

**“OVIDIUS” UNIVERSITY OF CONSTANȚA  
MEDICINE DOCTORAL SCHOOL  
DENTAL MEDICINE DOCTORAL DOMAIN**

**DOCTORAL THESIS  
ABSTRACT**

**Doctoral Coordinator**

**Prof. Univ. Dr. BADEA VICTORIA**

**PhD Student**

**MIHAI SEBASTIAN**

**CONSTANȚA  
2019**

**“OVIDIUS” UNIVERSITY OF CONSTANȚA  
MEDICINE DOCTORAL SCHOOL  
DENTAL MEDICINE DOCTORAL DOMAIN**

**EXPLOITATION OF *SEMPERVIVUM RUTHENICUM* KOCH  
PLANT SPECIES IN DENTAL MEDICINE PRACTICE**

**Doctoral Coordinator**

**Prof. Univ. Dr. BADEA VICTORIA**

**PhD Student**

**MIHAI SEBASTIAN**

**CONSTANȚA  
2019**

## Table of contents

|                                                                                           |    |
|-------------------------------------------------------------------------------------------|----|
| Introducere .....                                                                         | 1  |
| <b>STADIUL ACTUAL AL CUNOAȘTERII</b>                                                      |    |
| Capitolul I. Scurt istoric al utilizării plantelor medicinale .....                       | 3  |
| Capitolul II. Rezistența bacteriană la antibiotice .....                                  | 8  |
| II.1 Date epidemiologice cu privire la răspândirea rezistenței bacteriene.....            | 9  |
| II.2. Inhiția enzimatică .....                                                            | 11 |
| II.3. Scăderea permeabilității membranelor bacteriene.....                                | 11 |
| II.4. Promovarea efluxului de antibiotic .....                                            | 11 |
| II.5. Protejarea situsurilor țintă.....                                                   | 12 |
| II.6. Șuntarea inhibiției antibioticului.....                                             | 12 |
| II.7. Mecanisme de rezistență multidrog.....                                              | 12 |
| Capitolul III. Stresul oxidativ în afecțiunile orale .....                                | 14 |
| III.1. Definirea și generarea speciilor reactive ale oxigenului și azotului .....         | 14 |
| III.2. Speciile reactive ale oxigenului în procesele celulare normale .....               | 16 |
| III.3. Speciile reactive ale oxigenului în afecțiunile orale benigne.....                 | 17 |
| III.3. Peroxidarea lipidelor ca rezultat al infecțiilor .....                             | 18 |
| III.4. Influența infecțiilor orale asupra altor patologii .....                           | 19 |
| Capitolul IV. Caracteristici ale genului <i>Sempervivum</i> .....                         | 21 |
| IV.1. Distribuția genului <i>Sempervivum</i> .....                                        | 21 |
| IV.2. Anatomia și morfologia genului.....                                                 | 23 |
| IV.2.1. Sistemul radicular .....                                                          | 23 |
| IV.2.2. Micorize.....                                                                     | 24 |
| IV.2.3. Morfologia frunzei .....                                                          | 25 |
| IV.2.4. Pilozitate.....                                                                   | 27 |
| IV.2.5. Tulpini .....                                                                     | 28 |
| IV.2.6. Flori .....                                                                       | 28 |
| IV.2.7. Ciclul anual de creștere .....                                                    | 29 |
| Capitolul V. Compoziția fitochimică și utilizarea medicinală a genului <i>Sempervivum</i> | 31 |
| V.1. Metabolismul și produșii metabolici ai genului <i>Sempervivum</i> .....              | 31 |
| V.2. Compoziția fitochimică a genului <i>Sempervivum</i> .....                            | 31 |
| V.3. Proprietățile cunoscute ale fitocompușilor raportați .....                           | 34 |
| V.3.1. Activitățile biologice ale quercetinei .....                                       | 34 |
| V.3.2. Activitățile biologice ale acidului cafeic.....                                    | 35 |

|                                                        |    |
|--------------------------------------------------------|----|
| V.3.3. Activitățile biologice ale kaempferolului ..... | 37 |
| V.3.4. Activitățile biologice ale izorhamnetinei.....  | 38 |
| V.3.5. Activitățile biologice ale astragalinei .....   | 39 |

## STUDIU I

|                                                                                                            |    |
|------------------------------------------------------------------------------------------------------------|----|
| I.1. Recoltarea și identificarea speciei <i>Sempervivum ruthenicum</i> Koch și obținerea extractelor ..... | 40 |
| I.1.1. Recoltarea materialului vegetal .....                                                               | 40 |
| I.1.2. Particularități anatomic ale speciei vegetale studiate .....                                        | 42 |
| I.1.3. Obținerea produsului vegetal uscat.....                                                             | 42 |
| I.1.4. Obținerea extractelor vegetale.....                                                                 | 43 |
| I.2. Materiale și metodă .....                                                                             | 45 |
| I.2.1. Determinarea polifenolilor totali .....                                                             | 45 |
| I.2.2. Determinarea flavonoidelor totale.....                                                              | 47 |
| I.2.3. Analiza componentelor extractelor vegetale prin cromatografia de lichide de înaltă performanță..... | 48 |
| I.2.4. Evaluarea capacitatei antioxidantă prin metoda DPPH .....                                           | 57 |
| I.3. Rezultate .....                                                                                       | 60 |
| I.3.1. Determinarea polifenolilor totali .....                                                             | 60 |
| I.3.2. Determinarea flavonoidelor totale.....                                                              | 61 |
| I.3.4. Evaluarea capacitatei antioxidantă prin metoda DPPH .....                                           | 83 |
| I.4. Discuții .....                                                                                        | 87 |
| I.5. Concluzii preliminare.....                                                                            | 91 |

## STUDIU II

|                                                                                                                   |     |
|-------------------------------------------------------------------------------------------------------------------|-----|
| II.1. Studii privind efectul antibacterian al unor extracte vegetale din <i>Sempervivum ruthenicum</i> Koch ..... | 92  |
| II.1.1. Materiale și metode .....                                                                                 | 92  |
| II.1.2. Rezultate.....                                                                                            | 96  |
| II.1.3. Discuții.....                                                                                             | 102 |
| II.2. Studii privind efectul antifungic al unor extracte vegetale din <i>Sempervivum ruthenicum</i> Koch .....    | 103 |
| II.2.1. Materiale și metode .....                                                                                 | 104 |
| II.2.2. Rezultate.....                                                                                            | 105 |
| II.2.3. Discuții.....                                                                                             | 106 |
| II.3. Evaluarea activității anti-inflamatorii prin inhibarea xantin oxidazei.....                                 | 107 |
| II.3.1. Principiul metodei .....                                                                                  | 107 |

|                                                                                                                                                        |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| <b>II.3.2. Materiale și metode .....</b>                                                                                                               | <b>108</b> |
| <b>II.2.3. Rezultate.....</b>                                                                                                                          | <b>109</b> |
| <b>II.2.4. Discuții.....</b>                                                                                                                           | <b>114</b> |
| <b>II.4. Evaluarea activității anti-inflamatorii prin inhibarea denaturării termice albuminei .....</b>                                                | <b>114</b> |
| <b>II.4.1. Principiul metodei .....</b>                                                                                                                | <b>115</b> |
| <b>II.4.2. Materiale și metode .....</b>                                                                                                               | <b>116</b> |
| <b>II.4.3. Rezultate.....</b>                                                                                                                          | <b>117</b> |
| <b>II.4.4. Discuții.....</b>                                                                                                                           | <b>122</b> |
| <b>II.5. Concluzii preliminare .....</b>                                                                                                               | <b>123</b> |
| <b>STUDIUL III</b>                                                                                                                                     |            |
| <b>III.1. Formularea și evaluarea <i>in vitro</i> a plasturilor mucoadezivi cu extract hidro-alcoolic din <i>Sempervivum ruthenicum</i> Koch .....</b> | <b>124</b> |
| <b>III.1.1. Materiale și metode.....</b>                                                                                                               | <b>125</b> |
| <b>III.1.2. Rezultate .....</b>                                                                                                                        | <b>134</b> |
| <b>III.1.3. Discuții .....</b>                                                                                                                         | <b>140</b> |
| <b>III.2. Evaluarea activității antioxidantă a plasturilor mucoadezivi <i>in vivo</i>.....</b>                                                         | <b>141</b> |
| <b>III.2.1. Pacienți și Metode .....</b>                                                                                                               | <b>143</b> |
| <b>III.2.2. Rezultate .....</b>                                                                                                                        | <b>145</b> |
| <b>III.2.3. Discuții .....</b>                                                                                                                         | <b>150</b> |
| <b>III.3. Concluzii preliminare.....</b>                                                                                                               | <b>152</b> |
| <b>ORIGINALITATEA ȘI CONTRIBUȚIILE INOVATOARE ALE TEZEI .....</b>                                                                                      | <b>153</b> |
| <b>IMPACTUL REZULTATELOR OBTINUTE.....</b>                                                                                                             | <b>155</b> |
| <b>CONCLUZII FINALE .....</b>                                                                                                                          | <b>157</b> |
| <b>BIBLIOGRAFIE.....</b>                                                                                                                               | <b>159</b> |
| <b>INDEX DE FIGURI ÎN TEXT .....</b>                                                                                                                   | <b>172</b> |
| <b>INDEX DE TABELE ÎN TEXT.....</b>                                                                                                                    | <b>176</b> |
| <b>LISTA ABREVIERILOR FOLOSITE ÎN TEZA DOCTORALĂ .....</b>                                                                                             | <b>178</b> |
| <b>LUCRARI PUBLICATE DIN DOMENIUL TEZEI DE DOCTORAT .....</b>                                                                                          | <b>179</b> |

## INTRODUCTION

Since the beginning of medicine, plant remedies were used as the primary therapy for a plethora of diseases; these remedies were used empirically as their exact composition was unknown at the time.

Typically bioactive plant compounds are produced as a result of the secondary metabolism [1]. Each living organism, including bacteria, animal or vegetal organism are comprised of billions of cells which in turn contain chemical compounds necessary for their survival and function. All the compounds found in a biological system can be split into two major groups: the first is comprised of primary metabolites and encompasses chemical compounds needed for the growth and development of an organism, such as carbohydrates, amino acids, proteins and lipids. The second group encompasses secondary metabolites which are different from the first group as their purpose involves the organism's survival capacity and the interaction with the organism's local environment [2].

The secondary metabolites of various plant species have significant biological effects on the human organism, being considered bioactive compounds. Thus, a simple definition of bioactive plant compounds is that they represent plant chemicals that elicit pharmacological or toxicological effects on both humans and animals [1].

Lately, a very important research goal for the pharmaceutical industry was using medicinal plants and bioactive compounds. Despite the common myth that all phytocompounds are safe, these chemicals present the same risks as synthetic bioactives. Thus, the determination of side effects, optimal dosing and exact chemical structure of these compounds are necessary.

Laboratories from all over the world have discovered thousands of plant based compounds with *in vitro* antibacterial effects and many of those compounds are submitted for animal trials in order to determine their toxicity. However, the lack of standardization concerning the extraction methods and the evaluation procedures make the results hard to compare between different laboratories.

The oral cavity is comprised of multiple surfaces, each covered in a plethora of bacteria, representing the bacterial biofilm. Some of these microorganism are involved in oral diseases like dental cavities and periodontal diseases. For example, it was estimated that at least 35% of all adults with ages between 30-90 years in the United States of America suffer from

periodontitis. Furthermore, 3 oral bacterial species were found to be involved in systemic diseases such as bacterial endocarditis, pneumonia, infantile osteomyelitis and cardiovascular diseases [4].

Over 700 bacterial species (Gram positive, Gram negative and archaea) were identified in the human oral cavity, most of them being associated with dental plaque, making the oral microbial community one of the most complex flora of the human organism.

I have chosen the subject of this thesis based on the observation of the general trends in the research area of natural compounds, both in the pharmaceutical and medical field. Also, I was motivated by the acknowledgement of fast developing microbial resistance to the existing antibiotics, which led to multiresistant strains that are increasingly hard to eliminate. In my opinion, this phenomenon can be staved off by the discovery of new compounds that still affect bacteria, that can lead to a better antibacterial therapy and to obtaining chemical derivatives of these compounds that can ensure antimicrobial efficiency for longer periods of time.

The doctoral thesis is divided in a *GENERAL PART* and *PERSONAL STUDIES*. The accessed references are presented in citing order.

This research would not have been possible without the involvement of the scientific coordinator, Prof. univ. dr. Badea Victoria, whom I would like to thank. I would also like to thank the collective of the Faculty of Pharmacy Constanta, without whom I could not complete this research. Lastly, I would like to thank my family and friends who supported me during the years of research for this thesis.

**Key words:** *Sempervivum ruthenicum*, HPLC, DPPH, antioxidant.

## GENERAL PART

In the first part of the thesis a short history of medicinal plants is presented, highlighting the importance of natural remedies in the course of human history as well as the importance of research in this field, due to the high potential of identifying new molecules which can serve as both bioactive and precursors. The second chapter refers to the bacterial resistance to antibiotics and the frequency of these occurrences in Europe. This chapter also highlights the mechanisms that cause bacterial resistance and the need for new therapeutic agents. The third chapter presents one of the consequences of bacterial colonization, oxidative stress. This chapter details the genesis of free radicals in the oral cavity and highlights the effects of oxidative stress both in the pathogenesis and the physiopathology of some oral diseases as well as systemic diseases. The fourth chapter describes the anatomy of the *Sempervivum* genus highlighting some particularities of *Sempervivum ruthenicum* Koch. The fifth chapter details the secondary metabolism of the plant species *Sempervivum ruthenicum*. This chapter also reviews the current literature on the subject of *S. ruthenicum* Koch as well as the pharmaceutical applications of the bioactives produced by this plant.

## STUDY I.

**WORKING HYPOTESIS** – the extracts made from *Sempervivum ruthenicum* Koch contain phytocompounds which can be used in dental medicine.

**STUDY SCOPE** – obtaining extracts from the plant material, identifying and quantifying the compounds with pharmacological actions.

This study describes the harvesting and preparation of extracts made from the leaves of *Sempervivum ruthenicum* Koch, highlighting the morphology of the collected specimens, as well as the techniques used in order to obtain the plant extracts. The plant species chosen for this research is *Sempervivum ruthenicum* Koch, known in folk medicine as “hen and chicks”. This is a rare plant, found in the rocky arid terrain of the Dobrogea region, Romania. The plant has characteristic yellow inflorescence with a distinctive red spot at the base of the petals.

To obtain the plant extracts from *Sempervivum ruthenicum* Koch, I used both fresh plant material as well as dry plant material. In both cases, 3 types of extract were made, using absolute ethilic alcohol, a hydroethanolic solution (50% m/m) and double distilled water. For the fresh plant extracts, the drying loss was taken into account.

## WORK METHODOLOGY

**Total phenolic content** – The Folin-Ciocalteu Method (F-C) is the simplest method available for determining the total phenolic content of plant extracts. To determine the total phenolic content from the extracts, I used the method proposed by Shirazi et. Al. [93], with slight alterations.

**Total flavonoid content** – The spectrophotometric evaluation based on the formation of a aluminum complex is a routine procedure to determine the total flavonoid content of the samples. In this study I used method proposed by Piyanete et. Al [96]. Quercetin was used as standard, and the total flavonoid content was calculated as quercetin equivalents.

**High performance liquid chromatography analysis** – To isolate, identify and quantify the bioactive compounds from the plant extracts, a standardized HPLC method was used to determine the polyphenolic compounds, described by the USP 30-NF25 [97]. Briefly a Agilent 1200 chromatogram was employed, with a quaternary pump, DAD, thermostat, degassing system and autosampler. The working conditions included:

- C18 chromatographic column, 250 mm x 4.6 mm; 5  $\mu$ m (Zorbax XDB);
- Mobile phase (gradient elution):
  - Solution A – phosphoric acid 0.1%
  - Solution B – acetonitrile;
- Flow: 1.5 mL/min;
- Injection volume: 20  $\mu$ L;
- Analysis time: 20 minutes.

The identification and quantification of the bioactives from the sample extracts were carried out by comparison with internal standards.

**Total antioxidant activity** - The DPPH evaluation is a simple method, used for measuring a extract's ability to scavenge free radicals and to determine the total antioxidant activity. This method can be employed to quantify antioxidant in biological systems. Also, this method is relatively simple and can be applied to measure the antioxidant capacity of a sample as well as the radical scavenging ability. The method employed in this study was proposed by Ravichandran et. al. [99] with slight alterations. Briefly, a DPPH 4% solution was prepared in absolute methanol, and its absorbance was measured at 517 nm. All determinations were carried out in triplicate, and the results are expressed as median  $\pm$  standard deviation. All data was subjected to ANOVA ( $p<0.05$ ). The results were processed with Microsoft Excel 360 (Microsoft Office 2016).

## RESULTS AND DISCUSSIONS

The results of the HPLC analysis revealed a variety of polyphenolic compounds like free acids and flavonoids. The results found are similar to other studies [61-67]/ Polyphenols in their

free acid form were found in all types of plant extracts although a higher degree of variety could be observed in the hydroethanolic extracts, due to the solvents higher efficiency.

Regarding the quantification of the polyphenolic acids, a vast difference could be observed between the extracts made from fresh plant product and the extracts made from dry plant product. In the case of fresh plant extracts, smaller amounts of polyphenolic acids could be observed, as well as the lack of compounds like caffeic acid, cinnamic acid, chlorogenic acid and Z-resveratrol.

All other bioactive constituents mentioned in the literature could be observed in this analysis with the exception of sedoheptulose, which could not be identified due to the chromatographic conditions.

Astragalin was the most prominent flavonoid identified, being found in all the plant extracts. The most complex phytochemical profile could be observed for the extracts PVUET50 and PVPET50, due to the high efficiency of the solvent mixture. Although a thorough examination of the polyphenolic profile was conducted, the limitations of HPLC standards caused the omission of some bioactives in the plant extracts.

After the total antioxidant assay of the extracts, the results suggest a high antioxidant activity. It can be observed that the dry plant extracts have the highest antioxidant capacity and the smallest inhibitory concentrations for 50% of the free radical. Regarding the extracts, the highest scavenging activity was found for the hydroethanolic extract made from dry plant material.

Regarding the extracts prepared from fresh plant material, the results showed a lower antioxidant activity. The highest antioxidant activity was seen for the hydroethanolic extract, which was followed by the ethanolic extract. Inhibition concentrations for 50% of the free radical were the lowest for the hydroethanolic extract although significantly higher than for the dry plant extracts.

## STUDY II

**WORKING HYPOTHESIS** – The extracts obtained from *Sempervivum ruthenicum* Koch contain bioactive compounds with *in vitro* antibacterial and anti-inflammatory effects.

**STUDY SCOPE** – Using the plant extracts to prove *in vitro* antibacterial and anti-inflammatory activities.

This study was conducted in order to determine the antibacterial and antifungal activities of the plant extracts by diffusimetric methods, against pathogens found in the oral cavity. The pathogens used are involved in cariogenesis. Also, the study followed *in vitro* assays to determine the anti-inflammatory action via the inhibition of xanthin oxidase and the thermal denaturation of albumin.

## WORK METHODOLOGY

**Studies regarding the antibacterial effects of plant extracts obtained from *Sempervivum ruthenicum* Koch** – to carry out this experiment, three bacterial species were isolated from the human oral cavity. *Staphylococcus aureus*, *Staphylococcus citreus* and *Streptococcus sanguis* (viridans) were the bacterial specimens selected for this research. The bacteria were identified by using Api<sup>®</sup> 20 Strep and Api<sup>®</sup> 20 Staph kits (bioMereaux, France). The plates used for the isolation of the bacterial colonies were blood agar (REF 6378, Bio-Rad, Dubai) and Mueller Hinton (REF 63824, Bio-Rad, Dubai). All the instruments used were previously sterilized and the turbidity of the bacterial suspensions was tested using a UV-VIS Varian Cary 50 spectrophotometer (Agilent Technologies). The antibacterial activity of the plant extracts was assayed using an adapted diffusimetric method [109]. The principle of the employed method is based on a direct proportional relationship between the level of sensibility of the bacteria and the size of the inhibition area around the tested sample. The adaptation employed in this study consists in replacing antibiotic tablets with Whatman Paper saturated with the sample solution. Each identified bacterial strain was inoculated in freshly prepared broth, with a concentration expressed as turbidity of 0.5 Mac Farland [109]. The suspensions were seeded onto Mueller Hinton agar plates with a sterile buffer. The filter papers were saturated with 10 µL

plant extract with a concentration of 500 mg/mL. The samples were then applied to the surface of the seeded agar and incubated for 24 hours at a constant temperature of  $36.5 \pm 0.5^{\circ}\text{C}$ . After 24 hours, the agar plates were used to determine the area of inhibition. All experiments were run in triplicate and the results were expressed as median  $\pm$  standard deviation. The inhibition areas were measured by using AutoCAD 2018, taking the paper filter area as the reference point. All data was subjected to statistical analysis by employing Microsoft Excel 360 software.

**Studies regarding the antifungal effects of plant extracts obtained from *Sempervivum ruthenicum* Koch** – in this study, a reference strain of *Candida albicans* (ATCC 10231) was employed, which was grown on a Sabouraud agar for 96 hours at a constant temperature of  $32^{\circ}\text{C}$ . The colonies formed were used to confirm the pathogens identity. The plant extract antifungal activity was assayed using the previously described diffusimetric method [109]. The inhibition areas were evaluated after 24 and 48 hours of incubation. All experiments were run in triplicate using the same methodology as previously described.

**Xanthin oxidase inhibition assay** – the method used in this study was proposed by Isa et al [118]. The method involved using the plant extract at different known concentrations to determine the inhibition of xanthin oxidase spectrophotometrically by determining the quantity of uric acid formed in its presence. Allopurinol was used as a positive control due to being an competitive inhibitor of xanthin oxidase at small doses.

**Inhibition of albumin thermal denaturation assay** – determining the percentage of thermal denaturation of albumin is a frequently encountered method for screening plant extracts [121-129]. To determine the thermal denaturation of albumin inhibition capacity the method proposed by Kahn et al was employed [24]. The inhibitory concentrations for 50% inhibition were calculated by interpolation, using the equation resulted from plotting the inhibition percentage vs the concentration of the plant extracts.

## RESULTS AND DISCUSSIONS

A strong correlation was found between the total polyphenolic content determined via the F-C method, the polyphenolic content determined via HPLC, the total flavonoids determined via HPLC and the antibacterial activities of the plant extracts against *Staphylococcus aureus*. There are also significant correlations between the phytochemical profile and the antibacterial activities against *Staphylococcus citraeus*, however a single correlation could be drawn between the HPLC determined polyphenolic content and the antibacterial activities against *Streptococcus sanguis*.

The inhibition areas observed for *Candida albicans* were small in comparison to the results against the bacterial species. Only two plant extracts showed antifungal activities, however there was limited efficacy. The small size of the inhibition areas obtained against *Candida albicans* led to the decision to discontinue other assays on this microorganism.

All plant extracts inhibited xanthin oxidase, suggesting a favorable anti-inflammatory activity which complements the antioxidant action [117]. The hydroethanolic plant extracts presented the smallest inhibitory concentrations for 50% of xanthin oxidase, although the IC50 values were higher than those presented by allopurinol. Even though other species from the *Sempervivum* genus were studied, no other references to this assay were found in the literature, representing a novel approach for this plant species.

The results showed that all plant extracts had a significant inhibitory effect on the thermal denaturation of albumin at high doses (1000 $\mu$ g/mL), with values rivaling the used standard (aspirin). Also, it is worth noting that the hydroethanolic extract produced from dry plant material had a similar value to the standard suggesting a high content of compounds responsible for this activity. In contrast, the water extracts presented the least efficient inhibiting action. Surprisingly, the ethanolic extract produced from fresh plant material presented a high inhibitory effect at all tested concentrations with a IC50 value smaller than that of the employed standard (192.14  $\pm$  4.433  $\mu$ g/mL).

## STUDY III

**WORK HYPOTHESIS** – the hydroethanolic extracts produced from both fresh and dry plant material can be formulated as oral mucoadhesive patches.

**STUDY SCOPE** – The formulation and *in vitro* evaluation of oral mucoadhesive patches loaded with bioactive compounds from the plant extracts.

This study details the formulation and pharmaceutical evaluation of oral mucoadhesive patches loaded with hydroethanolic plant extracts. After the pharmaceutical assay of the formulations, the patches were evaluated for oxidative stress reduction on the oral cavity by employing 48 healthy smoking and nonsmoking volunteers.

## WORK METHODOLOGY

**Formulation and *in vitro* evaluation of mucoadhesive oral patches loaded with *Sempervivum ruthenicum* Koch hydroethanolic plant extracts** - Both extracts were submitted to solvent elimination by employing a rotary evaporation IKA RV!0 at a constant temperature of 70°. After the complete elimination of the solvent, dry plant extracts were obtained, which were pulverized and stored in a desiccator for further use. The polymers employed for the formulation of the oral patches consisted of gelatin, pectin obtained from apple, polyvinyl pyrrolidone and methylcellulose. All polymers were purchased from Sigma and were of analytical grade purity. The oral patches were prepared according to the method proposed by Hashemi [137] with slight alterations. The pharmaceutical evaluation of the obtained patches included: mass and content uniformity, swelling index, mucoadhesive strength and *in vitro* release profile.

***In vivo* antioxidant activity assay** - the study included 48 clinical healthy volunteers with ages ranging between 20 and 35 years. All volunteers expressed their written, free informed consent according to the Declaration of The World Health Association in Helsinki (revised in 2000, Edinburg), with the approval of the Bioethics Commission of the “Ovidius” University of Constanta, request no. 17712/12.11.2018.

The inclusion criteria were:

- Ages ranging between 18 and 35 years;
- Clinically healthy;
- Smoker or non-smoker;
- No known allergic reactions to the components of the formulation.

The plant extracts were tested for alkaloids by employing the Dragendorff reaction, which was negative in all cases. Also, after the HPLC screening no trace amounts of alkaloids were quantified. The literature does not cite compounds with toxic potentials for this plant genus or adverse reactions associated with *Sempervivum* consumption by humans or animals [58-60, 102, 104].

The volunteers were split into two equal groups based on their smoking status. Each group was randomly assigned to 3 sub-groups based on the type of oral mucoadhesive patch administered: without plant extract (control group), with plant extract obtained from dry plant material (PVU) and with plant extract obtained from fresh plant material (PVP).

The volunteers were instructed not to commence their daily oral hygiene routines and to refrain from chewing gum, using mouthwash and oral drops. Also, the volunteers from the smoking group did not consume tobacco-based products in the day of the study, until the end of the evaluation. The volunteers consumed 350 mL of water each hour for the duration of the experiment.

The saliva samples were harvested in sterile flasks at fixed time intervals. The mucoadhesive patches were applied to all patients in the inferior anterior region of the mouth by applying gentle pressure for 20 seconds. After collecting the samples, they were subjected to centrifugation by employing a Eppendorf 5415C Centrifuge, at 13,000 rpm for 10 minutes with the purpose of eliminating any sediments. The total antioxidant capacity of the saliva was assayed employing the DPPH free radical scavenging ability according to the above-mentioned method.

## **RESULTS AND DISCUSSIONS**

After applying the mucoadhesive patches an initial drop of antioxidant activity was recorded for all subgroups, followed by a constant rise of the DPPH scavenging ability up to

25.7% of the initial values. By comparing the type of extract used, a slight rise in the scavenging ability of the patches could be observed for the volunteers who received PVU patches. The oral residence time exceeded the total release time determined *in vitro*, however, significant correlations could be drawn between the DPPH scavenging ability and the *in vitro* release profile.

## FINAL CONCLUSIONS

1. The results from the HPLC analysis revealed high concentrations of polyphenols bioactives with therapeutical potential, such as free polyphenolic acids, flavonoids, heterosides and flavonols.
2. All plant extracts have DPPH scavenging abilities. The hydroethanolic extracts presented the highest degree of free radical scavenging.
3. The plant extracts poses *in vitro* antibacterial activities, with the highest efficiency recorded for the hydroethanolic dry plant extract.
4. The studied extracts have a low antifungal effect against *Candida albicans*.
5. The plant extracts poses xanthin oxidase inhibitory effects which correlate to the total flavonoid content.
6. The hydroethanolic fresh plant extract is the strongest xanthine oxidase inhibitor in this study.
7. All studied plant extracts have an inhibitory effect on the thermal denaturation of albumin, which correlate to their flavonoid content.
8. The hydroethanolic dry plant extract is the strongest albumin thermal inhibitor in this study.
9. The hydroethanolic extracts obtained from *Sempervivum ruthenicum* Koch can be incorporated into a polymeric matrix in order to formulate high quality mucoadhesive patches.
10. The mucoadhesive patches loaded with dry plant extract led to the highest rise of saliva total scavenging ability in smoking and non-smoking volunteers.

## REFERENCES

1. Bernhoft A, A brief review on bioactive compounds in plants. In: Proceedings from a symposium held at The Norwegian Academy of Science and Letters. Oslo. Norway. 2010.
2. Vinotoriu M, An overview of the ultrasonically assisted extraction of bioactive principles from herbs. *Ultrasonics Sonochemistry* 2001; 8(3): 303–313.
3. Kisagau et al. In vitro antimicrobial assay of plants used in traditional medicine in Bukoba Rural district, Tanzania. *Afr. J. Trad. Cam* 2007; 4(4): 510-523.
4. He et al, Oral Microbiology: Past, Present and Future, *International Journal of Oral Science* 2009; 1(2): 47-58.
5. Paulsen BS; Highlights through the history of plant medicine. In: Proceedings from a Symposium Held at The Norwegian Academy of Science and Letters. Oslo. Norway. 2010.
6. Akerele O; Importance of medicinal plants: WHO's programme. In: *Natural Resources and Human Health: plants of medicinal and nutritional value*; Elsevier, Amserdam, Netherlands.1992; pp. 63-77.
7. Farnsworth NR, Soejarto DD. Global importance of medicinal plants. In: *Conservation of Medicinal Plants*; Cambridge University Press. 1999; pp 25-52.
8. Kelly K. History of medicine. New York: Facts on file; 2009. pp. 29–50.
9. Fransworth NR. Preclinical assessment of medicinal plants. *Natural Resources and Human Health*. Elsevier Science Publishers BV, 1992. pp.87-91.
10. Bijana Bauer Petrovska, Historical review of medicinal plants' usage, *Pharmacogn Rev*. 2012; pp.1-5.
11. Bennett JE, Dolin R, Blaser MJ, Mendell, Douglass, and Bennett's *Principles and Practice of Infectious Diseases* Eight Edition, Elsevier Saunders, 2015; pp.238-251.
12. [http://ecdc.europa.eu/en/healthtopics/antimicrobial\\_resistance/database/pages/map\\_reports.asp](http://ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/database/pages/map_reports.asp)
13. [http://www.who.int/drugresistance/global\\_action\\_plan/en/](http://www.who.int/drugresistance/global_action_plan/en/)
14. [http://www.who.int/drugresistance/global\\_action\\_plan/en/](http://www.who.int/drugresistance/global_action_plan/en/)

**15.** Weldhagen GF, Integrons and beta-lactamases—a novel perspective on resistance, *Int J Antimicrob Agents*. 2004; 23: 556-562.

**16.** Hawkey PM, Molecular epidemiology of clinically significant antibiotic resistance genes. *Br J Pharmacol*, 2008; 153: S406-S413.

**17.** Babic M, Hujer AM, Bonomo RA, What's new in antibiotic resistance? Focus on beta-lactamases, *Drug Resist Updat*. 2006; 9:142-156.

**18.** Ben-Ami R, Schwaber MJ, Navon-Venezia S, et al., Influx of extended-spectrum  $\beta$ -lactamase-producing Enterobacteriaceae into the hospital, *Clin Infect Dis*. 2006; 42: 925-934.

**19.** Canton R, Coque TM, The CTX-M beta-lactamase pandemic. *Curr Opin Microbiol*. 2006; 9: 466-475.

**20.** Pitout JDD, Laupland KB, Extended-spectrum  $\beta$ -lactamase-producing Enterobacteriaceae: an emerging public-health concern. *Lancet Infect Dis*. 2008; 8:159-166.

**21.** Johnson JR, Johnston B, Clabots C, et al., Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States, *Clin Infect Dis*. 2010; 51:286-294. Livermore DM..

**22.** Landman D, Bratu S, Kochhar S, et al., Evolution of antimicrobial resistance among *Pseudomonas aeruginosa*, *Acinetobacter baumannii*, and *Klebsiella pneumoniae* in Brooklyn, NY. *J Antimicrob Chemother*, 2007; 60:78-82.

**23.** Tato M, Coque TM, Ruiz-Garbajosa P, et al., Complex clonal and plasmid epidemiology in the first outbreak of Enterobacteriaceae infection involving VIM-1 metallobeta-lactamase in Spain: toward endemicity?, *Clin Infect Dis*. 2007; 45:1171-1178.

**24.** Walsh TR. The emergence and implications of metallobeta-lactamases in gram-negative bacteria. *Clin Microbiol Infect*. 2005; 11(suppl 6):2-9.

**25.** Yong D, Toleman MA, Giske CG, et al., Characterization of a new metallo-beta-lactamase gene and a novel erythromycin esterase gene carried on a unique genetic structure in *Klebsiella pneumoniae* sequence type 14 from India, *Antimicrob. Agents. Chemother*. 2009; 53:5046-5054.

**26.** Ardia N, Sareyyupoglu B, Ozyurt M, et al., Investigation of aminoglycoside modifying enzyme genes in methicillinresistant staphylococci, *Microbiol Res*. 2006; 161:49-56.

**27.** Robicsek A, Strahilevitz J, Jacoby EA, et al., Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase, *Nat Med.* 2006; 12:83-88

**28.** Unemo M, Nicholas RA, Emergence of multidrug resistant, extensively drug resistant and untreatable gonorrhea, *Future Microbiol.* 2012;7:1401-1422.

**29.** Canton R, Morosini MI, Emergence and spread of antibiotic resistance following exposure to antibiotics, *FEMS Microbiol Rev.* 2011; 35:977-991B

**30.** Luo Y, Li J, Meng Y, et al., Joint effects of topoisomerase alteration and plasmid-mediated, quinolone-resistant determinants in *Salmonella enterica* Typhimurium, *Microb Drug Resist.* 2011; 17:1-5

**31.** Kesarwala AH, Krishna MC, Mitchell JB, Oxidative Stress in Oral Diseases, *Oral Dis.* 2016; 22(1):9-18.

**32.** Schrader M, Fahimi HD, Peroxisomes and oxidative stress. *Biochim Biophys Acta.* 2006; 1763:1755–1766.

**33.** Reczek CR, Chandel NS. ROS-dependent signal transduction. *Curr Opin Cell Biol.* 2014; 33C:8–13.

**34.** Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. *Cell.* 2005; 120:483–495.

**35.** Lee YH, Kim GE, Song YB, Paudel U, Lee NH, Yun BS, Yu MK, Yi HK. Davallialactone reduces inflammation and repairs dentinogenesis on glucose oxidase-induced stress in dental pulp cells. *J Endod.* 2013; 39:1401–1406.

**36.** Kassebaum MJ, Smith AGC, Bernabe E, Fleming TD, Reynolds AE, Vos T, et. al., Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990-2015: a systematic analysis for the global burden of diseases, injuries, and risk factors, *J. Dent. Res.* 2017; 96:380-387.

**37.** Tonetti MS, Jepsen S, Jin L, Otomo-Corgel J, Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action, *J. Clin. Periodontol.* 2017; 44:456-462.

**38.** Shin JE, Baek KJ, Choi YS, Choi Y, A periodontal pathogen *Treponema denticola* hijacks the *Fusobacterium nucleatum*-driven host response. *Immunol Cell Biol.* 2013; 91:503–510.

**39.** Kanzaki H, Wada S, Narimiya T, Yamaguchi, Y, Katsumata Y, Itohiya K, et al., Pathways that regulate ROS scavenging enzymes, and their role in defense against tissue destruction in periodontitis, *Front. Physiol.* 2017; 8:351.

**40.** Ahmadi-Motamayel F, Goodarzi MT, Jamshidi Z, Kebriaei R, Evaluation of salivary and serum antioxidant and oxidative stress statuses in patients with chronic periodontitis: a case-control study, *Front. Physiol.* 2017; 8:189.

**41.** Pradeep AR, Rao NS, Bajaj P, Agarwal E, 8-Isoprostane: a lipid peroxidation product in gingival crevicular fluid in healthy, gingivitis and chronic periodontitis subjects, *Arch. Oral Biol.* 2013; 58, 500–504.

**42.** Canakci CF, Tatar A, Canakci V, Cicek Y, Oztas S, and Orbak R, New evidence of premature oxidative DNA damage: mitochondrial DNA deletion in gingival tissue of patients with periodontitis, *J. Periodontol.* 2006; 77, 1894–1900.

**43.** Tamaki N, Hayashida H, Fukui M, Kitamura M, Kawasaki K, Nakazato M et al., Oxidative stress and antibody levels to periodontal bacteria in adults: the Nagasaki Islands study, *Oral Dis.* 2014; 20, e49–e56.

**44.** Ambati M, Rani KR, Reddy PV, Suryaprasanna J, Dasari R, Gireddy H, Evaluation of oxidative stress in chronic periodontitis patients following systemic antioxidant supplementation: a clinical and biochemical study, *J. Nat. Sci. Biol. Med.* 2017; 8, 99–103.

**45.** Manoharan S, Kolanjiappan K, Suresh K, Panjamurthy K, Lipid peroxidation & antioxidants status in patients with oral squamous cell carcinoma, *Indian J. Med. Res.* 2005; 122, 529–534.

**46.** Tagawa T, Hiraku Y, Murata M, Ding X, Kawanishi S, 8-Nitroguanine formation in oral leukoplakia, a premalignant lesion, *Nitric Oxide* 2006; 14, 137–143.

**47.** Kaya S, Sutcu R, Cetin ES, Aridogan BC, Delibas N, Demirci M, Lipid peroxidation level and antioxidant enzyme activities in the blood of patients with acute and chronic fascioliasis, *Int. J. Infect. Dis.* 2007; 11, 251–255.

**48.** Trivedi S, Lal N, Mahdi AA, Singh B, Pandey S, Association of salivary lipid peroxidation levels, antioxidant enzymes, and chronic periodontitis, *Int. J. Periodontics Restorative Dent.* 2015; 35, e14–e19.

**49.** Kumar J, Teoh SL, Das S, Mahaknaukrauh P, Oxidative stress in oral diseases: understanding it's relation with other systemic diseases, *Front. Physiol.* 2017; (8):1-15.

**50.** Ketabi M, Meybodi FR, Asgari MR, The association between periodontal disease parameters and severity of atherosclerosis, *Dent. Res. J.* 2016; 13, 250–255.

**51.** Calapkorur MU, Alkan BA, Tasdemir Z, Akcali Y, Saatci E, Association of peripheral arterial disease with periodontal disease: analysis of inflammatory cytokines and an acute phase protein in gingival crevicular fluid and serum, *J. Periodont. Res.* 2017; 52, 532–539.

**52.** Kholy KE, Genco RJ, Van Dyke, TE, Oral infections and cardiovascular disease, *Trends Endocrinol. Metab.* 2015; 26, 315–321.

**53.** Chukkapalli SS, Easwaran M, Rivera-Kweh MF, Velsko IM, Ambadapadi S, Dai J et al., Sequential colonization of periodontal pathogens in induction of periodontal disease and atherosclerosis in LDLRnull mice, *Pathog. Dis.* 2017;75:ftx003.

**54.** Bozoglan A, Ertugrul AS, Taspinar M, Yuzbasioglu B, Determining the relationship between atherosclerosis and periodontopathogenic microorganisms in chronic periodontitis patients, *Acta Odontol. Scand.* 2017; 75, 233–242.

**55.** Miyauchi S, Maekawa T, Aoki Y, Miyazawa H, Tabeta K, Nakajima T, et al., Oral infection with *Porphyromonas gingivalis* and systemic cytokine profile in C57BL/6.KOR-Apo<sup>Eshl</sup> mice, *J. Periodont. Res.* 2012; 47, 402–408.

**56.** Kampits C, Montenegro MM, Ribeiro IW, Furtado MV, Polanczyk CA, Rosing CK et al., Periodontal disease and inflammatory blood cytokines in patients with stable coronary artery disease, *J. Appl. Oral Sci.* 2016; 24, 352–358.

**57.** [http://www.parmacacin.ro/cadrul-natural/-/asset\\_publisher/jU7Y/content/relatii-si-procese-ecologice](http://www.parmacacin.ro/cadrul-natural/-/asset_publisher/jU7Y/content/relatii-si-procese-ecologice)

**58.** [http://stalikez.info/fsm/semp/site/roum\\_gb.php?clc=76&zc=Ae1f1a1b1g1f1f1iAdMzu1g](http://stalikez.info/fsm/semp/site/roum_gb.php?clc=76&zc=Ae1f1a1b1g1f1f1iAdMzu1g)

**59.** Willis H, Willis S, An introduction to *Sempervivum* and *Jovibarba* species and cultivars, Howard and Sarah Willis, Great Britain, 2004.

**60.** Kertesz-Dobos E, Laszlo-Bencsik A, Danos B, In vitro culture and the production of secondary metabolites by *Sempervivum* spp (Houseleek), Research Institute for Medicinal Plants, Budakalasz, 2011.

**61.**Gumenyuk LA, Gnedokov PA, Batyuk VS, Astragalin from *Sempervivum ruthenicum*, Khimiya Prirodnykh Soedinenii, 1971, pp. 202.

**62.**Gumenyuk LA, Batuk VS, Dykhanov NN, Phenolic Compounds of *Sempervivum ruthenicum*, Khimiya Prirodnykh Soedinenii, 1972, pp. 244.

**63.**Gumenyuk LA, Komissarenko NF, Batyuk VS, Gnedkov PA, Coumarins of some species of the genera *Sempervivum* and *Sedum*, Khimiya Prirodnykh Soedinenii, 1971, pp. 369.

**64.**Gumenyuk LA, Scutellarein 7-rutinoside from *Sempervivum ruthenicum*, Khimiya Prirodnykh Soedinenii, 1975, pp. 428-429.

**65.**Gumenyuk LA, Dykhanov NN, Sbatyuk VS, Flavonoid Compounds From the Flowers of *Sempervivum ruthenicum*, Khimiya Prirodnykh Soedinenii, 1972, pp. 391-392.

**66.**Gumenyuk LA, Phenolic Carboxylic Acids From *Sempervivum ruthenicum*, Khimiya Prirodnykh Soedinenii, 1971, pp. 525.

**67.**Gumenyuk LA, Gnedkov PA, Batyuk VS, Kaempferol and Quercetin from *Sempervivum ruthenicum*, Khimiya Prirodnykh Soedinenii, 1970, pp. 630.

**68.**Wang W, Sun C, Mao L, Ma P, Liu F, Yang J, Gao Y, The biological activities, chemical stability, metabolism and delivery systems of quercetin: a Review, Trends in Food Science & Technology, 2016, pp. 21-38.

**69.**N.R. Prasad, A.S. Karthikeyan, B.V. Karthikeyan, Reddy, Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibro sarcoma cell line, Mol. Cell Biochem., 2011, pp. 11-19.

**70.**Lima VN, Oliveria-Tintino DM, Santos ES, Morais LP, Tintino SR, Freitas TS, Geraldo YS, Pereira LS, Cruz RP, Menezes IRA, Coutinho HDM, Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol, Microbial Pathogenesis, 2016, pp. 56-61.

**71.**Chen YA, Chen YC, A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention, Food Chemistry, 2013m oo. 2099-2107.

**72.**Yang JH, Kim SC, Kim KM, Janf HC, Cho SS, Kim SJ, Cho IJ, Ki SH, Isorhamnetin attenuates liver fibrosis by inhibiting TGF- $\beta$ /Smad signaling and relieving oxidative stress, European Journal of Pharmacology, 2016, pp. 92-102.

**73.**Soromou LW, Chen N, Jiang L, Huo M, Wei M, Chu X, Millimouno MF, Feng H, Sklime Y, Deng X, Astragalin attenuates lipopolysaccharide-induced inflammatory responses by down-regulating NF-κB signaling pathway, Biochemical and Biophysical Research Communications, 2012, pp. 256-261.

**74.**[http://stalikez.info/fsm/semp/site/bibli\\_gb.php?clc=132&zc=Ae1f1a1b1g1f1f1i1r1zuH](http://stalikez.info/fsm/semp/site/bibli_gb.php?clc=132&zc=Ae1f1a1b1g1f1f1i1r1zuH)

**75.**Farmacopeea Română Ediția a X-a, Editura Medicală, București, 2008.

**76.**Sukhdev SH, Suman PSK, Gennaro L, Dev DR, Extraction technologies for medicinal and aromatic plants, International centre for science and high technology, 2008.

**77.**Folin O, Ciocâlteu V, Tyrosine and tryptophan determinations in proteins, J Biol Chem, 1927, 73:627-650.

**78.**Agbor G, Vinson J, Donnelly PE, Folin-Ciocalteu Reagent for Polyphenolic Assay, IJFS, 2014, 3:1-10.

**79.**Singleton VL, Rossi JA, Colorimetry of total phenolics with phosphomolybdc-phosphotungstic acid reagents., Am J Enol Vitic, 1965, 16:144-158.

**80.**Vinson JA, Su XH, Zubik L, Bose P, Phenol antioxidant quantity and quality in foods: fruits, J Agric Food Chem, 2001, 49:5315-5321.

**81.**Vinson JA, Zubik L, Bose P, Samman N, Proch J,) Dried fruits: excellent in vitro and in vivo antioxidants, Am Coll Nutr, 2005, 24:44-50.

**82.**Stratil P, Klejdus B, Kubán V, Determination of phenolic compounds and their antioxidant activity in fruits and cereals, Talanta, 2007, 71:1741-1751.

**83.**Vinson JA, Hao Y, Su X, Phenol Antioxidant Quantity and Quality in Foods: Vegetables, J Agric Food Chem, 1998, 46:3630-3634.

**84.**Stratil P, Klejdus B, Kubán V, Determination of total content of phenolic compounds and their antioxidant activity in vegetables--evaluation of spectrophotometric methods, J Agric Food Chem 2006, 54:607-616.

**85.**Vinson JA, Flavonoids in foods as in vitro and in vivo antioxidants, Adv Exp Med Biol, 1998, 439:151-164.

**86.**Vinson JA, Liang X, Proch J, Hontz BA, Dancel J, et al, Polyphenol antioxidant in citrus juices: in vitro and in vivo studies relevant to heart disease In: Buslig BS, Manthey JA,

editors. Flavonoids in Cell Function, Kluwer Academic/Plenum Publishers, New York, 2002, p. 113-122.

**87.** Vinson JA, Bose P, Proch J, Al Kharrat H, Samman N, Cranberries and cranberry products: powerful in vitro, ex vivo and in vivo sources of antioxidants, *J Agric. Food Chem.* 2008, 56:5884-5891.

**88.** Vinson JA, Proch J, Bose P, MegaNatural® gold grapeseed extract: in vitro antioxidant and in vivo human supplementation studies, *J Med Food*, 2001, 4:17-26

**89.** Vinson JA, Dabbagh YA, Tea phenols: antioxidant effectiveness of teas, tea components, tea fractions and their binding with lipoproteins, *Nutr Res*, 1998, 18:1067-1075.

**90.** Bonita JS, Mandarano M, Shuta D, Vinson J, Coffee and cardiovascular disease: in vitro, cellular, animal, and human studies, *J Pharmacol Res*, 2007, 55:187-198.

**91.** Vinson JA, Hontz BA, Phenol Antioxidant Index: Comparative Antioxidant Effectiveness of Red and White Wines, *J Agric Food Chem*, 1995, 43:401-403.

**92.** Vinson JA, Mandarano M, Hirst M, Trevithick JR, Bose P, Phenol antioxidant quantity and quality in foods: beers and the effect of two types of beer on an animal model of atherosclerosis, *J Agric Food Chem*, 2003 51:5528-5533.

**93.** Shirazi OU, Khattak MAK, Shukri NAM, Nasyriq MNA, Determination of total phenolic, flavonoid content and free radical scavenging activities of common herbs and spices, *J Pharmacog Phytochem*, 2014, 3:104-108.

**94.** Christ B, Müller KH, Zur serienmaessigen Bestimmung des Gehaltes an Flavonol-Derivaten in Drogen, *Arch Pharm*, 1960, 293:1033-1042

**95.** Pekal A, Pyrzynska K, Evaluation of Aluminium Complexation reaction for Flavonoid Content Assay, *Food Anal Methods*, 2014, 7:1776-1782.

**96.** Piyanete C, Meechai P, Nakbanpotecc W, Antioxidant activities and phenolic contents of extracts from *Salvinia molesta* and *Eichornia crassipes*, *Res J Biol Sci* 2009, 4:1113-1117.

**97.** United States Pharmacopeia and National Formulary (USP 30-NF 25), vol 28 (4), Rockville, MD: United States Pharmacopeia Convention, 2007, p. 914.

**98.** Kedare SB, Singh RP, Genesis and development of DPPH method of antioxidant assay, *J Food Sci Technol*, 2011, 48:412-422.

**99.** Ravichandran K, Saw TMMN, Mohdaly AAA, Gabr MMA, Kastell A, Riedel H, Zhenzhen C, Knorr D, Smetanska I, Impact of processing of red beet on betalain content and antioxidant activity, *Food Res Int*, 2013, 50:670-675.

**100.** Malterud KE, Farbrot TL, Huse AE, Sund RB, Antioxidant and radical scavenging effects of anthraquinones and anthrones, *Pharmacology*, 1993, 47:77-85

**101.** Wangensteen H, Samuelsen AB, Malterud KE, Antioxidant activity in extracts from coriander, *Food Chem*, 2004, 88:293-297.

**102.** Stojcovic D, Barros L, Petrovic J, Glamoclija J, Santos-Buelga C, Ferreira CFRI, Sokovic M, Ethnopharmaceutical uses of *Sempervivum tectorum*L in southern Serbia: Scientific confirmation for the use against otitis linked bacteria, *J Ethnopharm*, 2015, 176:397-304.

**103.** Barros L, Pereira E, Calhelha RC, Dueñas M, Carvalho AM, Santos-BuelgaC, Ferreira I.C.F.R, Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of *Chenopodium ambrosioides* L, *J Funct Foods*, 2013, 5:1732–1740.

**104.** Alberti A, Beni S, Lacko E, Riba P, Al-Khrasani M, Keri A, Characterization of phenolic compounds and antinociceptive activity of *Sempervivum tectorum* L. leaf juice, *J Pharm Biomed Anal*, 2012, 70:143-150.

**105.** Gegiu G, Brânză AD, Bucur L, Grigorian M, Tache T, Badea V. Contributions to the antimicrobial and antifungal study of the aqueous extract of *Prunus spinosa* L. *Farmacia* 63(2). 2015; pp. 275-279.

**106.** Choi JG, Kang OH, Lee YS, Chae HS et al. In vitro and in vivo antibacterial activita of *Punica granatum* peel ethanol extract agains *Salmonella*. *Evidence-Based Complementary and Alternative Medicine*. 2011; pp. 1-8.

**107.** Alviano WS, Alviano DS, Diniz GC et. al. *In vitro* antioxidant potential of medicinal plant extracts and their activities against oral bacteria based on Brazilian folk medicine. *Archives of Oral Biology* 53(6). 2008; pp. 545-552.

**108.** Jayaraman S, Manoharan MS, Illanchezian S. In vitro antimicrobial and antitumor activities of *Stevia rebaudiana* (Asteraceae) leaf extracts. *Tropical Journal of Pharmaceutical Research* 7(4). 2008; pp. 1143-1149.

**109.** Buiuc D, Negut M. *Tratat de microbiologie clinică*, Editura Medicală. 1999.

**110.** Coppo E, Marchese A. Antibacterial activiy of polyphenols. Current Pharmaceutical Biotechnology 15. 2014; pp. 380-390.

**111.** Taguri T, Tanaka T, Kouno I. Antimicrobial activity of 10 different plant polyphenols agains bacteria causing food-borne disease. Biol. Pharm. Bull. 27(12), 2004; pp.1965-1969.

**112.** Nett JE, Andes DR. Antifungal agents – Spectrum of Activity, Pharmacology, and Clinical Indications. Infect Dis Clin N Am. 2015; pp.1-33.

**113.** Ramallo IA, Zacchino SA, Furlan RLE. A rapid TLC autographic method for the detection of xanthine oxidase inhibitors and superoxide scavengers. Phytochemical Analysis 17 (1), 2006; pp. 15-19.

**114.** Rohman A, Riyanto S, Yuniarti N, Saputra WR, Utami R, Mulatsih W. Antioxidant activity, total phenolic, and total flavonoid of extracts and fractions of red fruit (Pandanus conoideus Lam). International Food Research Journal 17. 2010; pp. 97-106.

**115.** Pacher P, Nivorozhkin A, Szabó C. Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol. Pharmacology Reviews 58(1). 2006; pp. 87-114.

**116.** Guarnieri C, Zucchelli G, Bernardi F, Scheda M, Valentini AF, Calandriello M. Enhanced superoxide production with on change of the antioxidant activity in gingival fluid of patients with chronic adul periodontitis. Free Radical Research Communications 15(1). 1991; pp. 11-16.

**117.** Kelley EE, Khoo NKH, Hundley NJ, Malik UZ, Freeman BA, Tarpey MM, Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radical Biology and Medicine 48(4). 2010; pp. 493–498.\

**118.** Isa SSPM, Ablat A, Mohamad J. The antioxidant and xanthine oxidase inhibitory activity of *plumeria rubra* flowers. Molecules 23(400). 2018; pp. 1-18.

**119.** Umamaheswari M, Madeswaran A, Asokkumar K. Virtual screening analysis and in vitro xanthine oxidase inhibitory activity of some commercially available flavonoids. Iranian Journal of Pharmaceutical Research 12(3). 2013; pp. 317-323.

**120.** Kapoor N, Saxena S. Potential xanthine oxidase inhibitory activity of endophytic *Lasidiplodia pseudotheobromae*, Applied Biochemical Biotechnology. 2014; pp. 1-15.

**121.** Adarsh VM, Ajay KP, Kavitha D, Anurag KB. Anti-Denaturation and antioxidant activities of *Annona cherimola* in vitro. International Journal of Pharma and Bio Sciences 2(2). 2011; pp. 1-6.

**122.** Manvar MN, Desai TR. Exploration of possible mechanisms for anti-inflammatory activity of *Ipomoea aquatica* Forsk. (Convolvulaceae). International Journal of Phytopharmacy 5(5). 2015; [l. 108-113.

**123.** MoualekI, Iratni G, Guechoaoui NM, Lahcene S, Houali K. Antioxidant and anti-inflammatory activities of *Arbutus unedo* aqueous extract. Asian Pacific Journal of Tropical Biomedicine 6(11). 2016; pp. 937-944.

**124.** Khan H, Khan MA, Rauf A, Haleemi A, Fuloria S, Fuloria NK. Inhibition on urease and thermal induced protein denaturation of commonly used antiulcer herbal products. Study based on *in-vitro* assays. Phcog J 7(3). 2015; pp. 147-152.

**125.** Chopade AR, Somade PM, Sayyad FJ. Membrane stabilizing activity and protein denaturation: a possible mechanism of action for the anti-inflammatory activity of *Phyllanthus amarus*. JKIMSU 1(1). 2012; pp. 67-72.

**126.** Leelaprakash G, Dass MS. In vitro anti-inflammatory activity of methanol extract of *Enicostemma axillare*. Internatonal Journal of Drug Development & Research 3(3). 2011; pp. 189-196.

**127.** Kiranmayi GVN, Anusha V, Chandrika Y, Priya IVS, Swetha S, Krishna VY. Preliminary phytochemical screening and *in vitro* evaluation of anti-inflammatory antiarthritic, and thrombolytic activities of ethanolic leaf extract of *Bauhinia purpurea*. International Journal of Green pharmacy 12(1). 2018; pp. 248.

**128.** Chandra S, Chatterjee P, Dey P, Bhattacharya S. Evaluation of *in vitro* anti-inflammatory activity of coffee against denaturation of protein. Asian Pacific Journal of tropical biomedicine. 2012; pp. 178-180.

**129.** Marrassini C, Peralta I, Anesini C. Comparative study of the polyphenol content-related anti-inflammatory and antioxidant activities of two *Urera aurantiaca* specimens from different geographical areas. Chinese Medicine. 2018; pp. 13-22.

**130.** Kinane DF, Stathopoulou PG, Papapanou PN, Periodontal diseases, Nat. Rev. Dis. Primers 2017; 3:17038.

**131.** Kinane DF, Preshaw PM, Loos BG, Working Group 2 of Seventh European Workshop on Periodontology, Hostresponse: understanding the cellular and molecular mechanisms of host-microbial interactions—consensus of the seventh European workshop on periodontology, *J. Clin. Periodontol.* 2011; 38(Supl. 11):44–48.

**132.** Laine ML, Crielaard W, Loos BG, Genetic susceptibility to periodontitis, *Periodontol 2000* 2012; 58:37–68.

**133.** Chapple IL, Reactive oxygen species and antioxidants in inflammatory diseases, *J. Clin. Periodontol.* 1997; 24, 287–296.

**134.** Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB, Reactive oxygen species in inflammation and tissue injury, *Antioxid. Redox Sig.* 2014; 20:1126–1167.

**135.** Wang Y, Andrukhov O, Rausch-Fan X, Oxidative stress and antioxidant system in periodontitis, *Front. Physiol.* 2017; 8: 910.

**136.** Li C, Bhatt PP, Johnston TP, Transmucosal delivery of oxytocin to rabbits using a mucoadhesive buccal patch, *Pharm. Dev. Technol.* 1997; 2(3):265-274.

**137.** Hasemi M, Ramezani V, Seydabadi M, Ranjbar AM, Jafari H, et. al., Formulation and optimization of oral mucoadhesive partches of *Myrtus Communis* by Box Behnken design, *Adv. Pharm. Bull.* 2017; 7(3):441-450.

**138.** Bottenberg P, Cleymaet R, Muynck C, Remon JP, Coomans D, Michotte Y et al., Development and testing of bioadhesive, fluoride-containing slow-release tablets for oral use, *J Pharm Pharmacol* 1991; 43(7):457-64.

**139.** Gupta A, Garg S, Khre RK, Measurement of bioadhesive strength of mucoadhesive buccal tablet: Design of an in vitro assembly, *Indian Drugs* 1992; 30:152–155.

**140.** Council of Europe, European pharmacopoeia 9<sup>th</sup> Edition, 2018.

**141.** Dash S, Murthy PN, Nath L, Chowdhury P, Kinetic modeling on drug release from controlled drug delivery systems, *Acta Poloniae Pharmaceutica – Drug Research* 2010, 67(3):217-229.

**142.** Ramineni K, Mucoadhesive films for treatment of local oral disorders: development, characterization and in vivo testing, *Theses and Dissertations--Biomedical Engineering* 2014, 19.

**143.** Halliwell B, Whiteman M, Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?, *Br J Pharmacol* 2004; 142:231-255.

**144.** Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A, Biomarkers of oxidative damage in human disease, *Clin Chem* 2006; 52:601-623.

**145.** Geerts SO, Nys M, De MP, Charpentier J, Albert A, Legrand V, et al., Systemic release of endotoxins induced by gentle mastication: association with periodontitis severity, *J. Periodontol.* 2002; 73: 73–78.

**146.** Baltacioglu E, Yuva P, Aydin G, Alver A, Kahraman C, Karabulut E, et al., Lipid peroxidation levels and total oxidant/antioxidant status in serum and saliva from patients with chronic and aggressive periodontitis. Oxidative stress index: a new biomarker for periodontal disease?, *J. Periodontol.* 2014; 85: 1432–1441.

**147.** Konopka T, Krol K, Kopec W, Gerber H, Total antioxidant status and 8-hydroxy-2'-deoxyguanosine levels in gingival and peripheral blood of periodontitis patients, *Arch. Immunol. Ther. Exp.* 2007; 55: 417–422.

**148.** Tsao R, Li H, “Antioxidant properties in vitro and in vivo: realistic assessments of efficacy of plant extracts,” in *Plant Sciences Reviews* 2012, ed D. Hemming (Boston, MA: CABI International), 11–20.

**149.** Hori JI, Zamboni DS, Carrao DB, Goldman GH, Berretta AA, The Inhibition of Inflammasome by Brazilian Propolis (EPP-AF), *Evid. Based Complement. Alternat. Med.* 2013; 2013:418508.

**150.** Vogel CF, Khan EM, Leung PS, Gershwin ME, Chang WL, Wu D, et al., Cross-talk between aryl hydrocarbon receptor and the inflammatory response: a role for nuclear factor-kB, *J. Biol. Chem.* 2014; 289: 1866–1875.

**151.** Azadbakht M, Sariri R, Soltani FM, Ghafoori H, Aghamaali MR, Erfani KTA, Salivary antioxidant power of passive smokers, *J. Nanomedicine. Biotherapeutic. Discov.* 2016; 6(2):1000142.

**152.** Nosratabadi SF, Sariri R, Yaghmaei P, Taheri M, Ghadimi A, Ghafoori H, Alternations of antioxidant activity in saliva in smokers, *J. Phys. Theor. Chem.* 2012; 8(4): 305-310.