

“OVIDIUS” UNIVERSITY OF CONSTANȚA
DOCTORAL MEDICAL SCHOOL
MEDICINE

DOCTORAL THESIS

**CLINICAL AND
THERAPEUTICAL ASPECTS IN
MAXILLARY OSTEONECROSIS**

PhD supervisor: **Prof. univ. Dr. Ion Bordeianu**

Doctoral student: **Dr. Daniel Vlad**

CONSTANȚA 2019

Introduction

Iatrogen-induced maxillary osteonecrosis is a clinical entity with an increasing frequency in clinical activity.

The evolution of these conditions is serious, with an unfavorable prognosis. The results obtained usually consist in the improvement of the symptomatology, temporary remissions, the cure being difficult to obtain. Due to the increased frequency, the complexity of the treatment, the cases of osteonecrosis are very time and resources consuming.

The definition of maxillary osteonecrosis has undergone changes in recent years, which has led to a significant variation in the number of cases and the incidence of the disease between various clinical studies published in the literature.

A significant change in the number of cases was recorded by increasing the frequency of osteonecrosis in patients who underwent osteoporosis treatment compared to patients receiving antiosteoclastic agents for the treatment of oncological conditions.

The treatment of osteonecrosis of the maxillary bones is also continually being improved, new treatment methods being recently introduced in medical practice. These new acquisitions have led to a lack of standardization of treatment, the lack of unanimously accepted protocols.

The purpose of the present research is to perform the analysis of the specific parameters of the epidemiology, diagnosis and treatment of bisphosphonate-induced jaw osteonecrosis related to the population in the Dobrogea area and to develop a therapeutic algorithm according to the evolutionary stage of the bisphosphonate-induced osteonecrosis..

General part

I. CURRENT STATUS OF KNOWLEDGE

The first reports on bisphosphonate-induced jaw osteonecrosis appeared in 2003, but similar cases of workers were observed in white phosphorus mines and match factories described as early as 1899.

Biphosphonates are widely used in diseases that develop with bone destruction through increased osteoclast-mediated resorption (osteoporosis, bone metastases secondary to neoplasms)..

II. CLINICAL THERAPY WITH PHOSPHONES

Bisphosphonates are a class of drugs with anti-osteoclastic effect used in the therapy of osteoporosis, bone metastases and bone diseases with tissue destruction (multiple myeloma, Paget's disease, etc.).

The first medical use was recorded in 1968, when sodium ethidronate was used in the treatment of a child with progressive ossifying myositis (progressive ossifying fibrodysplasia).

One of the most serious adverse effects of bisphosphonates is osteonecrosis of the maxilla, defined as an exposed area of the bone in the maxillofacial region that persists for at least 8 weeks..

III. ETIOPATHOGENY OF BISPHOSPHONATE INDUCED JAW OSTEONECROSIS

The etiopathogenesis of bisphosphonate-induced maxillary bone osteonecrosis is incompletely elucidated, with four theories regarding the prevalence of this condition; none of the theories can explain why the jaw tissue is the exclusive target of osteonecrosis.

The generally accepted theory regarding the etiopathogenesis of bisphosphonate-induced maxillary bone osteonecrosis argues as a cause for suppression of bisphosphonate-induced bone remodeling. The premises of this theory are represented

by: the high rate of bone remodeling of the bones of the jaw compared with other bones and the suppression of the bone remodeling by bisphosphonates.

IV. DIAGNOSIS OF MAXILLARY OSTEONECROSIS BOSPHOSPHONES INDUCED

Standardization of diagnostic criteria for bisphosphonate-induced maxillary bone necrosis is important in order to facilitate future clinical and epidemiological research.

The uniform definition of the necrosis of the maxillary bones induced by bisphosphonates serves to distinguish this clinical entity from other conditions underlying the delayed healing of various wounds in the oral cavity. The American Association of Oral and Maxillofacial Surgery (AAOMS) has established a working definition for bisphosphonate-induced maxillary bone necrosis, which is quite concise and specific.

The imaging diagnosis - OPG, CT, CB-CT, MRI - is a real help in diagnosing the disease and especially in making a treatment plan as efficient as possible. The information obtained is complementary, combining several imaging methods increasing the accuracy of the diagnosis.

V. TREATMENT OF OSTEONECROSIS OF MAXILARY INDUCED BY PHOSPHONATES

The treatment varies according to the stage of the disease, the prevention of the onset of osteonecrosis being of essential importance.

Management of the treatment of evolving osteonecrosis is still a topic under debate, without a unanimously accepted therapeutic protocol.

Improving symptomatology, pain and local infection is the most accessible objective, healing being a difficult task to achieve, especially in oncology patients.

Special part

I. ARGUMENT

At present, there is a significant increase in the percentage of osteonecrosis cases in non-oncological patients, especially in patients with osteoporosis and even osteopenia. This aspect is favored by the introduction into the clinical use of the increasingly powerful bisphosphonates, the decrease of the age from which they are administered and the inclusion in the category of prescribing doctors of several medical specialties, including family doctors. Given that patients with osteoporosis have a higher life expectancy than oncologic patients with metastases, a longer duration of administration results and, consequently, an increased risk of osteonecrosis of the maxilla.

II. OBJECTIVES

1. Primary

1. Identification of iatrogen-induced maxillary osteonecrosis cases in patients from Constanța county.
2. Development of a therapeutic algorithm specific for bisphosphonate-induced jaw osteonecrosis.

The treatment of osteonecrosis of the maxillary bones represents the work of a multidisciplinary team (oncologists, rheumatologists, surgeons of Oral and Maxillofacial Surgery or Oral Surgery, dentists, family doctors).

2. Secondary

1. Clinical evaluation of bisphosphonate-induced jaw osteonecrosis.
2. Analysis of the relationships between osteonecrosis of the jaws and bisphosphonate therapy.
3. Protecting the post-extraction cell with A-PRF and monitoring the post-operative evolution.

4. Application of different surgical treatment techniques in bisphosphonate-induced jaw osteonecrosis and evaluation of results.

III. MATERIAL AND METHOD

The studied group included 88 patients, of both sexes, who appeared in the Oral and Maxillofacial Surgery Department of the County Emergency Clinical Hospital „Sf. Apostol Andrei ”Constanta from January 2013 to December 2018 and who were diagnosed with osteonecrosis of the jaw in different stages.

IV. RESULTS

The distribution by sex of the studied group is as follows:

78.4% - female patients (highest share);

21.6% - male patients

Analyzing the age distribution of the patients participating in the study the highest weight - 42% was recorded in 37 cases (42%) corresponding to the age group of 60-69 years, at the opposite pole, the fewest cases, respectively 2 (2.3%) were related to the age group over 80 years.

DISCUSSIONS

In recent years, the incidence of iatrogen-induced maxillary osteonecrosis has seen a steep increase, especially due to the number of new cases treated for osteoporosis and even osteopenia.

Establishing a stable definition, taking into account clinical but also imaging criteria, will lead to comparable studies and a more accurate assessment of the incidence of this condition.

The multitude of new therapeutic options requires further studies to organize, systematize and verify a current therapeutic algorithm..

Evaluation of the efficiency of alveolar bone protection with A-PRF

In the study performed, the evaluation of the efficiency of the protection of the alveolar bone with A-PRF was performed in a group of 34 patients diagnosed with osteonecrosis in stage 0. Following the data collection, the comparison between the two groups in terms of healing and presence was performed. of postextraction complications, observing the decrease of complications in the group of patients to whom A-PRF was applied compared to the percentage registered in the group in which no A-PRF was used.

Value of surgical treatment in bisphosphonate-induced maxillary osteonecrosis

The disease evolved favorably in 21 cases, with the reduction of the symptoms and the passage to a lower and unfavorable evolutionary stage in 5 cases, in which the disease progressed, with the increase of the osteonecrosis surfaces and their denudation, and in 11.54% after performing radical resections with reconstruction evolution was unfavorable.

CONCLUSIONS

Osteonecrosis of the maxillary bones is a serious, debilitating condition with a significant negative effect on quality of life.

Facial skin fistulas, marked facial asymmetries, unpleasant odor due to recurrent suppurations affect the patient's social life with a psychic already weakened by a serious diagnosis, by the side effects of chemotherapy and radiotherapy.

Improving the quality of life is an essential goal in patients with bisphosphonate-induced maxillary osteonecrosis, and healing is difficult to achieve.

Prevention of osteonecrosis of the bisphosphonate-induced maxillary bones is the essential element for improving the quality of life of patients undergoing bisphosphonate treatment.

The management of patients receiving bisphosphonate treatment must be performed by a multidisciplinary team (oncologists, rheumatologists, oral and maxillofacial surgeons), as well as oral health assessment, treatment of all infectious and irritant outbreaks before the initiation of most anti-osseous treatments.

Discontinuation of bisphosphonate treatment prior to surgery was not an effective solution in preventing the onset of osteonecrosis, according to our experience; the discontinuation of bisphosphonate therapy led in all cases to the extension of the metastases, with accompanying clinical manifestations and to high intensity bone pain.

The study shows that, in more than half of cases, osteonecrosis of the jaw has occurred after a period of administration of bisphosphonates greater than three years.

Osteonecrosis of the jaw is more common in women (78.40%), both due to the prevalence of osteoporosis and bone metastases after breast cancer.

The most common condition in our study for which bisphosphonates were administered was breast cancer with bone metastases 34.01%, followed by osteoporosis 31.81%, and in men, bone metastases after prostate cancer 14.77%.

As a condition associated with osteonecrosis, in our group, the major prevalence was 31% hypertension, followed by diabetes in 14.8% of cases.

Depending on the location of the osteonecrosis lesions, 65.91% were found in the mandible, 25% in the maxilla and 9.09% in both jaws, the unique lesions accounting for 77.3% of the cases.

The use of A-PRF and local flaps, although the toxic effect of bisphosphonates also manifests on the gingiva-mucosa with direct implications on wound healing, increases the chances of primary wound healing after surgery on the maxillary bones.

Fluorescence marking of the maxillary bones is a real help in establishing the limits of osteotomy, but the surgeon's experience is essential to achieve a unitary integration of the imaging information with the intraoperative aspect in natural and ultraviolet light.

The surgical treatment is indispensable in the advanced phases, the fractures on the pathological bone, the appearance of massive convulsions of the maxillary bones with oro-antral and oro-nasal communications being a common evolution.

Following the evaluation of the postoperative evolution, we found that, in 11.54% of cases, the evolution was unfavorable after performing radical reconstructions with reconstruction, and in the case of limited sequestrectomy, the evolution was favorable in most cases, as in the case of radical convulsions. In the situation of radical resections with reconstruction, in 15.38% of cases the evolution was favorable; the five cases of unfavorable evolution were completely correlated with the existence of associated risk factors (smoking).

The study shows that in 4 patients (4.54%) we observed the appearance of periosteal neoosteogenesis confirmed, in addition to the clinical aspect, by CT examinations.

As a perspective, we believe that further studies are needed to determine the factors that induce this particular (favorable) evolution in such a small percentage of the patients studied.

BIBLIOGRAPHY

1. Marx RE (2003) Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. *J Oral Maxillofac Surg* 61:1115–1117
2. Dearden WF (1899) Fragilitas Ossium amongst Workers in Lucifer Match Factories. *Br Med J* 2:270–271
3. Kennel KA, Drake MT (2009) Adverse Effects of Bisphosphonates: Implications for Osteoporosis Management. *Mayo Clin Proc* 84:632–638
4. Xie J, Tong A, Kim SC (2015) Patterns of Bisphosphonates Utilization in Patients under Age 45 in a Large Cohort of Commercial Insurance Beneficiaries in the United States. *PLOS ONE* 10:e0115091
5. (2007) American Association of Oral and Maxillofacial Surgeons Position Paper on Bisphosphonate-Related Osteonecrosis of the Jaws. *J Oral Maxillofac Surg* 65:369–376
6. Ruggiero SL, Dodson TB, Assael LA, Landesberg R, Marx RE, Mehrotra B (2009) American Association of Oral and Maxillofacial Surgeons Position Paper on Bisphosphonate-Related Osteonecrosis of the Jaws—2009 Update. *J Oral Maxillofac Surg* 67:2–12
7. Pichardo SEC, van Merkesteyn JPR (2013) Bisphosphonate related osteonecrosis of the jaws: spontaneous or dental origin? *Oral Surg Oral Med Oral Pathol Oral Radiol* 116:287–292
8. O’Ryan FS, Lo JC (2012) Bisphosphonate-Related Osteonecrosis of the Jaw in Patients With Oral Bisphosphonate Exposure: Clinical Course and Outcomes. *J Oral Maxillofac Surg* 70:1844–1853
9. Boonyapakorn T, Schirmer I, Reichart PA, Sturm I, Massenkeil G (2008) Bisphosphonate-induced osteonecrosis of the jaws: Prospective study of 80 patients with multiple myeloma and other malignancies. *Oral Oncol* 44:857–869
10. Filleul O, Cromptot E, Saussez S (2010) Bisphosphonate-induced osteonecrosis of the jaw: a review of 2,400 patient cases. *J Cancer Res Clin Oncol* 136:1117–1124
11. Olutayo J, Agbaje JO, Jacobs R, Verhaeghe V, Velde FV, Vinckier F (2010) Bisphosphonate-Related Osteonecrosis of the Jaw Bone: Radiological Pattern and the Potential Role of CBCT in Early Diagnosis. *J Oral Maxillofac Res.* doi: 10.5037/jomr.2010.1203
12. Yoneda T, Hagino H, Sugimoto T, Ohta H, Takahashi S, Soen S, Taguchi A, Toyosawa S, Nagata T, Urade M (2010) Bisphosphonate-related osteonecrosis of the jaw: position paper from the Allied Task Force Committee of Japanese Society for Bone and Mineral Research, Japan Osteoporosis Society, Japanese Society of Periodontology, Japanese Society for Oral and Maxillofacial Radiology, and Japanese Society of Oral and Maxillofacial Surgeons. *J Bone Miner Metab* 28:365–383
13. American Association of Oral and Maxillofacial Surgeons Position Paper on Medication-Related Osteonecrosis of the Jaw—2014 Update - *Journal of Oral and Maxillofacial Surgery*. [https://www.joms.org/article/S0278-2391\(14\)00463-7/fulltext](https://www.joms.org/article/S0278-2391(14)00463-7/fulltext). Accessed 24 Jun 2019
14. Russell RGG (2011) Bisphosphonates: The first 40 years. *Bone* 49:2–19
15. Roelofs AJ, Coxon FP, Ebetino FH, et al (2010) Fluorescent risedronate analogues reveal bisphosphonate uptake by bone marrow monocytes and localization around osteocytes in vivo. *J Bone Miner Res* 25:606–616
16. Lewiecki EM, Miller PD (2007) Renal safety of intravenous bisphosphonates in the treatment of osteoporosis. *Expert Opin Drug Saf* 6:663–672
17. Tan AJ, del Pino-Montes J, Ralston SH, Corral-Gudino L (2017) Bisphosphonates for Paget’s disease of bone in adults. *Cochrane Database Syst Rev*. doi: 10.1002/14651858.CD004956.pub3

18. Howie RN, Borke JL, Kurago Z, et al (2015) A Model for Osteonecrosis of the Jaw with Zoledronate Treatment following Repeated Major Trauma. *PLOS ONE* 10:e0132520
19. Marx RE, Sawatari Y, Fortin M, Broumand V (2005) Bisphosphonate-Induced Exposed Bone (Osteonecrosis/Osteopetrosis) of the Jaws: Risk Factors, Recognition, Prevention, and Treatment. *J Oral Maxillofac Surg* 63:1567–1575
20. Thumbrigere-Math V, Tu L, Huckabay S, Dudek AZ, Lunos S, Basi DL, Hughes PJ, Leach JW, Swenson KK, Gopalakrishnan R (2012) A retrospective study evaluating frequency and risk factors of osteonecrosis of the jaw in 576 cancer patients receiving intravenous bisphosphonates. *Am J Clin Oncol Cancer Clin Trials* 35:386–392
21. Almășan HA, Băciuț M, Rotaru H, Bran S, Almășan OC, Băciuț G (2011) Osteonecrosis of the jaws associated with the use of bisphosphonates. Discussion over 52 cases. *Romanian J Morphol Embryol Rev Roum Morphol Embryol* 52:1233–1241
22. Marx RE, Cillo JE, Ulloa JJ (2007) Oral Bisphosphonate-Induced Osteonecrosis: Risk Factors, Prediction of Risk Using Serum CTX Testing, Prevention, and Treatment. *J Oral Maxillofac Surg* 65:2397–2410
23. Ruggiero SL (2007) Guidelines for the diagnosis of bisphosphonate-related osteonecrosis of the jaw (BRONJ). *Clin Cases Miner Bone Metab* 4:37–42
24. Ruggiero SL, Dodson TB, Fantasia J, Goolday R, Aghaloo T, Mehrotra B, O’Ryan F (2014) American Association of Oral and Maxillofacial Surgeons Position Paper on Medication-Related Osteonecrosis of the Jaw—2014 Update. *J Oral Maxillofac Surg* 72:1938–1956
25. Berg B-I, Mueller AA, Augello M, Berg S, Jaquiéry C (2016) Imaging in Patients with Bisphosphonate-Associated Osteonecrosis of the Jaws (MRONJ). *Dent J.* doi: 10.3390/dj4030029
26. Fleisher KE, Welch G, Kottal S, Craig RG, Saxena D, Glickman RS (2010) Predicting risk for bisphosphonate-related osteonecrosis of the jaws: CTX versus radiographic markers. *Oral Surg Oral Med Oral Pathol Oral Radiol Endodontology* 110:509–516
27. Guggenberger R, Fischer DR, Metzler P, Andreisek G, Nanz D, Jacobsen C, Schmid DT (2013) Bisphosphonate-Induced Osteonecrosis of the Jaw: Comparison of Disease Extent on Contrast-Enhanced MR Imaging, [18F] Fluoride PET/CT, and Conebeam CT imaging. *Am J Neuroradiol* 34:1242–1247
28. Sanford B, Paul DM (2009) Perspective: Assessing the Clinical Utility of Serum CTX in Postmenopausal Osteoporosis and Its Use in Predicting Risk of Osteonecrosis of the Jaw - Baim - 2009 - Journal of Bone and Mineral Research - Wiley Online Library. *J Bone Miner Res* Volume24:Pages 561-574
29. BUCUR A, DINCA O, TOTAN C, VLĂDAN C, BUCUR M-B, MECULESCU M, DERIOIU M (2011) Osteonecroza oaselor maxilare consecutivă terapiei cu bifosfonați. *Viata Medicală* 1100:
30. Dincă O, Bucur A Actualități în abordarea patologiei chirurgicale oro-maxilo-faciale – Societatea de Stomatologie Estetică din România. Programul Sect. Dezvoltarea Resur. Um. 2007 - 2013
31. Matsui A, Kurihara J, Morishima H, Suzuki H, Sato S, Yamauchi K, Takahashi T (2015) Medication related osteonecrosis of the jaw (MRONJ): A retrospective survey of a series of patients treated according to the AAOMS guidelines. *J Oral Maxillofac Surg Med Pathol* 27:757–763
32. Ohbayashi Y, Miyake M, Sawai F, Minami Y, Iwasaki A, Matsui Y (2013) Adjunct teriparatide therapy with monitoring of bone turnover markers and bone scintigraphy for bisphosphonate-related osteonecrosis of the jaw. *Oral Surg Oral Med Oral Pathol Oral Radiol* 115:e31–e37

33. Epstein MS, Wicknick FW, Epstein JB, Berenson JR, Gorsky M (2010) Management of bisphosphonate-associated osteonecrosis: pentoxifylline and tocopherol in addition to antimicrobial therapy. An initial case series. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod* 110:593–596
34. Pautke C, Bauer F, Bissinger O, et al (2010) Tetracycline bone fluorescence: a valuable marker for osteonecrosis characterization and therapy. *J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg* 68:125–129
35. Sharawy M, Misch CE, Weller N, Tehemar S (2002) Heat generation during implant drilling: The significance of motor speed. *J Oral Maxillofac Surg* 60:1160–1169
36. Stübinger S, Kuttenberger J, Filippi A, Sader R, Zeilhofer H-F (2005) Intraoral piezosurgery: preliminary results of a new technique. *J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg* 63:1283–1287
37. Gabrić Pandurić D, Bago I, Katanec D, Zabkar J, Miletić I, Anić I (2012) Comparison of Er:YAG laser and surgical drill for osteotomy in oral surgery: an experimental study. *J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg* 70:2515–2521
38. Wang FS, Yang KD, Chen RF, Wang CJ, Sheen-Chen SM (2002) Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-beta1. *J Bone Joint Surg Br* 84:457–461
39. Forriol F, Solchaga L, Moreno JL, Canadell J (1994) The effect of shockwaves on mature and healing cortical bone. *Int Orthop* 18:325–329
40. Tamma R, dell'Endice S, Notarnicola A, Moretti L, Patella S, Patella V, Zallone A, Moretti B (2009) Extracorporeal Shock Waves Stimulate Osteoblast Activities. *Ultrasound Med Biol* 35:2093–2100
41. Vulpiani MC, Vetrano M, Trischitta D, Scarcello L, Chizzi F, Argento G, Saraceni VM, Maffulli N, Ferretti A (2012) Extracorporeal shock wave therapy in early osteonecrosis of the femoral head: prospective clinical study with long-term follow-up. *Arch Orthop Trauma Surg* 132:499–508
42. Kong F, Liang Y, Qin S, Li J, Li X (2010) [Clinical application of extracorporeal shock wave to repair and reconstruct osseous tissue framework in the treatment of avascular necrosis of the femoral head (ANFH)]. *Zhongguo Gu Shang China J Orthop Traumatol* 23:12–15
43. CHOUKROUN J, DISS A, Binderman I, CHENAITIA H, Mariottini JP Use of shock waves for the treatment of osteonecrosis of the mandible. A non-invasive approach.
44. Albanese A, Licata ME, Polizzi B, Campisi G (2013) Platelet-rich plasma (PRP) in dental and oral surgery: from the wound healing to bone regeneration. *Immun Ageing A* 10:23
45. Freiberger JJ, Padilla-Burgos R, McGraw T, Suliman HB, Kraft KH, Stolp BW, Moon RE, Piantadosi CA (2012) What Is the Role of Hyperbaric Oxygen in the Management of Bisphosphonate-Related Osteonecrosis of the Jaw: A Randomized Controlled Trial of Hyperbaric Oxygen as an Adjunct to Surgery and Antibiotics. *J Oral Maxillofac Surg* 70:1573–1583
46. Porcaro G, Amosso E, Scarpella R, Carini F (2015) Doxycycline fluorescence-guided Er:YAG laser ablation combined with Nd:YAG/diode laser biostimulation for treating bisphosphonate-related osteonecrosis of the jaw. *Oral Surg Oral Med Oral Pathol Oral Radiol* 119:e6–e12
47. Shibahara T, Morikawa T, Yago K, Kishimoto H, Imai Y, Kurita K (2018) National Survey on Bisphosphonate-Related Osteonecrosis of the Jaws in Japan. *J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg* 76:2105–2112