

Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract

"OVIDIUS" UNIVERSITY, CONSTANȚA
DOCTORAL SCHOOL OF MEDICINE
DOCTORAL AREA: DENTAL MEDICINE

Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy

Abstract of PhD Thesis

PhD Coordinator

Prof. PhD. Victoria Badea

PhD Student

Erdogan Elvis Şachir

CONSTANȚA

2020

TABLE OF CONTENTS

LIST OF PUBLISHED WORKS IN THE FIELD OF	
DOCTORAL THESIS.....	4
ABBREVIATIONS USED IN THE TEXT	8
INTRODUCTION	9
CURRENT STATE OF KNOWLEDGE	
1. Bacteria. Bacterial physiology	12
1.1. Bacterial biofilms	13
1.2. Interbacterial communication	17
1.3. Pathophysiology of endodontic infection	25
2. Endodontics in the context of oro-dental pathology and in the context of systemic diseases	29
2.1. Endodontic infections in the context of oral pathology	29
2.2. Endodontic infections and pathogenesis of systemic diseases	33
2.3. Accidents and complications caused by disinfectants used in endodontic lavage	34
3. Medicinal plants	36
4. Epilobium parviflorum Schreb. - phytochemical features and pharmacodynamic activity	39
PERSONAL CONTRIBUTION	
Working hypothesis, purpose and objectives of the doctoral thesis.....	44
Chapter 1. Studies on the antibacterial effect of plant extracts obtained from Epilobium parviflorum Schreb	45
Introduction. Working hypothesis. Purpose of the study.	
Objectives.	45
1.1. Material and method	46
1.1.1. Harvesting the plant and making extracts from Epilobium parviflorum Schreb	46
1.1.2. Determination of the content of bioactive compounds in plant extracts obtained from Epilobium parviflorum Schreb... 50	50
1.1.3. Carrying out bacteriological tests.....	50

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

1.2. Results obtained	55
1.2.1. Quantification of total polyphenols in the three types of plant extracts	55
1.2.2. Quantification of total flavonoids.....	57
1.2.3. Results of testing the antibacterial effect of plant extracts from <i>Epilobium parviflorum</i> Schreb.....	59
1.2.4. Correlations between the total polyphenol content of plant extracts obtained from <i>Epilobium parviflorum</i> Schreb and the antibacterial action	61
1.2.5. Correlations between the total flavonoid content of plant extracts and the antibacterial action	62
1.2.6. Results of the comparative study between the antibacterial effect of the test solutions and the antibacterial effect of the usual antiseptics used in the current practice of dentistry: NaOCl 5.25%, CHX 2%, NaOCl 2%	63
1.2.7. Results regarding the semi-quantitative evaluation of the antibacterial effect of the tested solutions.....	65
1.3. Discussions	67
1.4. Conclusions	69
Chapter 2. In vitro evaluation of the cytotoxicity of plant extract obtained from <i>Epilobium parviflorum</i> Schreb	70
Introduction. Working hypothesis. Purpose of the study. Objectives.....	70
2.1. Material and method	71
2.2. Results obtained	74
2.3. discussions	77
2.4. conclusions.....	77
Chapter 3. In vivo study on the toxicity of plant extract obtained from <i>Epilobium parviflorum</i> Schreb	78
Introduction. Working hypothesis. Purpose of the study. Objectives.	78
3.1. Material and method	79
3.1.1. Assessment of post-extraction dental alveolar toxicity...81	81

3.1.2. Hepatic toxicity assessment	82
3.2. Results	83
3.2.1. Post-extraction dental alveolar toxicity	83
3.2.2. Hepatic toxicity.....	88
3.3. Discussions	95
3.4. Conclusions	96
Chapter 4. Radioimaging in the evaluation of the therapeutic effect of the plant extract obtained from <i>Epilobium parviflorum</i> Schreb.....	97
Introduction. Working hypothesis. Purpose of the study.	
Objectives.	97
4.1. Material and method	98
4.2. Results.....	104
4.2.1. Periapical index.....	104
4.2.2. Determination of the extent of the periapical lesion expressed in mm ²	114
4.3. Discussions.....	122
4.4. Conclusions	123
GENERAL CONCLUSIONS.....	124
ORIGINALITY OF THE DOCTORAL THESIS	126
BIBLIOGRAPHY	128
INDEX OF FIGURES IN TEXT.....	145
INDEX OF TABLES IN TEXT	148
INDEX OF GRAPHICS IN TEXT	150

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**
Motto:

“ The doctor cares, the nature heals. ”

(Hippocrates)

To complete this doctoral thesis I benefited the help of people with admirable professional and moral qualities, whom I would like to thank in this way.

First of all, I would like to thank to my PhD Coordinator, Prof.PhD. Badea Victoria for the dedication with which she guided me in my studies during these years and for the firmness and sincerity with which she supported me in my moments of compilation.

Sincere and special thanks to Mrs. Dean of the Faculty of Dental Medicine in Constanța, Prof.PhD. Caraiane Aureliana who guided my every step throughout my doctoral studies.

I send a warm thought of thanks to Prof.PhD. Vataman Maria and Lecturer PhD. Aminov Liana for the assistance given in coordinating and carrying out the study on endodontic therapy.

I would also thank to Univ. Assist.PhD. Radu Marius from the Biobase of the “Ovidius” University of Constanța for

availability, professionalism and conducting in the best conditions of the studies performed on laboratory animals.

I would like to thank the coordinators for the patience with which they analyzed each study and for the advice given at the presentation of each research report.

In parallel with the doctoral research I have completed the training in the Endodontic specialty and I consider that all the knowledge accumulated in the specialty has helped me in completing the doctoral thesis.

Finally, but not least, I would like to thank my family and all those close to me who have supported me throughout this important period of my professional and didactic evolution.

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

INTRODUCTION

Currently, there is an upward trend regarding the use of herbs in the substitution and/or supplementation of the action of the synthetic drugs, because these besides the beneficial therapeutic effects also have side effects and adverse effects. Specialists in the field recommend the use of natural remedies as an adjunct to classical therapy, all the more so as the antibacterial action of the plant extracts could limit the expansion of bacterial resistance to antibiotics, a problem that has dominated the second millennium and persists in an upward trend in the one of the third millennium [1].

Pierre Fauchard introduced for the first time the concept of endodontics and is called the father of modern dentistry; wrote the first book on dentistry called "Le Chirurgien Dentiste" in 1728, in which he scientifically describes pulp pathology as well as the possibility of pulp tissue removal [2].

Periapical endodontic disorders have always been a priority topic for dentists, who have been constantly concerned about the alleviation of these diseases by means that have improved technically over time. Numerous experiments have been carried out over time, ranging from empirical treatments to modern techniques used today. These were based on the new

discoveries related to the total deciphering of the structure of the component tissues of the pulpo-dentinary and periradicular complex as well as an increasing understanding of the impact that endodontic disorders have on disturbing the homeostasis of the oral-dental cavity as well as of homeostasis of the whole organism [3].

Currently, it is unanimously accepted worldwide that AP is a consequence of bacterial infection at the level of the endodontic space; for these reasons, identifying the most effective techniques for removing the bacterial biofilm from the endodontic space could be one of the most effective therapeutic solutions for the prevention of endodontic infections [5].

The discovery of new antibiotics remains a major challenge for physicians, pharmacists, chemists and geneticists; In this context, planets can be a valuable source of biologically active natural compounds that can be used as alternative therapeutic agents or as basic nuclei for new synthetic products with increased antibacterial activity and as few side effects as possible [6,7].

In the category of plants with antibacterial, anti-inflammatory and antioxidant properties, *Epilobium parvifloum* Schreb is also found. In the accessed literature there are

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

empirical data showing that this plant has been used in traditional medicine to treat different diseases, without specifying the active principles that generate the processes of improvement or cure of diseases [8,9,10] .

GENERAL PART

The first chapter of the thesis describes bacterial physiology, bacterial biofilm and bacterial species involved in endodontic pathology.

An element of the news is the inter-bacterial communication that determines a new perspective in the application of the therapeutic schemes, improving the bactericidal effect of the antibiotics; communication inhibition can be achieved by interfering with signaling pathways or by using signal molecules.

Another important element described in the general part is the endodontic diseases in the context of the oral-dental pathology and in the context of systemic diseases.

Towards the end of the general part were presented the morphological and chemical properties of the plant *Epilobium parviflorum* Schreb.

PERSONAL PART

The second part of the thesis is structured in 4 studies as follows:

- identification and quantification of the substances with antibacterial effect in the plant extracts obtained from *Epilobium parviflorum* Schreb and demonstrating the antibacterial properties;
- evaluation of the in vitro cytotoxicity of the plant extract obtained from *Epilobium parviflorum* Schreb;
- evaluation of the in vivo toxicity of the plant extract obtained from *Epilobium parviflorum* Schreb;
- complex study by radioimagistic exams, regarding the effectiveness of the antibacterial activity of the plant extract obtained from *Epilobium parviflorum* Schreb.

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

**Study I. Evaluation of the antibacterial effect of the plant
extracts obtained from *Epilobium parviflorum* Schreb**

Hypothesis of this study: the extracts obtained from *Epilobium parviflorum* Schreb have an effect on bacterial species involved in endodontic pathology, as compared to the usual antiseptics used in current endodontic practice.

Study purpose: the use of plant extracts, obtained from *Epilobium parviflorum* Schreb, as a basis for alternative perspective use in the treatment of endodontic pathology.

1.1. Material and method

1.1.1. Harvesting the plant and making extracts from *Epilobium parviflorum* Schreb

Epilobium parviflorum Schreb is a plant that is part of the Romanian area. The plant is found in the humid areas along the lower hilly and mountain valleys, in Transylvania, Muntenia, Moldova, as well as in the Romanian Plain, Dobrogea [99].

▪ Obtaining the aqueous extract

Description of the technique of double maceration: the extracted product is first mixed with 1 / 2-2 / 3 of the total amount of solvent, after which the liquid is separated and the residue will be pressed. This will contact the rest of the solvent, thus obtaining a new amount of extractive solution. The two extractive liquids will come together and filter after a 24 hour rest [101].

▪ **Obtaining the hydroalcoholic extract**

The extraction time with alcohol and water is 10 days, shaking 3-4 times a day. After a more active extraction period due to the penetration of the solvent through the walls and the diffusion of the more concentrated solution externally, a balance is established between the two concentrations, inside and outside the plant product and the extractive dissolution stagnates [101].

▪ **Obtaining the ultrasonic hydroalcoholic extract**

Extraction assisted by ultrasound allows the solvent to penetrate through the cell walls, and the bubbles produced by the acoustic cavitation favor the breakdown of the cell wall and the release of the active compounds, thus increasing the extraction efficiency [104].

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

**1.1.2. Determination of the content of bioactive compounds
from plant extracts obtained from *Epilobium parviflorum*
Schreb**

• Determination of total polyphenols

The Folin-Ciocalteau test method is the simplest method available for measuring the phenolic content of organic products [106].

• Determination of total flavonoids

The Folin-Ciocalteau test method was used to determine total flavonoids [106].

1.1.3. Conducting bacteriological tests

➤ Harvesting of pathological products

The pathological product, infected dentine, was harvested using a sterile Kerr cell-type needle, which was subsequently placed in a culture medium container and transported to the Microbiology laboratory of the Faculty of Dental Medicine at the "Ovidius" University of Constanța.

➤ Bacteriological identification technique

- **The technique of testing the antibacterial effect of the aqueous and hydroalcoholic solutions obtained from *Epilobium parviflorum* Schreb**
- **Sampling technique for semi-quantitative evaluation of the antibacterial effect of the tested solutions**

1.2. Results obtained and discussions

The largest amount of polyphenols and flavonoids was hydroalcoholic extract, followed by ultrasound. The aqueous extract of *Epilobium parviflorum* Schreb contains the smallest amount of total polyphenols and flavonoids.

The plant extracts obtained from *Epilobium parviflorum* Schreb have certain antibacterial properties.

STUDY II. In vitro evaluation of the cytotoxicity of the plant extract obtained from *Epilobium parviflorum* Schreb

Hypothesis of this study: is that the toxicity of the plant extract obtained from *Epilobium parviflorum* Schreb is lower than the usual antiseptics used in endodontic lavage.

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

Study purpose: is the in vitro evaluation of the cytotoxicity of the plant extract obtained from *Epilobium parviflorum* Schreb, which can be used as an alternative to conventional antiseptic irrigant solutions in endodontic therapy.

2.1. Material and method

- **Processing of vegetable extract from *Epilobium parviflorum* Schreb. Cell cultures**

In the cytotoxicity assays, a cell culture line purchased from the ATCC cell bank, namely L929 with fibroblast morphology, was used (ATCC® CCL-1™).

- **MTT test method. Microscopic evaluation**

The viability of the cells treated with the extract for 24 hours at different concentrations was measured using 3- (4,5-Dimethylthiazol-2-yl) -2,5-Diphenyl tetrazolium (MTT). The analysis is based on the reduction of a yellow MTT tetrazolium salt to blue-formazan, made by intracellular enzymes, especially those in the mitochondria [117].

2.2. Results obtained and discussions

The absence of cytotoxicity of the plant extract offers the possibility of its use in endodontic therapy, as an alternative to the classic irrigant solutions.

STUDY III. In vivo study of the toxicity of the plant extract obtained from *Epilobium parviflorum* Schreb

Hypothesis of this study: is that the toxicity of the plant extract obtained from *Epilobium parviflorum* Schreb is lower than the usual antiseptics used in endodontic lavage.

Study purpose: is to demonstrate the absence of in vivo toxicity in laboratory animals.

3.1. Material and method

▪ Biological material used

The animals used in our experimental model were rats the albino line from Wistar, which were raised and maintained in the Biobaza of the “Ovidius” University of Constanța, respecting the hygiene, food and accommodation rules imposed by the Community legislation.

3.1.1. Post-extraction dental alveolar toxicity assessment

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

- **Extraction of the maxillary incisors**
- **Animal sacrifice and preparation of histological examination**

3.1.2. Evaluation of liver toxicity

- **Preparation of resorbable antiseptic pastes**

Toxicity testing

It was performed according to the method of testing the toxicity of the drugs by placing the test substances under the dermis [127].

- **Animal sacrifice and lamella production for histological examination**

The harvested fragment was fixed in 10% formaldehyde for a period of 24 hours and then proceeded to process the samples for inclusion in paraffin, sectioning and staining with HE [128].

The histological preparations were evaluated using the optical microscope and the results are presented and interpreted, experimental group in relation to the control group.

3.2. Results obtained and discussions

The post-extraction healing process occurred faster in the batch where the dehydrated vegetable extract was applied.

The vegetable extract of *Epilobium parviflorum* Schreb is not liver toxic.

STUDY IV. Radioimaging in the evaluation of the therapeutic effect of the plant extract obtained from *Epilobium parviflorum* Schreb

Hypothesis of this study: is that the toxicity of the plant extract obtained from *Epilobium parviflorum* Schreb is lower than the usual antiseptics used in endodontic lavage.

Study purpose: is to verify, by radioimagingic examinations, the antibacterial activity of the plant extract obtained from *Epilobium parviflorum* Schreb in comparison with three resorbable antiseptic pastes.

4.1. Material and method

- **Delimitation of the study lot**
- **Clinical examination**

Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy – PhD Thesis Abstract

The clinical examination aimed to obtain as complete information as possible in order to establish the diagnosis based on anamense stages, exo and endoral clinical examinations.

➤ Examination of the retroalveolar radiographs of the endodontic preoperation

During the paraclinical examination, digital retro-alveolar radiographs were used in a radio imaging center accredited by the National Commission for the Control of Nuclear Activities using a radiation cannon and an RVG sensor.

➤ Recording of the Periapical Index Score (PAI)

The periapical status was evaluated based on the periapical index introduced by Ørstavik D. et al. it is made up of a system of templates with which the comparison of the apical periodontites on the radiographs is performed and based on the similarity between the reference and the comparative radiographs, the classification in a certain class is validated.

➤ Chemo-mechanical and endodontic therapy

4.2. Results obtained and discussions

The clinical examination revealed the absence of pain in the axial and transverse percussion, the absence of dental mobility where preoperative existed, with no visible clinical signs of failure of endodontic treatment.

The plant extract of *Epilobium parviflorum* Schreb used in endodontic therapy had a positive effect by reducing the periapical index (PAI).

FINAL CONCLUSIONS

1. All three plant extracts obtained from *Epilobium parviflorum* Schreb contain polyphenols and flavonoids.
2. The highest amount of polyphenols and flavonoids was hydroalcoholic vegetable extract.
3. There are no significant differences regarding the total polyphenols and flavonoids content between the hydroalcoholic vegetable extract and the ultrasonic hydroalcoholic vegetable extract.
4. Herbal extracts obtained from *Epilobium parviflorum* Schreb certainly have antibacterial properties.

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

5. There are no differences regarding the effectiveness of the antibacterial effect between the hydroalcoholic vegetable extract and the ultrasonic hydroalcoholic vegetable extract.

6. Hydroalcoholic vegetable extract had the best antibacterial activity.

7. The most sensitive bacterial species were those belonging to the group of Gram positive cocci.

8. The absence of cytotoxicity of the plant extract has been demonstrated both in vitro and in vivo (Wistar rats), which offers the possibility of its use in endodontic therapy as an alternative irrigant solution.

9. Dehydrated vegetable extract from *Epilobium parviflorum* Schreb decreases the intensity of the post-extraction inflammatory process.

10. The post-extraction healing process occurred faster in the lot where the dehydrated vegetable extract was applied.

11. The plant extract of *Epilobium parviflorum* Schreb used in endodontic therapy had a positive effect by reducing the periapical index and the extent of the periapical lesion.

PhD Student,
Şachir Erdogan Elvis

12. The therapeutic efficiency of the dehydrated plant extract of *Epilobium parviflorum* Schreb is close to that of the substances used in classical endodontic therapy.
13. The results support the idea of using the plant extract of *Epilobium parviflorum* Schreb in endodontic therapy as an alternative to conventional substances or in combination with them to enhance periapical healing.

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

TABLE OF REFERENCES

1. Fatemeh Jamshidi-Kia, Zahra Lorigooini, Hossein Amini-Khoei, Medicinal plants: Past history and future perspective, *J Herbmed Pharmacol.* 2018; 7(1): 1-7, doi: 10.15171/jhp.2018.01,
<https://doi.org/10.15171/jhp.2018.01>
2. Aliuddin, Syed & Prakash, Prashanth & Mohiuddin, Sana & Ravula, Sandeep & Nallamilli, Leela & Dutt, Anil. (2017). Historical Milestones in Endodontics: Review of Literature. *International Journal of Preventive and Clinical Dental Research.* 4. 56-58. 10.5005/jp-journals-10052-0081.
3. Gutmann, James. (2008). History of endodontics. *Ingle's Endodontics.*
4. Patel, S., Arias, A., Whitworth, J., & Mannocci, F. (2020). Outcome of endodontic treatment – the elephant in the room. *International Endodontic Journal,* 53(3), 291–297. doi:10.1111/iej.13238,
<https://doi.org/10.1111/iej.13238>
5. Constantin Mihai, Cristian Constantin Budacu, Gheorghe Raftu, SURGICAL TREATMENT PRINCIPLES IN PERIAPICAL ENDODONTIC PATHOLOGY, *Romanian*

Journal of Oral Rehabilitation, Vol. 11, No. 1, January - March 2019.

6. Oprică L., Metaboliți secundari din plante, origine, structură, funcții, Editura Universității Alexandru Ioan Cuza Iași, 2016; ISBN:978-606-714-253-2.
7. Kunjachan S, Rychlik B, Storm G, Kiessling F, Lammers T. Multidrug resistance: Physiological principles and nanomedical solutions. *Adv Drug Deliv Rev* 2013;65:1852-1865.
8. Cando, D., Morcuende, D., Utrera, M., Estevez, M., 2014. *Eur. Food Res. Technol.* 238, 741.
9. Vilma Kaškonienė, Audrius Maruška, Ieva Akuneca, Mantas Stankevičius, Ona Ragažinskienė, Violeta Bartkuvienė, Olga Kornyšova, Vitalis Briedis & Rasa Ugenskienė (2016), Screening of antioxidant activity and volatile compounds composition of Chamerion angustifolium(L.) Holub ecotypes grown in Lithuania, *Natural Product Research*, 30:12, 1373-1381, DOI: 10.1080/14786419.2015.1058792,
<https://doi.org/10.1080/14786419.2015.1058792>
10. V. Steenkamp, M.C. Gouws, M. Gulumian, E.E. Elgorashi and J. van Staden, Studies on antibacterial, anti-

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

inflammatory and antioxidant activity of herbal remedies used in the treatment of benign prostatic hyperplasia and prostatitis, JOURNAL OF ETHNOPHARMACOLOGY, FEBRUARY 2006, Impact Factor: 3. doi: 10.1016/j.jep.2005.07.007. Source: PubMed., <https://doi.org/10.1016/j.jep.2005.07.007>

11. Dumitru Buiuc, Marian Neguț, Tratat de microbiologie clinică, Ediția a III-a, 2017, Editura Medicală.
12. Harpreet Singh, Microbiology of Endodontic Infections, Journal of Dental and Oral Health, 2016, ISSN: 2369-4475
13. Dioguardi, M.; Di Gioia, G.; Illuzzi, G.; Arena, C.; Caponio, V.C.A.; Caloro, G.A.; Zhurakivska, K.; Adipietro, I.; Troiano, G.; Lo Muzio, L. Inspection of the Microbiota in Endodontic Lesions. Dent. J. 2019, 7, 47, DOI: 10.3390/dj7020047, <https://doi.org/10.3390/dj7020047>
14. Tronstad, Leif & Barnett, Frederic & Riso, Kenneth & Slots, Jorgen. (1987). Extraradicular endodontic infection. Endodontics & dental traumatology. 3. 86-90. doi: 10.1111/j.1600-9657.1987.tb00549.x, <https://doi.org/10.1111/j.1600-9657.1987.tb00549.x>

15. Bammann LL, Estrela C., Microbiological aspects in endodontics: Endodontic Science,(edition 2) 2009;Vol 1:258–81.
16. Gomes, B. P.F.A. and Pinheiro, E. T. (2017) Extraradicular Endodontic Infections, in Endodontic Microbiology (ed A. F. Fouad), John Wiley & Sons, Inc., Hoboken, NJ, USA., doi: 10.1002/9781119080343.ch6, <https://doi.org/10.1002/9781119080343.ch6>
17. Jhajharia, Kapil & Parolia, Abhishek & Shetty, K & Mehta, Lata. (2015). Biofilm in endodontics: A review. Journal of International Society of Preventive & Community Dentistry. 5. 1-12. 10.4103/2231-0762.151956, <https://doi.org/10.4103/2231-0762.151956>
18. Miquel S, Lagraveille R, Souweine B, Forestier C (2016) Anti-biofilm activity as a health issue. Front Microbiol 7:592. <https://doi.org/10.3389/fmicb.2016.00592>
19. Jamal M, Ahmad W, Andleeb S, Jali F, Imran M, Nazaw MA, Hussain T, AliM, RafiqM, KamilMA (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81(1):7–11. <https://doi.org/10.1016/j.jcma.2017.07.012>

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

20. Song F, Koo H, Ren D (2015) Effects of material properties on bacterial adhesion and biofilm formation. *J Dent Res* 94(8):1027–1034. <https://doi.org/10.1177/0022034515587690>

21. Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. *Nat Rev Microbiol* 15(12):740–755. <https://doi.org/10.1038/nrmicro.2017.99>

22. Rewak-Soroczyńska J, Paluch E, Siebert A, Szałkiewicz K, Obłak E(2019) Biological activity of glycine and alanine derivatives of quaternary ammonium salts (QASs) against microorganisms. *Lett Appl Microbiol* 69(3):212–220. <https://doi.org/10.1111/lam.13195>

23. Lear, G; Lewis, GD (editor) (2012). *Microbial Biofilms: Current Research and Applications*. Caister Academic Press. ISBN 978-1-904455-96-7.

24. Marsh PD1, Zaura E *J.Clin.Periodontol.* 2017 Mar;44 Suppl 18:S12-S22. doi: 10.1111/jcpe.12679. Dental biofilm: ecological interactions in health and disease, <https://doi.org/10.1111/jcpe.12679>

25. Yeon-Jee Yoo, Hiran Perinpanayagam, Soram Oh, A-Reum Kim, Seung-Hyun Han, Kee-Yeon Kum,

Endodontic biofilms: contemporary and future treatment options, Restor Dent Endod. 2019 Feb;44(1):e7, pISSN 2234-7658·eISSN 2234-7666,
<https://doi.org/10.5395/rde.2019.44.e7>

26. Prasanna Neelakantan, Monica Romero, Jorge Vera, Umer Daood, Asad U. Khan, Aixin Yan and Gary Shun Pan Cheung, Biofilms in Endodontics—Current Status and Future Directions, Int. J. Mol. Sci. 2017, 18, 1748; doi:10.3390/ijms18081748,
<https://doi.org/10.3390/ijms18081748>
27. Xiuliang Huang, Olivia P Duddy, Justin E Silpe, Jon E Paczkowski, Jianping Cong, Brad R. Henke and Bonnie L Bassler, Mechanism underlying autoinducer recognition in the *Vibrio cholerae* DPO-VqmA quorum-sensing pathway, J. Biol. Chem. published online January 21, 2020, doi: 10.1074/jbc.RA119.012104,
<https://doi.org/10.1074/jbc.RA119.012104>
28. Li T, Wang D, Liu N, Ma Y, Ding T, Mei Y, Li J (2018) Inhibition of quorum sensing-controlled virulence factors and biofilm formation in *Pseudomonas fluorescens* by cinnamaldehyde. Int J Food Microbiol 269:98–106.
<https://doi.org/10.1016/j.ijfoodmicro.2018.01.023>

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

29. Derek Fleming and Kendra P. Rumbaugh, Approaches to Dispersing Medical Biofilms, *Microorganisms* 2017, 5, 15; doi: 10.3390/microorganisms5020015, <https://doi.org/10.3390/microorganisms5020015>

30. Buret, A.G., Motta, J., Allain, T. et al. Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: a role for iron?. *J Biomed Sci* 26, 1 (2019). <https://doi.org/10.1186/s12929-018-0495-4>

31. Karatan E, Watnick P (June 2009). "Signals, regulatory networks, and materials that build and break bacterial biofilms". *Microbiology and Molecular Biology Reviews* 73 (2): 310–47. doi:10.1128/MMBR.00041-08. PMC 2698413. PMID 19487730. <http://mmbrr.asm.org/cgi/pmidlookup?view=long&pmid=19487730>

32. Davies DG, Marques CN (March 2009). "A fatty acid messenger is responsible for inducing dispersion in microbial biofilms". *Journal of Bacteriology* 191 (5): 1393–403. doi:10.1128/JB.01214-08. PMC 2648214. PMID 19074399. <http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2648214>

33. Shadaba Asad and Steven M Opal, Bench-to-bedside review: Quorum sensing and the role of cell-to-cell communication during invasive bacterial infection. *Critical Care* 2008, 12:236 doi:10.1186/cc7101, published 35, 10.1177/0022034519880157, <https://doi.org/10.1186/cc7101>
34. Charlton, S., White, M. A., Jana, S., Eland, L. E., Jayathilake, P. G., Burgess, J. G., Chen, J., Wipat, A., & Curtis, T. P. (2019). Regulating, Measuring, and Modeling the Viscoelasticity of Bacterial Biofilms. *Journal of bacteriology*, 201(18), e00101-19. <https://doi.org/10.1128/JB.00101-19>
35. Diaz PI, Valm AM., Microbial Interactions in Oral Communities Mediate Emergent Biofilm Properties., *J.Dent.Reschers* 2020 Jan;99(1):18-25. doi: 10.1177/0022034519880157. Epub 2019 Oct 7, <https://doi.org/10.1177/0022034519880157>
36. Miller DP, Fitzsimonds ZR, Lamont RJ., Metabolic Signaling and Spatial Interactions in the Oral Polymicrobial Community, *J.Dent.Reschers* 2019 Nov;98(12):1308-1314. doi: 10.1177/0022034519866440.

Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract

Epub 2019 Jul 29,

<https://doi.org/10.1177/0022034519866440>

37. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR (2018) Bacterial quorum sensing and microbial community interactions. *mBio* 9(3): e02331-17.
<https://doi.org/10.1128/mBio.02331-17>
38. Reuter K, Steinbach A, Helms V (2016) Interfering with bacterial quorum sensing. *Perspect Medicin Chem* 8:1–15.
<https://doi.org/10.4137/PMc.s13209>
39. E. Paluch, J. Rewak-Soroczyńska, I. Jędrusik, E. Mazurkiewicz, K. Jermakow, Prevention of biofilm formation by quorum quenching, *Applied Microbiology and Biotechnology* (2020) 104:1871–1881,
<https://doi.org/10.1007/s00253-020-10349-w>
40. Papenfort K, Bassler B (2016) Quorum-sensing signal-response systems in gram-negative bacteria. *Nat Rev Microbiol* 14(9):576–588.
<https://doi.org/10.1038/nrmicro.2016.89>.
41. <https://thebiologynotes.com/quorum-sensing-in-bacteria/>
42. Rehman ZU, Leiknes T (2018) Quorum-quenching bacteria isolated from Red Sea sediments reduce biofilm

formation by *Pseudomonas aeruginosa*. *Front Microbiol* 9:1354. <https://doi.org/10.3389/fmicb.2018.01354>

43. Sumaya Abusrewil, Om Alkhir Alshanta, Khawlah Albashaireh, Saeed Alqahtani, Christopher J. Nile, James Alun Scott & William McLean (2020): Detection, treatment and prevention of endodontic biofilm infections: what's new in 2020?, *Critical Reviews in Microbiology*, <https://doi.org/10.1080/1040841X.2020.1739622>

44. July Fong, Chaodong Zhang, Renliang Yang, Zhao Zhi Boo, Soon Keat Tan, Thomas E. Nielsen, Michael Givskov, Xue-Wei Liu, Wu Bin, Haibin Su & Liang Yang, Combination Therapy Strategy of Quorum Quenching Enzyme and Quorum Sensing Inhibitor in Suppressing Multiple Quorum Sensing Pathways of *P. aeruginosa*, *SCIEENTIFIC REPORts*, (2018), 8:1155, <https://doi.org/10.1038/s41598-018-19504-w>

45. Xihong Zhao, Zixuan Yu, Tian Ding, Review Quorum-Sensing Regulation of Antimicrobial Resistance in Bacteria, *Microorganisms* 2020, 8, 425; <https://doi.org/10.3390/microorganisms8030425>

46. Bodede O, Shaik S, Chenia H, Singh P, Moodley R (2018) Quorum sensing inhibitory potential and in silico

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

molecular docking of flavonoids and novel terpenoids from *Senegalia nigrescens*. *J Ethnopharmacol* 216:134–146. <https://doi.org/10.1016/j.jep.2018.01.031>

47. Asfour HZ. Anti-Quorum Sensing Natural Compounds. *J Microsc Ultrastruct.* 2018 Jan-Mar;6(1):1-10. doi: 10.4103/JMAU.JMAU_10_18. PMID: 30023261; PMCID: PMC6014249, https://doi.org/10.4103/JMAU.JMAU_10_18
48. Liu Wenzheng, Røder Henriette L., Madsen Jonas S., Bjarnsholt Thomas, Sørensen Søren J., Burmølle Mette, Interspecific Bacterial Interactions are Reflected in Multispecies Biofilm Spatial Organization, *Frontiers in Microbiology*, 2016, doi: 10.3389/fmicb.2016.01366, <https://www.frontiersin.org/article/10.3389/fmicb.2016.01366>
49. Brackman G, Coenye T (2015a) Inhibition of quorum sensing in *Staphylococcus* spp. *Curr Pharm Des* 21(16):2101–2108, <https://doi.org/10.2174/1381612821666150310101014>
50. Dahlen G, Moller A., Jr . Microbiology of endodontic infection. In: Slots J, Taubman MA, editors.

Contemporary Oral Microbiology and immunology. St. Louis: Mosby year Book Inc; 1991. pp. 444–55.

51. Pavena Chivatxaranukul, Stuart G. Dashper, Harold Henry Messer, Dentinal tubule invasion and adherence by Enterococcus faecalis., Materials Science, MedicinePublished in International endodontic journal, 2008, DOI:10.1111/j.1365-2591.2008.01445.x, <https://doi.org/10.1111/j.1365-2591.2008.01445.x>
52. Anderi Iliescu, Tratat de Endodonție, Editura Medicală 2015, volumul 1, volumul 2.
53. Ujjwal Das, Saswati Mukherjee Das, An Overview on Endo-Perio Interrelationship - A Multidisciplinary Approach, IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), e-ISSN: 2279-0853, p-ISSN: 2279-0861. Volume 17, Issue 12 Ver. 9 (December. 2018), PP 15-21, DOI: 10.9790/0853-1712091521, www.iosrjournals.org
54. Ayush Goyal, John V. George, Ritu Singh, The Endodontic-Periodontal Interrelationships - A comprehensive review, LAP LAMBERT Academic Publishing, 2016, ISBN-13: 978-3-659-87082-8, ISBN-10: 365987082X, EAN: 9783659870828.

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

55. Khalid S. Al-Fouzan, "A New Classification of Endodontic-Periodontal Lesions", International Journal of Dentistry, vol. 2014, Article ID 919173, 5 pages, 2014.doi:10.1155/2014/919173,
<https://doi.org/10.1155/2014/919173>

56. Hand AR, Frank ME, Goldberg M. Dentin, pulp, and tooth pain. In "Fundamentals of oral histology and physiology". First edition. Chapter 5. John Wiley & sons, Blackwell inc. 2014;85-112.

57. Goldberg M. Pulp anatomy and characterization of pulp cells, in: "Biology, pathology, and regenerative therapies". Springer Verlag, Berlin, Heidelberg. 2014; 13-33.

58. Goldberg M. Root Canal Treatment (RCT): From Traditional Endodontic Therapies to Innovating Pulp Regeneration. Journal of Dentistry & Oral Disorders.2016;2(5):1024.

59. Colombo JS, Moore AN, Hartgerink JD, D`Souza RN, Scaffolds to control inflammation and facilitate dental pulp regeneration. J Endod. 2014; 40:6-12.

60. Bun San Chong, Harty's Endodontics in Clinical Practice, Elsevier 2017, Seventh Edition

61. TMA, Saoud & Ricucci, Domenico & Lin, Louis & Gaengler, Peter. (2016). Regeneration and Repair in Endodontics—A Special Issue of the Regenerative Endodontics—A New Era in Clinical Endodontics. *Dentistry Journal*. 4. 1-15. doi: 10.3390/dj4010003, <https://doi.org/10.3390/dj4010003>
62. European Society of Endodontontology developed by: Segura-Egea JJ, Gould K, Hakan Şen B, Jonasson P, Cotti E, Mazzoni A, Sunay H, Tjäderhane L, Dummer PMH. European Society of Endodontontology position statement: the use of antibiotics in endodontics. *International Endodontic Journal*, 2017, doi:10.1111/iej.12781, <https://doi.org/10.1111/iej.12781>
63. Nadia Chugal, Louis M Lin, Endodontic Prognosis Clinical Guide for Optimal Treatment Outcome, 2017, ISBN: 978-3-319-42410-1 (Print) 978-3-319-42412-5 (Online).
64. Saoud, T. M., Martin, G., Chen, Y.-H. M., Chen, K.-L., Chen, C.-A., Songtrakul, K., Lin, L. M. (2016). Treatment of Mature Permanent Teeth with Necrotic Pulps and Apical Periodontitis Using Regenerative Endodontic Procedures: A Case Series. *Journal of Endodontics*, 42(1),

Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract

57–65. doi:10.1016/j.joen.2015.09.015,

<https://doi.org/10.1016/j.joen.2015.09.015>

65. Vishal Sahayata (2016), Endodontic Infections: Risk for Cardiovascular Diseases??, Journal of Dental and Oral Health, Volume 2, issue 6, e108, www.scientonline.org
66. European Society of Cardiology (2015) ESC Guidelines for the management of infective endocarditis. European Heart Journal 36, 3075–123, <https://doi.org/10.1093/eurheartj/ehv319>
67. J.M. Liljestrand, P. Mäntylä, S. Paju, K. Buhlin, K.A.E. Kopra, G.R. Persson, Association of Endodontic Lesions with Coronary Artery Disease, SAGE journals, Nov 01, 2016, doi: 10.1177/0022034516660509, <https://doi.org/10.1177/0022034516660509>
68. Paridhi Garg, Chandrakar Chaman, Apical Periodontitis – Is It Accountable for Cardiovascular Diseases?, Journal of Clinical and Diagnostic Research, 2016 Aug, doi: 10.7860/JCDR/2016/19863.8253, <https://doi.org/10.7860/JCDR/2016/19863.8253>
69. J. J. Segura-Egea, J. Martin-Gonzalez & L. Castellanos-Cosano, Endodontic medicine: connections between apical periodontitis and systemic diseases, International

Endodontic Journal, 48, 933-951, 2015, doi: 10.1111/iej.12507, <https://doi.org/10.1111/iej.12507>

70. Cintra LT, Samuel RO, Azuma MM et al. (2014 a) Relationships between oral infections and blood glucose concentrations or HbA1c levels in normal and diabetic rats. International Endodontic Journal 47, 228-37, DOI: 10.1111/iej.12136, <https://doi.org/10.1111/iej.12136>

71. Alzahrani, Mohammed. (2016). Sodium Hypochlorite Accident in Endodontics: An Update Review. International Journal of Dentistry and Oral Health. 2. 10.16966/2378-7090.168, <https://doi.org/10.16966/2378-7090.168>

72. Arias-Moliz MT, Ordinola-Zapata R, Baca P, Ruiz-Linares M, García García E, Hungaro Duarte MA, Monteiro Bramante C, Ferrer-Luque CM. Antimicrobial activity of Chlorhexidine, Peracetic acid and Sodium hypochlorite/etidronate irrigant solutions against Enterococcus faecalis biofilms. International Endodontic Journal, 48, 1188–1193, 2015, doi: 10.1111/iej.12424, <https://doi.org/10.1111/iej.12424>

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

73. Deliverska E. Oral mucosa damage because of hypochlorite accident – a Case report and literature review. *J of IMAB.* 2016 Jul-Sep;22(3):1269-1273. DOI: <http://dx.doi.org/10.5272/jimab.2016223.1269>

74. Perotti S, Bin P, Cecchi R. Hypochlorite accident during endodontic therapy with nerve damage - A case report. *Acta Biomed.* 2018;89(1):104–108. Published 2018 Mar 27. doi:10.23750/abm.v89i1.6067, <https://doi.org/10.23750/abm.v89i1.6067>

75. Fitzgerald M, Heinrich M and Booker A(2020) Medicinal Plant Analysis: A Historical and Regional Discussion of Emergent Complex Techniques. *Front. Pharmacol.* 10:1480. doi: 10.3389/fphar.2019.01480, <https://doi.org/10.3389/fphar.2019.01480>

76. Fawzi, Muntaha & Kadhem, Zena & Farhan, Sabah. (2017). Anti-Inflammatory Effect of Sage (*Salvia Officinalis*) Extracts ABSTRACT on Oral Health. *Iraqi Dental Journal.* 39. 1. 10.26477/ijd.v39i1.111, <https://doi.org/10.26477/ijd.v39i1.111>

77. Osman M. El-Maghraby, Magdy A. Abu-Gharbia, El-Sayed M. Soltan, Walaa M. Abd El-Raheem and Emad A. Shalaby, Antimicrobial activity of selected medicinal

plants against clinically isolated multi-drug resistant human oral pathogens, J. Microbiol. Biotech. Res., 2014, 4 (6):9-24, ISSN : 2231 -3168, www.scholarsresearchlibrary.com

78. Jain I, Jain P, Bisht D, Sharma A, Srivastava B, Gupta N. Use of traditional Indian plants in inhibition of caries causing bacteria- *Streptococcus mutans*. Braz Dent J. 2015;26:110–5, doi: 10.1590/0103-6440201300102, <https://doi.org/10.1590/0103-6440201300102>
79. Puvača, Nikola & Cabarkapa, Ivana & Petrović, Aleksandra & Bursić, Vojislava & Prodanović, Radivoj & Solesa, Dragan & Lević, Jovanka. (2019). Tea tree (*Melaleuca alternifolia*) and its essential oil: Antimicrobial, antioxidant and acaricidal effects in poultry production. World's Poultry Science Journal. 75. 1-12, DOI: 10.1017/S0043933919000229. <https://doi.org/10.1017/S0043933919000229>
80. Sgorbini, B, Cagliero, C, Argenziano, M, Cavalli, R, Bicchi, C, Rubiolo, P. In vitro release and permeation kinetics of *Melaleuca alternifolia* (tea tree) essential oil bioactive compounds from topical formulations. Flavour

Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract

Fragr J. 2017; 32: 354– 361.

<https://doi.org/10.1002/ffj.3403>

81. Dandekar, Shivani & Deshpande, Neeraj & Dave, Deepak. (2017). Comparative Evaluation of Anti-Microbial Efficacy of Cranberry Extract and Chlorhexidine Mouthwash on Periodontal Pathogens: An In-vitro Study. *Journal of Periodontal Practice*. 2. 05-08. 10.20936/jpp/170102,

<http://dx.doi.org/10.20936/jpp/170102>

82. Shabbir J, Qazi F, Farooqui W, Ahmed S, Zehra T, Khurshid Z. Effect of Chinese Propolis as an Intracanal Medicament on Post-Operative Endodontic Pain: A Double-Blind Randomized Controlled Trial. *International Journal of Environmental Research and Public Health*. 2020; 17(2):445, doi:10.3390/ijerph17020445,

<https://doi.org/10.3390/ijerph17020445>

83. Trevisan, L., Huerta, I. R., Michelon, C., Bello, M. C., Pillar, R., & Souza Bier, C. A. (2017). The Efficacy of Passive Ultrasonic Activation of Organic Solvents on Dissolving Two Root Canal Sealers. *Iranian endodontic journal*, 12(1), 25–28. <https://doi.org/10.22037/iej.2017.05>

84. S Golmohammadi, Z Khalilak, M Vatanpour, A Mahboubi .Comparing the Effect of Green Tea, Calcium Hydroxide and Chlorhexidine on Enterococcus faecalis biofilm in Root Canal system (Ex vivo). Adv. Biores., Vol 8 [2] Mach 2017: 51-57, DOI: 10.15515/abr.0976-4585.8.2.5157, <https://doi.org/10.15515/abr.0976-4585.8.2.5157>
85. Vishnuvardhini.S, Sivakumar A, Ravi V, Prasad A. S, Sivakumar J. S. Herbendodontics–Phytotherapy In Endodontics: A Review. Biomed Pharmacol J 2018;11(2), DOI : <http://dx.doi.org/10.13005/bpj/1468>
86. Tewari RK, Kapoor B, Mishra SK, Kumar A. Role of herbs in endodontics. J Oral Res Rev 2016;8:95-9, DOI: 10.4103/2249-4987.192248, <https://doi.org/10.4103/2249-4987.192248>
87. Chandwani M, Mittal R, Chandak S, Pimpale J. Effectiveness of Morinda citrifolia juice as an intracanal irrigant in deciduous molars: An in vivo study. Dent Res J 2017;14:246-51, DOI: 10.4103/1735-3327.211630, <https://doi.org/10.4103/1735-3327.211630>
88. MUNTEAN L. S., TĂMAŞ M., MUNTEAN S., MUNTEAN L., DUDA M. VÂRBAN DAN, FLORIAN

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

S., 2007, Tratat de plante medicinale cultivate și spontane,
- Ed. Risoprint, Cluj-Napoca

89. Pignatti S. - Flora d'Italia – Edagricole – 1982. Vol. II,
pag. 155.

90. <https://www.soin-et-nature.com/en/medicinal-plants/5171-fireweed-plant-with-small-flowers-cut-iphym-herb-epilobium-parviflorum.html>

91. <https://www.pinterest.com/daramaletsas/zdravlje/>

92. Ursula Stănescu, Monica Hăncianu, Oana Cioancă, Ana Clara Aprotosoaie, Anca Miron, PLANTE MEDICINALE DE LA A LA Z, Editura Polirom, 2014.

93. Franz-Christian Czygan, Herbal Drugs and Phytopharmaceuticals: A Handbook for Practice on a Scientific Basis, CRC Press, 2004, ISBN 0849319617, 9780849319617

94. Hevesi BT, Houghton PJ, Habtemariam S, Kéry A, Antioxidant and antiinflammatory effect of *Epilobium parviflorum* Schreb, Phytother Res. 2009 May;23(5):719-24. doi: 10.1002/ptr.2725, <https://doi.org/10.1002/ptr.2725>

95. Kim JH, Park KM, Lee JA. Herbal medicine for benign prostatic hyperplasia: A protocol for a systematic review

of controlled trials. Medicine (Baltimore). 2019;98(1):e14023. doi: 10.1097/MD.00000000000014023, <https://doi.org/10.1097/MD.00000000000014023>

96. Epilobium species, PDR for Herbal Medicines, 2nd ed., Medical, Economics Company, Montvale, New Jersey, p. 818-819.

97. Topbaş, Celalettin & Adıgüzel, Özkan. (2017). Endodontic Irrigation Solutions: A Review. International Dental Research. 7. 54. 10.5577/intdentres.2017.vol7.no3.2., <https://doi.org/10.5577/intdentres.2017.vol7.no3.2>

98. James L. Gutmann, Vivian Manjarrés, Historical and Contemporary Perspectives on the Microbiological Aspects of Endodontics, Dent. J. 2018, 6, 49; doi:10.3390/dj6040049, www.mdpi.com/journal/dentistry

99. Nicolae Doniță, Mihaela Paucă-Comănescu, Aurel Popescu, Simona Mihăilescu, Iovu-Adrian Biriş, Habitatele din România, Editura Tehnică Silvică, 2005.

100. Farmacopeea Română Ediția a X-a, Editura Medicală, București, 2008.

101. United Nations Industrial Development Organization., Handa, S. S., Khanuja, S. P. S., Longo, G., Rakesh, D. D.,

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

United Nations Industrial Development Organization., & International Centre for Science and High Technology. (2008). Extraction technologies for medicinal and aromatic plants. Trieste (Italy): Earth, Environmental and Marine Sciences and Technologies.

102. Vilkhu, Kamaljit & Mawson, Raymond & Simons, Lloyd & Bates, Darren. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry--A review. *Innovative Food Science & Emerging Technologies*. 9. 161-169. 10.1016/j.ifset.2007.04.014, <https://doi.org/10.1016/j.ifset.2007.04.014>

103. M. Vinatoru, An overview of the ultrasonically assisted extraction of bioactive principles from herbs, *Ultrasonics Sonochemistry*, Volume 8, Issue 3, July 2001, Pages 303-313, [https://doi.org/10.1016/S1350-4177\(01\)00071-2](https://doi.org/10.1016/S1350-4177(01)00071-2)

104. Z. Hromádková and A. Ebringerová, Ultrasonic extraction of plant materials–investigation of hemicellulose release from buckwheat hulls, *Ultrasonics Sonochemistry* Volume 10, Issue 3, May 2003, Pages 127-133, [https://doi.org/10.1016/S1350-4177\(03\)00094-4](https://doi.org/10.1016/S1350-4177(03)00094-4)

105. European Pharmacopoeia , 9th ed. , EDQM, European Pharmacopoeia, Council of Europe, B.P. 907, F - 67029 , Strasbourg, France , 2016 .
106. El-Mahrouk, M.E. and Dewir, Y.H. (2016) Physico-Chemical Properties of Compost Based Waste-Recycling of Grape Fruit as Nursery Growing Medium. American Journal of Plant Sciences, 7, 48-54, <http://dx.doi.org/10.4236/ajps.2016.71005>
107. Gabriel A Agbor, Joe A Vinson and Patrick E. Donnelly (2014) Folin-Ciocalteau Reagent for Polyphenolic Assay.3:801., IJFS,ISSN 2326-3350, DOI: 10.19070/2326-3350-1400028, <https://doi.org/10.19070/2326-3350-1400028>
108. O.R. Bancuta et al., Improvement of spectrophotometric method for determination of phenolic compounds by statistical investigations, Rom. Journ. Phys., Vol. 61, No. 7–8, P. 1255–1264, 2016.
109. Gabriela Gegiu, Andrei-Dan Branza, Laura Bucur, Mircea Grigorian, Traian Tache, Victoria Badea, Contributions to the antimicrobial and antifungal study of the aqueous extract of *Prunus Spinosa* L., Farmacia, 2015, Vol. 63, 2, <http://www.revistafarmacia.ro/issue22015.html>

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

110. Bagul, Uddhav & Sivakumar, Sivagurunathan. (2016).

ANTIBIOTIC SUSCEPTIBILITY TESTING: A REVIEW ON CURRENT PRACTICES. *international journal of pharmacy*. 6. 11-17, www.pharmascholars.com

111. Sabharwal S, Bhagat SK, Gami KS, Siddhartha A, Rai K, Ahluwalia Y. An in vivo study to compare anti microbial activity of triantibiotic paste, 2% chlorhexidine gel, and calcium hydroxide on microorganisms in the root canal of immature teeth. *J Int Soc Prevent Commun Dent* 2019;9:263-8, doi: 10.4103/jispcd.JISPCD_400_18, https://doi.org/10.4103/jispcd.JISPCD_400_18

112. Monica Licker, Elena Hoga, Mihaela Crăciunescu, *Microbiologie specială Îndreptar de lucrări practice*, 2019, Editura „Victor Babeș”, CNCSIS: 324, ISBN 978-606-786-115-0.

113. Remmel, Indrek & Vares, Lauri & Toom, Lauri & Matto, Vallo & Raal, Ain. (2012). Phenolic Compounds in Five *Epilobium* Species Collected from Estonia. *Natural product communications*. 7. 1323-4.

114. Bajer, Tomas & Šilha, David & Ventura, Karel & Bajerová, Petra. (2017). Composition and antimicrobial activity of the essential oil, distilled aromatic water and

herbal infusion from *Epilobium parviflorum* Schreb. Industrial Crops and Products. 100. 95-105. 10.1016/j.indcrop.2017.02.016,

<https://doi.org/10.1016/j.indcrop.2017.02.016>

115. Kondreddi N, Venigalla BS, Singh TV, Kamishetty S, Reddy S, Cherukupalli R. Antibacterial activity of chitosan and its combination with other irrigants on *Enterococcus faecalis*: An in vitro study. Endodontontology 2019;31:133-7., www.endodontologyonweb.org, 10.4103/endo.endo_110_18,

https://doi.org/10.4103/endo.endo_110_18

116. Hans, Manoj. (2018). A COMPARATIVE EVALUATION AND EFFECTIVENESS OF DIFFERENT ANTIMICROBIAL HERBAL EXTRACTS AS ENDODONTIC IRRIGANTS AGAINST *ENTEROCOCCUS FAECALIS* AND *CANDIDA ALBICANS*- AN IN-VITRO STUDY, University J Dent Scie; Vol. 4, Issue 2

117. Tolosa L., Donato MT, Gómez-Lechón MJ, General Cytotoxicity Assessment by Means of the MTT Assay, Methods Mol Biol. 2015;1250:333-48. doi: 10.1007/978-

Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract

1-4939-2074-7_26, https://doi.org/10.1007/978-1-4939-2074-7_26

118. Karkehabadi H, Yousefifakhr H, Zadsirjan S. Cytotoxicity of Endodontic Irrigants on Human Periodontal Ligament Cells. Iran Endod J. 2018;13(3):390-4. Doi: 10.22037/iej.v13i3.20438., <https://doi.org/10.22037/iej.v13i3.20438>

119. Ravinanthan M, Hegde MN, Shetty V, Kumari S. Cytotoxicity effects of endodontic irrigants on permanent and primary cell lines. Biomed Biotechnol Res J 2018;2:59-62, DOI: 10.4103/bbrj.bbrj_92_17, https://doi.org/10.4103/bbrj.bbrj_92_17

120. <https://www.iso.org/obp/ui/#iso:std:iso:10993:-12:ed-4:v1:en>

121. Hussain et al., Determination of cell viability using acridine orange/propidium iodide dual-spectrofluorometry assay, Cogent Food & Agriculture (2019), 5: 1582398, <https://doi.org/10.1080/23311932.2019.1582398>

122. Ok E, Adanir N, Hakki S. Comparison of cytotoxicity of various concentrations origanum extract solution with 2% chlorhexidine gluconate and 5.25% sodium hypochlorite.

Eur J Dent 2015;9:6-10, DOI: 10.4103/1305-7456.149630,
<https://doi.org/10.4103/1305-7456.149630>

123. Memet Gafar, Andrei Iliescu, Endodonție clinică și practică, Ediția a II-a revizuită și adăugită, Editura Medicală, 2010.
124. Elena Ciudin și Dan Marinescu, Animale de laborator, Editura All, 1996.
125. Okamoto T, Russo MC. Wound healing following tooth extraction. Histochemical study in rats. Rev FacOdontolAraçatuba. 1973 (2): 153-164.
126. Al-Obaidi, Mazen & Al-Bayaty, Fouad & Al Batran, Rami & Ibrahim, Omar & Daher, Aqil. (2016). Ellagic Acid Increases Osteocalcin and Alkaline Phosphatase After Tooth Extraction in Nicotinic-Treated Rats. Current Pharmaceutical Design. 22. 2403-2410. 10.2174/138161282216160428002842,
<https://doi.org/10.2174/138161282216160428002842>
127. I.S. Beşchea Chiriac, Testarea toxicității medicamentelor de uz veterinar, MEDICHUB MEDIA, 2017, 10.26416/PV.29.8.2017.1249
128. Turkki R, Linder N, Kovanen PE, et al., editors. Identification of immune cell infiltration in hematoxylin-

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

eosin stained breast cancer samples: Texture-based classification of tissue morphologies. Proceedings of the International Society for Optics and Photonics (SPIE) Conference on Medical Imaging, San Diego, CA, USA; 2016, <https://doi.org/10.1117/12.2217040>

129. Fouad Hussain AL Bayaty and et al, Effect of *Salvadora Persica* (Miswak) on Alveolar Bone, Journal of International Dental and Medical Research ISSN 1309-100X, 2018; 11(3): 770- 777, <http://www.jidmr.com>.

130. Pereira YCL, Issa JPM, Watanabe E, Nascimento GC, Iyomasa MM, et al. (2018) The Therapeutic Use of Propolis Extract in Alveolar Bone Contaminated with Bacterial Endotoxin. Dentistry 8: 473. doi:10.4172/2161-1122.1000473, <https://doi.org/10.4172/2161-1122.1000473>

131. Ilyas, Muhammad & Fahim, Ayesha & Awan, Uzma & Athar, Yousaf & Sharjeel, Nida & Arshad, Anas & Alam, Mohammad. (2015). Effect of Honey on Healing of Extracted Tooth Socket of Albino Wistar Rats. International Medical Journal (1994). 22. 422-425.

132. Pankaj Prasad., et al. “To Compare the Clinical and Radiographic Evaluation of Single Visit and Multivisit

Endodontic Treatment of Teeth with Periapical Radiolucency. An In – Vivo Study”. Acta Scientific Dental Sciences 3.8 (2019): 03-11.

133. Yuying Xue, Shanshan Zhang, Yang Yang, Minyu Lu, Yiqing Wang, Ting Zhang, Meng Tang and Haruo Takeshita, Acute pulmonary toxic effects of chlorhexidine (CHX) following an intratracheal instillation in rats, Human and Experimental Toxicology, 30(11) 1795–1803, DOI: 10.1177/0960327111400104, <https://het.sagepub.com>.

134. Ioana ROMAN, Mircea A. RUSU, Constantin PUICĂ, Maria BORŞA, CITOTOXIC EFFECTS OF THREE SPECIES OF EPILOBIUM (ONAGRACEAE) HERBAL EXTRACTS IN RATS, Studia Universitatis “Vasile Goldiș”, Seria Științele Vieții, Vol. 20, issue 1, 2010, pp. 19-23, www.studiauniversitatis.ro.

135. Omatali N, Roghanizad N, Moshari A, Sadaghiani M, Kalantari M. An Assessment of Coronal Restoration Quality, Root Canal Filling Quality, and Apical Health Status of Endodontically Treated Teeth at an Iranian Dental School in 2011-12. J Res Dentomaxillofac Sci. 2019; 4 (1):16-23., <http://www.jrdms.dentaliau.ac.ir>.

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

136. Liu J, Que KH, Xiao ZH, Wen W. Endodontic management of the maxillary first molars with two root canals: A case report and review of the literature. *World J Clin Cases* 2019; 7(1): 79-88, DOI: <https://dx.doi.org/10.12998/wjcc.v7.i1.79>.

137. Ahmed HM. Guidelines to enhance the interpretation of two-dimensional periapical radiographic images in endodontics. *European Journal of General Dentistry* 2015;4:106-12, DOI: 10.4103/2278-9626.163320, <https://doi.org/10.4103/2278-9626.163320>

138. Alhashimi, Raghad & Al-Huwaizi, Hussain & Bds,. (2015). Standardized Protocol for Endodontic Treatment (Iraqi Endodontic Society). *Iraqi Dental Journal*. 37. doi: 10.26477/idj.v37i2.46, <https://doi.org/10.26477/idj.v37i2.46>

139. Kirkevang LL, Ørstavik D, Wenzel A, Væth M. Prognostic value of fullscale Periapical Index. *Int Endod J* 2014 Oct 29. doi:10.1111/iej.12402, <https://doi.org/10.1111/iej.12402>

140. Bojana Ćetenović, Dejan Marković, James Gutmann, Tamara Perić, Vukoman Jokanović, Endodontic treatment of traumatized teeth with chronic periapical lesions using

antibiotic paste and mineral trioxide aggregate obturation – a preliminary study, Srp Arh Celok Lek 2019, Online First March 14, 2019, DOI: <https://doi.org/10.2298/SARH180301018C>

141. Hasan Ayberk Altug and Aydin Ozkan (2011). Diagnostic Imaging in Oral and Maxillofacial Pathology, Medical Imaging, Dr. Okechukwu Felix Erondu (Ed.), ISBN: 978-953-307-774-1, InTech, DOI: 10.5772/27416, <https://doi.org/10.5772/27416>

142. Nikola Stojanović, Jelena Krunic, Irena Mladenović, Zorica Stojanović, Sonja Apostolska, Slavoljub Živković, Influence of different forms of calcium hydroxide and chlorhexidine intracanal medicaments on outcome of endodontic treatment of teeth with chronic apical periodontitis, Srp Arh Celok Lek 2017, DOI: <https://doi.org/10.2298/SARH170221139S>

143. Gheorghiu Irina-Maria, Mitran Loredana, Mitran M., Temelcea Anca-Nicoleta, Scarlatesc Sanziana, Calenic Bogdan, Perlea Paula, IN VIVO STUDY OF CALCIUM HYDROXIDE ENDODONTIC TREATMENT IN CHRONIC APICAL PERIODONTITIS, ARS Medica

**Studies on the possibilities of using of the *Epilobium parviflorum* Schreb species in alternative endodontic therapy –
PhD Thesis Abstract**

Tomitana - 2018; 4(24): pag. 164 -167, doi: 10.2478/arsm-2018-0034, <https://doi.org/10.2478/arsm-2018-0034>

144. Ertugrul Ercan, Mehmet Dalli, Ç. Türksel Dülgergil, Ferhan Yaman, Effect of Intracanal Medication with Calcium Hydroxide and 1% Chlorhexidine in Endodontic Retreatment Cases with Periapical Lesions: An In Vivo Study, Journal of the Formosan Medical Association April 2007, DOI: 10.1016/S0929-6646(09)60243-6, [https://doi.org/10.1016/S0929-6646\(09\)60243-6](https://doi.org/10.1016/S0929-6646(09)60243-6)

145. Mohammed Saadi Alarbeed., et al. “Effect of Combination of Calcium Hydroxide and Chlorhexidine Gel 2% as Intracanal Medication in Comparison to Calcium Hydroxide Paste as Intracanal Medication on Postoperative Pain and Bacterial Endotoxin in Necrotic Teeth: A Randomized Controlled Trial”. Acta Scientific Dental Sciences 3.2 (2019): 124-130.

146. Imani Z, Imani Z, Basir L, Shayeste M, Abbasi Montazeri E, Rakhshan V. Antibacterial Effects of Chitosan, Formocresol and CMCP as Pulpectomy Medicament on Enterococcusfaecalis, Staphylococcus aureus and Streptococcusmutans. Iran Endod J.

PhD Student,
Şachir Erdogan Elvis

2018;13(3):342–350, doi:10.22037/iej.v13i3.20791,

<https://doi.org/10.22037/iej.v13i3.20791>