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Chapter 1

Introduction

1.1 Motivation

Algebraic structures play an important role in many practical applications. Cryp-
tography ([33]), error-correcting codes theory ([30], [11]), artificial intelligence
([14]) are just a few examples of such applications. A special interest has recently
been aroused by algebraic structures called ”algebras”. Under this umbrella term,
many types of algebraic structures are included, being both algebraic structures
defined as modules or vector spaces over a field, such as algebras obtained by
the Cayley Dickson process ([41]), or logical algebras, which are sets with certain
operations that respect certain axioms (some examples can be found in [24], [25],
[20], [7], [1]). So, starting from the term ”algebra”, we can divide these structures
into several classes, hence the title of this work: ”Special classes of algebras”.

In recent developments in wireless communication, the problem of efficient
coding has become increasingly complicated, especially after the introduction
of multiple antenna communication both at transmission and reception (MIMO
Channels). The first such a code, based on division algebras, was constructed by
Alamouti in 1998 and presented in [2]. In the article, Alamouti uses the algebra of
real quaternions, taking its representation over a maximum subfield (in the sense
of inclusion), namely over C, the set of complex numbers, building a Codebook
with all the necessary properties. In [37] it is shown how division algebras can be
important tools in building codes for such situations. More precisely, it is shown
how a specific class of division algebras, cyclic division algebras, can be used.
In this article, division algebras are assumed to be non-commutative from the
beginning, by definition. In [44] the class of cyclic division algebras is restricted to
generalized quaternion and biquaternion algebras. Although these are particular
cases of cyclic algebras, they have an important property. They have attached
a quadratic form that can be used to determine when an algebra is a division
algebra or when it is a split one which is quite difficult to determine otherwise.
Although this article also talks about commutative division algebras, the authors
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say that they are only interested in those non-commutative algebras, the reason
being simple, by construction, these non-commutative division algebras have the
property of producing matrices with the fully diverse property, i.e. the difference
between any two matrices has a not null determinant.

In [38], a step further is taken, and non-associative algebras are constructed
and studied in terms of code theory. Also, in this paper, those elements of
an algebra that have a richer set of properties are exploited in an interesting
way, such as the nucleus of non-associative algebra, i.e. all those elements that
associate with any other element in algebra. With their help, it is shown how
to construct a representation over a maximum subfield of such an algebra, thus
obtaining error-correcting codes.

On the other hand, in [26] a spectacular result is presented, obtaining a bi-
nary block code starting from a BCK-algebra. In this paper, the authors launch
a challenge by asking whether it is possible to construct a BCK-algebra from a
binary block code. Responding to the challenge, in [15] the author constructs a
BCK-algebra starting from the binary code used in [26]]. It is found, that the
two BCK-algebras associated with the same code are different and do not have
common properties. Thus, a new property of two BCK-algebras is established,
that of being ”Code similar”. The topic about connections between binary block
codes and BCK-algebras is also developed in [39] and in [5] the authors intro-
duce n-ary block codes attached to BCK-algebras. Starting from BCK algebras,
various generalizations have been made, resulting in defining new various types
of logical algebras: BE-algebras [28], Dual BCK-algebras [29] and others [23].
On the other hand, equivalence relations have been established between various
other classes of logical algebras and BCK-algebras. Based on this research, but
also on the equivalence relations between various classes of logical algebras, a
question arises: ”Can error-correcting codes be attached to other types of logi-
cal algebras”? A first answer is given in [31], where the author attaches binary
error correction codes to Hilbert algebras, using the equivalence between Hilbert
algebras and positive implicative BCK-algebras. Based on this extension, we
wanted to investigate whether binary block codes can be attached to other types
of logical algebras. At the same time, starting from the answers found for this
first question, other interesting questions arose: ”Are these codes usable in their
current form”? ”Who influences whom? Do codes influence the properties of
logical algebras? Or, do the properties of logical algebras influence, in a posi-
tive sense, the construction of good codes?” ”Can we find new interesting things
about logical algebras by researching the attached codes?” And many others who
will find answers in the pages of this work.
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1.2 Main results

First of all, we mention that the new and original results of this work come from
the following articles or book chapters: [17], [18], [19], [42], [43]. In addition to
these results, for a brief introduction to the world of error-correcting codes, the
reader can consult the article from [16].

1.2.1 Binary block codes attached to Wajsberg and MV-

algebras

The purpose of this work is to present a research about special classes of algebra
and about some new applications of them. In particular, observing the results in
[26] (presented in 5.1), we asked ourselves whether those results can be transferred
to other classes of logical algebras, given the equivalence relations between them.
In [19], we built a mathematical apparatus similar to the one in [26] and thus
attached binary error correcting codes to the Wajsberg and MV-algebras (see
5.2.1 and 5.2.2). In the case of MV algebras, we also constructed the distance
function attached to such a code, showing that it is equivalent to the known
Hamming distance (see 5.2.13). After attaching these codes, we showed that,
given a commutative and bounded BCK algebra, together with the associated
MV and Waisberg algebras, the same error-correcting code is obtained (Theorem
5.2.25). Moreover, we have shown that this binary error correction code acts as
a template on which we can place any of the three types of algebras (see 5.2.27).

1.2.2 Number of Wajsberg algebras and their representa-

tion

Studying the codes attached to MV and Wajsberg algebras, we found a simple
way to count Wajsberg algebras of a certain order n, using the unique factor
decompositions of n (Theorem 4.2.7), theorem presented also in [19]). The ques-
tion now was whether we could find a simpler way, simpler than already existing
ones, to construct Wajsberg algebras of a certain order n. Using some existing
results about MV-algebras (Proposition 4.1.8), we introduced a representation
theorem for Wajsberg algebras (Theorem 4.2.8), presented also in [17]. The need
to construct these algebras came, among other things, from the need to obtain
examples of commutative and bounded BCK algebras, by means of which error-
correcting codes could be transferred to MV algebras. In [17], we introduced
such a method of constructing Wajsberg algebras of a certain order n (Remark
4.3.1) and, as an example, we constructed all Wajsberg algebras of order n, with
n ≤ 9. We have thus shown that for the order n, with n prime, we have a single
Wajsberg algebra, an algebra that is totally ordered (up to an isomorphism). In
particular, for orders 2, 3, 5, 7, we have a totally ordered Wajsberg algebra (up
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to an isomorphism). For orders 4 (Section 4.4.1), 6, and 9, we have 2 Wajsberg
algebras, one totally ordered and one partially ordered, up to an isomorphism.
As for all Wajsberg algebras of order 6, they are 25 (Section 4.4.2). For order
9, we have 5040 Wajsberg algebras (Section 4.4.4). For order 8, we have three
Wajsberg algebras, up to an isomorphism, one totally ordered and two partially
ordered. In their totality, they are 1441 Wajsberg algebras of order 8 (Section
4.4.3).

1.2.3 Algorithm for constructing commutative bounded

BCK-algebras

Starting from the Wajsberg algebras construction algorithm (Remark 4.3.1), in-
troduced in [17], and from the equivalence relation between Wajsberg algebras
and bounded commutative BCK-algebras, we introduced in [18] a construction
algorithm for bounded commutative BCK-algebras (see Section 4.5). Also, we
presented some examples of such algebras obtained with this algorithm (see Sec-
tion 4.6).

1.2.4 New ways to build BCK-algebras

During the research on codes attached to logical algebras, it became increas-
ingly clear that we needed as many examples of BCK-algebras as possible. The
existing literature offers few such examples, the subject of the construction of
BCK-algebras being a very actual one and of great interest. Among the biblio-
graphic sources with examples of BCK algebras we mention: [34], which presents
BCK-algebras up to order 5, constructed using the axiomatic system of BCK-
algebras, [13], in which BCI-algebras up to order 4 are constructed using the
existing order relation on such an algebra, and [27], in which a 16th order BCK-
algebra is constructed, starting from a 2nd order BCK-algebra using the variables
existing in the neutrosophic logic system. Another known way to obtain exam-
ples of BCI or BCK-algebras is by using extensions from n-order algebras to
n + 1-order algebras. In the case of BCK-algebras, the only known extension is
the Iseki extension, presented in Section 3.2.4. The problem with this extension
is that the obtained algebras lose the commutativity property, in case when the
source algebra had this property. So, we wanted not only to obtain examples of
BCK-algebras, but also to obtain examples of BCK-algebras that have certain
properties. A first result is the introduction of two new extensions for BCK-
algebras, the Pseudo-Iseki extension (Section 3.3.1) and the involution extension
(Section 3.3.3), results also presented in [42]. By pseudo-Iseki extension, higher
order algebras with the properties of the source algebra can be obtained, less
the property to be bounded. On the other hand, by extension through involu-
tion, we obtain bounded and commutative BCK-algebras of order n + 1, from
commutative BCK-algebras of order n. In this case, however, the property of
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being positive implicative of an BCK-algebra disappears in some cases. A second
result was presented in [43] and consists in the introduction of a generalized pro-
cess of extension for BCK-algebras, called the ”generalized Iseki construction”
for BCK-algebras. At the same time, we have shown that the Iseki extension and
the pseudo-Iseki extension are particular cases of this process (see Section 3.3.2).
Also in [43], starting from the example in [27], we analyzed in detail the behavior
of the elements of a positive implicative BCK-algebra and we introduced new
valid relations for this type of BCK-algebras (Theorem 3.4.1). Based on this the-
orem, we constructed a positive implicative BCK-algebra of order 6 (Proposition
3.4.6) and one of order 14 (Proposition 3.4.8).

1.2.5 BCK-trees

Starting from the construction of BCK-algebras, using their definition, we noticed
that there are three 3rd order BCK-algebras, up to an isomorphism. In fact, they
are 5, the first 4 being isomorphic two by two (see Section 3.2.1). Using this
observation, but also the fact that any BCK-algebra of order n contains a BCK-
algebra of order n − 1, we obtained interesting results regarding the structure
of the class of BCK-algebras. One such result is that any n-order BCK-algebra
contains a 3rd-order BCK-algebra (Proposition 3.5.3) and that we can therefore
construct n-order algebras by successive extensions from the 3rd order to the nth
order. The structure thus created is a graph consisting of three trees, trees that
we named BCK-trees (Definition 3.5.8). Interesting about these trees is that they
each contain BCK-algebras with a certain property. At the same time, these trees
are not independent, they have intersection points (Remark 3.5.9) represented
by isomorphic BCK-algebras (Remark 3.5.10). At each such intersection point,
that BCK-algebras lose one or more of their properties. These results were also
presented in [42].

1.2.6 Computer algorithm to generate BCK-algebras

In order to obtain as many examples of BCK-algebras as possible, based on the
previously mentioned results, we wrote a program that would generate BCK-
algebras of a certain order. The program is written in the Python programming
language ([45]), but can be easily transferred to any other programming lan-
guage. The program generates BCK-algebras up to order 6, in a reasonable time
(details can be found in Section 6.2). The algorithm starts from the three 3rd
order BCK algebras (see Section 3.2.1) and generates the three BCK trees (see
Section 3.5.2) up to the required order. The technique used is similar to the
depth-first search technique used for graphs (see [47] Page 191). To generate
a n-order BCK-algebra, the algorithm takes the table of an n − 1 order BCK-
algebra and borders it with a new row and a new column, thus obtaining a table
with n rows and n columns. The ends of the line and column are fixed by the
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axioms of the definition of BCK-algebras. Thus, there remain (n − 2) positions
on the new row and the new column which can be given values between 0 and
(n − 1). Iteratively, the algorithm gives values to these positions, starting from
0 and going to (n − 1), obtaining at each step a new table with n rows and n

columns. The algorithm verifies, at each assignment, not to give the value 0 at
the same time to corresponding positions in the table, in order to respect axiom 4
from the definition of BCK-algebras. For each table thus generated, it is checked
whether it meets axiom 1 from the definition of BCK-algebras, the other four be-
ing respected from the construction. If a BCK-algebra is identified, the algorithm
also checks what its properties are. The program therefore proves its usefulness
not only in generating examples, but also in verifying whether a certain table
can represent a BCK-algebra or in verifying the properties of a BCK-algebra.
Given the equivalences between BCK-algebras and other types of algebras, the
program can be extended to work with other types of algebras and even perform
conversions between different types of logical algebras. So far, we are not aware
about the existence of a similar program. The complexity of such an algorithm
was first discussed in [42], where we showed that the number of tables that must
be checked to find BCK-algebras, when we make the transition from order n− 1
to order n, is (n(n−2))2−(2(n−2)−1) (Proposition 3.5.1) and that the total number
of tables to be checked for all orders from 2 to n is

∏
n

i=2 (i
(i−2))2 − (2(i−2) − 1)

(Proposition 3.5.2). From these calculations, it was easy to see that we are deal-
ing with a complexity of O((n(n−2))2), which showed us that this activity is quite
difficult even from small orders (see Section 3.5). However, the algorithm man-
ages to generate, in a few seconds, BCK-algebras up to order 5. For order 6 it
takes almost an hour. However, this is a step forward, because, apart from a
few disparate examples, the literature did not contain examples of BCK-algebras
larger than order 5. Through the resulting program, we obtained all the 6th order
algebras, and even some of the 7th order. The algorithm in detail as well as the
source code were presented in [43]. Being a first variant of such an algorithm, it
is obvious that improvements can be made. A first improvement we made was
to parallelize the generation process for BCK-trees. Thus, if a computer has 3 or
more processor cores, each BCK-tree will be generated using one of these cores.
In the sequential version, the first BCK-tree is generated first, then the second
and finally the third. An improvement that could be made to this program is the
introduction of a system for storing generated algebras. Thus, instead of generat-
ing all algebras up to the order n at each run, it could generate only the missing
ones. Another improvement could be to change the programming language to
a faster one, Python being recognized as a slow language. These improvements
will be the subject of further researches.

Last but not least, the generation algorithm could be parallelized at the table
level, so that the generation of the tables and even the verification of axiom 1,
are done in parallel.
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1.3 Work structure

After a chapter of preliminaries (Chapter 2), in which we acquaint the reader with
the concepts used throughout the work, we begin the journey into the world of
algebras with a first chapter (Chapter 3), about BCK-algebras. In this chapter,
we will see how, starting from studies about the codes attached to BCK-algebras,
new results were discovered about BCK-algebras and about the structure of this
class of algebras. The chapter will present results from [42] and [43]. It is shown
that the structure of the BCK-algebra class consists of 3 trees, each tree having
algebras with a certain property (Section 3.5.2). These trees are not independent
(Remark 3.5.9). They have intersection points. These points of intersection are
represented by isomorphic BCK-algebras between them (Remark 3.5.10). Inter-
estingly, at these intersection points, BCK-algebras lose properties. At the same
time, new extensions for BCK-algebras (Section 3.2.3) and new identities valid
for positive implicative BCK-algebras (Theorem 3.4.1) are introduced. The pur-
pose of the chapter is to find new ways to construct higher-order BCK-algebras,
starting from small order BCK-algebras. The establishment of these results was
also based on the use of a computerized algorithm for generating BCK-algebras,
an algorithm built by the author and presented in [43], included as a separate
chapter in this work (see Chapter 6).

In the next chapter, (Chapter 4 ), new results on Wajsberg algebras are pre-
sented. An important place is occupied by the Wajsberg algebra representation
theorem (Theorem 4.2.8) and the Wajsberg algebra construction algorithm based
on this theorem (Remark 4.3.1). These results are also the product of study-
ing binary codes attached to logical algebras. Also, in this chapter, using the
equivalence between commutative and bounded BCK-algebras with Wajsberg
algebras, we present an algorithm for constructing commutative and bounded
BCK-algebras, this being another way of constructing BCK-algebras (Section
4.5). At the end of the chapter, as an example of the construction algorithm of
Wajsberg algebras, the Wajsberg algebras of order n with n ≤ 9, as well as the
construction of bounded and commutative BCK-algebras starting from Wajsberg
algebras are presented. The results presented are from [17], those related to Wa-
jsberg algebras, as well as from [18], those related to commutative and bounded
BCK-algebras.

In the Chapter 5, the codes attached to the BCK-algebras, based on [26]
and [15], are presented as an introduction (Section 5.1). After, in the following
sections, the codes attached to the Wajsberg algebras and MV-algebras, as well
as results about the properties of these codes, are presented (Sections 5.2.1 and
5.2.2). These results were presented first in [19].

The last chapter (Chapter 6) presents in detail the computerized algorithm
for generating BCK-algebras, as well as its properties. In this work, we have
included an appendix, Appendix A, which presents all BCK-algebras of order n,
with n ≤ 5 from the third BCK-tree. Of course, the work could not be completed
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without a chapter of conclusions in which we will present our conclusions and
various possibilities for further research on the subject.

Keywords: BCK-algebras, MV-algebras, Wajsberg algebras, BCK-trees, BCK
extensions, computerised algorithm for BCK-algebras, binary block-codes.
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