

**"OVIDIUS" UNIVERSITY OF CONSTANTA
DOCTORAL SCHOOL OF MEDICINE
FIELD: MEDICINE DOCTORAL STUDIES**

SUMMARY OF THE DOCTORAL THESIS

**Scientific Coordinator:
Prof.Univ.Dr. RUGINĂ SORIN**

**PhD student:
Şotilă (Ivan) Gianina Gabriela**

**CONSTANTA
2020**

**"OVIDIUS" UNIVERSITY OF CONSTANTA
DOCTORAL SCHOOL OF MEDICINE
FIELD: MEDICINE DOCTORAL STUDIES**

**EARLY ASSESSMENT MARKERS
OF RENAL DYSFUNCTION
IN HIV-AIDS INFECTION
Summary of the doctoral thesis**

**Scientific coordinator:
Prof. Univ. Dr. RUGINĂ SORIN**

**PhD Student:
Şotilă (Ivan) Gianina Gabriela**

**CONSTANTA
2020**

The doctoral thesis is structured in two parts:

- **Part I: Current state of knowledge**, organized in 8 eight chapters
- **Part II: Personal contributions**, organized in 8 eight chapters
- Bibliographical references
- 48 Tables
- 159 Images
- Abbreviations

KEYWORDS: renal dysfunction, HIV Infection, eGFR CKD-EPI, eGFR MDRD, predictive factors of chronic kidney disease in HIV infection, HIV-1-F viral subtype, medical imaging in HIV infection

NOTE: The tables, images, abbreviations, bibliographical references and summary inserted in the present summary maintain the original numbering from the original doctoral thesis. The table of contents represents the original table of contents of the thesis.

CONTENT

List of tables

List of images

List of abbreviations

CURRENT STATE OF KNOWLEDGE

Chapter 1. General overview on the HIV infection, medical fundaments

1.1. Etiology	14
1.1.1 Classification of the HIV virus	14
1.2. Patogenics	16
1.2.1 Structure of the HIV virus	16
1.2.2 The dynamics of HIV virus replication	17
1.3. Epidemiology of HIV infection	18
1.3.1. Epidemiological data worldwide and in Romania	18
1.3.1.1 Particulars of the HIV infection in Romania	20
Selected bibliography	22
Chapter 2. Renal anatomy and physiology	24
Selected bibliography	29
Chapter 3. Acute renal failure	30
3.1 Definition of the acute renal failure	30
3.2. Staging and classification of the acute renal injury according to the RIFLE and AKIN criteria	30
Selected bibliography	31
Chapter 4. Chronic kidney disease	32
4.1. Definition of the chronic kidney disease	32
4.2. Classification of the chronic kidney disease	33
4.3. Prognostic of the chronic kidney disease – based on the glomerular filtration rate and the degree of albuminuria	33
4.4. The epidemiological process of the chronic kidney disease	34
4.5. Etiology of the chronic kidney disease	35
4.6. Progression factors of the chronic renal disease	35
Selected bibliography.....	36

Chapter 5. Pathophysiology of renal impairment in HIV infection

5.1 Acute renal failure in HIV infection	38
5.1.1. Prerenal causes of acute renal failure in PLWH	38
5.1.2. Renal causes of acute renal failure in PLWH	38
5.1.3. Postrenal causes of acute renal failure in PLWH	39
5.1.4. Epidemiology of acute renal failure in PLWH	39
5.1.5. The hepatorenal syndrome - The particular type of acute renal failure in PLWH.....	40
Selected bibliography	41
5. 2 Chronic kidney disease in HIV infection	42
5.2.1. Chronic kidney disease in PLWH – A public health problem	42
5.2.2. Risk factors in the progression of chronic kidney disease in PLWH	44
5.2.3. Chronic kidney disease in the HIV infection – the need for a puridisciplinar approach	45
5.2.4. The management of chronic kidney disease in PLWH	46
Selected bibliography	51
5. 3. Podocytopathies in HIV infection	55
5.3.1. HIV-associated nephropathy (HIVAN)	55
5. 3. 2. The kidney - Reservoir of the HIV virus	56
5.3.3 Idiopathic focal segmental glomerulosclerosis	58
Selected bibliography	59
5. 4. Glomerular kidney diseases associating HIV infection-related immune complexes	
5.4.1. Epidemiology of HIV-ICD	61
5.4.2. Pathogenesis of HIV-ICD	62
5.4.3. Anatomopathological approach to HIV-ICD	62
5.4.4. Clinical manifestations of HIV-ICD	62
5.4.5. Membranoproliferative nephropathy associated with the HIV infection	62
5.4.6. IgA nephropathy associated with the HIV infection	63
5.4.7. Membranous nephropathy associated with the HIV infection	64
5.4.8. Post-infectious secondary glomerulonephritis associated with the HIV infection.....	65
Selected bibliography	66

5.5. Hypertensive and diabetic nephropathy associated with the HIV infection	68
.....	
Selected bibliography	69
5.6. Tubular and interstitial kidney disease associated with the HIV infection	70
5.6.1. Kidney nephrocalcinosis – a particular type of nephrolithiasis associated with the HIV infection	70
Selected bibliography	78
5.6. 2. Urinary tract infections associated with the HIV infection	80
Selected bibliography	82
Chapter 6. Assessment of the kidney excretory function	83
6.1. Serum creatinine and serum urea	83
6.2. Clearance methods	87
6. 3. Formulas for estimating the glomerular filtration rate based on serum creatinine	
6. 3.1. Cockroft – Gault	88
6. 3. 2. MDRD	88
6. 3. 3. CKD – EPI	89
6. 4. 4. CKD-EPI Cystatin C	90
Selected bibliography	91
Chapter 7. Combined antiretroviral therapy-cART	94
7.1. Classes of antiretroviral drugs	94
7.2. Principles of therapy	94
7.3. Initiation of the cART therapy	95
7.4. Monitoring the cART therapy	95
Selected bibliography	96
Chapter 8. The nephrotoxicity of cARV therapy in HIV infection	97
Selected bibliography	106
PERSONAL RESEARCH	
Chapter 9. Motivation and objectives of the reasearch	110
9.1 Motivation for choosing the research topic	
9.1.1 The topicality and importance of the approached problem in the field of nephrology and HIV infection	110
9.2 Scope and objectives of the research	111
9.2.1 Scope of the research	111

9.2.2 Objectives of the research	111
Chapter 10. Research method. Materials and methods	112
10.1 Study plan	112
10.2 Population sample	112
10.3 Patients recruitment	113
10. 4 Ethical considerations and informed patient consent form	113
10. 5 Evaluation form of the patients included in the study	113
10. 6 Inclusion and exclusion criteria	114
10. 7 Case definitions	114
10.8 Methods	116
10.8.1 Lab analyses	116
10.8.2 Medical imaging investigations	118
10.9 Statistic analysis	119
Chapter 11. Study 1. Comparing two methods for estimating the glomerular filtration rate: CKD-EPI and MDRD for an HIV infected patient group, undergoing combined antiretroviral therapy and estimating the risk for early chronic kidney disease onset in these patients.....	120
11.1 Introduction	120
11.2 Results	120
11.2.1 General features of the patient group upon registration	120
11.2.1.1. Distribution of the patients from the studied group by gender	120
11.2.1.2. Distribution of the patients from the studied group by age groups	122
11.2.1.3. Comparative distribution of the patients from the studies grup by age groups and gender	123
11.2.1.4. Distribution of the patients from the studied group by how HIV is transmitted	124
11.2.1.5. Comparative distribution of the patients from the studies grup by gender and how HIV is transmitted	124
11.2.1.6. Comparative distribution of the patients from the studies grup by age group and how HIV is transmitted	125
11.2.1.7. Distribution of the patients from the studied group by environment	125
11.2.1.8. Comparative distribution of the patients from the studies group by gender and environment	126
11.2.1.9. Distribution of the patients from the studied group by race and ethnicity	126

11.2.1.10. Distribution of the patients from the studied group by smoker / non-smoker status.....	127
11.2.1.11. Distribution of the patients from the studied group by the HIV viral subtype	128
11.2.1.12. Distribution of the patients from the studied group by HIV infection duration	128
11.2.1.13. Distribution of the patients from the studied group by HIV infection stage	129
11.2.1.14. Analysis of the level of CD4 lymphocytes upon positive diagnosis of HIV infection within the analysed patient group	129
11.2.1.15. Analysis of the level of CD4 lymphocytes throughout the five years of follow-up (2014-2019) within the analysed patient group	130
11.2.1.16. The analysis of the CD4/CD8 lymphocyte ratio in patients from the analysed patient group	133
11.2.1.17. The analysis of the CD4 lymphocytes at the nadir in patients from the analyzed patient group	134
11.2.1.18. The analysis of the RNA – HIV viraemia in patients from the analyzed patient group	135
11.2.1.19. The analysis of coinfection associated to HIV infection in the analyzed patient group	135
11.2.1.20. Analysis of the comorbidities associated to HIV action that can favour the onset of chronic kidney disease in the analysed patient group	138
11.2.1.21. Exposure to potentially nephrotoxic antiretroviral medication of the patients in the analysed patient group	141
11.2.2. The analysis of proteinuria is a marker of early kidney impairment in the patients in the analyzed patient group	143
11.2.3. Other markers of early kidney impairment in the patient in the analysed patient group.....	144
11.2.4. Analysis of the serum creatinine numerical variable in the patients in the analysed patient group	147
11.2.5. Analysis of the eGFR-CKD-EPI numerical variable in the patients in the analysed patient group	148
11.2.6. Analysis of the eGFR-MDRD numerical variable in the patients in the analysed patient group	150

11.2.7. Estimation of the correlation coefficient of the concordance between the glomerular filtration rate estimated using the equations CKD-EPI vs MDRD	152
11.2.8. Staging of the chronic kidney disease in the studied group based on eGFR CKD-EPI.....	153
11.2.9. Staging of the chronic kidney disease in the studied group based on eGFR MDRD	155
11.2.10. Analysis of the serum urea numerical variable in the patients in the analysed patient group	156
11.2.11. Analysis of the serum uric acid numerical variable in the patients in the analysed patient group	156
11.2.12. Analysis of the total serum calcium numerical variable in the patients in the analysed patient group	157
11.2.13. Analysis of the ionised serum calcium numerical variable in the patients in the analysed patient group	158
11.2.14. Analysis of the serum phosphorus numerical variable in the patients in the analysed patient group	159
11.2.15. Analysis of the serum alkaline phosphatase numerical variable in the patients in the analysed patient group	159
11.2.16. Analysis of the haemoglobin numerical variable in the patients in the analysed patient group	160
11.2.17. Analysis of the sideremia numerical variable in the patients in the analysed patient group	161
11.2.18. Analysis of the analysed patient group at the end of the study. Analysis of the Kaplan Meier survival curve	162
11.2.18.1 Analysis of the Kaplan –Meier EPeGFR-CKD-EPI-1-2 survival curve. Assessment of the seropositive patients which have attained the event of interest, namely, those who have evolved from stage 1 into stage 2 of CKD at the end of the 5 years of follow-up, the survival time on which the subjects have reached the finl event and the survival rate	162
11.2.18.1.1. Analysis of the Kaplan Meier EPeGFR-CKD-EPI-1-2 survival curve based on the patients' gender	163
11.2.18.1.2 Analysis of the Kaplan Meier EPeGFR-CKD-EPI-1-2 survival curve based on the patients' environment	164

11.2.18.1.3. Analysis of the Kaplan Meier EPeGFR-CKD-EPI-1-2 survival curve based on the patients' smoker / non-smoker status	166
11.2.18.1.4. Analysis of the Kaplan Meier EPeGFR-CKD-EPI-1-2 survival curve based on the patients' race	167
11.2.18.1.5. Analysis of the Kaplan Meier EPeGFR-CKD-EPI-1-2 survival curve based on how the HIV infection was transmitted	168
11.2.18.1.6. Analysis of the Kaplan Meier EPeGFR-CKD-EPI-1-2 survival curve based on age	169
11.2.18.2 Analysis of the Kaplan Meier EPeGFR-CKD-EPI-2-3 survival curve. Assessment of the seropositive patients which have attained the event of interest, namely, those who have evolved from stage 2 into stage 3 of CKD at the end of the 5 years of follow-up, the survival time on which the subjects have reached the final event and the survival rate	171
11.2.18.3. Analysis of the Kaplan Meier EPeGFR-MDRD 1-2 survival curve. Assessment of the seropositive patient which have evolved from stage 1 into 2 of CKD at the end of the 5 years of follow-up, the survival time on which the subjects have reached the finl event and the survival rate.....	172
11.2.18.3.1. Analysis of the Kaplan Meier EPeGFR-MDRD 1-2 survival curve based on the patients' gender.....	173
11.2.18.3.2. Analysis of the Kaplan Meier EPeGFR-MDRD 1-2 survival curve based on the patients' environment.....	174
11.2.18.3.3. Analysis of the Kaplan Meier EPeGFR-MDRD 1-2 survival curve based on the patients' Smoker/non-smoker status	175
11.2.18.3.4. Analysis of the Kaplan Meier EPeGFR-MDRD 1-2 survival curve based on the patients' race	177
11.2.18.3.5. Analysis of the Kaplan Meier EPeGFR-MDRD 1-2 survival curve based on how the HIV infection is transmitted	178
11.2.18.3.6. Analysis of the Kaplan Meier EPeGFR-MDRD 1-2 survival curve based on the patients' Age	179
11.2.18.4. Analysis of the Kaplan Meier EPeGFR-MDRD 2-3 survival curve. Assessment of the seropositive patients which have attained the event of interest, namely, those who have evolved from stage 2 into stage 3 of CKD at the end of the 5 years of follow-up, the survival time on which the subjects have reached the final event and the survival rate.....	181

11.2.18.5. Comparative analysis of the Kaplan Meier survival curve among the patients with CKD CKD-EPI 1-2 and the patients with CKD MDRD 1-2	182
11.2.18.6. Comparative analysis of the Kaplan Meier survival curve among the patients with CKD CKD-EPI 2-3 and the patients with CKD MDRD 2-3	183
Chapter 12. Study 2. Identification assessment of the condition of the traditional and non-traditional risks factors (predicting variables) for the development and progression of the chronic kidney disease for a lot of HIV infected patients with multiple experience, followed up during five years, envisaging applicability in current clinical practice, but important consequences on the therapeutical and interventional strategies in terms of prognosis, life quality and lifespan of these patients.....	184
12.1. Introduction	184
12.2. Material and method	184
12.3 Results	185
12.3.1. Risk factors typical to the chronic kidney disease	185
12.3.1.1.a Cox ETeGFR CKD-EPI 1-2 Regression model for predicting variables: renourinary lithiasis and renal nephrocalcinosis	185
12.3.1.1.b Cox ETeGFR MDRD 1-2 Regression model for predicting variables: renourinary lithiasis and renal nephrocalcinosis	186
12.3.1.2.a Cox ETeGFR CKD-EPI 1-2 Regression model for predicting variables: Hepatitis B virus, Hepatitis C virus and TB	188
12.3.1.2.b Cox ETeGFR MDRD 1-2 Regression model for predicting variables: Hepatitis B virus, Hepatitis C virus and TB	189
12.3.1.3.a Cox ETeGFR CKD-EPI 1-2 Regression model for predicting variables: diabettes mellitus and arterial hypertension	190
12.3.1.3.b Cox ETeGFR MDRD 1-2 Regression model for predicting variables: diabettes mellitus and arterial hypertension	192
12.3.1.4.a Cox ETeGFR CKD-EPI 1-2 Regression model for predicting variables: dyslipidaemia, cardiovascular diseases and metabolic syndrome	193
12.3.1.4.b Cox ETeGFR MDRD 1-2 Regression model for predicting variables: dyslipidaemia, cardiovascular diseases and metabolic syndrome	194
12.3.2. Risk factors specific to HIV infection	196

12.3.2.1.a Cox ETeGFR CKD-EPI 1-2 Regression model for predicting variables: exposure to protease inhibitors, exposure to atazanavir, exposure to darunavir, exposure to indinavir, exposure to lopinavir, exposure to ritonavir	196
12.3.2.1.b Cox ETeGFR MDRD 1-2 Regression model for predicting variables: exposure to protease inhibitors, exposure to atazanavir, exposure to darunavir, exposure to indinavir, exposure to lopinavir, exposure to ritonavir	197
12.3.2.2a. Cox ETeGFR CKD-EPI 1-2 Regression model for predicting variables: exposure to tenofovir-atazanavir, exposure to tenofovir, exposure to saquinavir, exposure to cobicistat, exposure to tenofovir alafenamide from two fixed combination like (elvitegravir, cobicistat, emtricitabine, tenofovir alafenamide and emtricitabine/tenofovir alafenamide)	198
12.3.2.2b. Cox ETeGFR MDRD 1-2 Regression model for predicting variables: exposure to tenofovir-atazanavir, exposure to tenofovir, exposure to saquinavir, exposure to cobicistat, exposure to tenofovir alafenamide from two fixed combination like (elvitegravir, cobicistat, emtricitabine tenofovir alafenamide and emtricitabine/tenofovir alafenamide)	199
Chapter 13. Study 3. Assessment of the chronic kidney function in a lot of patients with HIV 1 virus subtype F, followed up during five years, using comparison of the sensitivity and specificity of two assessment methods for estimated glomerular filtration: CKD-EPI and MDRD.	
13.1. Introduction	201
13.2. Results	201
13.2.1. Characteristics of the lot of patients infected with HIV-1 virus subtype F	201
13.2.2. Comparative analysis of the numerical variable eGFR (glomerular filtration rate estimated using the calculus formulas CKD-EPI and MDRD) in patients with HIV -1, viral subtype F	205
13.2.3. Comparative Analysis of the numerical variable stage of the chronic kidney disease, staging performed through both calculus formulas of eGFR, both CKD-EPI and MDRD, in patients with HIV – 1, viral subtype F	206
13.2.3.1. Staging of the CKD using the formula CKD-EPI in patients with HIV – 1 viral subtype F	206
13.2.3.2. Staging of the CKD using the formula MDRD in patients with HIV – 1 viral subtype F	206
13.2.4. Analysis of the Kaplan-Meier survival curve in patients with HIV – 1, viral subtype F.....	207

13.2.4.1. Kaplan –Meier survival curve in patients with HIV – 1 viral subtype F having as an element of interest the onset of the CKD stage 2. (EPe GFR CKD-EPI 1-2)	207
13.2.4.2. Kaplan –Meier survival curve in patients with HIV – 1 viral subtype F having as an element of interest the onset of the CKD stage 2. (EPe GFR MDRD 1-2)	209
13.2.4.3. The comparative analysis of the Kaplan-Meier survival curve in patients with HIV – 1, viral subtype F of having as an element of interest the progression of the CKD from stage 1 to stage 2, the staging performed using both calculus equations CKD-EPI and MDRD	210
Chapter 14. Study 4. It's meant of other types of renal impairment apart from CKD in a lot of seropositive patients with multiple experience followed up for 5 years.....	210
14.1. Results	210
14.1.1. Medical imaging in patients with HIV infection and renal and urinary malformation.....	210
14.1.2. Medical imaging in seropositive patients with uro-genital tract infection	222
14.1.3. Medical imaging in seropositive patients and associated renourinary lithiasis	226
14.1.4. Medical imaging in seropositive patients and associated kidney nephrocalcinosis	231
14.2. Selected bibliography	246
Chapter 15. Discussions and final conclusions	248
Chapter 16. Personal contributions	257

List of tables

Table. 1. RIFLE Criteria for defining AKI (KDIGO)

Tabel 2. Staging and classification of the acute kidney injury (AKI) to the guide KDIGO 2011

Table. 3. Classification of the chronic kidney disease (KDOQI)

Table. 4. Prognosis of the CKD based on eGFR and albuminuria degree (KDIGO 2012)

Table. 5. Causes of the CKD

Table. 6. Modifiable risk factors in connection with the CKD progression

Table. 7. Promoters and inhibitors of crystallisation

Table. 8. Factors influencing the creatinine concentration level

Table. 9. Factors influencing the serum urea concentration level

Table. 10. Main factors influencing the level of the serum creatinine in seropositive patients

Table. 11. Differentiation of the TDF nephrotoxicity from other ARV medication interfering with creatinine tubular secretion

Table. 12 a, b, c. General characteristics of the studied population

Table. 13. Mean lymphocyte CD4 (celule/mm³) value per follow-up times

Table. 14. Types of genital infection associated with the HIV infection

Table. 15. Mean value of the serum creatinine (mg/dl) per follow-up times

Table. 16. Mean value of eGFR CKD-EPI (ml/min/1,73m²) per follow-up times

Table. 17. Mean value of eGFR MDRD (ml/min/1,73m²) per follow-up times

Table. 18. Staging of the CKD by eGFR CKD-EPI per follow-up times

Table. 19. Staging of the CKD by eGFR CKD-EPI per follow-up times

Table. 20. Results of the Kaplan Meier analysis corresponding to EPeGFR-CKD-EPI-1-2 for different moments in time

Table. 21. Results of the Kaplan Meier analysis corresponding to EPeGFR-CKD-EPI-1-2 based on genders for different moments in time for each study group

Table. 22. Results of the Kaplan Meier analysis corresponding to EPeGFR-CKD-EPI-1-2 based on environment, for different moments in time for each study group

Table. 23. Results of the Kaplan Meier analysis corresponding to EpeGFR-CKD-EPI-1-2 based on the smoker / non-smoker status for different moments in time and for each study group.

Table. 24. The results of the Kaplan Meier analysis corresponding to EPeGFR-CKD-EPI-1-2 based on race for different moments in time for each study group.

Table. 25. The results of the Kaplan Meier analysis corresponding to EPeGFR-CKD-EPI-1-2 based on how the HIV is translated for different moments in time for each study group.

Table. 26. The results of the Kaplan Meier analysis corresponding to EPeGFR-CKD-EPI-2-3 for different moments in time.

Table. 27. The results of the Kaplan Meier analysis corresponding to EPeGFR-MDRD 1-2 for different moments in time.

Table. 28. The results of the Kaplan Meier analysis corresponding to EPeGFR-MDRD-1-2 based on gender for different moments in time for each study group.

Table. 29. The results of the Kaplan Meier analysis corresponding to EPeGFR-MDRD-1-2 based on environment, for different moments in time for each study group.

Table. 30. The results of the Kaplan Meier analysis corresponding to EPeGFR-MDRD-1-2 based on the smoker/non-smoker status for different moments in time for each study group.

Table. 31. The results of the Kaplan Meier analysis corresponding to EPeGFR-MDRD-1-2 based on race, for different moments in time for each study group.

Table. 32. The results of the Kaplan Meier analysis corresponding to EPeGFR-MDRD-1-2 based on how the HIV is transmitted for different moments in time for each study group.

Table. 33. The results of the Kaplan Meier analysis corresponding to EPeGFR-MDRD-2-3, for different moment in time.

Table. 34. Relative risk and survival of the seropositive patients with renourinary lithiasis, nephrocalcinosis and chronic kidney disease stage 1-2 CKD-EPI

Table. 35 Relative risk and survival of the seropositive patients renourinary lithiasis, nephrocalcinosis and chronic kidney disease stage 1-2 MDRD

Table. 36. Relative risk and survival of the seropositive patients with co-infections of hepatitis B and C virus and CKD stage 1-2 CKD-EPI

Table. 37. Relative risk and survival of the seropositive patients with co-infections of hepatitis B and C virus and CKD stage 1-2 MDRD

Table. 38. Relative risk and survival of the seropositive patients with diabetes mellitus, arterial hypertension and CKD stage 1-2 CKD-EPI

Table. 39. Relative risk and survival of the seropositive patients cu with diabetes mellitus, arterial hypertension and CKD stage 1-2 MDRD

Table. 40. Relative risk and survival of the seropositive patients with dyslipidaemia and CKD stage 1-2 CKD-EPI

Table. 41. Relative risk and survival of the seropositive patients with dyslipidaemia and CKD stage 1-2 MDRD

Table. 42. Relative risk and survival of the seropositive patients CKD stage 1-2 CKD-EPI exposed to atazanavir

Table. 43. Relative risk and survival of the seropositive patients with CKD stage 1-2 MDRD exposed to atazanavir

Table. 44. Relative risk and survival of the PLWH with CKD stage 1-2 CKD-EPI exposed to TDF/ATV

Table. 45. Relative risk and survival of the seropositive patients CKD stage 1-2 MDRD exposed to tenofovir associated with atazanavir

Table. 46 a, b, c, d. Characteristics of the patients infected with the HIV -1 viral subtype F

Table. 47. The results of the Kaplan Meier analysis corresponding to EPeGFR-CKD-EPI-1-2 in patients with the viral subtype HIV1-F for different moments in time.

Table. 48. The results of the Kaplan Meier analysis corresponding to EPeGFR-MDRD-1-2 in patients with the viral subtype HIV1-F for different moments in time.

List of images

Image 1. Appreciations on the global HIV epidemic at the end of 2019 (UNAIDS/WHO)

Image 2. Section of a kidney

Image 3. Renal corpuscle

Image 4. Podocitary pedicels, image obtained through electronic microscopy

Image 5. The podocyte filtration diafragma

Image 6. Glomerular filtration barrier - image obtained through electronic microscopy

Image 7. CKD screening algorithm in the HIV infection

Image. 8 Types of Randall plaques

Image 9. Randall plaques. Ureteroscopic images

Image 10. Ureteroscopic aspect of the renal papillae.

Image 11 a-b. Examination in optic microscopy of the Henle ansa and evidentially of the calcium oxalate deposits at the level of the basal membranes.

Image 12. Examination in optic microscopy of the Henle ansa and evidentially of the calcium oxalate deposits at the level of the basal membranes.

Image 13. Effects of the ARV medication over the transporters of the kidney tubular cells, from the basal, lateral and apex membranes

Image 14. TDF effect over the transporters of the kidney tubular cells, from the basal, lateral and apex membranes of the proximal convoluted tube

Image 15 a-b. Atazanavir crystals in optical and electronic microscopy

Image 16 A,B,D . Granulomatous interstitial nephritis secondary to atazanavir exposure

Image 17. Bar / Pie chart of patients based on gender

Image 18 . Bar / Pie chart of patients based on age

Image 19. Comparative Bar chart of patients based on age/gender

Image 20. Comparative Bar chart of patients based on gender / HIV transmission

Image 21. Bar / Pie chart of patients based on how HIV infection was transmitted

Image 22. Bar chart of patient based on age/HIV transmission

Image 23. Bar/ Pie Chart of patients based on environment

Image 24. Bar chart of patients based on gender/environment

Image 25. Bar/Pie chart of patients based on race

Image 26. Bar/pie chart of patients based on ethnicity

Image 27 Bar/pie chart of patients based on smoker/non-smoker status

Image 28. Bar/pie chart of patients based on viral subtype

Image 29. Bar chart of the distribution of HIV findings per year is based on year of diagnosis

Image 30. Bar/pie chart based on CDC classification.

Image 31. Box-Plot chart and the histogram of CD4 distribution upon diagnosing the HIV infection.

Image 32. Box-Plot chart of CD4 Lymphocyte distribution per 2014-2019 follow-up instances

Image 33. Line chart evolution expressed as a percentage of CD4 lymphocytes per immunosuppression degrees, per follow-up instances 2014-2019

Image 34. Line chart evolution expressed as a percentage of the CD4/CD8 lymphocyte ratio, as infra and supranumerary fractions per follow-up instances 2014-2019

Image 35. Box-Plot chart of the CD4/CD8 lymphocyte ratio distribution, as infra and supranumerary fractions per follow-up instances 2014-2019

Image 36. Box Plot chart and the histogram of CD4 NADIR lymphocyte distribution in the studied group

Image 37. Line chart evolution expressed as a percentage of the RNA-HIV viraemia per follow-up instances 2014-2019

Image 38. Chart expressed as a percentage of the subject having infections with hepatitis virus B and C in the studied group

Image 39. Chart of the sequellae TB co-infection in the studied group

Image 40. Chart of the co-infection with active TB in the studied group

Image 41. Chart of the distribution of genital infection associated to HIV

Image 42. Chart of comorbidities associated to HIV infection

Image 43. Chart of types of thyroid impairment associated to HIV infection in the studied group

Image 44. Chart of the number of therapeutic schemes which the subjects of the studied group have been exposed

Image 45. Exposure to potentially nephrotoxic ARV medication in the studied group

Image 46. Exposure time to the potentially negative medication in the studied group

Image 47. Chart of proteinuria in the studied group

Image 48. Chart of evolution expressed as a percentage of the patients with hyalin cylinders in the studied group, for different moments in time during 2014-2019

Image 49. Chart of evolution expressed as a percentage of the patients with granular cylinders in the studied group, for different moments in time during 2014-2019

Image 50. Chart of evolution expressed as a percentage of the patients with frequent epithelium cells in the urinalysis for the studied group for different moments in time during 2014-2019

Image 51. Chart of evolution expressed as a percentage of the patients with kidney glucosuria and regular glycaemia in the studied group for different moments in time during 2014-2019

Image 52. Chart of evolution expressed as a percentage of the patients with hematuria in the studied group, for different moments in time during 2014-2019

Image 53. Chart of evolution expressed as a percentage of the patients with crystalluria for a different moment in time during 2014-2019

Image 54. Chart of evolution expressed as a percentage of the patients with leukocyturia in the urinary sediment for a different moments in time during 2014-2019

Image 55. Bar+Error Bar Chart of the mean values of serum creatinine for each follow-up instance 2014-2019

Image 56. Bar+Error Bar Chart of the mean values of eGFR-CKD-EPI for each follow-up instance 2014-2019

Image 57. Bar+Error Bar Chart of the mean values of eGFR-MDRD for each follow-up instance 2014-2019

Image 58. Chart of the values of eGFR CKD-EPI vs eGFR MDRD

Image 59. Staging the CKD based on eGFR CKD-EPI

Image 60. Staging the CKD based on eGFR MDRD

Image 61. Barr+Error Bar Chart of the mean values of serum urea for each follow-up instance 2014-2019

Image 62. Bar+Error Bar Chart of the mean values of uric acid for each follow-up instance 2014-2019

Image 63. Number of patients corresponding to uric acid intervals, for each follow-up instance 2014-2019

Image 64. Bar+Error Bar chart of the mean values of total serum calcium for each follow-up instance 2014-2019

Image 65. Number of patients corresponding to total serum calcium intervals for each follow-up instance 2014-2019

Image 66. Barr+Error Bar Chart of the main values of ionised serum calcium for each follow-up instance 2014-2019

Image 67. Number of patients corresponding to the ioniser and calcium for each follow up instance 2014-2019

Image 68. Bar+Error Bar Chart of the mean values of serum phosphorus for each follow-up instance 2014-2019

Image 69. Number of patients corresponding to the serum phosphorus for each follow-up instance 2014-2019

Image 70. Bar+Error Bar Chart of the mean values of FAS for each follow-up instance 2014-2019

Image 71. Number of patients corresponding to the FAS intervals for each follow-up instance 2014-2019

Image 72. Bar+Error Bar chart of the mean values of haemoglobin for each follow up instance

Image 73. Number of patients corresponding to the haemoglobin intervals for each follow-up instance 2014-2019

Image 74. Bar+Error Bar Chart of the mean values of iron values for each follow-up instance 2014-2019

Image 75. Number of patients corresponding to the iron values intervals for each follow-up instance 2014-2019

Image 76. Kaplan-Meier EpeGFR-CKD-EPI-1-2 survival curve

Image 77. Kaplan Meier EPeGFR-CKD-EPI-1-2 survival curve based on gender

Image 78. Kaplan Meier EPeGFR-CKD-EPI-1-2 survival curve based on environment

Image 79. Kaplan Meier EPeGFR-CKD-EPI-1-2 survival curve based on the smoker/non-smoker status

Image 80. Kaplan Meier EPeGFR-CKD-EPI-1-2 survival curve based on race

Image 81. Kaplan Meier EPeGFR-CKD-EPI-1-2 survival curve based on how the HIV infection is transmitted

Image 82. Kaplan Meier EPeGFR-CKD-EPI-1-2 survival curve based on age

Image 83. Kaplan-Meier EpeGFR-CKD-EPI-2-3 survival curve

Image 84. Kaplan-Meier EPeGFR-MDRD 1-2 survival curve

Image 85. Kaplan Meier EPeGFR-MDRD-1-2 survival curve based on gender

Image 86. Kaplan Meier EPeGFR-MDRD-1-2 survival curve based on environment

Image 87. Kaplan Meier EPeGFR-MDRD-1-2 survival curve based on smoker/non-smoker status

Image 88. Kaplan Meier EPeGFR-MDRD-1-2 survival curve based on race

Image 89. Kaplan Meier EPeGFR-MDRD-1-2 survival curve based on how HIV infection is transmitted

Image 90. Kaplan Meier EPeGFR-MDRD-1-2 survival curve based on age

Image 91. Kaplan-Meier EpeGFR-MDRD-2-3 survival curve

Image 92. Comparative analysis of the Kaplan- Meier Survival curve between the patients with CKD-EPI 1-2 and the patients with CKD MDRD 1-2

Image 93. Comparative analysis of survival between the patients with CKD CKD-EPI 2-3 and the patients with CKD MDRD 2-3

Image 94. Cox ETeGFR CKD-EPI 1-2 regression model for renourinary lithiasis and renal nephrocalcinosis

Image 95. Cox ETeGFR MDRD 1-2 regression model for renourinary lithiasis and renal nephrocalcinosis

Image 96. Cox ETeGFR CKD-EPI 1-2 regression model for hepatitis virus B and hepatitis virus C

Image 97. Cox STeGFR MDRD 1-2 regression model for hepatitis virus B and hepatitis virus C

Image 98. Cox ETeGFR CKD-EPI 1-2 regression model for diabetes mellitus and arterial hypertension

Image 99. Cox ETeGFR MDRD 1-2 regression model for diabetes mellitus

Image 100. Cox ETeGFR CKD-EPI 1-2 regression model for dyslipidemia

Image 101. Cox ETeGFR MDRD 1-2 regression model for dyslipidemia

Image 102. Cox ETeGFR CKD-EPI 1-2 regression model for for the variable exposure for atazanavir

Image 103. Cox ETeGFR MDRD 1-2 regression model for exposure to atazanavir

Image 104. Cox ETeGFR CKD-EPI 1-2 regression model for exposure to TDF/ATV

Image 105. Cox ETeGFR MDRD 1-2 regression model for the variable to tenofovir associated to atazanavir

Image 106. Bar+Error Bar chart of the mean values of eGFR CKD-EPI/ eGFR MDRD for the instances M1, M12 for the viral subtype F

Image 107. Staging of the CKD using the formula CKD-EPI with the patients with the viral HIV1 subtype F for the instances M1 and M12

Image 108. Staging of the CKD using the formula MDRD in patients with the viral HIV 1 subtype F for the instances M1 and M12

Image 109. Kaplan Meier survival curve in patients with viral subtype HIV-1-F EPeGFR CKD-EPI

Image 110. Kaplan –Meier survival curve in patients with viral subtype HIV 1-F EPeGFR MDRD 1-2

Image. 111. Comparative analysis of the Kaplan –Meier survival curves in patients with viral subtype HIV 1 F, having as an event of interest the CKD progression in stage 1 into stage 2, a staging performed using both calculus equations CKD-EPI and MDRD

Image 112. Bar chart expressed as a percentage which have present various types of renal-urinary impairment

Image. 113. A-F Pyelocaliceal duplicity-Ultrasound images

Image 114. Complete renal pelvis bifidity

Image.115 A-F Incomplete left pyelo-ureteral duplication. Left inferior calyceal calculus of the left kidney. URO-CT Images. 3D Reconstruction

Image 116 A-B Kidney pelvises with an extra renal display on both sides in an MSM seropositive male with recurrent cystitis and bladder neck malformation. URO-CT Images. 3D Reconstruction

Image 117. Folds of the ureters and kidney pelvis with an extrarenal display on both sides. URO-CT Images. 3D Reconstruction

Image 118 A-B. Right kidney pelvis distension. URO-CT Images.

Image 119 A-B, 120, 121 Kidney shaped as a horse shoe. URO-CT Images. 3D Reconstruction

Image 122, 123. Renal scintigraphy on a feminine subject with a unique left kidney, pursuant to a surgical procedure

Image 124 A-B. Unique left kidney on a seropositive male subject pursuant to a nephrectomy, with CKD and arterial hypertension. Bifidity of the kidney pelvis. Ultrasound images

Image 125 A-F, 126 Congenital bladder diverticulum of 39/33mm on the right lateral bank of the urinary bladder. URO-CT Images.

Image 127. Chart of evolution of urinary tract infections throughout the study taking place in the period 2014-2019

Image 128. Chart of the germs involved in the urinary tract infections in 2014-2019

Image 129. Chart of genital infections throughout the study taking place in the period 2014-2019

Image 130. Chart of the germs involved in the genital infections (2014-2019)

Image. 131 A-B, 132 A-C, 133 A-B, 134 A-B. Acutisation of chronic prostatitis. Prostatic lithiasis in an MSM male. Benign hyperplasia of the prostate. Parietal bladder hypertrophy. Acutised chronic cystitis. Ultrasound images and CT.

Image 135. Dynamic evolution of renourinary lithiasis in the studies group. (2014-2019)

Image 136 A-B. A. Inferior calyceal calculus secondary to the exposure to darunavir; B Bladder calculus secondary to exposure to darunavir. Ultrasound images

Image. 137. A-B. JJ stent present in the upper calyx and in the urinary bladder after flexible ureteroscopy and solution of a kidney pelvis calculus. Ultrasound images

Image 138-A-F. Lower calyx calculus in the left kidney. URO-CT- 3D reconstruction images

Image 139. A,B,C,D. Coral calculus of left kidney in a patient exposed to atazanavir.

Image 140 A-D. A-B. Multiple calculus masses in the left kidney, extended at the level of the kidney pelvis and median and lower calyx groups. C, D. Righ renal cortical cystic masses. URO-CT Images.

Image. 141. Type 2 hydronephrosis. Lower calyx calculus in a seropositive male, probably secondary to exposure to darunavir. Ultrasound images.

Image 142. Dynamic evolution of kidney nephrocalcinosis in the studied group (2014-2019)

Image 143 A-B. Severe nephrocalcinosis in a patient with HIV infection secondary to the intake of indinavir and atazanavir. URO-CT images of 2014.

Image 144 A-D. A. Reno-bladder X-ray in a seropositive female diagnosed with severe medullar nephrocalcinosis secondary to the exposure to indinavir and atazanavir and CKD. B-D. Severe medullar nephrocalcinosis. Uro-CT images of 2016

Image 145 A-D. Severe medullar nephrocalcinosis in a female patient exposed to indinavir and atazanavir, at present with CKD stage 4. Ultrasound images 2019

Image 146 A-B. Severe medullar nephrocalcinosis in a female patient exposed to indinavir and atazanavir. Uro-CT images of 2019

Image 147 A-B. Severe medullar nephrocalcinosis in a female patient exposed to indinavir and atazanavir. Uro-CT 2images s019

Image 148 A-B. A. Bilateral medullar nephrocalcinosis secondary to exposure to saquinavir, atazanavir and darunavir

Image 149 A-B. Image 150 A-B. Bilateral medullar nephrocalcinosis secondary to exposure to saquinavir, atazanavir and darunavir. 2018. URO-CT- 3D reconstruction images

Image 151 A-E. Severe medullar nephrocalcinosis in a female Patients with HIV infection Exposed to the treatment with saquinavir, atazanavir and darunavir. Ultrasound images. 2019

Image 152 A-F. Bilateral medullar nephrocalcinosis in a female patient, secondary to the administration of lopinavir and darunavir. Folded right urether At the level of the ureteropelvic junction. URO-CT images. 3D reconstruction

Image 153 A-B. Parathyroid scintigraphy in a seropositive female patient with hyperparathyroidism, nephrocalcinosis and suspicion of primary parathyroid adenoma

Image 154 A-E. Parathyroid scintigraphy with Tc99m-MIBI in a female patient with hyperparathyroidism, severe medullar nephrocalcinosis and CKD stage 4

Image 155. Results of the osteodensitometry test in the studied group

Image 156 A. Osteodensitometry test of the lumbar spine in a young female patient with HIV infection

Image 156 B-C. DEXA of the right femoral neck; DEXA Of the left femoral neck in a young female patient with HIV infection

Image 157 A-B. Comparative osteodensitometry test of the lumbar spine 2014 vs 2019 in a seropositive female patient with osteoporosis

Image 158 A-B. Comparative osteodensitometry test of the righ hip 2014 vs 2019 in a seropositive female patient with osteoporosis

Image 159 A-B. Comparative osteodensitometry test of the left hip 2014 vs 2019

List of abbreviations

ACR	Albuminuria/creatinuria ratio	DEXA	Bone densitometry test
ADQI Group	Acute Dialysis Quality Improvement Initiative	DRV	Darunavir
AIDS	Acquired immunodeficiency syndrome	DSV	Descovy (emtricitabine and fumarate tenofovir alafenamide)
NAID	Nonsteroidal Anti-Inflammatory drug	DU	Urinary flow
AKI	Acute kidney injury	DM	Diabetes mellitus
AKIN	Acute kidney injury network	EACS	European AIDS Clinical Society
DNA	Deoxiribonucleic acid	eClCr	estimated Clearance of Creatinine
RNA	Ribonucleic acid	eGFR	estimated glomerular filtration rate
mRNA	messenger RNA	EI	Entry inhibitors
cARV	Combined antiretroviral therapy	EMEA	European Medicines Agency
ATV	Atazanavir	ELISA	Enzyme linked immunoassorbent assay
ATV-r	Atazanavir boosted with ritonavir	ESRD	end stage renal disease
CKD	Chronic kidney disease	FDA	U.S. Food and Drug Administration
ESRD	End stage chronic kidney disease	FTC	Emtricitabina
BUN	Urea Nitrogen	GNV	Genvoya (elvitegravir, cobicistat, emtricitabina and tenofovir alafenamide fumarate)
CD4	Lymphocytes CD4	HAART	Highly active antiretroviral therapy
CDC	Center for Infectious Disease Control	H.iPTH	intact Parathyroid hormone
CIC	Circulating immune complexes	HIV-RNA	HIV Viraemia
CMV	Cytomegalovirus	AHT	Arterial hypertension
CNLAS	Anti-AIDS Committee	HIV	Human immunodeficiency virus
Cr	Creatinine	HIVAN	HIV associated nephropathy
CRFs	Circulating recombined forms	HIVICK -	HIV immune complex disease
ClCr	Clearance of creatinine	HIV-FGS	– focal segmental glomerulosclerosis associated to HIV
CysC	Cystatine C	HUS	Hemolytic uremic syndrome
CKD	Chronic kidney disease	IECA	Angiotensin converting enzyme inhibitors
CKD-EPI	Chronic kidney disease - epidemiology collaboration equation		
CCR5	CCR5 co-receptors		
CCR5 inhibitors	CCR5 inhibitors		

IgA	Immunoglobulin A	PrEP	Pre-exposure prophylaxis
IgM	Immunoglobulin M	PRT	Proximal renal tubulopathy
IgG	Immunoglobulin G	RIFLE	(risk, injury, failure, loss, end stage renal disease) Classification criteria for acute renal failure
IL 18	Interleukine 18	RTV	Ritonavir
NNRTI	Non nucleoside reverse transcriptase inhibitors	AIDS	Acquired immunodeficiency syndrome
NRTI	Nucleosidic reverse transcriptase inhibitors	SQV	Saquinavir
IN	Integrase Inhibitors	TAF	Tenofovir alafenamide fumarate
PI	Protease inhibitors	TB	Tuberculosis
PI/r	Boosted protease inhibitors	TDF	Tenofovir fumarate
ARF	Acute renal failure	UNAIDS	The Joint United Nations Programme on HIV/AIDS
CRF	Chronic renal failure	URFs	Unique recombined forms
UTI	Urinary tract infection	Uro-CT	Urography by computer tomograph
IDV	Indinavir	USRDS	The United States Renal Data System
IDVr	Boosted Indinavir	VHB	Hepatitis virus B
KDIGO	Kidney Disease Improving Global Outcomes Clinical Practice Guideline	VHC	Hepatitis virus C
LAR	Acute kidney injury	VHD	Hepatitis virus D
LPV	Lopinavir	WHO	World Health Organisation
MDRD	Modification of diet in renal disease study equation		
MRP 2	Multidrug resistance protein 2		
MRP 4	Multidrug resistance protein 4		
MSM	Men having sexual relations with men		
PNL	Percutaneous nephrolithotomy		
ATN	Acute tubular necrosis		
ATIN	Acute tubular – interstitial necrosis		
OAT1	Organic anion transporter1		
PBMC	Peripheral blood mononuclear cells		
PBR	Kidney biopsy		
PCR	Polymerisation chain reaction		
PLWH	People living with HIV		

INTRODUCTION

At the end of 2019, 1064 patients were registered in the Regional Center for HIV – AIDS infection Surveillance and Monitoring of Constanta, under the National Agency for the Control of AIDS, a center including the Constanta and Tulcea counties, most of the patients originating from Constanta county, with more than 500 patients from the pediatric cohort. In Romania, according to the Compartment for HIV/AIDS infection Monitoring and Assessment from INBI [The National Institute for Infectious Diseases "Prof. Dr. M. Bals"] in Constanta county, the number of new patients suffering from HIV-1 infection has been, in 2019, of 72 people. Out of the total number of seropositive patients, 979 patients benefit from combined antiretroviral therapy. These patients need constant monitoring and the insurance of the TARV therapy continuity, maintaining an adherence to the treatment, identification of those in therapeutic failure and often modification of the antiretroviral treatment schemes, early identification of the adverse reaction secondary to antiretroviral therapy, especially renal secondary effects. The team following up and caring for these patients should be multidisciplinary, in order to be able to cover a large spectrum of impairment characteristic for HIV infection, a versatile impairment, representing a notable public health problem, at the level of the whole county.

The idea of this research theme has come naturally, from the observation of the current clinical practice, due to the fact that during the last years we have noted a significant number of renal dysfunction in PLWH. The renal dysfunction consecutive to the infectious diseases comprises a varied spectre clinical, biological, histopathological manifestations, depending on some of the characteristics of the host, as well as from the infecting pathological agent. All the structural components of the renal parenchima (glomeruli, tubi, interstitium, sanguine vessels) can be the target of direct or indirect renal effects of infectious diseases, particularly HIV. Renal impairment can appear in any stage of HIV infection and it is extremely varied.

The characteristics and particulars of the HIV virus as well as its ability to infect the immunological system, forming cell and tissue sanctuaries especially in the kidney and brain does not allow cure at present but only a continuous treatment for the time being, for the whole life, reason for which the HIV infection has become, from a life-threatening infection, a chronic infection that can be controlled through antiretroviral therapy. The kidney has a fundamental and defining role in this process, representing both a reservoir of HIV -1 infection, suffering injuries through cytopathic effect of the HIV virus at the level of

the kidney podocytes, cells that are deemed as the reservoirs of the HIV virus, as well as a secondary injured organ, due to the antiretroviral medication recoverability is associated with the HIV infection.

The progress of the antiretroviral therapy, with the continuous development of new molecules in a relatively short amount of time, constraints and amplified by the dramatic evolution of the HIV pandemic and by the increased mortality rate, is one of the most dynamic domains in the history of medicine, a domain which takes up numerous material in human resources. It's not surprising that the ARV medication is extremely costly, but it is also a correct and efficient medication in terms of immunology, which determines good clinical status of the PLWH, offering considerable prolongation of life, but also in tailing the appearance of numerous chronic impairments connected with long-term toxicity of the ARV medication, especially reno toxicity, that can notably affect the quality of life of these patients. The easier access to the new, potent antiretroviral therapies which have led to the maintenance of an efficient and durable viral suppression, decrease of mortality and increase of the survival period of PLWH, has led to the appearance of an "accelerated ageing syndrome", characterised by a new and varied spectrum of diverse manifestations, affecting in many organs: kidneys, bones, neurological system, liver, cardiovascular system. As a result, the care of the seropositive patient must consider the renal comorbidities, as well as the correct management of these complications.

The kidney dysfunction of the HIV-infected patients is increasing on the world wide level, being highly prevalent, but still variable according to various international clinical studies of America, Africa, Europe and Asia, the CKD representing one of the most important comorbidities of PLWH worldwide. Proteinuria, dyslipidaemia, diabetes mellitus, arterial hypertension, cardiovascular diseases, smoking, race, the low social and economic status, the use of injectable drugs, the glomerular diseases, the mitochondrial toxicity, chronic residual pro inflammatory status, a high viraemia, lower lymphocyte CD4 level in naive or non-adherent to treatment seropositive subjects represent important comorbidities. Due to the increase of the prevalence of chronic kidney disease in HIV infection, especially during the modern era of anti-retroviral therapy, it has become a perpetual challenge and preoccupation of the international and national forums to develop screening, prevention and management strategies of the CKD in these patients. Thus, the research topic stemmed from the fact that the renal dysfunction secondary to HIV infection is highly underdiagnosed and neglected. The speciality literature in Romania has little to none studies assessing the renal function within the acquired immunodeficiency syndrome, the present thesis having as an aim to investigate these complex interactions, for the purpose of setting the methods of

detection, prevention, delay or even stop the progression of renal dysfunction and to design a prototype of the HIV-infected patient also suffering from renal dysfunction.

Motivation and objectives of the research

The chronic kidney disease in HIV infection represents a major public health problem, on an international level. The topic of the present doctoral thesis encompasses an interdisciplinary field, an approach embraced by more and more professionals by the day, namely, finding new methods, means, techniques and technologies for the early detection and treatment of the renal dysfunction in PLWH.

The idea of this research team has come naturally, due to the fact that during the last years we can note an increase of the number of renal dysfunction in seropositive subjects, there is a direct effect of the HIV virus, or as a secondary toxic effect of the antiretroviral medication, or as a secondary effect of the multiple comorbidities of the HIV infected patient, whose life span has significantly increased in the past decade, due to the use of highly efficient therapies.

In spite of the fact that the lifespan of PLWH has extended, to the point of being similar to that of the non-HIV patient, and early ageing of the HIV patient has been registered, especially of those patients included in the paediatric cohort, involving multiple comorbidities (kidney, bones cardiovascularly, endocrinological, etc).

The antiretroviral therapy has marked a major change of vision over the management of the HIV infected patient, modeling, throughout time a certain profile of the subject whose lifespan has increased and improved considerably. During the past years, we have seen '*The radical change of how the HIV is managed, from the reduction of the immediate demise risk of the PLWH to an increase of life quality and prevention of associated comorbidities, connected both with the HIV infection per se, as well as with the co-infections, comorbidities determined by the age or by the antiretroviral medication*'.

During the past years, we have seen an increase of the prevalence of the metabolic syndrome, obesity, arterial hypertension, diabetes mellitus, cerebrovascular diseases, both in older population and in young adults, the consequence being an accentuated increase of chronic kidney disease prevalence. This epidemiological trend is becoming more and more frequent also in HIV infected patients.

The price of the survival of multiexperienced HIV infected patients, benefiting from a long therapeutic history, most of them part of the paediatric cohort ("young by age, old by treatment) has been

represented by the occurrence of a vast and varied spectrum of ARV therapy adverse reactions. The survival of quality of life of PLWH subject to antiretroviral treatment are still seriously affected by the acute and long-term complications of these therapeutical schemes, an important percentage of the patients developing end stage renal disease, resulting in the need for renal function supplementing, dialysis or a kidney transplant. As a result it is of paramount importance that the management of the renal dysfunction be improved in the seropositive patient in order to maintain a state of health and quality of life of these subjects, through a multidisciplinary care. The nephrologist should be a part of the team caring for the seropositive patient. The multidisciplinary approach of PLWH should be the rule, not the exception!

Due to the fact that within the Regional HIV - AIDS Centre of Constanta the seropositive subjects are treated using a complete and multidisciplinary method, has given me the possibility of taking contact with the magnitude of the HIV phenomenon, to assess or treat naive or multiexperienced patients, to set the possible kidney risks given by the renal injury, either acute or chronic. I have discovered a varied range of renal dysfunction, burdened by insufficient clinical data in the specialty literature, given the non-homogeneity of the studied groups and of the particulars encompassing both demographical data like race, and features connected with the HIV virus, like the viral subtypes. Few answers...Controversial data...

We have tried to identify a kidney prototype of PLWH, especially of those from the paediatric cohort, for the purpose of finding therapeutical solutions for slowing down the process of gradual loss of the renal function. Failure to diagnose in due time CKD is burdened by numerous complications, costly therapies, increased admission rates, high mortality, unsustainable costs.

The investigation and assessment of the seropositive patients by means of this doctoral research, would be the first such approach in Constanta county and on a national level.

In the context of what was previously stated, this research represents a form of study - perfectible, by all means, and aims are representing the starting point, so useful for those who in the future, should dedicate their passion and interest to this dynamic, captivating domain.

Scope and objectives of the research

Scope of the research

Considering all aspects presented in the general part, the present work aims at exposing the personal experience in the field of renal dysfunction assessment in the HIV – infection, on the studied groups.

The research topic envisages the early detection of renal injury and the anticipated effects of this process, contributing to the optimisation of prevention and the delay of the CKD progression in the seropositive patient, one of the most important objectives of modern public health policies.

Objectives of the research

Through this research project, I have aimed at attaining the following objectives:

Primary objectives:

1. The comparison of two methods of estimating the glomerular filtration rate: CKD-EPI and MDRD in a group of HIV infected patients, using combined antiretroviral therapy and the estimation of the risk of early onset of CKD in these patients.
2. To identify and assess the traditional and non-traditional risk factors (Predicting variables) for the development and progression of CKD for a group of highly experienced HIV infected patient followed up during five years, in order to gain applicability in the current practice, with important consequences over the therapeutic and interventional strategies give the prognosis, quality of life and lifespan of these patients.

Secondary objectives:

1. Assessment of the chronic renal dysfunction in a group of patients with HIV infection and viral subtype F1, followed up during five years, using the comparison of sensitivity and specificity of two methods of estimated glomerular filtration rate: CKD-EPI and MDRD.
2. Assessment of other types of renal impairment apart from CKD in a group of highly experienced seropositive patients followed up during five years.

Method of the research. Materials and methods

Study plan

The study carried out throughout the doctoral program has taken place in the period 2014-2019 and has included 68 patients.

The research theme has involved a retrospective and prospective, observational, noninterventional study on human subjects (patients) which has included minimum invasive investigations (blood sampling, sembling in various biological cultures like vagina, urethra, urine culture), invasive imagering investigations (URO-CT, Angio-CT, renal scintigraphy, parathyroid scintigraphy) or non-invasive imagering investigations (renal ultrasound, thyroid ultrasound). The protocol did not include administrating any drugs throughout the study.

The population group

The patients diagnosed and confirmed with HIV infection were included in the study, registered with the Clinical Hospital for Infectious Diseases of Constanta, through the Day Clinic, which has subsequently become the Regional Center for HIV – AIDS Infection Surveillance and Monitoring of Constanta, or the Regional Centre for Excellence in HIV – AIDS. Over time, the Clinical Hospital Infections Diseases of Constanta has included various partnership with various Institutions from abroad or from the country. One of these partnership is it a strategic partnership with the Foundation Baylor College of Medicine and Texas Children Hospital, initiated in 2001, as well as with the Abbott Fund, partnership that head is a purpose the access of the seropositive patient to antiretroviral medication through an extended access program („expanded –access”). The beneficiaries of this type of program have been especially the patients from the paediatric cohort, which have received antiretroviral medication schemes such as lopinavir boosted with ritonavir, didanozine (ddI), ritonavir, stavudine (d4T), well-tolerated, efficient, improving the immunological status of the patients, with a high rate of viral non-detectability.

In Romania, all the patients with HIV infection have free access to the National Program against HIV-AIDS. Some of the seropositive patients from the whole experience category, have also benefited throughout time from Clinical studies, receiving unavailable antiretroviral medication through the National Program, which led to the attainment of the virus suppression and of the nondetectable status, with a remarkable increase of the quality of life.

Patient recruitment

From the whole range registered with the HIV infection Monitoring and Surveillance Centre of Constanta county, subordinated to the National Committee against HIV-AIDS, 68 patients have been registered, who have accepted to be assessed and followed up through a period of five years, from January 2014 until December 2019. The main analysed group comprises 68 patients, from which several subgroups have been derived, based on the approached topics.

Ethical considerations in the form expressing the informed consent of the patient, according to the GDPR

Scope and objectives of the research have been exposed to the Ethical Committee of the Clinical Hospital of Infectious Diseases of Constanta, who have expressed their consent and approved the study according to the legal framework in force, in connection with the necessary steps and how the study should be carried out. The Objectives of the study have been explained to the patients that have accepted voluntarily to take part in the study, exposure to possible risks as well as the benefits of participating. Subsequently, after clearing these legislative aspects, they have signed the participation consent and the informed consent forms.

The medical evaluation sheet of the subjects included in the research

The data obtained from the past medical history of the subjects included in the study had been written down in the medical sheets which have been subsequently introduced in a database. The medical sheets have included the following data:

- Demographical data (date and year of birth, age, environment, gender, race or ethnicity)
- Information referring to factors connected to their lifestyle, such as drug use, alcohol consumption, synthetic creatinine consumption or smoker status
- Data related to the HIV viral infection: later related to the year when the patient was positively diagnosed, data in connection with how old the infection is, staging of the impairment according to the CDC classification, how the infection was transmitted, the viral subtype, the level of the RNA HIV viraemia, the level of the CD4 lymphocytes upon discovery of the HIV infection, the level of the CD4 Nadir lymphocytes, the level of the lymphocytes upon entering into the study, the current antiretroviral medication and the time of exposure to the present scheme, the number of the treatment scheme previously used and their respective exposure time
- Data referring to the coinfections with the hepatitis virus B, D, C, tuberculosis either sequelae or active

- Data referring to HIV infection comorbidities: diabetes mellitus, diabetic nephropathy, arterial hypertension, hypertensive nephroangiosclerosis, cardiovascular disease, dyslipidaemia, liver steatosis, neoplasia

The seropositive patients who have accepted to voluntarily participate in the study have been assessed two times a year, six months apart between the visits. Visit 1 or moment 1, has been considered the first evaluation, when the personal, demographical and medical data of the patients have been filled in the inclusion study. At this time, the lab analysis have been sampled and the abdominal and pelvic ultrasound has been performed. The biological samples coming from the patients included in the research have been performed in the Lab of the Clinical Hospital for Infectious Diseases of Constanta. In the study group, comprising 68 seropositive patients, the glomerular filtration rates have been calculated at least twice a year, in the period 2014-2019, using the two calculus methods CKD-EPI and MDRD, taking into account of the four variables: serum creatinine, age, gender, race. The patients have been followed up dynamically, being monitored most from their point of view of their virological, immune and kidney evolution, entering the biological and clinical point of view.

Inclusion and exclusion criteria

The criteria for being included in the study have been as follows:

- Age above 18 years
- Criteria of HIV viral infection present
- Signing the informed consent form, necessary for inclusion in the study.
- Patients with the glomerular filtration rate $\geq 60 \text{ ml/min/1,73m}^2$ assessed through the two methods: CKD-EPI and MDRD

The exclusion criteria have been as follows:

- Patient on dialysis
- Patient with a transplant
- Patient with a eGFR lower than $60 \text{ ml/min/1,73m}^2$ upon registration

Case definitions

The cART medication has been defined as the use of at least 2 drugs from two different classes, capable of insuring viral suppression.

Definition of the CKD and the staging of the CKD has been performed according to the KDOQI guide.

- ≥ 90 or above $90 \text{ ml/min/1,73m}^2$ - stage 1 (normal or near normal kidney function)

- 60 to 89 ml/min/1,73m²-stage 2 (mild loss of kidney function)
- 30 to 59 ml/min/1,73m²-stage 3
- 45 to 59 ml/min/1,73m²- stage 3a (mild to moderate loss of kidney function)
- 30 to 44 ml/min/1,73m²-stage 3b (moderate to severe loss of kidney function)
- 15 to 29 ml/min/1,73m²-stage 4 (severe loss of kidney function)

Under the conditions in which the glomerular fixation rate is below or equal to 60 ml/min/1,73m² for a period of at least three months, it is deemed that the chronic renal disease exists, even in the absence or presence of renal injury.

Diabetes mellitus has been defined as administering antidiabetic medication by oral intake or is insulin or its confirmation via diabetologist based on glycaemia and glycosylated haemoglobin, prior to the patient's entry into the study.

Arterial hypertension has been defined as the use of antihypertensive medication or the confirmation of the diagnosis by a cardiologist (systolic blood pressure \geq 140mmHg, diastolic blood pressure \geq 90mmHg), prior to the patient's entry into the study

Cardiovascular diseases have been defined as a presence in the history of the patient prior to entering into the study of the following medical conditions: congestive cardiac failure, myocardial infarction, cerebral vascular attack, coronary angioplasty and stents, carotid endarterectomy, coronary bypass surgery, peripheral vascular disease.

Metabolic syndrome has been defined as the presence in the same individual of at least three of the following entities: central type obesity, defined as the increase of the abdominal circumference above 102 cm in men and about 88 cm in women, altered tolerance to glucose - defined through slightly increased values of the glycaemia (between 110-126 mg/dl-a jeun), triglyceride increase above 150 mg/dl, decrease of HDL cholesterol below 40 mg/dl in men and below 50 mg /dl in women, increase of the values of arterial blood pressure above 130/85 mmHg.

Dyslipidaemia has been defined as the use of hypolipidaemic drugs (statins or fibrates) prior to entering into the study.

Viral hepatitis B has been defined as the presence of the antigen HBs or DNA VHB detectable viremia. Viral hepatitis D has been defined as the presence of the antigen VHD or RNA VHD viremia.

Viral hepatitis C has been defined as the presence of the antibodies anti-HCV or RNA VHC detectable viremia.

Tuberculosis (TB) sequellae has been defined as the presence of the TB sequellae in a patient with a history of active TB that has undergone a tuberculostatic treatment. The active tuberculosis has been defined at the presence of positive cultures for BK, current anti-tuberculostatic treatment confirmed by a pneumologist.

Proteinuria has been defined as the presence in the urinalysis of at least 30 mg/dl proteins. For the patients confirmed with the proteinuria in the year analysis, the value for proteinuria has been checked for 24 hour urine protein test, as well as the ratio albuminuria/creatinuria.

Haemoglobin, red-cell indexes and blood iron, have been measured for all the subjects of the study. The anaemia has been defined as the value of the haemoglobin below 11.7 mg/dl.

Methods.

Lab analysis

The dynamic determination of the medical analysis has been performed upon registration and every six months for the period of the 60 month of follow-up (2014-2019).

Biological samples have been taken from all patients in order to check the values of interest:

- **Blood samples:** hemogram [haemoglobin (Hgb), regular values –11,7-15,5 g/dl, HCT, regular values 35-45%, MCV- 81-100/fL, HEM, regular values 27-34 pg, CHEM, regular values 32-36 g/dl].
- **Serum biochemistry in order to assess the lipidic profile** [cholesterol seric total, regular values 110-200 mg/dL, HDL cholesterol-high-density lipidic fractions, regular values 35-88 mg/dl LDL cholesterol-low density fractions, regular values 40-140 mg/dl, serum triglycerides (TGL) regular values 50-165 mg/dl].
- **Biochemistry samples in order to assess the renal markers and the bone profile** (serum creatinine regular values 0.6-0.9 mg/dl, serum urea -15-45 mg/dl, serum uric acid -3-5,7 mg/dl, serum alkaline phosphatase-98-279 UI/L, total serum calcium -8,6-10,2 mg/dl, ionised serum calcium -4,2-5,2 mg/dl, serum phosphorus-2,7-4,5 mg/dl, serum magnesium -1,6-2,6 mg/dl, urinalysis and urinary sediment, urinary protein level, regular values <140 mg/24h, microalbuminuria regular values <30 mg/24h).
- **Other biochemical samples:** glycaemia, regular values 74-115 mg/dl, blood iron -59-158 mg%, total serum proteins, 6,2-8 g/dl, serum potassium level 3,3-5,1 mmol/L, serum sodium level 136-145 mmol/L.

- **Microbiological samples:** urinalysis, culture of the urethral secretion, culture of the vaginal secretion, PAP smear (test), Chlamydia trachomatis, Ureaplasma urealyticum, Mycoplasma hominis, HPV tests
- **Immunological samples:** AgHBs, AcHCV, CD4 level, regular values 330-1640 cel/mm³, CD4/CD8 1-3,7 ratio, TSH (thyroid stimulating hormone) regular values 0,25-4 UI/ml, FT4 (free thyroxine) 10,6-19,4 pmol/l, ATPO (TPO antibodies) regular values < 0.8 UI/ml, Antithyroglobuline antibodies regular values <115 UI/ml, intact parathyroid hormone (iPTH) regular values 15-65 pg/ml, 25 OH vitamin D, severe deficiency < 20 ng/ml, insufficient 21-29 ng/ml, optimal 30-55 ng/ml, RPR CARBON antigen (rapid plasma reagin), TPHA test (treponema pallidum hemagglutination test).
- **Molecular biology samples:** viral RNA HIV (Quantitative determination).

The value is deemed within the regular limit of the haematological samples, biochemical and immunological samples have been those set and used by the protocols of the Lab of the Clinical Hospital of Infectious Diseases of Constanta.

The diagnosis of HIV infection has been initially based on the serum tests for each reactive test taking a second sample, updating their determination through another performed method. The two screening tests were: the immuno enzymatic technique ELISA – Enzyme Linked Immunosorbent Assay, and respectively the immunochemical method – Chemiluminescence. The subsequent confirmation has been performed by determining the HIV viremia, and in some cases through the Western-Blot test.

Determining the cell mediated immunity and HIV-RNA viremia levels

In order to determine the immunological and virological status of the HIV seropositive patients, the number of CD4 lymphocytes/mm³ has been determined, the CD4/CD8 ratio, as well as the HIV RNA viremia levels (log₁₀ copies/mL).

The cell mediated immunity tests I've been performed by lymphocyte immunophenotype in peripheral blood, using a monoclonal mix of antibodies differentiating the following Lymphocyte subpopulations (sets the percentage of each lymphocyte subpopulation of the total lymphocytes): lymphocytes T (CD3+), lymphocytes T CD4 (CD3+ CD4+) and lymphocytes TCD8+ (CD3+CD8+) using the flow cytometry method with the help of Facs Count Manufactured by Becton Dickinson and Aquios.

Determination of the viral charge tests (no of RNA copies HIV/ml) have been done with two systems of automated real-time PCR : until 2016 with COBAS AmpliPrep/COBAS TaqMan, Roche and m2000, Abbott with a detection limit < 48 copies/ml, and from 2016, GeneXpert Manufactured by

Cepheid, with a detection limit 40 copies/ml. The tests performed using both methods and of the association of analysing apparatus and reactors are international accredited for the in vitro diagnosis (brand IVD), fulfilling the quality requirements for the parameters related to the sensitivity, specificity, precision, linearity of the quantification, including subtypes and correlation between their methods:

1. Minimum analytical sensitivity threshold 40 copies/mL
2. Specificity of 100% absence of cross-reactivity with the main microorganisms (viruses, bacteria, fungi) from the human pathology
3. Linearity of quantification interval from the minimum of 1,60 until 7,00 log copies/mL (40-10,000,000 copies/mL)
4. Covering the whole viral subtype spectrum HIV-1 identified at present (subtypes A-H of the group M and group O), including the subtype circulating in Romania and the recombined variants in the global circulation)
5. A good correlation between the two methods, with did the differences

Subtyping of HIV-1 has been performed using the algorithm REGA HIV- 1 and 2 automated subtyping tool version 2.0 Available at <http://www.bioafrica.net/regagenotype/html/subtypinghiv.html>. The REGA Basis represents a virtual analysis and management environment for the data of the infectious diseases field, which is publicly available and allows for the storage and analysis of the viral genetical sequences.

Screening- of the viral hepatitis (C and B) – has been done by using immunoenzymatic kits, type ELISA in order to identify the antibody anti viral hepatitis C, and respectively for the antigen HBs. In patients with positive Ag HBs the screening for the Delta hepatic virus has been performed, by testing the antibodies anti-VHD. **The screening of the thyroid hormones, the hormone iPTH, 25 OH vitamin D levels** has been done by the immunochemical assay with detection by electrochemical luminescence (ECLIA). **The haematological samples, complete blood count (CBC)** have been done using the optical impedance assay, using the apparatus MINDRAY_BC5380. **The Serum biochemistry samples** have been done by spectrophotometric assay using the apparatus KONELAB PRIME 301. The complete urinary examination (sediment and urinalysis) has been done by microscopic/photometric assay and through their reflectometric assay, respectively. **The urinary proteins in 24 hour urine collection** have been done by the turbidimetric assay. **Microalbuminuria in 24 hour urine collection** has been done by the immuno – turbidimetric assay. **Serum potassium and serum natrium level** have been done by

potentiometric method (ISE) **RPR CARBON and TPHA** tests have been done by latexagglutination and hemagglutination assay.

Imagering investigations

Abdominal and pelvic ultrasound and thyroid and parathyroid ultrasound exams have been done by Gianina Gabriela Șotilă, MdPh using the ultrasound apparatus General Electric LOGIQF8. The ultrasound assessment has been done at least two times a year, during all of the visits of the patients in the study group, during the follow-up period 2014-2019. For the patients that needed **URO-CT** or **Angio-CT**, these investigations have been performed using the apparatus GE Revolution EVO. **The parathyroid scintigraphy obtained through the radiopharmaceutica assay** have been done with Tcm^{99} -MIBI and Tcm^{99} SESTAMIBI in a dose of 740 MBq using a „Washout” protocol. Early acquisition in 10 minutes from the injection, static, and SPECT-CT in late acquisition in two hours and 30 minutes from injection. **The kidney scintigraphy** have been done with Tc-DTPA. The **DEXA test has been done using the bone densitometer** Hologic DXA Wi System and Stratos whole body.

Statistic assessment

For the statistical activity involved in the study, the following types of variables have been defined: **categorical variables** used to determine: the gender, ethnicity, environment, known source of infection with HIV; Categorical variables involving a dichotomous variables, yes / no answer (1/0) used for a series of risk factors: smoking, viral HIV-1-F subtype F, TB securely or active, viral hepatitis B or C or D, diabetes mellitus, arterial hypertension, cardiovascular diseases, neoplasia, dyslipidaemia, metabolic syndrome, liver steatosis, renal urinary lithiasis, nephrocalcinosis, urinary infections, genital infection, Fanconi syndrome, renal or bladder malformation, thyroid impairment, DEXA testing, exposure to antiretroviral treatment, renal scintigraphy, parathyroid scintigraphy, URO-CT, Angio-CT, proteinuria, haematuria, glycosuria, granular and hyalin cylinders, crystals and **Continuous or discrete numerical variables used to determine**: age, the year when the HIV infection was found, classification of the CDC upon the diagnosis of HIV infection, the value of CD4 upon discovery of the HIV infection, the value of CD4 upon entering and exiting the study, the nadir CD4, the ratio CD4/CD8, value of RNA HIV level log 10, eGFR CKD-EPI, eGFR MDRD, serum creatinine, serum urea, serum uric acid, HgB, HCT, MCV, HEM, CHEM, blood iron, total serum proteins, serum tryglycerides, HDL and LDL cholesterol, total cholesterol, serum tryglycerides, glycaemia, total serum calcium and ionised serum calcium, serum phosphorus, serum alkaline phosphatase, 25 OH vitamin D, iPTH hormone.

The experimental data have been treated using the statistical operation program IBM SPSS Statistics 23. Procedures used: Descriptive statistics (to characterise the discrete and continuous variables in the database), charts, parametric statistic tests (Test t for independent variables, Test t for depending variables, One-way ANOVA test), non-parametrical tests - dealing with categorical variables (χ^2 association test, out of two category variables), χ^2 Test comparing two ratios , non-parametrical statistic tests for ordinal data or for dealing with a number of variables when the regularity condition is not satisfied (Mann-Whitney U, Kruskal-Wallis), concordance analysis, Kaplan-Meier analysis along with the test Lok-Rank used for the comparison of various survival curves, the Cox proportional-hazards regression analysis. For all tests, the significance level has been of $\alpha = 0,05$.

Finally conclusions of the research

1. The HIV infection continues to represent a fundamental and profound public health problem, with notable effects on the medical, economic and social system. Chronic kidney disease is a major comorbidity of HIV infection and a real problem in evolution, healthcare and medical assistance of seropositive patients.
2. In Romania, chronic kidney disease associated with HIV infection is being clearly under diagnosed in PLWH, due to the fact that the definition and classification of the CKD is unknown, but also due to the fact that the calculus means for the glomerular filtration rate are in their turn underused.
3. The delay in diagnosing the kidney dysfunction and the loss of the therapeutical timeframe during which we could intervene, determines frequent therapeutical failures, given the kidney failure degree, medication overdose and secondary kidney toxicity, leading to an increase of morbidity and mortality of the HIV infected patients, by adding a new and important risk factor. The consequences of this medical misdiagnosed are devastating: the patients referral late to their nephrologist when does CKD is already advanced come on with important alterations of the glomerular filtration rate, frequently under $60 \text{ ml/min}/1,73\text{m}^2$, when severe complication of the CKD occur (anemia, occurrence or aggravation of the arterial hypertension, metabolic acidosis, mineral and bone disease, etc), when the means of slowing down the disease progression has become inefficient.
4. The study shows that HIV infection is associated with a very high risk of developing chronic kidney disease, 20,6% respectively 14,7% of patients developing after 5 years of monitoring chronic kidney disease stage 1 (CKD-EPI-MDRD), 67,6% respectively 70,6% stage 2, 10,3% respectively 13,2% stage 3 and 1,5% stage 4, worrying percentages considering that the mean age of the group was 35 years and the subjects did not have major comorbidities. Progression of chronic kidney disease in our group, during the 5 years of follow-up, the mean value of eGFR calculated by the CKD-EPI formula decreased by $32,85 \text{ ml/min}/1,73\text{m}^2$, meaning by $6,57 \text{ ml/min}/1,73\text{m}^2$ per year, respectively with $36,15 \text{ ml/min}/1,73\text{m}^2$, meaning by $7,23 \text{ ml/min}/1,73\text{m}^2$ per year, respectively by the MDRD formula.
5. The progress of chronic kidney disease was significant in our group, during the 5 years of follow-up, the mean value of eGFR calculated by the CKD-EPI formula decreased by $32,85 \text{ ml/min}/1,73\text{m}^2$, meaning by $6,57 \text{ ml/min}/1,73\text{m}^2$ per year, respectively with $36,15 \text{ ml/min}/1,73\text{m}^2$, meaning by $7,23 \text{ ml/min}/1,73\text{m}^2$ per year, respectively by the MDRD formula.

6. The increased risk for the development of chronic kidney disease in patients with HIV infection is determined by the synergist action of several factors, being identified in our study by Cox regression analysis, both predictors specific to chronic kidney disease, independent of viral infection, such as diabetes mellitus, arterial hypertension, dyslipidemia, kidney stones, renal nephrocalcinosis as well as factors specific to HIV infection and antiretroviral therapy such as exposure to atazanavir or exposure to atazanavir-tenofovir or HIV associated coinfections such as hepatitis C or B. Renal lithiasis and renal nephrocalcinosis analyzed in the study were not evaluated as predictors for chronic kidney disease in HIV infection in any other national or international study.
7. These independent predictors will underlie the design of risk scores for the development and progression of chronic kidney disease that may be applicable in clinical practice to assess the nephrotoxicity of antiretroviral therapy or to calculate the risk that naive patient with HIV infection may have to develop chronic kidney disease in the next 5 years, respectively 10 years.
8. The study showed that the estimated risk of HIV infection patients to progress from stage 1 to stage 2 of chronic kidney disease was not influenced by the patients' sex, race, background, smoking or nonsmoking status. Instead, it was influenced by the mode of transmission of HIV infection and the age of the patients.
9. The research simultaneously used two methods for calculating the glomerular filtration rate, both eGFR CKD-EPI and eGFR-MDRD, both equations proving to be moderately concordant.. In these conditions, we recommend for the screening and monitoring of chronic kidney disease in HIV-positive patients the concomitant use of these two equations in all newly discovered patients with HIV infection and before initiating antiretroviral therapy, the methods being non-invasive, reproducible, cost- effective, affordable, quickly diagnosing the chronic kidney disease, the consequence being the reduction of costs due to prolonged hospitalizations and expensive medical care in this category of patients.
10. The calculation of eGFR by CKD-EPI has the advantage of a lower number of errors and higher accuracy in the seropositive population with normal or increased glomerular filtration rate, the MDRD equation underestimating eGFR in patients with normal renal function, being useful when the rate of glomerular filtration rate is below 60 ml/min/1,73m². The use of these methods must be integrated in the field of modern international research, in order to be validated in patients with HIV infection, as they are not currently used in clinical practice in Romania.

11. The research led to a deeper understanding of the type of kidney injury and the connections between kidney dysfunction-HIV infection- antiretroviral therapy. In the group of the 68 patients analyzed and monitored for a period of five years, a significant percentage of patients have been diagnosed with renal stones and renal nephrocalcinosis. Most of these patients were exposed to the class of protease inhibitors. Given the increased risk of renourinary lithiasis and renal nephrocalcinosis, the protease inhibitors are to be avoided in the HIV-infected patient with CKD. We promote the use of new molecules, highly efficient for the HIV virus, with a good tolerability and renal safety.
12. In our study we identified a HIV patient profile with HIV infection and nephrolithiasis and/or nephrocalcinosis. Nephrolithiasis and nephrocalcinosis have been more frequent in the age range 20-29 years, predominantly in males, for those with the viral subtype F, for those with an advanced stage of the disease , with a level below 200 cells /mm³ of the CD4 lymphocytes upon discovery of the HIV infection and with the level of CD4 nadir under 200 cell/mm³ and with long exposure to protease inhibitors or INRT- Tenofovir exposure.
13. Due to the hight percentage of patients who developed kidney stones and renal nephrocalcinosis, we consider it necessary and appropriate to perform renal ultrasound at the initial evaluation of all patients with HIV infection, then repeated at 3, 6, 12 month, very useful imaging screening method, cost-effective, accessible and non-invasive.
14. The study showed a particular form of nephrolithiasis, called nephrocalcinosis, a common cause of recurrence of urinary tract infections.Due to the high percentage (44,1%), in selected cases, it is useful to complete investigations with screening of serum and urinary ionogram, screening for metabolic disorders (urinary oxalate, urinary citrate, urinary calcium in urine/24 hours, 25 OH vitamine D hormone, iPTH hormone, osteodensitometry test), advanced medical imaging techniques such as URO-CT, if renal function allows the use of the contrst agent.
15. Tubular proteinuria, renal glycosuria with normoglycaemia, granular cylinders, significant leukocyturia, hipouricemia, hypophosphatemia, hypocalcemia may be considered early markers of incomplete proximal tubulopathysecondary to tenofovir fumarate use. The Fanconi syndrome or complete proximal tubulopathy secondary to tenofovir administration has been seen on 2,9% of the patients and glycosuria with normoglycaemia on 5,9% of the patients. In the seropositive patient on antiretroviral therapy, urine examination, especially microscopic examination of urinary sediment in light microscopy, can provide valuable information about the occurrence of tubulointerstitial

nephropathy or acute tubular necrosis secondary to antiretroviral medication, especially in patients on tenofovir fumarate, being considered a true „in vitro renal biopsy”.

16. The malformations, abnormalities and dysmorphic aspects of the renourinary apparatus must be taken into account in positive patient having a secondary kidney impairment, due to the fact that they are frequent, come in different forms, are misdiagnosed and allow for multiple complications, with different severity degrees, like the urinary tract infections, kidney urinary lithiasis, or progression of the CKD.
17. In the study group, the pyelocaliceal duplicity has been the most frequent congenital abnormality of the upper urinary ducts (35,3%), followed by congenital a small kidney (2,9%), horseshoe kidney (1,5%), pyelourethral junction syndrome (1,5%) and congenital bladder diverticuli (1,5%). The nephrectomy performed for various kidney dysmorphic situations, such as multicystic kidney dysplasia and pyelourethral junction syndrome IV-th degree complicated with pyonephrosis occurred in 2,9% cases.
18. The incidence of sexually transmitted diseases such as syphilis in HIV-positive patients remains high, despite the advances made by modern medicine in diagnosing, treating and curing most of these diseases, representing an important substrate for the presence and recurrence of urinary tract infections.
19. Evaluation of renal dysfunction in patients with HIV-1-F viral subtype revealed that 33 subjects (88,84%) and 35 subjects (92,11%) of the total of 38 patients with HIV-1-F viral subtype, respectively progressed to chronic kidney disease stage 2 (eGFR CKD-EPI-MDRD) in 24 months.
20. Comparing the mean values of the glomerular filtration rate at the entrance and exit of the study, in patients with HIV-1-F viral subtype, there is a decrease of eGFR by 6,86 ml/min/1,73m² per year respectively 7,11ml/min/1,73m² per year (CKD-EPI, MDRD)
21. Staging of chronic kidney disease after 5 years of monitoring, showed that 21,1% of subjects with HIV-1-F viral subtype were in stage 1 of CKD, 71,1% were in stage 2 of CKD, 5,3% were in stage 3 of CKD and 2,6% were in stage 4 of CKD, alarming percentages because 76,3% (29 patients) belonged to the age range 20-29 years old.

Personal contributions

The research conducted and revealed in the our research reveals a new and multidisciplinary approach for screening, diagnosis and monitoring of the early renal dysfunction in HIV infection, the data obtained during the study complete the current gaps in knowing information about the type, degree and severity of renal injury in HIV infection, offering the possibility to improve prognostic and increasing the quality of life of the seropositive patients. It is the first study in Romania of such magnitude.

The contribution of the research results from identifying that non-invasive diagnosis means, such as calculating the glomerular filtration rate by two formulas CKD-EPI and MDRD, able to detect and assess the renal dysfunction from HIV infection, on an early stage, knowing the asymptomatic character of the CKD, up until the advanced stages, as well as identifying the cost of the therapy for replacing the renal function and associated comorbidities common both to the HIV infection and to the CKD.

In the future, we will need large scale national studies to demonstrate the validation of these formulas in HIV –positive patients in Romania. Any research study investigating the early discovery of the renal injury will facilitate the appearance and development of efficient prevention strategies for slowing down the kidney dysfunction and the degrading of the kidney function, which will lead to a considerable improvement of the clinical state and of the quality of life of the people infected with HIV.

The existance and design of National Registers for the monitoring of chronic kidney disease in patients with HIV infection would also be useful. The need to establish a medical specialization such as InfectoNephrology or HIV-Nephrology is a priority in the near future of modern patient-centered medicine. This would, in faact, allow a deepending, accuracy and detailed information on the latest discoveries and trends in the field of HIV-Nephrology. In this context, it becomes imperative to include a nephrologist in the multidisciplinary team that cares for the patient with HIV infection with multiple comorbidities.

References

1. Adedeji TA, Adedeji NO, Adebisi SA, Idowu AA. Prevalence and Pattern of Chronic Kidney Disease in Antiretroviral-Naive Patients with HIV/AIDS. *J Int Assoc Provid AIDS Care*. 2015
2. Agarwal, K., Fung, S.K., Nguyen, T.T., Cheng, W., Sicard, E., Ryder, S.D., Flaherty, J.F., Lawson, E., Zhao, S. Twenty-eight day safety, antiviral activity, and pharmacokinetics of tenofovir alafenamide for treatment of chronic hepatitis B infection. *J. Hepatol*. 2015. 62, 533-540.
3. Ahlstrom MG, Feldt-Rasmussen B, Legarth R, Kronborg G, Pedersen C, Larsen CS, et al. Smoking and renal function in people living with human immunodeficiency virus: a Danish nationwide cohort study. *Clin Epidemiol*. 2015;7:391–9.
4. Almeras C, Daudon M, Ploussard G, Gautier JR, Traxer O, Meria P. Endoscopic description of renal papillary abnormalities in stone disease by flexible ureteroscopy: A proposed classification of severity and type. *World J Urol* 2016
5. Antoniou T, Raboud J, Chirhin S, Yoong D, Govan V, Gough K. Incidence of and risk factors for tenofovir-induced nephrotoxicity: a retrospective cohort study. *HIV Med* 2005; 6:284-90.
6. BHIVA. British HIV Association guidelines for the treatment of HIV 1 positive adults with antiretroviral therapy. 2019
7. Bigwan E.I., Wakjissa F.D. Prevalence of Urinary Tract Infections among HIV Patients Attending a Non- Governmental Health Facility in Jos, Plateau State, Nigeria. *IJBAR* (2013)
8. Brewster UC, Perazella MA. Acute interstitial nephritis associated with atazanavir, a new protease inhibitor. *Am J Kidney Dis* 2004; 44:e81–e84 2
9. Buonaguro Let al. Human Immunodeficiency Virus Type 1 Subtype Distribution in the Worldwide Epidemic: Pathogenetic and Therapeutic Implications, *Journal of Virology*, oct 2007, p10209-10219
10. Calza L, Trapani F, Salvadori Cet al. Incidence of renal toxicity in HIV-infected, antiretroviral-naïve patients starting tenofovir/emtricitabine associated with efavirenz, atazanavir/ritonavir, or lopinavir/ritonavir. *Scand J Infect Dis* 2013;45:147–154
11. Campbell LJ, Ibrahim F, Fisher M et al. Spectrum of chronic kidney disease in HIV-infected patients. *HIV Med* 2009; 10: 329–33
12. Casado J L, Banon S., Santiuste C. Prevalence and significance of proximal renal tubular abnormalities in HIV-infected patients treated with tenofovir. *AIDS*. 2016.vol 30, no.2, pp231-239
13. Cernat R. Teză de doctorat. Profile de rezistență la pacienții multiexperimentați și naivi infectați cu HIV-implicații clinice și terapeutice. Constanta. 2017

14. Cerrato E. et al. Cardiac dysfunction in pauci symptomatic human immunodeficiency virus patients: a meta-analysis in the highly active antiretroviral therapy era. *Eur Heart J* 2013;34:1432-6.
15. Choi A, Rodriguez R, Bacchetti P, et al. Low rates of antiretroviral therapy in chronic kidney disease. *Clinical Infectious Diseases* 2007;45:1633-1639.
16. Cristelli MP, Cofan F, Rico N, Trullas JC et al. Estimation of renal function by CKD-EPI versus MDRD in a cohort of HIV-infected patients: a cross-sectional analysis. *BMC Nephrology*. 2017;18:58
17. Crum-Cianflone N, Ganesan A, Teneza-Mora N et al. Prevalence and factors associated with renal dysfunction among HIV-infected patients. *AIDS Patient Care STDS* 2010; 24: 353–360
18. Cheung CY, Wong KM, Lee MP, Liu YL, Kwok H, Chung R, Chau KF, Li CK, Li CS. Prevalence of chronic kidney disease in Chinese HIV-infected patients. *Nephrol Dial Transplant* 2007; 22:3186-90.
19. Dadi M, Senthilkumar B, Berhanu S. Prevalence, Antimicrobial Susceptibility Pattern of Bacterial Isolates, and Associated Factors of Urinary Tract Infections among HIV-Positive Patients at Hiwot Fana Specialized University Hospital, Eastern Ethiopia. *Hindawi Canadian Journal of Infectious Diseases and Medical Microbiology* Volume 2019, Article ID 6780354, 8 pages
20. de Lastours V, Ferrari Rafael De Silva E, Daudon M et al. High levels of atazanavir and darunavir in urine and crystalluria in asymptomatic patients. *J Antimicrob Chemother* 2013; 68: 1850–1856
21. Dauchy FA, Lawson-Ayayi S, de La Faille Ret al. Increased risk of abnormal proximal renal tubular function with HIV infection and antiretroviral therapy. *Kidney Int* 2011;80:302–309
22. Daudon M, Bazin D, Traxer .O. Randall's plaque . Urinary Tract Stone Disease. Edited by Par P.N. Rao J. P. Kavanagh,G. M. Preminger 2014
23. Debalke S, Cheneke W, Tassew H, and Awol M. Urinary Tract Infection among Antiretroviral Therapy Users and Non users in Jimma University Specialized Hospital, Jimma, Ethiopia. *International Journal of Microbiology* Volume 2014, Article ID 968716, 6 pages
24. Deti EK, Thiebaut R, Bonnet F et al. Prevalence and factors associated with renal impairment in HIV-infected patients, ANRS C03 Aquitaine Cohort, France. *HIV Med* . (2010) 11: 308–317
25. DHHS Panel on Antiretroviral Guidelines for Adults and Adolescents, Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. 2019
26. Dorjee K, Choden T. Risk of cardiovascular disease associated with exposure to abacavir among individuals with HIV: a systematic review and meta-analysis of results from 17 epidemiological studies. *Int J Antimicrob Agents* 2018;52:541-53.
27. EACS. European AIDS Clinical Society Guidelines Version 10.0 November 2019

28. ERBP-European Renal Best Practice . www.european-renal-best-practice.org

29. Estrella MM, Parekh RS, Abraham A et al. The impact of kidney function at highly active antiretroviral therapy initiation on mortality in HIV-infected women. *J Acquir Immune Defic Syndr* 2010; 55: 217–220

30. Estrella MM, Fine DM. Screening for chronic kidney disease in HIVinfected patients. *Adv Chronic Kidney Dis* 2010; 17: 26–35

31. Evan A, Lingeman J, Coe FL et al. Randall's plaque: pathogenesis and role in calcium oxalate nephrolithiasis. *Kidney Int* 2006; 69: 1313–1318.

32. Evenepoel P, Daenen K, Bammens B, Claes K, Meijers B, Naesens M. Microscopic nephrocalcinosis in chronic kidney disease patients. *Nephrol Dial Transplant* (2015) 30: 843–848

33. Feinstein MJ. et al. Characteristics, prevention, and management of cardiovascular disease in PLWH: A scientific statement from the American Heart Association. *Circulation*. 2019;140:98124.

34. Fernando SK, Finkelstein FO, Moore BA et al. Prevalence of chronic kidney disease in an urban HIV infected population. *Am J Med Sci* 2008; 335: 89–96

35. Fowzia I, Jones R, Hanzah L, Nitsch D. Comparison of CKD-EPI and MDRD to estimate baseline renal function in HIV-positive patients. *Nephrology Dialysis Transplantation*. 2011. 27(6):2291-7

36. Freiberg MS, Chang CH, Skanderson M, et al. Association between HIV infection and the risk of heart failure with reduced ejection fraction and preserved ejection fraction in the antiretroviral therapy era: Results from the Veterans Aging Cohort Study. *JAMA Cardiol* 2017;2:536-46.

37. Fulop T, Olivier J, Meador RS, Hall J, Islam N, Mena L, et al. Screening for chronic kidney disease in the ambulatory HIV population. *Clin Nephrol*. 2010;73:190–6.

38. George E, Lucas GM, Nadkarni GN et al. Kidney function and the risk of cardiovascular events in HIV-1-infected patients. *AIDS* 2010; 24: 387–394

39. German P, Liu HC, Szwarcberg J et al. Effect of cobicistat on glomerular filtration rate in subjects with normal and impaired renal function. *J Acquir Immune Defic Syndr* 2012; 61:32–40.

40. GESIDA. Spanish National AIDS Plan for initial antiretroviral therapyin HIV-infected adults. Perez-Molina et al. *Enferm Infect Microbiol Clin*. 2019. Mar;37(3):151-159

41. Gorri J, Gutierrez F, Trullas JC, Arazo P, Arribas JR, Barril G, et al. Consensus document on the management of renal disease in HIV –infected patients. *Nefrologia* 2014;34 (suppl.2):1-81.

42. Guideline for the Evaluation and Management of Chronic Kidney Disease. *Kidney International Supplements*, vol.3, issue, January 2013. www.kdigo.org

43. Guimaraes ML, Vicente ACP, Otsuki K, Ferreira FC da Silva, Francisco M et al. Close phylogenetic relationship between Angolan and Romanian HIV-1 subtype F1 isolates, *Retrovirology* 2009;6:39

44. Gupta, Samir K. Post F. A, al. Renal safety of tenofovir alafenamide vs. Tenofovir disoproxil fumarate a pooled analysis of 26 clinical trials. *AIDS*: July 15, 2019 .Vol 33 – Issue 9 – p 1455–1465

45. Gupta SK Tenofovir-associated Fanconi syndrome: review of the FDA adverse event reporting system. *AIDS Patient Care STDS* . 2008 22: 99–103.

46. Gupta SK, Eustace JA, Winston JA et al. Guidelines for the management of chronic kidney disease in HIV-infected patients: recommendations of the HIV Medicine Association of the Infectious Diseases Society of America. *Clin Infect Dis* 2005; 40: 1559–1585

47. Gutierrez F, Fulladosa X, Barril G, Domingo P. Renal tubular transporter-mediated interactions of HIV-Drugs: implications for patient management. *AIDS Rev*. 2014; 16:199-212

48. Hailemariam S, Waldera M, Burgera HR, Cathomasa G, Mihatschb M, Binswangerc U, Ambühlc PM. Renal pathology and premortem clinical presentation of Caucasian patients with AIDS: An autopsy study from the era prior to antiretroviral therapy. *Swiss Med Wkly* 2001;131:412–417

49. Hamada Y, Nishijima T, Watanabe K et al. High incidence of renal stones among HIV-infected patients on ritonavir boosted atazanavir than in those receiving other protease inhibitor-containing antiretroviral therapy. *Clin Infect Dis* 2012;55:1262–1269

50. Hara M, Suganuma A, Yanagisawa N, Imamura A, Hishima T and Ando M. Atazanavir nephrotoxicity. *Clin Kidney J*. 2015. 8 :137–142

51. Herlitz LC, Mohan S, Stokes MB, Radhakrishnan J, D'Agati VD, Markowitz GS. Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. *Kidney Int* 2010; 78:1171–1177.

52. Hersh BS, Popovici F, Apetrei RC, et al. Acquired immunodeficiency syndrome in Romania, *Lancet*. Sept 14;1991 338(8768):645-649

53. Hersh BS, Popovici F, Jezek Z, et al. Risk factors for HIV infection among abandoned Romanian children. *AIDS*. Dec;1993 7(12):1617-1624

54. IAS-USA. Michael S. Saag et al. Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults 2018 . *JAMA*. 2018;320(4):379-396

55. Izzedine H, M'Rad MB, Bardier A et al. Atazanavir crystal nephropathy. *AIDS*. 2007;21:2357–2358

56. Iweriebor1 BC, Obi CL, Akinyemi O, Ramalivhana NJ. Uropathogens isolated from HIV-infected patients from Limpopo Province, South Africa. *Afri J of Biotechnol* 2012; 11(46): 10598-10604.

57. Jose L. Gorriez et al. Consensus document on the management of renal disease in HIV –infected patients. *Nefrologia* 2014.;34 (suppl.2):1-81

58. Kalayjian RC, Lau B et al. Risk factors for chronic kidney disease in a large cohort of HIV-1 infected individuals initiating antiretroviral therapy in routine care. *AIDS*. 2012;26 (15): 1907-1915

59. Kanzaki G, Tsuboi N, Miyazaki Y et al. Diffuse tubulointerstitial nephritis accompanied by renal crystal formation in an HIV infected patient undergoing highly active antiretroviral therapy. *Intern Med* 2012;51:1543–1548

60. KDIGO (Kidney Disease Improving Global Outcomes) KDIGO 2012 Clinical Practice

61. Lazaro, E., Duffau, P., Neau, D., Bonnet, F., Chene, G., Role of traditional risk factors and antiretroviral drugs in the incidence of chronic kidney disease, ANRS CO3 Aquitaine cohort, France, 2004-2012. *PloS One* 8-66223.

62. Levey AS, Coresh J, Green T et al. Chronic Kidney Disease Epidemiology Collaboration. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. *Ann Intern Med* 2006; 145(4): 247-254

63. Levey AS, Stevens LA. Estimating GFR using the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation: more accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. *Am J Kidney Dis*. 2010 Apr;55(4):622-7.

64. Lucas GM, Lau B, Atta MG et al. Chronic kidney disease incidence, and progression to end-stage renal disease, in HIV-infected individuals: a tale of two races. *J Infect Dis* 2008; 197: 1548–1557

65. Matlaga BR, Coe FL, Evan AP, et al. The role of Randall's plaques in the pathogenesis of calcium stones. *J Urol* 2007. 177:31-38

66. Magliano E, Grazioli V, Deflorio L, Leuci AI, Mattina R, Romano P, et al. Gender and age-dependent etiology of community-acquired urinary tract infections. *ScientificWorldJournal*. 2012;3:49597

67. Matlaga BR, Williams JC, Jr., Kim SC, et al. Endoscopic evidence of calculus attachment to Randall's plaque. *J Urol* 2006. 175:1720-1724

Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Green T, Levey AS et al. National Kidney

68. Disease Educational Program Laboratory Working Group. Recomandations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. *Clin Chem*. 2006. 52 (1): 5-18

69. Mocroft A, Kirk O, Reiss P et al. Estimated glomerular filtration rate, chronic kidney disease and antiretroviral drug use in HIV-positive patients. *AIDS* 2010; 24: 1667–1678

70. Mocroft A, Kirk O, Gatell J, Reiss P, Gargalianos P, Zilmer K, Beniowski M, Viard JP, Staszewski S, Lundgren JD. Chronic renal failure among HIV-1-infected patients. *Aids* 2007; 21:1119-27.

71. Macroft A et al. Development and Validation of a Risk Score for Chronic Kidney Disease in HIV Infection Using Prospective Cohort Data from the D:A:D Study. *PLOS Medicine*. March 31, 2015, 1-31

72. Marinescu C I, Leyes M, Ribas M. A, Peñaranda M, Murillas J. Relationships between Serum Levels of Atazanavir and Renal Toxicity or Lithiasis. *Hindawi Publishing Corporation AIDS Research and Treatment Volume 2015, Article ID 106954, 7 page*

73. Milburn J, Jones R, Levi J B. Renal effects of novel antiretroviral drugs. *Nephrol Dial Transplant* 2017. 32: 434–439

74. NKF KDOQI Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification and Stratification. www.kidney.org

75. Olowe O., Ojo-Johnson B., Makanjuola O., Olowe R., Mabayoje V. Detection of bacteriuria among human immunodeficiency virus seropositive individuals in Osogbo, south-western Nigeria. *European Journal of Microbiology and Immunology*. 2015;5(1):126–130.

76. Pelchen-Matthews A, Ryom L, Borges ÁH, et al. Aging and the evolution of comorbidities among HIV-positive individuals in a European cohort. *AIDS* 2018;32:2405-16.

77. Peralta CA, Shlipak MG, Judd S, et al. Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. *JAMA* 2011;305:1545-52.

78. Perazella MA. Tenofovir-induced kidney disease: an acquired renal tubular mitochondriopathy. *Kidney Int* 2010; 78:1060–1063.

79. Peters L, Grint D, Lundgren JD, Rockstroh JK, Soriano V, et al. Hepatitis C virus viremia increases the incidence of chronic kidney disease in HIV-infected patients. *AIDS* (2012) 26: 1917–1926.

80. Pozniak, A., Arribas, J.R., Gupta, S.K., Post, F.A., Avihingsanon, A., Crofoot, G., Lichtenstein, K.A., Safety of tenofovir alafenamide in renal impairment. In: Conference on Retroviruses and Opportunistic Infections (CROI), Seattle, Washington, USA. 2015

81. Ray AS, Fordyce MW, Hitchcock JM. Tenofovir alafenamide: A novel prodrug of tenofovir for the treatment of Human Immunodeficiency Virus. *Antiviral Research* 125. 2016. 63-70

82. Rasch MG, Engsig FN, Feldt-Rasmussen B et al. Renal function and incidence of chronic kidney disease in HIV patients: a Danish cohort study. *Scand J Infect Dis*. 2012;44:689–696

83. Rockwood N, Mandalia S, Bower M et al. Ritonavir-boosted atazanavir exposure is associated with an increased rate of renal stones compared with efavirenz, ritonavir-boosted lopinavir and ritonavir-boosted darunavir. *AIDS* 2011; 25:1671–1673

84. Ryom L, Mocroft A, Kirk O et al. Association between antiretroviral exposure and renal impairment among HIV-positive persons with normal baseline renal function: the D:A:D study. *J Infect Dis.* 2013; 207:1359–1369

85. Samuel SO, Salami TAT, Adewuyi GM, Babatope E, Ekozien M.I. Prevalence of Urinary Tract Infections among a cohort of HIV Positive Patients accessing care in a rural health centre in Nigeria. *J Microbiol Biotech Res* 2012; 2 (4):507-10 .

86. Satapathy SK, Lingisetty CS, Williams S. Higher prevalence of chronic kidney disease and shorter renal survival in patients with chronic hepatitis C virus infection. *Hepatol Int* 2012;6:369-378

87. Sax, P.E., Wohl, D., Yin, M.T., Post, F.A. Tenofovir alafenamide versus tenofovir disoproxil fumarate, coformulated with elvitegravir, cobicistat, and emtricitabine, for initial treatment of HIV-1 infection: two randomised, double-blind, phase 3, non-inferiority trials. *Lancet* ., 2015. 385, 2606-2615.

88. Schouten J, Wit FW, Stolte IG, et al. Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between HIV-infected and uninfected individuals: the AGEhIV cohort study. *Clin Infect Dis* 2014;59:1787-97.

89. Scherzer R, Estrella M, Li Y, Choi AI, Deeks SG, et al Association of tenofovir exposure with kidney disease risk in HIV infection. *AIDS* . 2012. 26: 867–875

90. Schwartz EJ, Szczech LA, Ross MJ et al. Highly active antiretroviral therapy and the epidemic of HIV1 end-stage renal disease. *J Am Soc Nephrol* 2005; 16: 2412–242

91. Shavit L, Jaeger P, Unwin R J. What is nephrocalcinosis? *Kidney International* 1-9, 2015.

92. Skrzat-Klapaczyńska.A, Matłosz. B, Bednarska.A, et al. Factors associated with urinary tract infections among HIV-1 infected patients. *PLoS One*. 2018; 13(1)

93. Streinu-Cercel et al. Prevalence of osteo-renal impairment in the Romanian HIV cohort *BMC Infectious Diseases* 2016, 16(Suppl 1):93

94. Streinu-Cercel et al. Declarație de consens cu privire la evaluarea comorbidităților la pacientii cu infectie HIV din Romania. *GERMS* 9(4) Decembrie 2019

95. Szczech LA, Grunfeld C, Scherzer R, Canchola JA, van der Horst C, Sidney S, Wohl D, Shlipak MG. Microalbuminuria in HIV infection. *Aids* 2007; 21:1003-9.

96. Szczech LA, Gange SJ, van der Horst C, Bartlett JA, Young M, et al. Predictors of proteinuria and renal failure among women with HIV infection. *Kidney Int* (2002). 61: 195–202

97. Szczech LA, Gupta SK, Habash R, Guasch A, Kalayjian R, et al. The clinical epidemiology and course of the spectrum of renal diseases associated with HIV infection. *Kidney Int* 2004; 66:1145–1152.

98. Szczech LA, Hoover DR et al. Association between renal disease and outcomes among HIV-infected women receiving or not receiving antiretroviral therapy. *Clin Infect Dis* 2004; 39: 1199–1206

99. Swanepoel KR et al. Kidney disease in the setting of HIV infection-conclusions from Kidney Disease Improving Global Outcomes (KDIGO). *Kidney International* (2018);93, 545-559

100. Taylor ER.. Vascular theory of the formation of Randall plaques. *Urolithiasis* 2014; 43: 41-45

101. Tordato F, Cozzi Lepri A, Cicconi P et al. Evaluation of glomerular filtration rate in HIV-1-infected patients before and after combined antiretroviral therapy exposure. *HIV Med* 2011; 12: 4–13

102. Vrouenraets SM, Fux CA, Wit FW, Garcia EF, Furrer H, Brinkman K, et al. Persistent decline in estimated but not measured glomerular filtration rate on tenofovir may reflect tubular rather than glomerular toxicity. *AIDS* 2011; 25:2149–2155

103. Waheed S, D.Attia, M.M. Estrella et al. Proximal tubular dysfunction and kidney injury associated with tenofovir in HIV patients: a case series. *Clinical Kidney Journal*. 2015. vol 8.no4, pp420-425

104. Weiner NJ, Goodman JW, Kimmel PL. The HIV – associated renal diseases: Current insight pathogenesis and treatment. *Kidney Int* 2003; 63: 1618-31.

105. WHO, Guideline on when to start ARV therapy an on pre-exposure prophylaxis for HIV. July 2019

106. Worm SV, De Wit S, Weber R, et al. Diabetes mellitus, preexisting coronary heart disease, and the risk of subsequent coronary heart disease events in patients infected with human immunodeficiency virus: the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D Study). *Circulation* 2009;119:805-11

107. Wyatt CM, Malvestutto C et al. The impact of hepatitis C virus coinfection on HIV- related kidney disease: a systemic review and meta-analysis 1. *AIDS* 2008;22: 1799-1807

108. Wyatt CM, Winston JA, Malvestutto CD, Fishbein DA, Barash I, Cohen AJ, et al. Chronic kidney disease in HIV infection: an urban epidemic. *AIDS*. 2007; 21:2101–3.

109. Young J, Schäfer J, Fux CA et al. Renal function in patients with HIV starting therapy with tenofovir and either efavirenz, lopinavir or atazanavir. *AIDS*. 2012;26:567–575

110. Yombi J.C., Pozniak A, Boffito M, Jones R, Khoo S, Levi J and Poster F.A. Antiretrovirals and the kidney in current clinical practice: renal pharmacokinetics, alterations of renal function and renal toxicity. *AIDS*. 2014. 28:621-632