0” Council of Europe, Strasbourg, 2020, pp.1321, 1344, 1511

107. Bucur L., Istudor V., Popescu A., 2004: „Farmacognozia Specială volum I – Oze, poliholozide, heterozide, lipide”, Ed. Muntenia, Constanța, p. 74-90.

108. Bencsik T, Horváth G, Papp N. Variability of total flavonoid, polyphenol and tannin contents in some *Lythrum salicaria* populations. *Natural product communications*. 2011 Oct;6(10):1934578X1100601002.

109. Ito H. Metabolites of the ellagitannin geraniin and their antioxidant activities. *Planta medica*. 2011 Jul;77(11):1110-5.

110. Jamshidi M, Shabani E, Hashemi Z, Ebrahimzadeh MA. Evaluation of three methods for the extraction of antioxidants from leaf and aerial parts of *Lythrum salicaria* L.(Lythraceae). *International food research journal*. 2014 Apr 1;21(2).

111. *** „European Pharmacopoeia 8.0” (2013) European Directorate for the Quality of Medicines & HealthCare of the Council of Europe (EDQM), 67075 Strasbourg Cedex, France, pp. 275-276, 1300-1301.

112. Stefanache CP, Peter S, Meier B, Danila D, Tanase C, Wolfram E. Phytochemical composition of Arnicae flos from wild populations in the northern area of the Romanian eastern Carpathians. *Rev Chim (Bucharest)*. 2015 Jun 1;66(5):784-7.

113. Paun G, Neagu E, Moroceanu V, Ungureanu O, Cretu R, Ionescu E, Tebreniu CE, Ionescu R, Stoica I, Radu GL. Phytochemical analysis and in vitro biological activity of *Betonica officinalis* and *Salvia officinalis* extracts. *Romanian Biotechnological Letters*. 2017 Jul 1;22(4):12751.

114. AL-SNAFI A.E., Chemical Constituents and Pharmacological Effects of *Lythrum salicaria* – A Re-view, *IOSR Journal of Pharmacy*, vol.9, no. 6, 2019, p. 51-59

115. *** „Farmacopeea Română” ediția a X-a, Editura Medicală-București, 2008

116. Kujawski RA, Bartkowiak-Wieczorek JO, Ożarowski M, Bogacz A, Cichocka J, Karasiewicz M, Czerny B, Mrozikiewicz PM. Current knowledge on phytochemical profile of *Epilobium* sp. raw materials and extracts. Potential benefits in nutrition and phytotherapy of age-related diseases. *Herba Polonica*. 2011;57(4).

117. Nistreanu, A., „Farmacognozie”. Editura „Tipografia Centrală”, Chișinău, 2000, pag.22-24, 49-80.

118. Brglez Mojzer E, Knez Hrnčič M, Škerget M, Knez Ž, Bren U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. *Molecules*. 2016 Jul;21(7):901.

119. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. *European journal of medicinal chemistry*. 2015 Jun 5;97:55-74.

120. Van Wyk BE, Wink M. *Phytomedicines, Herbal Drugs & Plant Poisons*. Briza Publications; 2015.

121. Gawron-Gzella A, Dudek-Makuch M, Matławska I. DPPH radical scavenging activity and phenolic compound content in different leaf extracts from selected blackberry species. *Acta Biologica Cracoviensis s. Botanica*. 2012.

122. Costantino, H. R., & Pikal, M. J. (Eds.). (2004). *Lyophilization of biopharmaceuticals* (Vol. 2). Springer Science & Business Media.

123. Tang XC, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. *Pharmaceutical research*. 2004 Feb;21(2):191-200.

124. Kasper JC, Friess W. The freezing step in lyophilization: physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. *European journal of pharmaceutics and biopharmaceutics*. 2011 Jun 1;78(2):248-63.

125. Harrison MM, Tyler AC, Hellquist CE, Pagano T. Phenolic content of invasive and non-invasive emergent wetland plants. *Aquatic Botany*. 2017 Jan 1;136:146-54.

126. Dumitrescu M. *Artemia salina*. *Balneo-Research Journal*. 2011 Dec 1;2(4):119-22.

127. <https://learn.genetics.utah.edu/content/gsl/artemia/>

128. Hamidi MR, Jovanova B, Panovska TK. Toxicological evaluation of the plant products using Brine Shrimp (*Artemia salina* L.) model. *Maced pharm bull*. 2014;60(1):9-18.

129. Campbell DL, Lawton LA, Beattie KA, Codd GA. Comparative assessment of the specificity of the brine shrimp and microtox assays to hepatotoxic (microcystin-LR-containing) cyanobacteria. *Environmental toxicology and water quality*. 1994 Feb;9(1):71-7.

130. Schröder V., Bucur A., L., Iancu I., M., Honcea A., Bușuricu F., The Crustacean Species as in Vivo Testing Model – Advantages and Possible Applications in the Nutrition or Pharmaceutical Field,

Nutrition, Diet Therapy & Food Safety in the Context of the COVID-19, Bucharest, 2020, ISBN 978-88-85813-91-5, p. 205-210.

131. McGaw LJ, Elgorashi EE, Eloff JN. Cytotoxicity of African medicinal plants against normal animal and human cells. In Toxicological survey of african medicinal plants 2014 Jan 1 (pp. 181-233). Elsevier.
132. Nielsen JB. What you see may not always be what you get—Bioavailability and extrapolation from in vitro tests. *Toxicology in Vitro*. 2008 Jun 1;22(4):1038-42.
133. Lambert JD, Hong J, Yang GY, Liao J, Yang CS. Inhibition of carcinogenesis by polyphenols: evidence from laboratory investigations. *The American journal of clinical nutrition*. 2005 Jan 1;81(1):284S-91S.
134. Narishetty ST, Panchagnula R. Transdermal delivery of zidovudine: effect of terpenes and their mechanism of action. *Journal of Controlled Release*. 2004 Mar 24;95(3):367-79.
135. Apetroaei MR, Pădurețu C, Rău I, Schroder V. New-chitosan characterization and its bioassay in different salinity solutions using *Artemia salina* as bio tester. *Chemical Papers*. 2018 Aug;72(8):1853-60.
136. BUŞURICU, F., SCHRODER, V., MARGARITTI, D., NADOLU, D. and ANGHEL, A.H., 2019. Preliminary study regarding sodium benzoate and other food dyes sinergic action using BSLA citotoxicity test. *Scientific Papers: Series D, Animal Science-The International Session of Scientific Communications of the Faculty of Animal Science*, 62(1).
137. Johari SA, Rasmussen K, Gulumian M, Ghazi-Khansari M, Tetarazako N, Kashiwada S, Asghari S, Park JW, Yu IJ. Introducing a new standardized nanomaterial environmental toxicity screening testing procedure, ISO/TS 20787: aquatic toxicity assessment of manufactured nanomaterials in saltwater Lakes using *Artemia* sp. nauplii. *Toxicology mechanisms and methods*. 2019 Feb 12;29(2):95-109.
138. Braguini WL, Alves BB, Pires NV. Toxicity assessment of *Lavandula officinalis* extracts in Brine Shrimp (*Artemia salina*). *Toxicology mechanisms and methods*. 2019 Jul 24;29(6):411-20.
139. Coe FG, Parikh DM, Johnson CA, Anderson GJ. The good and the bad: alkaloid screening and brineshrimp bioassays of aqueous extracts of 31 medicinal plants of eastern Nicaragua. *Pharmaceutical biology*. 2012 Mar 1;50(3):384-92.
140. Hong LS, Ibrahim D, Kassim J. Assessment of in vivo and in vitro cytotoxic activity of hydrolysable tannin extracted from *Rhizophora apiculata* barks. *World Journal of Microbiology and Biotechnology*. 2011 Nov;27(11):2737-40.
141. Montanher AB, Pizzolatti MG, Brighente IM. An application of the brine shrimp bioassay for general screening of Brazilian medicinal plants. *Acta Farm. Bonaerense*. 2002;21(3):175-8.
142. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL. Brine shrimp: a convenient general bioassay for active plant constituents. *Planta med*. 1982 May 1;45(5):31-4.
143. Clarkson C, Maharaj VJ, Crouch NR, Grace OM, Pillay P, Matsabisa MG, Bhagwandin N, Smith PJ, Folb PI. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. *Journal of ethnopharmacology*. 2004 Jun 1;92(2-3):177-91.
144. Popovici V, Bucur LA, Schröder V, Gherghel D, Mihai CT, Caraiane A, Badea FC, Vochiță G, Badea V. Evaluation of the Cytotoxic Activity of the *Usnea barbata* (L.) FH Wigg Dry Extract. *Molecules*. 2020 Jan;25(8):1865.
145. SCHRÖDER V, ARCUS M, ANGHEL AH, BUSURICU F, LEPADATU AC. CELL DIFFERENTIATION PROCESS OF *Artemia* sp. LARVAE TOOLS FOR NATURAL PRODUCTS

TESTING. Scientific Papers: Series D, Animal Science-The International Session of Scientific Communications of the Faculty of Animal Science. 2019 Jan 1;62(1).

146. NETO R, Gomes Junior PP, Silva MC, Lima CS, Yara R, Guimaraes EB, SANTANA ES, SILVA LA, Lira EJ, Vieira JR. Evaluation of embryotoxic and embryostatic effects of the aqueous extract of Rhizophora mangle and tannic acid on eggs and larvae of Aedes aegypti. *Anais da Academia Brasileira de Ciências*. 2018 Aug;90(2):2141-8.
147. Khanavi M, Moshteh M, Manayi A, MR SA. a, Vazirian M, Ajani Y, Ostad SN: Cytotoxic activity of Lythrum salicaria L. *Res J Biol Sci*. 2011;6:55-7.
148. Laitinen LA, Galkin A, Vuorela HJ, Marvola ML, Vuorela PM. Effects of extracts of commonly consumed food supplements and food fractions on the permeability of drugs across Caco-2 cell monolayers. *Pharmaceutical research*. 2004 Oct;21(10):1904-16.
149. Martin-Thomé H, Bourdin D, Strube N, Saffarzadeh A, Morlock JF, Campard G, Evanno C, Hoornaert A, Layrolle P. Clinical Safety of a New Synthetic Resorbable Dental Membrane: A Case Series Study. *Journal of Oral Implantology*. 2018 Apr;44(2):138-45.
150. Abdelaziz D, Hefnawy A, Al-Wakeel E, El-Fallal A, El-Sherbiny IM. New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity. *Journal of advanced research*. 2021 Feb 1;28:51-62
151. Nyman S, Gottlow J, Karring T, Lindhe J. The regenerative potential of the periodontal ligament: an experimental study in the monkey. *Journal of clinical periodontology*. 1982 Jun;9(3):257-65.
152. Retzepi MA, Donos N. Guided bone regeneration: biological principle and therapeutic applications. *Clinical oral implants research*. 2010 Jun;21(6):567-76.
153. Sculean A, Nikolidakis D, Nikou G, Ivanovic A, Chapple IL, Stavropoulos A. Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review. *Periodontology 2000*. 2000 Jun;68(1):182-216.
154. Florjanski W, Orzeszek S, Olchowy A, Grychowska N, Wieckiewicz W, Malysa A, Smardz J, Wieckiewicz M. Modifications of polymeric membranes used in guided tissue and bone regeneration. *Polymers*. 2019 May;11(5):782.
155. Nasajpour A, Ansari S, Rinoldi C, Rad AS, Aghaloo T, Shin SR, Mishra YK, Adelung R, Swieszkowski W, Annabi N, Khademhosseini A. A multifunctional polymeric periodontal membrane with osteogenic and antibacterial characteristics. *Advanced Functional Materials*. 2018 Jan;28(3):1703437
156. Jazayeri HE, Tahriri M, Razavi M, Khoshroo K, Fahimipour F, Dashtimoghadam E, Almeida L, Tayebi L. A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. *Materials Science and Engineering: C*. 2017 Jan 1;70:913-29.
157. Alain H, Christophe RB, Fabienne W, Bénédicte E, Pierre L. Healing Process with the use of a New Resorbable Synthetic Membrane. *The Open Dentistry Journal*. 2020 Sep 24;14(1).
158. Kuo YC, Wang CC. Effect of bovine pituitary extract on the formation of neocartilage in chitosan/gelatin scaffolds. *Journal of the Taiwan Institute of Chemical Engineers*. 2010 Mar 1;41(2):150-6
159. Xia W, Liu W, Cui L, Liu Y, Zhong W, Liu D, Wu J, Chua K, Cao Y. Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds. *Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials*. 2004 Nov 15;71(2):373-80.

160. Kim IL, Mauck RL, Burdick JA. Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. *Biomaterials*. 2011 Dec 1;32(34):8771-82.
161. Willerth SM, Sakiyama-Elbert SE. Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. *StemJournal*. 2019 Jan 1;1(1):1-25.
162. Catelas I, Sese N, Wu BM, Dunn JC, Helgerson SA, Tawil B. Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro. *Tissue engineering*. 2006 Aug 1;12(8):2385-96.
163. Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?. *Osteoarthritis and cartilage*. 2005 Oct 1;13(10):845-53.
164. Brück WM, Slater JW, Carney BF. Chitin and chitosan from marine organisms. Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. *Taylor & Francis, Boca Raton*. 2010 Jul 14:11-9.
165. Shokrgozar MA, Bonakdar S, Dehghan MM, Emami SH, Montazeri L, Azari S, Rabbani M. Biological evaluation of polyvinyl alcohol hydrogel crosslinked by polyurethane chain for cartilage tissue engineering in rabbit model. *Journal of Materials Science: Materials in Medicine*. 2013 Oct 1;24(10):2449-60.
166. Jung RE, Hälg GA, Thoma DS, Hämmerle CH. A randomized, controlled clinical trial to evaluate a new membrane for guided bone regeneration around dental implants. *Clinical oral implants research*. 2009 Feb;20(2):162-8
167. Fardoun R. Barrier membranes used in guided bone regeneration: A review. *International Arab Journal of Dentistry (IAJD)*. 2019 Oct 10;10(2):87-94.
168. Shaikh R, Singh TR, Garland MJ, Woolfson AD, Donnelly RF. Mucoadhesive drug delivery systems. *Journal of Pharmacy and Bioallied Sciences*. 2011 Jan;3(1):89.
169. Alopaeus JF, Hellfritzsch M, Gutowski T, Scherließ R, Almeida A, Sarmento B, Škalko-Basnet N, Tho I. Mucoadhesive buccal films based on a graft co-polymer–A mucin-retentive hydrogel scaffold. *European Journal of Pharmaceutical Sciences*. 2020 Jan 15;142:105142.
170. Lim SY, Dafydd M, Ong J, Ord-McDermott LA, Board-Davies E, Sands K, Williams D, Sloan AJ, Heard CM. Mucoadhesive thin films for the simultaneous delivery of microbicide and anti-inflammatory drugs in the treatment of periodontal diseases. *International journal of pharmaceutics*. 2020 Jan 5;573:118860.
171. Berton F, Porrelli D, Di Lenarda R, Turco G. A critical review on the production of electrospun nanofibres for guided bone regeneration in oral surgery. *Nanomaterials*. 2020 Jan;10(1):16.
172. Mohebbi S, Nezhad MN, Zarrintaj P, Jafari SH, Gholizadeh SS, Saeb MR, Mozafari M. Chitosan in biomedical engineering: a critical review. *Current stem cell research & therapy*. 2019 Feb 1;14(2):93-116.
173. Lestari W, Yusry WN, Haris MS, Jaswir I, Idrus E. A glimpse on the function of chitosan as a dental hemostatic agent. *Japanese Dental Science Review*. 2020 Nov 1;56(1):147-54.
174. Rinaudo M. Chitin and chitosan: Properties and applications. *Progress in polymer science*. 2006 Jul 1;31(7):603-32.
175. Mandal N, Datta SC, Manjaiah KM, Dwivedi BS, Nain L, Kumar R, Aggarwal P. Novel chitosan grafted zinc containing nanoclay polymer biocomposite (CZNCPBC): Controlled release formulation (CRF) of Zn²⁺. *Reactive and Functional Polymers*. 2018 Jun 1;127:55-66.

176. Honarkar H, Barikani M. Applications of biopolymers I: chitosan. *Monatshefte für Chemie-Chemical Monthly*. 2009 Dec;140(12):1403-20.

177. El Gharris H. Polyphenols: food sources, properties and applications—a review. *International journal of food science & technology*. 2009 Dec;44(12):2512-8.

178. Merzendorfer H, Cohen E. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. In *Extracellular Sugar-Based Biopolymers Matrices 2019* (pp. 541-624). Springer, Cham.

179. Zhang C, Hui D, Du C, Sun H, Peng W, Pu X, Li Z, Sun J, Zhou C. Preparation and application of chitosan biomaterials in dentistry. *International Journal of Biological Macromolecules*. 2020 Nov 14.

180. Shibasaki K, Sano H, Matsukubo T, Takaesu Y. pH response of human dental plaque to chewing gum supplemented with low molecular chitosan. *The Bulletin of Tokyo Dental College*. 1994 May 1;35(2):61-6.

181. Arnaud TM, de Barros Neto B, Diniz FB. Chitosan effect on dental enamel de-remineralization: an in vitro evaluation. *Journal of dentistry*. 2010 Nov 1;38(11):848-52.

182. Jahanizadeh S, Yazdian F, Marjani A, Omidi M, Rashedi H. Curcumin-loaded chitosan/carboxymethyl starch/montmorillonite bio-nanocomposite for reduction of dental bacterial biofilm formation. *International journal of biological macromolecules*. 2017 Dec 1;105:757-63.

183. Lotfi G, Shokrgozar MA, Mofid R, Abbas FM, Ghanavati F, Baghban AA, Yavari SK, Pajoumshariati S. Biological evaluation (in vitro and in vivo) of bilayered collagenous coated (nano electrospun and solid wall) chitosan membrane for periodontal guided bone regeneration. *Annals of biomedical engineering*. 2016 Jul;44(7):2132-44.

184. Fawzy AS, Nitiusanta LI, Iqbal K, Daood U, Beng LT, Neo J. Chitosan/Riboflavin-modified demineralized dentin as a potential substrate for bonding. *Journal of the mechanical behavior of biomedical materials*. 2013 Jan 1;17:278-89.

185. Ali S, Sangi L, Kumar N. Exploring antibacterial activity and hydrolytic stability of resin dental composite restorative materials containing chitosan. *Technology and Health Care*. 2017 Jan 1;25(1):11-8.

186. Sana FA, Yurtsever MÇ, Bayrak GK, Tunçay EÖ, Kiremitçi AS, Gümüşderelioğlu M. Spreading, proliferation and differentiation of human dental pulp stem cells on chitosan scaffolds immobilized with RGD or fibronectin. *Cytotechnology*. 2017 Aug;69(4):617-30.

187. Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. *Journal of agricultural and food chemistry*. 2000 Aug 21;48(8):3396-402.

188. Jing Y, Diao Y, Yu X. Free radical-mediated conjugation of chitosan with tannic acid: Characterization and antioxidant capacity. *Reactive and Functional Polymers*. 2019 Feb 1;135:16-22.

189. Liang J, Yan H, Puligundla P, Gao X, Zhou Y, Wan X. Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: A review. *Food Hydrocolloids*. 2017 Aug 1;69:286-92.

190. Al-Dhubiab BE, Nair AB, Kumria R, Attimarad M, Harsha S. Development and evaluation of buccal films impregnated with selegiline-loaded nanospheres. *Drug delivery*. 2016 Sep 1;23(7):2154-62.

191. Nair AB, Kumria R, Harsha S, Attimarad M, Al-Dhubiab BE, Alhaider IA. In vitro techniques to evaluate buccal films. *Journal of Controlled Release*. 2013 Feb 28;166(1):10-21.

192. Bégin A, Van Calsteren MR. Antimicrobial films produced from chitosan. International journal of biological macromolecules. 1999 Oct 1;26(1):63-7.

193. Park SY, Marsh KS, Rhim JW. Characteristics of different molecular weight chitosan films affected by the type of organic solvents. Journal of Food Science. 2002 Jan;67(1):194-7.

194. Li J, Ren N, Qiu J, Mou X, Liu H. Graphene oxide-reinforced biodegradable genipin-cross-linked chitosan fluorescent biocomposite film and its cytocompatibility. International journal of nanomedicine. 2013;8:3415.

195. De Masi A, Tonazzini I, Masciullo C, Mezzina R, Chiellini F, Puppi D, Cecchini M. Chitosan films for regenerative medicine: fabrication methods and mechanical characterization of nanostructured chitosan films. Biophysical reviews. 2019 Oct;11(5):807-15.

196. Ak HP, Saurabh CK, MR NF, Syakir MI, Davoudpour Y, Rafatullah M, Abdullah CK, MK MH, Dungani R. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydrate Polymers. 2016 May 14;150:216-26.

197. Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials. 2001 Feb 1;22(3):261-8.

198. Ren D, Yi H, Wang W, Ma X. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydrate Research. 2005 Oct 31;340(15):2403-10.

199. Correia CO, Caridade SG, Mano JF. Chitosan membranes exhibiting shape memory capability by the action of controlled hydration. Polymers. 2014 Apr;6(4):1178-86.

200. Pădurețu, C., C., Apetroaei, M., R., N. Badea, N., Bucur, L., Rău, I., and Schröder, V., "Physical-chemical characterization and biological evaluation of chitosan extracted from marine waste", in University of Agronomic Sciences and Veterinary Medicine of Bucharest (USAMV) – Faculty of Animal Productions Engineering and Management. Scientific Papers. Series D. Animal Science, vol. LXII, no. 1, Aug. 2019, pp. 143-148.

201. Abranched J, Zeng L, Kajfasz JK, Palmer S, Chakraborty B, Wen Z, Richards VP, Brady LJ, Lemos JA. Biology of oral streptococci. Gram-Positive Pathogens. 2019 Oct 1:426-34.

202. Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, Nelson KE, White O, Methé BA, Huttenhower C. The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol. 2012 Aug 14;10(8):e1001377.

203. Huse SM, Ye Y, Zhou Y, Fodor AA. A core human microbiome as viewed through 16S rRNA sequence clusters. PloS one. 2012 Jun 13;7(6):e34242.

204. Tahir L, Nazir R. Dental Caries, Etiology, and Remedy through Natural Resources. Dental Caries-Diagnosis, Prevention and Management, Zühre Akarslan, IntechOpen, DOI: <https://doi.org/10.5772/intechopen>. 2018 Nov 5;75937:19.

205. Timoșca S., Petreanu V., Coman G., Colev A., Haralamb E. Lucrări practice de microbiologie și parazitologie, 1980, Litografia I.M.F., p.77 – 81

206. Buiuc D., Neguț M. Tratat de microbiologie clinică, ed. a III-a, Editura Medicală, București, 2009, pg. 461-470, 563-567, 586-591, 695-703, 711-717, 740-743, 765-786, 961-991.

207. Sponchiado G, Adam ML, Silva CD, Soley BS, de Mello-Sampayo C, Cabrini DA, Correr CJ, Otuki MF. Quantitative genotoxicity assays for analysis of medicinal plants: A systematic review. Journal of ethnopharmacology. 2016 Feb 3;178:289-96.

208. Varanda EA, Pozetti GL, Lourenço MV, Vilegas W, Raddi MS. Genotoxicity of Brosimum gaudichaudii measured by the *Salmonella*/microsome assay and chromosomal aberrations in CHO cells. *Journal of ethnopharmacology*. 2002 Jul 1;81(2):257-64.

209. Carnesoltas Lázaro D, Izquierdo López Y, Frías Vázquez AI, Domínguez Odio A, González JE, Sánchez LM, García Delgado N. Genotoxic assessment of aqueous extract of Rhizophora mangle L.(mangle rojo) by spermatozoa head assay. *Revista Cubana de Plantas Medicinales*. 2010 Mar;15(1):0-.

210. Odunola OA, Oyibo A, Gbadegesin MA, Owumi SE. Assessment of In-vitro Antioxidant Activities and Genotoxicity in *E. coli* of Ethanol Extracts of *Vitellaria paradoxa* (Gaertn. F). *Archives of Basic and Applied Medicine*. 2019 Mar 12;7(1):13-20.

211. Quillardet P, Huisman O, D'ari R, Hofnung M. SOS chromotest, a direct assay of induction of an SOS function in *Escherichia coli* K-12 to measure genotoxicity. *Proceedings of the National Academy of Sciences*. 1982 Oct 1;79(19):5971-5.

212. Quillardet P, Hofnung M. The SOS Chromotest, a colorimetric bacterial assay for genotoxins: procedures. *Mutation Research/Environmental Mutagenesis and Related Subjects*. 1985 Jun 1;147(3):65-78.

213. Jolibois B, Guerbet M. Evaluation of industrial, hospital and domestic wastewater genotoxicity with the *Salmonella* fluctuation test and the SOS chromotest. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis*. 2005 Jan 3;565(2):151-62.

214. Mišík M, Ferk F, Schaar H, Yamada M, Jaeger W, Knasmueller S, Kreuzinger N. Genotoxic activities of wastewater after ozonation and activated carbon filtration: Different effects in liver-derived cells and bacterial indicators. *Water Research*. 2020 Nov 1;186:116328.

215. Ye Y, Weiwei J, Na L, Mei M, Donghong W, Zijian W, Kaifeng R. Assessing of genotoxicity of 16 centralized source-waters in China by means of the SOS/umu assay and the micronucleus test: initial identification of the potential genotoxins by use of a GC/MS method and the QSAR Toolbox 3.0. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis*. 2014 Mar 15;763:36-43.

216. Verschaeve L, Wambacq S, Anthonissen R, Maes A. Co-exposure of ELF-magnetic fields and chemical mutagens: An investigation of genotoxicity with the SOS-based VITOTOX test in *Salmonella typhimurium*. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis*. 2016 Jan 1;795:31-5.

217. Takemoto K, Yamazaki H, Nakajima M, Yokoi T. Genotoxic activation of benzophenone and its two metabolites by human cytochrome P450s in SOS/umu assay. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis*. 2002 Aug 26;519(1-2):199-204.

218. Serment-Guerrero J, Dominguez-Monroy V, Davila-Becerril J, Morales-Avila E, Fuentes-Lorenzo JL. Induction of the SOS response of *Escherichia coli* in repair-defective strains by several genotoxic agents. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis*. 2020 Jun 1;854:503196.

219. Chen J, Lü H, Fang LX, Li WL, Verschaeve L, Wang ZT, De Kimpe N, Mangelinckx S. Detection and toxicity evaluation of pyrrolizidine alkaloids in medicinal plants *Gynura bicolor* and *Gynura divaricata* collected from different Chinese locations. *Chemistry & biodiversity*. 2017 Feb;14(2):e1600221.

220. Edziri H, Guerrab M, Anthonissen R, Mastouri M, Verschaeve L. Phytochemical screening, antioxidant, anticoagulant and in vitro toxic and genotoxic properties of aerial parts extracts of *Fumaria officinalis* L. growing in Tunisia. *South African Journal of Botany*. 2020 May 1;130:268-73.

221. Aiub C, Stankevicius L, Da Costa V, Ferreira F, Mazzei J, da Silva AR, de Moura RS, Felzenszwalb I. Genotoxic evaluation of a vinifera skin extract that present pharmacological activities. *Food and chemical toxicology*. 2004 Jun 1;42(6):969-73.

222. Rodeiro I, Cancino L, González JE, Morffi J, Garrido G, González RM, Nuñez A, Delgado R. Evaluation of the genotoxic potential of *Mangifera indica* L. extract (Vimang), a new natural product with antioxidant activity. *Food and Chemical Toxicology*. 2006 Oct 1;44(10):1707-13.

223. Vargas VM, Motta VE, Leitao AC, Henriques JA. Mutagenic and genotoxic effects of aqueous extracts of Achyrocline satureoides in prokaryotic organisms. *Mutation Research/Genetic Toxicology*. 1990 Jan 1;240(1):13-8.

224. Oliveira VC, Naves MP, de Moraes CR, Constante SA, Orsolini PC, Alves BS, Neto FR, da Silva LH, de Oliveira LT, Ferreira NH, Esperandim TR. Betulinic acid modulates urethane-induced genotoxicity and mutagenicity in mice and *Drosophila melanogaster*. *Food and Chemical Toxicology*. 2020 Apr 1;138:111228.

225. Cvetković S, Todorović S, Nastasijević B, Mitić-Ćulafić D, Đukanović S, Knežević-Vukčević J, Nikolić B. Assessment of genoprotective effects of *Gentiana lutea* extracts prepared from plants grown in field and in vitro. *Industrial Crops and Products*. 2020 Oct 15;154:112690.

226. Edziri H, Jaziri R, Haddad O, Anthonissen R, Aouni M, Mastouri M, Verschaeve L. Phytochemical analysis, antioxidant, anticoagulant and in vitro toxicity and genotoxicity testing of methanolic and juice extracts of *Beta vulgaris* L. *South African Journal of Botany*. 2019 Nov 1;126:170-5.

227. Singh BK, Dutta PK. Chitin, chitosan, and silk fibroin electrospun nanofibrous scaffolds: a prospective approach for regenerative medicine. In *Chitin and Chitosan for Regenerative Medicine* 2016 (pp. 151-189). Springer, New Delhi.

228. Zhou X, Zhang X, Zhou J, Li L. An investigation of chitosan and its derivatives on red blood cell agglutination. *RSC advances*. 2017;7(20):12247-54.

229. Kojima K, Okamoto Y, Miyatake K, Kitamura Y, Minami S. Collagen typing of granulation tissue induced by chitin and chitosan. *Carbohydrate polymers*. 1998 Oct 1;37(2):109-13.

230. Taheri P, Jahanmardi R, Koosha M, Abdi S. Physical, mechanical and wound healing properties of chitosan/gelatin blend films containing tannic acid and/or bacterial nanocellulose. *International journal of biological macromolecules*. 2020 Jul 1;154:421-32.

231. Berteau E, Ionita D, Simoiu M, Paraschiv M, Tatia R, Apatean A, Sidoroff M, Tcacenco L. Evaluation of biodegradation and biocompatibility of collagen/chitosan/alkaline phosphatase biopolymeric membranes. *Bulletin of Materials Science*. 2016 Apr 1;39(2):377-83.