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Cuvinte-cheie Nanotub de carbon; senzor; metoda neinvaziva; oscilatii transversale, oscilatii longi-
tudinale; ecuatie anizotropica; principii de maxim; solutie slaba; problema supradeterminata; simetrie.
Rezumat

Descoperirea nanotuburilor de carbon in 1991 de Iijima [12] a generat directii noi de dezvoltarea de
nanodispozitive de inalta rezolutie. Nanotuburile de carbon prezinta proprietati fizice si chimice unice,
care au fost studiate intens in ultimele decenii pentru aplicatii biologice. Detectarea ultra-sensibila a
speciilor biologice cu nanotuburi de carbon poate fi realizata dupa functionalizarea acestora. Nanosenzorii
bazati pe nanotuburi de carbon deschid o noua abordare in analiza microscopica a probelor biologice.
Nanodimensiunile nanotuburilor de carbon ofera posibilitatea integrarii lor in senzori cu aplicatii vaste in
tehnicile non-invazive si minimum-invazive de detectie de compusi biologici si de masurare de parametri
medicali.

Aceasta teza de doctorat este structurata in cinci capitole, si anume: un capitol introductiv, trei
capitole care contin rezultate originale, rezultate ale cercetarii personale efectuate pe durata studiilor
doctorale asupra comportamentului mecanic, electric si termic al nanotuburilor de carbon si un ultim
capitol care sintetizeaza concluziile finale, diseminarea rezultatelor obtinute prin articolele publicate,
prin participarile la conferinte internationale de specialitate, contributiile originale ale autorului,
precum si directii viitoare de cercetare. Scopul si obiectivele acestei teze de doctorat sunt cercetarea
comportamentului mecanic, electric si termic al nanotuburilor de carbon.

Cercetarea se concretizeaza In realizarea unei baze teoretice si a unor modele matematice care
sa descrie comportamentul nanotuburilor, prin intermediul solutiilor unor probleme cu date initiale si la
limita. Aplicatiile valorifica modelele teoretice elaborate.

Principalele rezultate originale din aceasta lucrare sunt doua aplicatii practice - doi senzori
neinvazivi - bazate pe doua modele macroscopice ale comportamentului elastic al nanotuburilor de
carbon, si anume modelul Timoshenko si Gere [23] al barei elastice clasice pentru studiul oscilatiilor
transversale si modelul Aydogdu [1] al barei elastice nelocale pentru studiul oscilatiilor longitudinale ale
nanotuburilor de carbon, determinarea solutiei slabe pentru oscilatiile longitudinale ale nanotubului de
carbon aflat intr-un mediu exterior elastic pe baza modelului barei nelocale Aydogdu [1] si doua modele
macroscopice pentru comportamentul electric si termic al nanotubului de carbon, si anume un model
macroscopic pentru proprietatile electrice ale nanotubului de carbon cu doi pereti divizati virtual in
domenii inelare, exprimand potentialul electric in domeniul ocupat de nanotub ca solutie a problemei
supradeterminate 3.1.1., respectiv un alt model macroscopic pentru descrierea comportamentul termic,
respectiv, electric al nanotubului, in conditiile in care capetele nanotubului sunt mentinute la potentiale
electrice constante diferite, respectiv, cu capetele mentinute la temperaturi constante diferite ca solutie
a problemei supradeterminate 4.1.1.

Rezultatele originale obtinute pe durata studiilor doctorale prezentate in capitolele 2, 3 si 4 se
bazeaza pe patru articole publicate in timpul studiilor doctorale: trei dintre acestea indexate ISI, si
anume [2], [16], [17] si un articol publicat intr-o revista indexata BDI, [15].

Subcapitolul 2.2 propune, pe baza modelului Timoshenko si Gere [23] al barei elastice clasice
pentru studiul oscilatiilor transversale, un model matematic pentru un senzor bazat pe modificarile
frecventei oscilatiilor transversale ale nanotubului de carbon modelat ca un corp elastic liniar. Ideea de
functionare a unui astfel de senzor este modificarea pulsatiei oscilatiilor proprii ale nanotubului in urma
conectarii la capatul liber al acestuia a unei molecule care 1l functionalizeaza, respectiv a atagirii uneia
sau mai multor molecule pe capatul functionalizat.

Modelul de analiza propus in aceasta lucrare incorporeaza detectia acetonei din respiratia
pacientului cu ajutorul unui senzor cu nanotuburi de carbon. In acest senzor, fiecare dintre
nanotuburile de carbon este fixat la un capat de un substrat, iar celdlalt capat este liber. Nanotuburile
de carbon sunt plasate in vecinatatea suprafetei unei membrane selective. O a doua varianta de senzor
presupune functionalizarea capatului liber al nanotubului cu o molecula cu afinitate mare la acetona.

Se masoara frecventele de oscilatie ale nanotuburilor si se compard spectrul frecventelor
nanotuburilor Inainte si dupa atagarea moleculelor de acetona. Masurand variatia relativa a frecventei
in urma cuplarii moleculelor de acetona, se poate face detectia pana la nivelul unei singure molecule de



acetona si, implicit, se poate masura indirect concentratia moleculelor de acetona si presiunea partiala a
acetonei in proba investigata.

Pentru a studia oscilatiile transversale ale nanotubului de carbon, vom folosi modelul barei elastice
clasice fixata la un capat pe substrat, iar celalalt capat liber. Activand piezoelectric (ca in Yasuda si
colab. [29]), nanotubul de carbon va oscila liber pe directia y. In aproximatia micilor oscilatii, oscilatia
nanotubului poate fi exprimata prin ecuatia [23]:

0%uy 0%uy

Bl 3~ pA=— 5" =0, (2.100)

unde E este modulul de elasticitate Young al nanotubului de carbon, I este momentul de inertie al
nanotubului, p este densitatea medie a nanotubului de carbon, A este aria sectiunii transversale a
nanotubului de carbon la distanta = de O, iar u, este deplasarea nanotubului in punctul de coordonata
x.

Ecuatia (2.100) arata ca orice punct al barei oscileaza armonic in cazul neamortizat, lucru care ne
permite o analogie intre oscilatia capatului liber al nanotubului si oscilatia unui pendul elastic. Nanotubul
supus oscilatiilor libere neamortizate poate fi modelat ca un sistem discret - pendul elastic - care oscileaza
cu aceeasi frecventa ca si capatul liber (z = L) al nanotubului. Ecuatia de migcare pentru modelul
pendulului elastic este:

0%x 9 9
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unde k.., este constanta elasticd a pendulului echivalent si m..; este masa echivalenta a acestuia.

Frecventa proprie a oscilatorului echivalent cu nanotubul de carbon, in cazul micilor oscilatii se poate
exprima prin relatia

1 kech

2w\ meen

(2.102)

Criteriile de analogie decurg din conditia ca pendulul elastic sa aiba aceeasi frecventa de oscilatie ca si
capatul liber (z = L) al nanotubului, deci:

e constanta elasticd a pendulului trebuie sa fie factorul de proportionalitate dintre forta maxima
exercitata asupra capatului liber al barei gi amplitudinea de oscilatie a acestuia;

e masa pendulului trebuie sa corespunda egalitatii dintre energia cinetica maxima a barei si energia
cinetica maxima a pendulului echivalent.

O masa suplimentard atasata la capatul nanotubului de carbon va determina modificarea frecventei
micilor oscilatii ale acestuia.

Pentru exprimarea dependentei frecventei de oscilatie a nanotubului de masa moleculei sau a grupului
de molecule de gaz atasate de capatul liber al nanotubului am rezolvat doua probleme:

Problema 2.2.1 Fie un nanotub cu un capat incastrat, supus la tncovoiere sub actiunea unei forte
distribuite pe lungimea nanotubului gi dirijata dupa axa Oy. Sa se determine constanta de elasticd a
nanotubului (factorul de proportionalitate dintre forta mazima exercitatd asupra capdatului liber al
nanotubului gi amplitudinea de oscilatie a acestuia).

Pentru rezolvarea acestei probleme, am folosit ecuatii de tip rezistenta materialelor si am urmarit
descrierea data de Timoshenko si Gere [23], Timoshenko si Young [24]. Am obtinut constanta elastica a
resortului echivalent cu nanotubul un capat incastrat in forma:

3EI

= (2.136)
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Problema 2.2.3 Fie un nanotub cu un capdt incastrat care oscileaza dupa (2.100). Sa se determine
masa Meep, a unui oscilator prins de resortul echivalent descris (2.136) care oscileaza cu aceeasi frecventa



ca gt nanotubul. Deformarea staticd a nanotubului descrisa in Problema 2.2.1. este asimilatd cu problema
dinamica 2

mech£ — kX, (2.137)
Pentru rezolvarea acestei probleme vom folosi o metoda energetica ca in Zacarias, Wang si Reimbold in
[27]. Metoda utilizata pentru a determina masa echivalenta, me.,, este de a face o analogie energetica
intre nanotub si oscilatorul echivalent. Principiul echivalentei este ca nanotubul si oscilatorul echivalent
au acelagi efect dinamic, adica aceeagi energie cineticd maxima. Consideram ca sistemul format din
nanotubul modelat ca nanobara de masa echivalenta mg si o molecula sau un grup de molecule de gaz
atagate, de masa m, este pus in migcare de oscilatie. Am obtinut masa echivalenta a oscilatorului:

33L

= 2~ 2.14
10" (2.147)

Mech = Mo + M, My

Pe baza ecuatiilor (2.102), (2.136) si (2.147) am exprimat dependenta frecventei de oscilatie de masa
moleculei sau a grupului de molecule atagate de capatul liber al nanotubului prin formula

1 Kech, 1 3ET
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Daca nu este atagata nicio molecula de gaz, atunci m = 0 si conform ecuatiei (2.148), frecventa de

oscilatie a nanotubului este:

1 3EI

— [ —. 2.14
21\ moL3 (2.149)

vy =
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Notand cu variatia relativa a frecventei nanotubului In urma atasérii moleculei sau grupului

Vo
de molecule de gaz, obtinem masa atasata de capatul liber al nanotubului:

1

2
(1+%—0”>

In cazul analizei unei probe gazoase cu mai multe componente, pentru a asigura selectivitatea
senzorului cu nanotuburi de carbon, se face functionalizarea acestora. In functie de gazul ciutat in
proba atmosferei analizate, pe fiecare nanotub se ataseaza chimic o moleculd cu afinitate mare la
componenta gazoasa vizata. Folosind rezultatul obtinut anterior, am obtinut formula dependentei masei
de gaz atagate de capatul liber al nanotubului de frecventa de oscilatie a nanotubului funtionalizat.
Notand cu m; masa moleculei care functionalizeaza nanotubul, obtinem

Meg = Mo +my +m. (2.154)

si obtinem masa atasata de capatul liber functionalizat al nanotubului:

1
m = (mo+my) | ——— —1] . (2.159)

2
A
(1+2)
Intre glicemie (BG) si concentratia de acetoni din aerul expirat (C,) existd formula empirics [28]
BG = aC, + B, (2.160)

unde « si § sunt constante determinate experimental.



Rezultatul acestui subcapitol este Aplicatia 2.2.2.6 care permite evaluarea glicemiei unui pacient.
Rezultatele acestui subcapitol au fost publicate in lucrarea A.E. Nicolescu, L. Rusali, M. Vasile [15].

Subcapitolul 2.3 propune, pe baza modelului Aydogdu [1] al barei elastice nelocale, un model
matematic pentru oscilatiile longitudinale ale nanotubului. In paragraful introductiv sunt rezolvate
problemele 2.3.1 si 2.3.2, iar solutiile obtinute sunt folosite in paragraful 2.3. Pe baza solutiei Problemei
2.3.3 este formulata Aplicatia practica 2.3.3 pe baza careia se poate utiliza nanotubul de carbon pentru
identificarea unei macromolecule. Principiul utilizat este modificarea frecventei oscilatiilor longitudinale
ale nanotubului iIn urma atasarii unei macromolecule de capatul liber al acestuia. Am rezolvat
urmatoarea problema:

Problema 2.3.3 Sa se gaseasca frecventele proprii ale deplasarii u (x,t), u : [0; L] x [0;00) — R, care
sa satisfaca ecuatia

0%u (z,t)
ox?

cu conditiile pe frontiera in absenta macromoleculei

+ (ega)2m64u (z.0) _, OFulo,t) (2.192)

EA 0202 ot?

u(0,t) =0, N (L,t) = 0. (2.193)

Am determinat frecventa oscilatiilor axiale ale nanotubului In urma atagarii macromoleculei:

1 EA

== . (2.207)
27\ LM + Mot (42)°]
respectiv In absenta macromoleculei (M = 0):
1 EA
Vo= — . (2.208)
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Dependenta dintre masa macromoleculei biologice sau a unei structuri virale atagate de nanotub si
variatia frecventelor de oscilatie Inainte si dupa atagarea de nanotubul care oscileaza longitudinal este

exprimata prin
epaN\2 | fvp\2
M = Meyr (T) [(J - 1] . (2.209)

Contributia originala a autorului in paragraful 2.4, pe baza modelului barei nelocale Aydogdu [1],
este determinarea solutiei slabe pentru oscilatiile longitudinale ale nanotubului de carbon aflat Intr-un
mediu exterior elastic. Am folosit fundamentele teoretice ale solutiilor slabe pentru ecuatia undelor din
cartile H. Brezis [5], V. Barbu [3], Singh si colab. [22], O. A. Ladyzhenskaia [13], G. Shilov [21] la care
se adauga lucrarea lui C. Mortici [14].

Am considerat ca mediul exterior elastic actioneaza asupra nanotubului cu o forta axiala pe unitatea
de lungime f = —ku, k este o constanta reala strict pozitiva. In acestd ipoteza, formulam urmatoarea
problema:

Problema 2.4.1 Fie Q = (0, L) C R (domeniul spatial ocupat de nanotubul de carbon) cu frontiera
I'. Definim Q = Q2 x (0,00) i ¥ =T x (0,00). Am studiat existenta si unicitatea solutiei slabe u a
problemei la limita:

(i) |[EA—k (eoa)Q] % — m%%‘ + (epa)? m% —ku=01n Q;
(ii) w =0 pe %;
(iii) u(x,0) =g (z) in
(iv) %1; (x,0) = h(x) in Q.



Notand cu
po = EA —k(epa)?, p1 = m(ega)?, (2.210)

ecuatia (i) poate fi scrisa sub forma

0*u 0 ou O3u
%2 or po%—l-mm +ku=0 t>0, z€(0,L). (2.211)

m

Conditiile la limita asociate ecuatiei (2.211) sunt:

u|:c:0 = u|:v:L = 0’ (2212)
la care se adauga conditiile initiale
ou
uly_g =9 (), o =h(z), xe€(0,L). (2.213)
t=0

Am determinat solutia problemei(2.211)-(2.213) sub forma unei serii Fourier folosind metoda separarii
variabilelor si am demonstrat existenta, unicitatea si regularitatea solutiei slabe a problemei
(2.211)-(2.213).

Pentru a defini solutia slaba a problemei (2.211)-(2.213), ludnd in considerare conditiile la limita,
vom considera spatiul Sobolev H{ (0, L) (H. Brézis [5], V. Barbu [3]) cu produsul scalar si norma asociata

acestuia:
L L
(u,v); == pl/ u'v'd:ﬂ+m/ uvdz,
0 0

(2.214)
L L
lull? ::pl/o (u’)deer/O wdavu,v € H} (0,L).

Pentru obtinerea definitiei unei solutii slabe, vom inmulti scalar (2.211) cu o functie
v e H! (O,T; H& (0, L)) si apoi vom integra in raport cu ¢, pentru ¢t € (0,7). In urma integrarilor prin
parti si a conditiilor la limita (2.212)-(2.213) obtinem urméatoarea definitie

Definitia 2.4.2 Fie g,h € H} (0, L) functii date. Functia u : (0, L) x (0,00) — R se numeste solutie
slaba a problemei la limita (2.211)-(2.213) daca:

1. we C'([0,T); H{ (0,L)) si

L 9%y (x,t) Ov (x, 1)
// (z,7)v(x,7)dxdr + p1 oot e dz

8% (z,7) 82v (z,7)
_pl// 0zt awor rdTt

u(z,7)0v(z,7) Ou(z,7)0v(2,T)
/ / [ ox Oz T (2.216)

+/0 augj’ t)v (x,t)dx

L L a,u

:/ h (@) v (2,0) dz + ;51/ W (@) 2 (2,0) do
0 0 81’

Yo e H' (0,T;Hy (0,L)) VT >0, Vte (0,T);

u(z,0) =g (x), %—?(:c,O):h(a:), 0<zxz<L.
-k
Am notat cuﬁ():@; ﬁlzp—l; k=—
m m m’



Pentru a obtine existenta si unicitatea solutiei slabe, de tip propagari de unde, definitd mai sus,
aplicam metoda separarii variabilelor. Ecuatia undelor longitudinale se determina prin cautarea de
solutii de forma

u(z,t)=p(x)e™, t>0, z€(0,L).
Inlocuind u de aceastd form# in ecuatia (2.211), si tindnd cont de conditiile la limitd (2.212),adici

problema Sturm-Liouville (G. Silov [21][Capitolul V, Sectiunea 5])

_ 2 " _ 2 _
{ (po — p1w?) " + (= +mw?) o =0, = € (0,L) (2.217)

0 (0)=o(L)=0.

Am gasit valorile proprii ale problemei (2.217), Ay:
[ n272py + kL2
=\ 7. 2.222
wn n2m2p; + mlL?2 ( )

on (z) :ansin?, ze0,L], neN",

si functiile proprii ale problemei (2.217)

unde a, va fi determinat aga incat acestea sa formeze un sistem ortonormat care va fi i complet (conform
G. Silov [21][Capitolul V, Sectiunea 5] si C. Mortici [14]) in spatiul H{ (0, L) in raport cu norma si produsul
scalar definite in (2.214). Am gasit

oo
u(z,t) = 2:1 ay sin ? (cn coswpt + dp sinwyt ), (2.234)
n—=

unde constantele a,,,wn,, ¢, d, sunt cele date de expresiile:

2L
== N*. 2.22
n \/ n2n2py +mL?2’ ne (2.226)

L L
cn = (g, 0n) = pl/ g’(p;ldx + m/ gpndx Vn € N*. (2.232)
0 0
1 Lo L
dypwy = (h,¢n), ,de unde d,, = — (pl/ h'o,dx + m/ hganda:) Vn € N¥, (2.233)
Wn 0 0

Pentru a demonstra existenta si unicitatea solutiei slabe a problemei 2.4.1 am folosit rezultatele
obtinute anterior gi argumente standard ( Ladyzhenskaya [[13], Chapter IV, Sections 2-4] si Barbu [[3],
pp. 168-189]). in concluzie, avem:

Teorema 2.4.3 Daca g, h € H& (0, L) si sunt verificate ipotezele asupra constantelor de material,
atunci problema (2.211) — (2.213) admite o unica solutie slabd u € C* ([0, ; H (0, L)) data de egalitatea
(2.234).

Rezultatele acestui subcapitolului 2.4 au fost publicate in lucrarea A.E. Nicolescu, A. Bobe [16].

In capitolul 3 am studiat o problema generala supradeterminatd a carei solutie generala am
particularizat-o pentru descrierea distributiei potentialului electric in interiorul unui nanotub cu doi
pereti. Deoarece sunt impuse atat conditiile la limita Dirichlet, cat si cele Neumann, Problema 3.1.1
este supradeterminata si atunci, in general, existda o solutie doar daca domeniul 2 studiat satisface o
proprietate suplimentara de simetrie.

Modelele electrice si electronice pentru nanotubul de carbon cu un singur perete sau cu doi pereti cu
comportament de semiconductor propuse de Collins si colab. [8], Devoret si colab. [9], Neto si colab.
[18], Postma si colab. [19] includ in componenta acestora un condensator echivalent.



Modelul macroscopic electric propus in acest capitol pentru determinarea distributiei potentialului
electric in interiorul unui nanotub cu doi pereti divizeaza nanotubul cilindric in domenii inelare. Pe baza
semnificatiei fizice a conditiilor pe frontiere impuse in problema generald (cei doi pereti ai nanotubului
mentinuti la potentiale electrice constante diferite), modelul propune descompunerea nanotubului in
domenii inelare, toate aceste domenii, conectate la aceeasi diferenta de potential electric sunt echivalente
cu condensatoare elementare conectate in paralel.

Norma euclidiana, care reflectd izotropia spatiului si operatorul Laplace, care este la randul sau
determinat de izotropia dielectricului si dicteaza utilizarea normei euclidiene in exprimarea campului
electric in cazul izotrop, este inlocuita in acest capitol cu o norma arbitrara si, respectiv, de un operator
anizotrop N-laplacian, care reflectd anizotropia mediului. Inlocuind norma euclidiani obisnuita a
gradientului cu o norma arbitrard F, atunci simetria rezultata a solutiei este cea a aga-numitei forme
Wulff (o bili in norma duald F*). In cazul particularizirii rezultatelor Problemei 3.1.1, pentru
nanotubul de carbon divizat virtual in domenii inelare, functia u reprezinta potentialul electrostatic V' .
La fel ca si solutia generala a Problemei 3.1.1, potentialul este o functie marginita si Holder continua in
domeniul 2. Modelul matematic propus pentru distributia potentialul electric V' in nanotubul de
carbon poate fi privit ca un caz particular al problemei generale 3.1.1 pentru N-laplacianul anizotrop
intr-un domeniu inelar din RY.

FeCh (RV\{0}), cua € (0,1),

loc

(3.1)
Hess (F) este pozitiva definita pe RY \ {0}.

Mai sus, C’l?;f (RN \ {O}) reprezinta spatiul functiilor de clasa C? pentru care derivatele partiale de

ordin trei sunt functii local Holder continue pe R \ {0} de exponent o (conform Fiorenza [11, Capitolul

1] si L. Evans [10, Chapter 5]).
Am notat argumentul normei arbitrare F' cu F(§) = F (&1, ...,&n), lar Fe, = 1€1,2,...,N gi cu

O*F
Hess (FN> = (Féjgj)lﬁi,jSN? unde F&.fj = 8&853

87&7

Fie urmatoarea problema la limita supradeterminata:
Problema 3.1.1

Qu:=N, 85; (FYH(Vu) P (Va)) = 0n @ i= 09\ @y € RY,

u=0, F(Vu) = co pe 09, (3-2)
u = 1, F(Vu) = C1 pe an

Aici Qp si €y sunt domenii marginite din RY avand frontierele de clasa C?, astfel incat Qg O €, iar
c1 > ¢g > 0 sunt constante reale oarecare. Mai mult, presupunem ca g si 21 sunt domenii stelate in
raport cu originea, care se afld situata in Q. Prin v = (v!,--- ")
la 0€). in demonstratiile din acest capitol am folosit urmatoarele definitii:

Definitia 3.1.2 Spunem ci u € WHY(Q) este solutia slabi a problemei 3.1.1 daca

notam versorul normalei exterioare

/ FN"N (V) Fe, (Vu)o; de =0 Yo € C5°(Q) (3.3)
Q

si u satisface conditiile pe frontiera (3.2), ;.
Definitia 3.1.4 Numim norma duala a lui F

* _ <X7€> N
F(X>_§1;EF(€) vV xeR".

F* se mai numeste si polara lui F.



Pentru r > 0, definim
We(r) = {x e RN : F*(x) <7}, Wp-(r) :={x e RY : F(x) <r}.

Definitia 3.1.5 In general, pentru r > 0, spunem ca Wg(r) este forma Wulff a lui F, de raza r
si centru 0. O multime D C RY este o forma Wulff a lui F dacd exista r > 0 astfel incat D = {x €
RN : F*(x) <r}.

Rezultatul principal original al acestui capitol este teorema 3.1.6.

Teorema 3.1.6 Daca problema 3.2 are o solutie slaba wu, atunci €21 si 2o sunt forme Wulff concentrice,
ale caror raze sunt date de:

-1
ri = (ci(lncl —In co)> , 1=0,1. (3.9)

Mai mult, daca F* € CY(RM \ {0}), atunci solutia u(x) este datd de formula:
u(x) = ((ln ro —Inry)"H(Inrg — In F*(X))) Vx € Q. (3.10)

Demonstratia Teoremei 3.1.6 este prezentata printr-o succesiune de leme:

Lema.3.2.1 Presupunem ca u este solutia slaba a ecuatiei (3.2);. Atunci functia P, definita prin
(3.16) — (3.17), este fie identic constant pe €2, sau nu are puncte de maxim in Q si verifica P, > 0 pe
00 = 00y U 08

Aici, v este versorul normalei exterioare la 02, in timp ce P, este derivata normala a lui P.

Lema.3.2.2 Presupunem ca u este solutia slaba a ecuatiei (3.2),. Fie a;; coeficientii definiti prin

»? (1 _ _
aij(Vu) == PE.0E, (NFN(Vu)> = FN7E; + (N - 1)FN 2R Fy,

unde 4,j € {1,..., N} . Atunci avem inegalitatea:

2
— (N = 1)FN72F,Fju;;|  pe Q\C, (3.18)

2
(aijuij) N Q45U
A5 AR UikUj] >

N + N-1L N
unde multimea

C={xeQ; Vux) =0}

Pentru inceput vom defini curbura medie anizotropa, Hr (G. Wang si C. Xia [26, p. 313]). In acest
scop vom considera un domeniu mérginit D € RN cu frontiera, 0D -o subvarietate N — 1 dimensionali,
orientata si compacti, fara frontiera in RY. Notam cu {ea}g:_f o baza in spatiul tangent la 9D, iar cu
(gag)a 5 (haﬁ)a 5 matricile primei forme fundamentale, respectiv celei de-a doua forme fundamentale.

Definitia 3.3.1 A doua F-forma fundamentala, (hgﬁ)a 8 si curbura medie anizotropa Hp a frontierei
0D se definesc astfel:

N-1
hig = (FecoVeu,es), He= Y g*’hlg, (3.34)
a,B=1
unde (gaﬁ )a 5 ¢ matricea inversa a matricei (gag)a 5 iar V este derivata covariantd in RV,
De asemenea, spunem cd 0D este slab convexa daca matricea (haﬁ)a 8 este semipozitiv definita (G.
Wang si C. Xia [26, p. 313]).
Lema 3.3.2 Daca problema 3.2 admite solutia slaba u(x), atunci F— curbura medie, Hp, a 02
satisface:

1)e

N — N -1
HlF > a(]vl pe agl §1 HOF < O[(]\[)CU pe aQO, (335)

sau

1)

N — N -1
Hip = a(Ncl pe 9Q1 si  Hop = a(N)CO pe 09, (3.36)
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unde H;p := Hpjpq,, 1 =0, 1.
Lema 3.3.3 O conditie necesara de existentd a unei solutii u(x) a problemei 3.2 este

o Q= ||, (3.41)

unde cg, ¢; sunt constantele din conditiile la limita (3.2), .

In final am obtinut

u(x) = ko /F*(x) sl ds = kg(ln ro — In F*(X)) pe €. (3.57)
Vu(x) = —— VE ) (3.58)

(Inrg — Inry ) F*(x)’

In cele din urm&, pentru a obtine (3.9) folosim conditiile pe frontiera (3.2),4, (3.58) si egalitatea
F(VF*(x)) = 1. Astfel, Teorema 3.1.6, este demonstrata. Rezultatele originale din capitolul 3 au fost
publicate in lucrarea A. E. Nicolescu si S. Vlase [17].

Cunoagterea distributiei potentialului electric si a distributiei temperaturii pe domeniul spatial
ocupat de un nanotub permite utilizarea acestuia intr-un domeniu vast de dispozitive de masura bazate
pe efectul termoelectric direct Seebeck(Chakraborty si colab. [6]), pe efectul Peltier (Shafraniuk [20]),
pe efectul Hall (Baumgartner si colab. [4]), sau pe efectul Nernst (Checkelsky si Ong [7]).

In capitolul 4 am formulat o problemi generala la limitd supradeterminatd, Problema 4.1.1, pe un
domeniu cilindric Q@ ¢ RY, N > 2, pentru o functie v : RV — R pentru care sunt puse conditii pe
frontierele libere 0 si 0.

Pe baza problemei generale 4.1.1, se formuleaza in continuare doua probleme particulare la limita
supradeterminate, problema 4.1.5. si problema 4.1.6, ale caror solutii permit o posibila descriere a
comportamentului electric, respectiv, termic al nanotuburilor de carbon pentru care sunt puse conditii
pe frontierele libere 9)y si 921. Prin interpretarile potentialului electric V' si, respectiv, a temperaturii T
ca fiind solutiile problemelor particulare 4.1.5 respectiv 4.1.6, in teza au fost propuse modele matematice
ale distributiei suprafetelor izoterme in nanotubul de carbon cu capetele mentinute la potentiale electrice
constante, respectiv pentru suprafetele echipotentiale in nanotubul cu capetele termostatate.

Modelul macroscopic propus in acest capitol pentru descrierea comportamentul termic, respectiv,
electric al nanotubului, este un domeniu cilindric Q C R3, cu capetele mentinute la potentiale electrice
diferite, respectiv, cu frontierele mentinute la temperaturi diferite pe care se formuleaza problemele 4.1.5
si 4.1.6.

Problemele 4.1.5 si 4.1.6 sunt cazuri particulare ale Problemei 4.1.1, problema la limita
supradeterminatd mai generali, pe un domeniu cilindric @ ¢ RY, N > 2, pentru o functie v : RV — R
pentru care sunt puse conditii pe frontierele libere 0y si 0€2;. Pentru modelul macroscopic propus,
functia w reprezinta potentialul electric V' in cazul comportamentului electric, respectiv, temperatura T
in cazul comportamentului termic. Modelul macroscopic al nanotubului de carbon propus in acest
capitol conduce la concluzia ca suprafetele izoterme ale nanotubului termostatat la capete, respectiv
suprafetele echipotentiale ale nanotubului cu capetele mentinute de potentiale electrice constante sunt
hiperplane paralele cu frontierele libere 9y si 921 in cazul N—dimensional. Acest model este un caz
particular al unei probleme supradeterminate pentru o clasa generald de ecuatii anizotrope pe un
domeniu cilindric Q@ c RN, N > 2.

Scopul este sa aratam ca daca problema 4.1.1 admite o solutie in sens slab, atunci domeniul 2 si
solutia u corespunzatoare satisfac anumite proprietiti de simetrie. In acest capitol am tratat urmatoarea
problema la limita:

Problema 4.1.1

Qu := Zf\;l ;;(G’(F(Vu))ng(Vu)) =0 1n Q,
u =0, F(Vu) = ag = const. >0 pe 08, (4.7)

u=1, F(Vu) = a; = const. >0 pe 0y,
G'(F(Vu)VF(Vu)-v =0 pe Q..
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Rezultatul principal al acestui capitol afirma urmatoarele:
Teorema 4.1.4 Sa presupunem ca frontiera laterald a cilindrului 052, este slab convexa gi, in plus,
functia F' verifica si conditia

N-1

F
> xia () >0, V zeRN. (4.10)
= Oz

Dacé problema 4.1.1 are o solutie u € C*(€), atunci ag = a; = a > 0 si frontierele 9€; sunt cuprinse
in doua hiperplane orizontale, h; = ¢; = const., ¢ = 0, 1. Mai mult, solutia v a problemei 4.1.1 depinde
doar de xp.

Demonstrarea Teoremei 4.1.4 este data printr-o succesiune de leme:

Lema 4.2.1 Functia P(u;-) definita

Plu;z) =G (F(Vu(x)))F(Vu(x)) — G(F(Vu(:r))) not- H(F(Vu(x)))Vx cqQ,

isi atinge maximul pe © doar pe 99, altfel P(u;-) = const. in Q.
Lema 4.2.2 Presupunem ca u este o solutie slaba a ecuatiei (4.7),. Fie a;; coeficientii definiti prin

82
aij(Vu) == 9696, (G o F)(Vu) = G'Fy; + G"FFj,
33
age(Vu) := DE06;06, (G o F)(Vu).

Atunci avem urmatoare inegalitate:

(agjuij)® | N ragui
N N—-1L N

Lema 4.2.3 O conditie necesara pentru existenta unei solutii slabe u a problemei (4.7) este ag =

a1 =a > 0.
Lema 4.2.4 Functia auxiliara P verificd urmatoarea identitate

2
— G//FZ’F}‘UU pe Q \ C. (430)

G j A Uik Usg] =

/Q (P(u; z) — G (F(Vu(x))) Ni Fi(Vu(x))ui(m)> dx = H(a) | Q |, (4.30)

unde | © | este volumul lui Q.
Observatia 4.2.5
Modificam problema la limita (4.7) luand hg = 0, adica

00 = {(2',0) e RN; 2/ € O},

iar F'(Vu) nu mai este dat pe 9.

Daci aceast# versiune modificatd a problemei 4.1.1 are o solutie slaba u € C*(Q) si au loc ipotezele
Teoremei 4.1.4, atunci portiunea de frontiera libera 0€); este continut intr-un hiperplan orizontal hy =
const. > 0 si u depinde numai de z .

Intr-adevir, concluzia Lemei 4.2.1 riiméane adeviratd daci (4.7), este inlocuita prin

u=0 pe I = {(z',0) e RY; 2’ ¢ O} (4.46)

Modelul macroscopic propus presupune descrierea comportamentul termic, respectiv, electric al
nanotubului, ca domeniu ocupat de nanotub este cilindric, iar capetele nanotubului sunt mentinute la
potentiale electrice constante diferite, respectiv, cu capetele mentinute la temperaturi constante diferite.

Acest model conduce la concluzia ca suprafetele izoterme ale nanotubului termostatat la capete,
respectiv, suprafetele echipotentiale ale nanotubului cu capetele mentinute de potentiale electrice
constante sunt hiperplane paralele cu frontierele libere 0€ si 9€2;. Valorile temperaturii, respectiv ale
potentialului electric intr-un punct al nanotubului depind doar de variabila xy in lungul axei
cilindrului. Acest capitol propune doua directii, si anume:
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e O problema abstractda la limita supradeterminata (Problema 4.1.1), care generalizeaza modelul
propus, si anume problema ecuatiei anizotrope pe un domeniu cilindric @ ¢ RV, N > 2, pentru o
functie v : RN — R pentru care sunt puse conditii pe frontierele libere 9 si 9.

e Doua aplicatii (Problema 4.1.5 si Problema 4.1.6) ale Problemei 4.1.1 prin particularizarea functiei
u in cazul tridimensional, u reprezentand potentialul electric in Problema 4.1.5, respectiv,
temperatura in Problema 4.1.6.

Rezultatul principal al acestui capitol este Teorema 4.1.4. Pentru a demonstra Teorema 4.1.4. printr-o
succesiune de leme, am stabilit un principiu de maxim pentru o P—functie, o identitate de tip Rellich si
unele argumente geometrice privind curburile anizotrope ale frontierelor libere 92 gi 0€;.

Daca in capitolul 3 solutia problemei generale este aplicata pentru a determina potentialul electric in
domeniul spatial ocupat de un nanotub cu doi pereti, peretii nanotubului fiind mentinuti la potentiale
electrice constante diferite cu scopul evaluirii capacitatii electrice echivalente a acestuia, in capitolul
4, solutia problemei 4.1.1 este aplicatd in determinarea distributiei potentialului electric si, respectiv,
in determinarea distributiei temperaturii pentru un nanotub cu un singur perete in conditiile in care
capetele acestuia sunt mentinute la potentiale electrice constante diferite, respectiv, capetele acestuia
sunt mentinute la temperaturi constante diferite.

Problemele legate de nanotuburi in capitolele 3 si 4 sunt decuplate.

In capitolele 3 gi 4 nu se studiaza deformabilitatea sau propagarile in prezenta campului electric sau
termic.

Pe baza rezultatelor obtinute in acest capitol (in conditiile problemei 4.1.5, suprafetele echipotentiale
ale nanotuburilor de carbon sunt plane paralele cu 02 si 9§21, iar in conditiile problemei 4.1.6, suprafetele
izoterme ale nanotuburilor de carbon sunt plane paralele cu 9Qq si 9€21), se pot propune doua aplicatii
practice, si anume implementarea nanotubului de carbon fie ca element al unui senzor termoelectric, fie
utilizarea nanotubului ca nanogenerator de tensiune electrica bazat pe efectul Seebeck.

Rezultatele originale din acest capitol au fost publicate in lucrarea L. Barbu gi A.E. Nicolescu [2].

Cateva directii de studiu pe care le voi avea in vedere in conexiune cu problemele studiate in aceasta
teza de doctorat sunt urmatoarele:

(i) Studiul senzorilor electromagnetici cu nanotuburi de carbon. Nanostructura nanotuburilor de
carbon permite utilizarea acestora ca detectori de radiatie electromagnetica si de radiatie gama pe
baza modificarilor proprietatilor electrice (capacitate electrica, rezistenta electrica si inductanta
magnetica) in urma interactiunilor cu aceste radiatii.

(ii) Cu toate cd cea mai mare parte a nanotuburilor de carbon pot fi asimilate din punct de vedere
elastic cu sisteme uni-dimensionale chirale, in aceasta lucrare au fost considerate doua familii de
nanotuburi, cele zig-zag si cele armchair. Modelele nelocale prezentate in lucrare au fost aplicate
acestor doua familii, iar extinderea lor la nanotuburile chirale reprezinta una din caile de generalizare
ulterioara a rezultatelor din aceasta lucrare.

(iii) Studiul comportamentului piezoelectric al nanotuburilor deformate axial i utilizarea rezultatelor
obtinute in proiectare de nanosenzori electromecanici.

(iv) O alta directie de cercetare este studiul vibratiilor nanotuburilor compozite functionalizate lateral.
Functionalizarea laterala a nanotuburilor de carbon permite atat marirea suprafetei active de atasare
a moleculelor care fac obiectul detectiei, cat si cresterea semnificativa a probabilitatii de atasare de
nanotub a acestor molecule.
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