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Cuvinte-cheie Nanotub de carbon; senzor; metodă neinvazivă; oscilaţii transversale, oscilaţii longi-
tudinale; ecuaţie anizotropică; principii de maxim; soluţie slaba; problema supradeterminată; simetrie.

Rezumat

Descoperirea nanotuburilor de carbon ı̂n 1991 de Iijima [12] a generat direcţii noi de dezvoltarea de
nanodispozitive de ı̂naltă rezoluţie. Nanotuburile de carbon prezintă proprietăţi fizice şi chimice unice,
care au fost studiate intens ı̂n ultimele decenii pentru aplicaţii biologice. Detectarea ultra-sensibilă a
speciilor biologice cu nanotuburi de carbon poate fi realizată după funcţionalizarea acestora. Nanosenzorii
bazaţi pe nanotuburi de carbon deschid o nouă abordare in analiza microscopica a probelor biologice.
Nanodimensiunile nanotuburilor de carbon oferă posibilitatea integrării lor ı̂n senzori cu aplicaţii vaste ı̂n
tehnicile non-invazive şi minimum-invazive de detecţie de compuşi biologici şi de măsurare de parametri
medicali.

Aceasta teză de doctorat este structurată ı̂n cinci capitole, şi anume: un capitol introductiv, trei
capitole care conţin rezultate originale, rezultate ale cercetării personale efectuate pe durata studiilor
doctorale asupra comportamentului mecanic, electric si termic al nanotuburilor de carbon şi un ultim
capitol care sintetizează concluziile finale, diseminarea rezultatelor obţinute prin articolele publicate,
prin participările la conferinţe internaţionale de specialitate, contribuţiile originale ale autorului,
precum şi direcţii viitoare de cercetare. Scopul şi obiectivele acestei teze de doctorat sunt cercetarea
comportamentului mecanic, electric şi termic al nanotuburilor de carbon.

Cercetarea se concretizează ı̂n realizarea unei baze teoretice şi a unor modele matematice care
să descrie comportamentul nanotuburilor, prin intermediul soluţiilor unor probleme cu date iniţiale si la
limită. Aplicaţiile valorifica modelele teoretice elaborate.

Principalele rezultate originale din aceasta lucrare sunt două aplicaţii practice - doi senzori
neinvazivi - bazate pe două modele macroscopice ale comportamentului elastic al nanotuburilor de
carbon, şi anume modelul Timoshenko şi Gere [23] al barei elastice clasice pentru studiul oscilaţiilor
transversale şi modelul Aydogdu [1] al barei elastice nelocale pentru studiul oscilaţiilor longitudinale ale
nanotuburilor de carbon, determinarea soluţiei slabe pentru oscilaţiile longitudinale ale nanotubului de
carbon aflat ı̂ntr-un mediu exterior elastic pe baza modelului barei nelocale Aydogdu [1] şi două modele
macroscopice pentru comportamentul electric şi termic al nanotubului de carbon, şi anume un model
macroscopic pentru proprietăţile electrice ale nanotubului de carbon cu doi pereţi divizaţi virtual ı̂n
domenii inelare, exprimând potenţialul electric ı̂n domeniul ocupat de nanotub ca soluţie a problemei
supradeterminate 3.1.1., respectiv un alt model macroscopic pentru descrierea comportamentul termic,
respectiv, electric al nanotubului, ı̂n condiţiile in care capetele nanotubului sunt menţinute la potenţiale
electrice constante diferite, respectiv, cu capetele menţinute la temperaturi constante diferite ca soluţie
a problemei supradeterminate 4.1.1.

Rezultatele originale obţinute pe durata studiilor doctorale prezentate ı̂n capitolele 2, 3 şi 4 se
bazează pe patru articole publicate ı̂n timpul studiilor doctorale: trei dintre acestea indexate ISI, şi
anume [2], [16], [17] şi un articol publicat ı̂ntr-o revista indexata BDI, [15].

Subcapitolul 2.2 propune, pe baza modelului Timoshenko şi Gere [23] al barei elastice clasice
pentru studiul oscilaţiilor transversale, un model matematic pentru un senzor bazat pe modificările
frecvenţei oscilaţiilor transversale ale nanotubului de carbon modelat ca un corp elastic liniar. Ideea de
funcţionare a unui astfel de senzor este modificarea pulsaţiei oscilaţiilor proprii ale nanotubului ı̂n urma
conectării la capătul liber al acestuia a unei molecule care ı̂l funcţionalizează, respectiv a ataşării uneia
sau mai multor molecule pe capătul funcţionalizat.

Modelul de analiza propus ı̂n această lucrare ı̂ncorporează detecţia acetonei din respiraţia
pacientului cu ajutorul unui senzor cu nanotuburi de carbon. În acest senzor, fiecare dintre
nanotuburile de carbon este fixat la un capat de un substrat, iar celălalt capăt este liber. Nanotuburile
de carbon sunt plasate ı̂n vecinătatea suprafeţei unei membrane selective. O a doua variantă de senzor
presupune funcţionalizarea capătului liber al nanotubului cu o moleculă cu afinitate mare la acetonă.

Se măsoară frecvenţele de oscilaţie ale nanotuburilor şi se compară spectrul frecvenţelor
nanotuburilor ı̂nainte şi după ataşarea moleculelor de acetonă. Măsurând variaţia relativă a frecvenţei
ı̂n urma cuplării moleculelor de acetonă, se poate face detecţia până la nivelul unei singure molecule de
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acetonă şi, implicit, se poate măsura indirect concentraţia moleculelor de acetonă si presiunea parţială a
acetonei ı̂n proba investigată.

Pentru a studia oscilaţiile transversale ale nanotubului de carbon, vom folosi modelul barei elastice
clasice fixată la un capăt pe substrat, iar celălalt capăt liber. Activând piezoelectric (ca ı̂n Yasuda şi
colab. [29]), nanotubul de carbon va oscila liber pe direcţia y. În aproximaţia micilor oscilaţii, oscilaţia
nanotubului poate fi exprimată prin ecuaţia [23]:

EI
∂2uy

∂x2
− ρA

∂2uy

∂t2
= 0, (2.100)

unde E este modulul de elasticitate Young al nanotubului de carbon, I este momentul de inerţie al
nanotubului, ρ este densitatea medie a nanotubului de carbon, A este aria secţiunii transversale a
nanotubului de carbon la distanţa x de O, iar uy este deplasarea nanotubului ı̂n punctul de coordonată
x.

Ecuaţia (2.100) arată că orice punct al barei oscilează armonic ı̂n cazul neamortizat, lucru care ne
permite o analogie ı̂ntre oscilaţia capătului liber al nanotubului şi oscilaţia unui pendul elastic. Nanotubul
supus oscilaţiilor libere neamortizate poate fi modelat ca un sistem discret - pendul elastic - care oscilează
cu aceeaşi frecvenţă ca şi capătul liber (x = L) al nanotubului. Ecuaţia de mişcare pentru modelul
pendulului elastic este:

−kechxxx = mech

∂2xxx

∂t2
= −4π2ν2mechxxx, (2.101)

unde kech este constanta elastică a pendulului echivalent şi mech este masa echivalentă a acestuia.
Frecvenţa proprie a oscilatorului echivalent cu nanotubul de carbon, ı̂n cazul micilor oscilaţii se poate

exprima prin relaţia

ν =
1

2π

√

kech

mech

. (2.102)

Criteriile de analogie decurg din condiţia ca pendulul elastic să aibă aceeaşi frecvenţă de oscilaţie ca şi
capătul liber (x = L) al nanotubului, deci:

� constanta elastică a pendulului trebuie să fie factorul de proporţionalitate dintre forţa maximă
exercitată asupra capătului liber al barei şi amplitudinea de oscilaţie a acestuia;

� masa pendulului trebuie să corespundă egalităţii dintre energia cinetică maximă a barei şi energia
cinetică maximă a pendulului echivalent.

O masă suplimentară ataşată la capătul nanotubului de carbon va determina modificarea frecvenţei
micilor oscilaţii ale acestuia.

Pentru exprimarea dependenţei frecvenţei de oscilaţie a nanotubului de masa moleculei sau a grupului
de molecule de gaz ataşate de capătul liber al nanotubului am rezolvat două probleme:

Problema 2.2.1 Fie un nanotub cu un capăt ı̂ncastrat, supus la ı̂ncovoiere sub acţiunea unei forţe
distribuite pe lungimea nanotubului şi dirijată după axa Oy. Să se determine constanta de elastică a
nanotubului (factorul de proporţionalitate dintre forţa maxima exercitată asupra capătului liber al
nanotubului şi amplitudinea de oscilaţie a acestuia).

Pentru rezolvarea acestei probleme, am folosit ecuaţii de tip rezistenta materialelor şi am urmărit
descrierea dată de Timoshenko şi Gere [23], Timoshenko şi Young [24]. Am obţinut constanta elastică a
resortului echivalent cu nanotubul un capăt ı̂ncastrat ı̂n forma:

kech =
3EI

L3
. (2.136)

Problema 2.2.3 Fie un nanotub cu un capăt ı̂ncastrat care oscilează după (2.100). Să se determine
masa mech a unui oscilator prins de resortul echivalent descris (2.136) care oscilează cu aceeaşi frecvenţă
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ca şi nanotubul. Deformarea statică a nanotubului descrisă ı̂n Problema 2.2.1. este asimilată cu problema
dinamică

mech

d2xxx

dt2
= −kechxxx. (2.137)

Pentru rezolvarea acestei probleme vom folosi o metoda energetica ca ı̂n Zacarias, Wang şi Reimbold ı̂n
[27]. Metoda utilizată pentru a determina masa echivalentă, mech, este de a face o analogie energetică
ı̂ntre nanotub şi oscilatorul echivalent. Principiul echivalenţei este că nanotubul şi oscilatorul echivalent
au acelaşi efect dinamic, adică aceeaşi energie cinetică maximă. Considerăm că sistemul format din
nanotubul modelat ca nanobară de masa echivalentă m0 şi o moleculă sau un grup de molecule de gaz
ataşate, de masă m, este pus ı̂n mişcare de oscilaţie. Am obţinut masa echivalentă a oscilatorului:

mech = m0 +m, m0 =
33L

140
ρA (2.147)

Pe baza ecuaţiilor (2.102), (2.136) şi (2.147) am exprimat dependenţa frecvenţei de oscilaţie de masa
moleculei sau a grupului de molecule ataşate de capătul liber al nanotubului prin formula

ν =
1

2π

√

kech

mech

=
1

2π

√

3EI

(m0 +m)L3
. (2.148)

Dacă nu este ataşată nicio moleculă de gaz, atunci m = 0 şi conform ecuaţiei (2.148), frecvenţa de
oscilaţie a nanotubului este:

ν0 =
1

2π

√

3EI

m0L3
. (2.149)

Notând cu
ν − ν0

ν0
variaţia relativă a frecvenţei nanotubului ı̂n urma ataşării moleculei sau grupului

de molecule de gaz, obţinem masa ataşată de capătul liber al nanotubului:

m = m0







1
(

1 + ∆ν
ν0

)2 − 1






. (2.152)

În cazul analizei unei probe gazoase cu mai multe componente, pentru a asigura selectivitatea
senzorului cu nanotuburi de carbon, se face funcţionalizarea acestora. În funcţie de gazul căutat ı̂n
proba atmosferei analizate, pe fiecare nanotub se ataşează chimic o moleculă cu afinitate mare la
componenta gazoasă vizată. Folosind rezultatul obţinut anterior, am obţinut formula dependentei masei
de gaz ataşate de capătul liber al nanotubului de frecvenţa de oscilaţie a nanotubului funţionalizat.
Notând cu mf masa moleculei care funcţionalizează nanotubul, obţinem

meq = m0 +mf +m. (2.154)

şi obţinem masa ataşată de capătul liber funcţionalizat al nanotubului:

m = (m0 +mf )







1
(

1 + ∆ν
ν0

)2 − 1






. (2.159)

Între glicemie (BG) şi concentraţia de acetonă din aerul expirat (Ca) există formula empirică [28]

BG = αCa + β, (2.160)

unde α şi β sunt constante determinate experimental.
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Rezultatul acestui subcapitol este Aplicaţia 2.2.2.6 care permite evaluarea glicemiei unui pacient.
Rezultatele acestui subcapitol au fost publicate ı̂n lucrarea A.E. Nicolescu, L. Rusali, M. Vasile [15].

Subcapitolul 2.3 propune, pe baza modelului Aydogdu [1] al barei elastice nelocale, un model
matematic pentru oscilaţiile longitudinale ale nanotubului. În paragraful introductiv sunt rezolvate
problemele 2.3.1 şi 2.3.2, iar soluţiile obţinute sunt folosite ı̂n paragraful 2.3. Pe baza soluţiei Problemei
2.3.3 este formulată Aplicaţia practica 2.3.3 pe baza căreia se poate utiliza nanotubul de carbon pentru
identificarea unei macromolecule. Principiul utilizat este modificarea frecvenţei oscilaţiilor longitudinale
ale nanotubului ı̂n urma ataşării unei macromolecule de capătul liber al acestuia. Am rezolvat
următoarea problemă:

Problema 2.3.3 Să se găsească frecvenţele proprii ale deplasării u (x, t), u : [0;L]× [0;∞) → R, care
să satisfacă ecuaţia

EA
∂2u (x, t)

∂x2
+ (e0a)

2m
∂4u (x, t)

∂x2∂t2
= m

∂2u (x, t)

∂t2
. (2.192)

cu condiţiile pe frontieră ı̂n absenţa macromoleculei

u (0, t) = 0, N (L, t) = 0. (2.193)

Am determinat frecvenţa oscilaţiilor axiale ale nanotubului ı̂n urma ataşării macromoleculei:

ν =
1

2π

√

√

√

√

EA

L
[

M +MCNT

(

e0a
L

)2
] . (2.207)

respectiv ı̂n absenţa macromoleculei (M = 0):

ν0 =
1

2π

√

EA

LMCNT

(

e0a
L

)2 . (2.208)

Dependenţa dintre masa macromoleculei biologice sau a unei structuri virale ataşate de nanotub şi
variaţia frecvenţelor de oscilaţie ı̂nainte şi după ataşarea de nanotubul care oscilează longitudinal este
exprimată prin

M = MCNT

(e0a

L

)2
[

(ν0

ν

)2
− 1

]

. (2.209)

Contribuţia originală a autorului ı̂n paragraful 2.4, pe baza modelului barei nelocale Aydogdu [1],
este determinarea soluţiei slabe pentru oscilaţiile longitudinale ale nanotubului de carbon aflat ı̂ntr-un
mediu exterior elastic. Am folosit fundamentele teoretice ale soluţiilor slabe pentru ecuaţia undelor din
cărţile H. Brezis [5], V. Barbu [3], Singh şi colab. [22], O. A. Ladyzhenskaia [13], G. Shilov [21] la care
se adaugă lucrarea lui C. Mortici [14].

Am considerat că mediul exterior elastic acţionează asupra nanotubului cu o forţă axială pe unitatea
de lungime f = −ku, k este o constantă reală strict pozitivă. În acestă ipoteză, formulăm următoarea
problemă:

Problema 2.4.1 Fie Ω = (0, L) ⊂ R (domeniul spaţial ocupat de nanotubul de carbon) cu frontiera
Γ. Definim Q = Ω × (0,∞) şi Σ = Γ × (0,∞). Am studiat existenţa şi unicitatea soluţiei slabe u a
problemei la limită:

(i)
[

EA− k (e0a)
2
]

∂2u
∂x2 −m∂2u

∂t2
+ (e0a)

2m ∂4u
∂x2∂t2

− ku = 0 ı̂n Q;

(ii) u = 0 pe Σ;

(iii) u (x, 0) = g (x) ı̂n Ω;

(iv) ∂u
∂t

(x, 0) = h (x) ı̂n Ω.
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Notând cu
p0 = EA− k (e0a)

2 , p1 = m (e0a)
2 , (2.210)

ecuaţia (i) poate fi scrisă sub forma

m
∂2u

∂t2
−

∂

∂x

[

p0
∂u

∂x
+ p1

∂3u

∂x∂t2

]

+ ku = 0 t > 0, x ∈ (0, L) . (2.211)

Condiţiile la limită asociate ecuaţiei (2.211) sunt:

u|x=0 = u|x=L = 0, (2.212)

la care se adaugă condiţiile iniţiale

u|t=0 = g (x) ,
∂u

∂t

∣

∣

∣

∣

t=0

= h (x) , x ∈ (0, L) . (2.213)

Am determinat soluţia problemei(2.211)-(2.213) sub forma unei serii Fourier folosind metoda separării
variabilelor şi am demonstrat existenţa, unicitatea şi regularitatea soluţiei slabe a problemei
(2.211)-(2.213).

Pentru a defini soluţia slabă a problemei (2.211)-(2.213), luând ı̂n considerare condiţiile la limită,
vom considera spaţiul Sobolev H1

0 (0, L) (H. Brézis [5], V. Barbu [3]) cu produsul scalar şi norma asociată
acestuia:

⟨u, v⟩1 := p1

∫ L

0
u′v′dx+m

∫ L

0
uvdx,

∥u∥21 := p1

∫ L

0

(

u′
)2

dx+m

∫ L

0
u2dx∀u, v ∈ H1

0 (0, L) .

(2.214)

Pentru obţinerea definiţiei unei soluţii slabe, vom ı̂nmulţi scalar (2.211) cu o funcţie
v ∈ H1

(

0, T ;H1
0 (0, L)

)

şi apoi vom integra ı̂n raport cu t, pentru t ∈ (0, T ). În urma integrărilor prin
părţi şi a condiţiilor la limită (2.212)-(2.213) obţinem următoarea definiţie

Definiţia 2.4.2 Fie g, h ∈ H1
0 (0, L) funcţii date. Funcţia u : (0, L)× (0,∞) → R se numeşte soluţie

slabă a problemei la limită (2.211)-(2.213) dacă:

1. u ∈ C1
(

[0, T ] ;H1
0 (0, L)

)

şi

k̃

∫ t

0

∫ L

0
u (x, τ) v (x, τ) dxdτ + p̃1

∫ L

0

∂2u (x, t)

∂x∂t

∂v (x, t)

∂x
dx

− p̃1

∫ t

0

∫ L

0

∂2u (x, τ)

∂x∂t

∂2v (x, τ)

∂x∂t
dxdτ+

+

∫ t

0

∫ L

0

[

p̃0
∂u (x, τ)

∂x

∂v (x, τ)

∂x
−

∂u (x, τ)

∂t

∂v (x, τ)

∂t

]

dxdτ

+

∫ L

0

∂u (x, t)

∂t
v (x, t) dx

=

∫ L

0
h (x) v (x, 0) dx+ p̃1

∫ L

0
h′ (x)

∂v

∂x
(x, 0) dx

∀v ∈ H1
(

0, T ;H1
0 (0, L)

)

, ∀T > 0, ∀t ∈ (0, T ) ;

(2.216)

2. u (x, 0) = g (x) , ∂u
∂t

(x, 0) = h (x) , 0 < x < L.

Am notat cu p̃0 =
p0

m
; p̃1 =

p1

m
; k̃ =

k

m
.
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Pentru a obţine existenţa şi unicitatea soluţiei slabe, de tip propagări de unde, definită mai sus,
aplicăm metoda separării variabilelor. Ecuaţia undelor longitudinale se determină prin căutarea de
soluţii de forma

u (x, t) = ϕ (x) eiωt, t > 0, x ∈ (0, L) .

Înlocuind u de această formă ı̂n ecuaţia (2.211), şi ţinând cont de condiţiile la limită (2.212),adică
problema Sturm-Liouville (G. Şilov [21][Capitolul V, Secţiunea 5])

{ (

p0 − p1ω
2
)

ϕ′′ +
(

−k +mω2
)

ϕ = 0, x ∈ (0, L)
ϕ (0) = ϕ (L) = 0.

(2.217)

Am găsit valorile proprii ale problemei (2.217), λn:

ωn =

√

n2π2p0 + kL2

n2π2p1 +mL2
. (2.222)

şi funcţiile proprii ale problemei (2.217)

ϕn (x) = an sin
nπx

L
, x ∈ [0, L] , n ∈ N

∗,

unde an va fi determinat aşa ı̂ncât acestea să formeze un sistem ortonormat care va fi şi complet (conform
G. Şilov [21][Capitolul V, Secţiunea 5] şi C. Mortici [14]) ı̂n spaţiulH1

0 (0, L) ı̂n raport cu norma şi produsul
scalar definite ı̂n (2.214). Am găsit

u (x, t) =
∞
∑

n=1

an sin
nπx

L
(cn cosωnt+ dn sinωnt ) , (2.234)

unde constantele an, ωn, cn, dn sunt cele date de expresiile:

an =

√

2L

n2π2p1 +mL2
, n ∈ N

∗. (2.226)

cn = ⟨g, ϕn⟩ = p1

∫ L

0
g′ϕ

′

ndx+m

∫ L

0
gϕndx ∀n ∈ N

∗. (2.232)

dnωn = ⟨h, ϕn⟩1 , de unde dn =
1

ωn

(

p1

∫ L

0
h′ϕ

′

ndx+m

∫ L

0
hϕndx

)

∀n ∈ N
∗, (2.233)

Pentru a demonstra existenţa şi unicitatea soluţiei slabe a problemei 2.4.1 am folosit rezultatele
obţinute anterior şi argumente standard ( Ladyzhenskaya [[13], Chapter IV, Sections 2-4] şi Barbu [[3],
pp. 168-189]). ı̂n concluzie, avem:

Teorema 2.4.3 Dacă g, h ∈ H1
0 (0, L) şi sunt verificate ipotezele asupra constantelor de material,

atunci problema (2.211) – (2.213) admite o unică soluţie slabă u ∈ C1
(

[0, T ] ;H1
0 (0, L)

)

dată de egalitatea
(2.234).

Rezultatele acestui subcapitolului 2.4 au fost publicate ı̂n lucrarea A.E. Nicolescu, A. Bobe [16].
În capitolul 3 am studiat o problemă generală supradeterminată a cărei soluţie generală am

particularizat-o pentru descrierea distribuţiei potenţialului electric ı̂n interiorul unui nanotub cu doi
pereţi. Deoarece sunt impuse atât condiţiile la limită Dirichlet, cât şi cele Neumann, Problema 3.1.1
este supradeterminată şi atunci, ı̂n general, există o soluţie doar dacă domeniul Ω studiat satisface o
proprietate suplimentară de simetrie.

Modelele electrice şi electronice pentru nanotubul de carbon cu un singur perete sau cu doi pereţi cu
comportament de semiconductor propuse de Collins şi colab. [8], Devoret şi colab. [9], Neto şi colab.
[18], Postma şi colab. [19] includ ı̂n componenta acestora un condensator echivalent.
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Modelul macroscopic electric propus ı̂n acest capitol pentru determinarea distribuţiei potenţialului
electric in interiorul unui nanotub cu doi pereţi divizează nanotubul cilindric ı̂n domenii inelare. Pe baza
semnificaţiei fizice a condiţiilor pe frontiere impuse ı̂n problema generală (cei doi pereţi ai nanotubului
menţinuţi la potenţiale electrice constante diferite), modelul propune descompunerea nanotubului ı̂n
domenii inelare, toate aceste domenii, conectate la aceeaşi diferenţă de potenţial electric sunt echivalente
cu condensatoare elementare conectate ı̂n paralel.

Norma euclidiană, care reflectă izotropia spaţiului si operatorul Laplace, care este la rândul său
determinat de izotropia dielectricului şi dictează utilizarea normei euclidiene ı̂n exprimarea câmpului
electric ı̂n cazul izotrop, este ı̂nlocuită ı̂n acest capitol cu o normă arbitrară şi, respectiv, de un operator
anizotrop N -laplacian, care reflectă anizotropia mediului. Înlocuind norma euclidiană obişnuită a
gradientului cu o normă arbitrară F , atunci simetria rezultată a soluţiei este cea a aşa-numitei forme
Wulff (o bilă ı̂n norma duală F ∗). În cazul particularizării rezultatelor Problemei 3.1.1, pentru
nanotubul de carbon divizat virtual ı̂n domenii inelare, funcţia u reprezintă potenţialul electrostatic V .
La fel ca şi soluţia generala a Problemei 3.1.1, potenţialul este o funcţie mărginită şi Holder continuă ı̂n
domeniul Ω. Modelul matematic propus pentru distribuţia potenţialul electric V ı̂n nanotubul de
carbon poate fi privit ca un caz particular al problemei generale 3.1.1 pentru N -laplacianul anizotrop
ı̂ntr-un domeniu inelar din R

N .

F ∈ C
3,α
loc

(

R
N \ {0}

)

, cu α ∈ (0, 1) ,

Hess
(

FN
)

este pozitivă definită pe R
N \ {0} .

(3.1)

Mai sus, C3,α
loc

(

R
N \ {0}

)

reprezintă spaţiul funcţiilor de clasă C3 pentru care derivatele parţiale de
ordin trei sunt funcţii local Hölder continue pe R

N \ {0} de exponent α (conform Fiorenza [11, Capitolul
1] şi L. Evans [10, Chapter 5]).

Am notat argumentul normei arbitrare F cu F (ξ) = F (ξ1, ..., ξN ), iar Fξi =
∂F

∂ξi
, i ∈ 1, 2, ..., N şi cu

Hess
(

FN
)

:= (FN
ξiξj

)1≤i,j≤N , unde Fξiξj =
∂2F

∂ξi∂ξj
Fie următoarea problemă la limită supradeterminată:
Problema 3.1.1























Qu :=
∑N

i=1

∂

∂xi

(

FN−1(∇u)Fξi(∇u)
)

= 0 ı̂n Ω := Ω0 \ Ω1 ⊂ R
N ,

u = 0, F (∇u) = c0 pe ∂Ω0,

u = 1, F (∇u) = c1 pe ∂Ω1.

(3.2)

Aici Ω0 şi Ω1 sunt domenii mărginite din R
N având frontierele de clasă C2, astfel ı̂ncât Ω0 ⊃ Ω1, iar

c1 > c0 > 0 sunt constante reale oarecare. Mai mult, presupunem că Ω0 şi Ω1 sunt domenii stelate ı̂n
raport cu originea, care se află situată ı̂n Ω1. Prin ν = (ν1, · · · , νN ) notăm versorul normalei exterioare
la ∂Ω. ı̂n demonstraţiile din acest capitol am folosit următoarele definiţii:

Definiţia 3.1.2 Spunem că u ∈ W 1,N (Ω) este soluţia slabă a problemei 3.1.1 dacă

∫

Ω
FN−1(∇u)Fξi(∇u)vi dx = 0 ∀v ∈ C∞

0 (Ω) (3.3)

şi u satisface condiţiile pe frontieră (3.2)2,3.
Definiţia 3.1.4 Numim norma duală a lui F

F ∗(x) = sup
ξ ̸=0

⟨x, ξ⟩

F (ξ)
∀ x ∈ R

N .

F ∗ se mai numeşte şi polara lui F.
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Pentru r > 0, definim

WF (r) := {x ∈ R
N : F ∗(x) < r}, WF ∗(r) := {x ∈ R

N : F (x) < r}.

Definiţia 3.1.5 În general, pentru r > 0, spunem că WF (r) este forma Wulff a lui F, de rază r

şi centru 0. O mulţime D ⊂ R
N este o formă Wulff a lui F dacă există r > 0 astfel ı̂ncât D = {x ∈

R
N : F ∗(x) < r}.
Rezultatul principal original al acestui capitol este teorema 3.1.6.
Teorema 3.1.6 Dacă problema 3.2 are o soluţie slabă u, atunci Ω1 şi Ω0 sunt forme Wulff concentrice,

ale căror raze sunt date de:

ri =
(

ci(ln c1 − ln c0)
)−1

, i = 0, 1. (3.9)

Mai mult, dacă F ∗ ∈ C1(RN \ {0}), atunci soluţia u(x) este dată de formula:

u(x) =
(

(ln r0 − ln r1)
−1(ln r0 − lnF ∗(x))

)

∀x ∈ Ω. (3.10)

Demonstraţia Teoremei 3.1.6 este prezentată printr-o succesiune de leme:
Lema.3.2.1 Presupunem că u este soluţia slabă a ecuaţiei (3.2)1. Atunci funcţia P , definită prin

(3.16) − (3.17), este fie identic constant pe Ω, sau nu are puncte de maxim ı̂n Ω şi verifică Pν > 0 pe
∂Ω = ∂Ω0 ∪ ∂Ω1.

Aici, ν este versorul normalei exterioare la ∂Ω, ı̂n timp ce Pν este derivata normală a lui P .
Lema.3.2.2 Presupunem că u este soluţia slabă a ecuaţiei (3.2)1. Fie aij coeficienţii definiţi prin

aij(∇u) :=
∂2

∂ξi∂ξj

(

1

N
FN (∇u)

)

= FN−1Fij + (N − 1)FN−2FiFj ,

unde i, j ∈ {1, ..., N} . Atunci avem inegalitatea:

aijakluikujl ≥
(aijuij)

2

N
+

N

N − 1

[aijuij

N
− (N − 1)FN−2FiFjuij

]2
pe Ω \ C, (3.18)

unde mulţimea
C = {x ∈ Ω; ∇ u(x) = 0}.

Pentru ı̂nceput vom defini curbura medie anizotropă, HF (G. Wang şi C. Xia [26, p. 313]). În acest
scop vom considera un domeniu mărginit D ⊂ R

N cu frontiera, ∂D -o subvarietate N − 1 dimensională,
orientată şi compactă, fără frontieră ı̂n R

N . Notăm cu {eα}
N−1
α=1 o bază ı̂n spaţiul tangent la ∂D, iar cu

(

gαβ
)

αβ
,
(

hαβ
)

αβ
matricile primei forme fundamentale, respectiv celei de-a doua forme fundamentale.

Definiţia 3.3.1 A doua F-formă fundamentală,
(

hFαβ
)

αβ
şi curbura medie anizotropă HF a frontierei

∂D se definesc astfel:

hFαβ = ⟨Fξξ ◦ ∇eα , eβ⟩, HF =
N−1
∑

α,β=1

gαβhFαβ , (3.34)

unde
(

gαβ
)

αβ
e matricea inversă a matricei

(

gαβ
)

αβ
, iar ∇ este derivata covariantă ı̂n R

N .

De asemenea, spunem că ∂D este slab convexă dacă matricea
(

hαβ
)

αβ
este semipozitiv definită (G.

Wang şi C. Xia [26, p. 313]).
Lema 3.3.2 Dacă problema 3.2 admite soluţia slabă u(x), atunci F− curbura medie, HF , a ∂Ω

satisface:

H1F > α
(N − 1)c1

N
pe ∂Ω1 şi H0F < α

(N − 1)c0
N

pe ∂Ω0, (3.35)

sau

H1F = α
(N − 1)c1

N
pe ∂Ω1 şi H0F = α

(N − 1)c0
N

pe ∂Ω0, (3.36)
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unde HiF := HF |∂Ωi
, i = 0, 1.

Lema 3.3.3 O condiţie necesară de existenţă a unei soluţii u(x) a problemei 3.2 este

cN0 | Ω0 |= cN1 | Ω1 |, (3.41)

unde c0, c1 sunt constantele din condiţiile la limită (3.2)2,3.

În final am obţinut

u(x) = k0

∫ r0

F ∗(x)
s−1 ds = k0

(

ln r0 − lnF ∗(x)
)

pe Ω. (3.57)

∇u(x) = −
∇F ∗(x)

(ln r0 − ln r1)F ∗(x)
. (3.58)

În cele din urmă, pentru a obţine (3.9) folosim condiţiile pe frontieră (3.2)2,3, (3.58) şi egalitatea
F (∇F ∗(x)) = 1. Astfel, Teorema 3.1.6, este demonstrată. Rezultatele originale din capitolul 3 au fost
publicate ı̂n lucrarea A. E. Nicolescu şi S. Vlase [17].

Cunoaşterea distribuţiei potenţialului electric şi a distribuţiei temperaturii pe domeniul spaţial
ocupat de un nanotub permite utilizarea acestuia ı̂ntr-un domeniu vast de dispozitive de măsură bazate
pe efectul termoelectric direct Seebeck(Chakraborty şi colab. [6]), pe efectul Peltier (Shafraniuk [20]),
pe efectul Hall (Baumgartner şi colab. [4]), sau pe efectul Nernst (Checkelsky şi Ong [7]).

În capitolul 4 am formulat o problemă generala la limită supradeterminată, Problema 4.1.1, pe un
domeniu cilindric Ω ⊂ R

N , N ≥ 2, pentru o funcţie u : RN → R pentru care sunt puse condiţii pe
frontierele libere ∂Ω0 şi ∂Ω1.

Pe baza problemei generale 4.1.1, se formulează ı̂n continuare două probleme particulare la limită
supradeterminate, problema 4.1.5. şi problema 4.1.6, ale căror soluţii permit o posibilă descriere a
comportamentului electric, respectiv, termic al nanotuburilor de carbon pentru care sunt puse condiţii
pe frontierele libere ∂Ω0 şi ∂Ω1. Prin interpretările potenţialului electric V şi, respectiv, a temperaturii T
ca fiind soluţiile problemelor particulare 4.1.5 respectiv 4.1.6, ı̂n teză au fost propuse modele matematice
ale distribuţiei suprafeţelor izoterme ı̂n nanotubul de carbon cu capetele menţinute la potenţiale electrice
constante, respectiv pentru suprafeţele echipotenţiale ı̂n nanotubul cu capetele termostatate.

Modelul macroscopic propus ı̂n acest capitol pentru descrierea comportamentul termic, respectiv,
electric al nanotubului, este un domeniu cilindric Ω ⊂ R

3, cu capetele menţinute la potenţiale electrice
diferite, respectiv, cu frontierele menţinute la temperaturi diferite pe care se formulează problemele 4.1.5
şi 4.1.6.

Problemele 4.1.5 şi 4.1.6 sunt cazuri particulare ale Problemei 4.1.1, problemă la limită
supradeterminată mai generală, pe un domeniu cilindric Ω ⊂ R

N , N ≥ 2, pentru o funcţie u : RN → R

pentru care sunt puse condiţii pe frontierele libere ∂Ω0 şi ∂Ω1. Pentru modelul macroscopic propus,
funcţia u reprezintă potenţialul electric V ı̂n cazul comportamentului electric, respectiv, temperatura T

ı̂n cazul comportamentului termic. Modelul macroscopic al nanotubului de carbon propus ı̂n acest
capitol conduce la concluzia că suprafeţele izoterme ale nanotubului termostatat la capete, respectiv
suprafeţele echipotenţiale ale nanotubului cu capetele menţinute de potenţiale electrice constante sunt
hiperplane paralele cu frontierele libere ∂Ω0 şi ∂Ω1 ı̂n cazul N−dimensional. Acest model este un caz
particular al unei probleme supradeterminate pentru o clasă generală de ecuaţii anizotrope pe un
domeniu cilindric Ω ⊂ R

N , N ≥ 2.
Scopul este să arătăm că dacă problema 4.1.1 admite o soluţie ı̂n sens slab, atunci domeniul Ω şi

soluţia u corespunzătoare satisfac anumite proprietăţi de simetrie. În acest capitol am tratat următoarea
problemă la limită:

Problema 4.1.1


























Qu :=
∑N

i=1

∂

∂xi

(

G′
(

F (∇u)
)

Fξi(∇u)
)

= 0 ı̂n Ω,

u = 0, F (∇u) = a0 = const. > 0 pe ∂Ω0,

u = 1, F (∇u) = a1 = const. > 0 pe ∂Ω1,

G′
(

F (∇u)
)

∇F (∇u) · ν = 0 pe ∂Ωc.

(4.7)
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Rezultatul principal al acestui capitol afirmă următoarele:
Teorema 4.1.4 Să presupunem că frontiera laterală a cilindrului ∂Ωc este slab convexă şi, ı̂n plus,

funcţia F verifică şi condiţia
N−1
∑

i=1

xi
∂F

∂xi
(x) ≥ 0, ∀ x ∈ R

N . (4.10)

Dacă problema 4.1.1 are o soluţie u ∈ C1(Ω), atunci a0 = a1 = a > 0 şi frontierele ∂Ωi sunt cuprinse
ı̂n două hiperplane orizontale, hi = ci = const., i = 0, 1. Mai mult, soluţia u a problemei 4.1.1 depinde
doar de xN .

Demonstrarea Teoremei 4.1.4 este dată printr-o succesiune de leme:
Lema 4.2.1 Funcţia P (u; ·) definită

P (u;x) = G′
(

F
(

∇u(x)
)

)

F
(

∇u(x)
)

−G
(

F
(

∇u(x)
)

)

not.
= H

(

F
(

∇u(x)
)

)

∀x ∈ Ω,

ı̂şi atinge maximul pe Ω doar pe ∂Ω, altfel P (u; ·) ≡ const. ı̂n Ω.
Lema 4.2.2 Presupunem că u este o soluţie slabă a ecuaţiei (4.7)1. Fie aij coeficienţii definiţi prin

aij(∇u) :=
∂2

∂ξi∂ξj
(G ◦ F ) (∇u) = G′Fij +G′′FiFj ,

aijk(∇u) :=
∂3

∂ξi∂ξj∂ξk
(G ◦ F ) (∇u).

.
Atunci avem următoare inegalitate:

aijakluikujl ≥
(aijuij)

2

N
+

N

N − 1

[aijuij

N
−G′′FiFjuij

]2
pe Ω \ C. (4.30)

Lema 4.2.3 O condiţie necesară pentru existenţa unei soluţii slabe u a problemei (4.7) este a0 =
a1 = a > 0.

Lema 4.2.4 Funcţia auxiliară P verifică următoarea identitate

∫

Ω

(

P (u;x)−G′
(

F
(

∇u(x)
)

)

N−1
∑

i=1

Fi(∇u(x))ui(x)
)

dx = H(a) | Ω |, (4.30)

unde | Ω | este volumul lui Ω.
Observaţia 4.2.5

Modificăm problema la limită (4.7) luând h0 = 0, adică

∂Ω0 = {(x′, 0) ∈ R
N ;x′ ∈ Ω′},

iar F (∇u) nu mai este dat pe ∂Ω0.

Dacă această versiune modificată a problemei 4.1.1 are o soluţie slabă u ∈ C1(Ω) şi au loc ipotezele
Teoremei 4.1.4, atunci porţiunea de frontieră liberă ∂Ω1 este conţinut ı̂ntr-un hiperplan orizontal h1 =
const. > 0 şi u depinde numai de xN .

Într-adevăr, concluzia Lemei 4.2.1 rămâne adevărată dacă (4.7)2 este ı̂nlocuită prin

u = 0 pe ∂Ω0 = {(x′, 0) ∈ R
N ;x′ ∈ Ω′}. (4.46)

Modelul macroscopic propus presupune descrierea comportamentul termic, respectiv, electric al
nanotubului, că domeniu ocupat de nanotub este cilindric, iar capetele nanotubului sunt menţinute la
potenţiale electrice constante diferite, respectiv, cu capetele menţinute la temperaturi constante diferite.

Acest model conduce la concluzia că suprafeţele izoterme ale nanotubului termostatat la capete,
respectiv, suprafeţele echipotenţiale ale nanotubului cu capetele menţinute de potenţiale electrice
constante sunt hiperplane paralele cu frontierele libere ∂Ω0 şi ∂Ω1. Valorile temperaturii, respectiv ale
potenţialului electric ı̂ntr-un punct al nanotubului depind doar de variabila xN ı̂n lungul axei
cilindrului. Acest capitol propune două direcţii, şi anume:
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� O problemă abstractă la limita supradeterminată (Problema 4.1.1), care generalizează modelul
propus, şi anume problema ecuaţiei anizotrope pe un domeniu cilindric Ω ⊂ R

N , N ≥ 2, pentru o
funcţie u : RN → R pentru care sunt puse condiţii pe frontierele libere ∂Ω0 şi ∂Ω1.

� Două aplicaţii (Problema 4.1.5 şi Problema 4.1.6) ale Problemei 4.1.1 prin particularizarea funcţiei
u ı̂n cazul tridimensional, u reprezentând potenţialul electric ı̂n Problema 4.1.5, respectiv,
temperatura ı̂n Problema 4.1.6.

Rezultatul principal al acestui capitol este Teorema 4.1.4. Pentru a demonstra Teorema 4.1.4. printr-o
succesiune de leme, am stabilit un principiu de maxim pentru o P−funcţie, o identitate de tip Rellich şi
unele argumente geometrice privind curburile anizotrope ale frontierelor libere ∂Ω0 şi ∂Ω1.

Dacă ı̂n capitolul 3 soluţia problemei generale este aplicată pentru a determina potenţialul electric ı̂n
domeniul spaţial ocupat de un nanotub cu doi pereţi, pereţii nanotubului fiind menţinuţi la potenţiale
electrice constante diferite cu scopul evaluării capacitaţii electrice echivalente a acestuia, ı̂n capitolul
4, soluţia problemei 4.1.1 este aplicată ı̂n determinarea distribuţiei potenţialului electric şi, respectiv,
ı̂n determinarea distribuţiei temperaturii pentru un nanotub cu un singur perete ı̂n condiţiile ı̂n care
capetele acestuia sunt menţinute la potenţiale electrice constante diferite, respectiv, capetele acestuia
sunt menţinute la temperaturi constante diferite.

Problemele legate de nanotuburi ı̂n capitolele 3 şi 4 sunt decuplate.
În capitolele 3 şi 4 nu se studiază deformabilitatea sau propagările ı̂n prezenţa câmpului electric sau

termic.
Pe baza rezultatelor obţinute ı̂n acest capitol (̂ın condiţiile problemei 4.1.5, suprafeţele echipotenţiale

ale nanotuburilor de carbon sunt plane paralele cu ∂Ω0 şi ∂Ω1, iar ı̂n condiţiile problemei 4.1.6, suprafeţele
izoterme ale nanotuburilor de carbon sunt plane paralele cu ∂Ω0 şi ∂Ω1), se pot propune două aplicaţii
practice, şi anume implementarea nanotubului de carbon fie ca element al unui senzor termoelectric, fie
utilizarea nanotubului ca nanogenerator de tensiune electrică bazat pe efectul Seebeck.

Rezultatele originale din acest capitol au fost publicate ı̂n lucrarea L. Barbu şi A.E. Nicolescu [2].
Câteva direcţii de studiu pe care le voi avea ı̂n vedere ı̂n conexiune cu problemele studiate ı̂n aceasta

teza de doctorat sunt următoarele:

(i) Studiul senzorilor electromagnetici cu nanotuburi de carbon. Nanostructura nanotuburilor de
carbon permite utilizarea acestora ca detectori de radiaţie electromagnetică şi de radiaţie gama pe
baza modificărilor proprietăţilor electrice (capacitate electrică, rezistenţă electrică şi inductanţă
magnetică) ı̂n urma interacţiunilor cu aceste radiaţii.

(ii) Cu toate că cea mai mare parte a nanotuburilor de carbon pot fi asimilate din punct de vedere
elastic cu sisteme uni-dimensionale chirale, ı̂n această lucrare au fost considerate două familii de
nanotuburi, cele zig-zag şi cele armchair. Modelele nelocale prezentate ı̂n lucrare au fost aplicate
acestor două familii, iar extinderea lor la nanotuburile chirale reprezintă una din căile de generalizare
ulterioară a rezultatelor din această lucrare.

(iii) Studiul comportamentului piezoelectric al nanotuburilor deformate axial şi utilizarea rezultatelor
obţinute ı̂n proiectare de nanosenzori electromecanici.

(iv) O alta direcţie de cercetare este studiul vibraţiilor nanotuburilor compozite funcţionalizate lateral.
Funcţionalizarea laterală a nanotuburilor de carbon permite atât mărirea suprafeţei active de ataşare
a moleculelor care fac obiectul detecţiei, cât şi creşterea semnificativă a probabilităţii de ataşare de
nanotub a acestor molecule.
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