

“OVIDIUS” UNIVERSITY CONSTANȚA
DOCTORAL SCHOOL OF MEDICINE

DOCTORAL THESIS

MEDICO-SURGICAL ATTITUDE IN MAXILLOFACIAL TRAUMAS
FROM AN INTERDISCIPLINARY ENT-OMF APPROACH

-DOCTORAL THESIS ABSTRACT-

SCIENTIFIC SUPERVISOR:
COMĂA GHEORGHE IONEL, M.D., Ph. D.,
PROFESSOR

Ph.D. CANDIDATE:
MIHAIL DAN LAURENȚIU, M.D.

CONSTANȚA
2018

CONTENTS

GENERAL PART.....	3
CHAPTER 1.INTRODUCTION.....	3
CHAPTER 2.ANATOMY.....	5
Epiderma.....	5
Fat.....	5
Face muscles.....	5
Face nerves.....	8
Face vasculature.....	9
Lymphatic system.....	9
Bone structures.....	10
Frontal bone.....	10
Maxillary bone.....	11
Sphenoid bone.....	12
Ethmoid bone.....	13
Inferior nasal turbinate.....	14
Palatal bone.....	14
Vomer bone.....	14
Nasal bone.....	15
Lacrimal bone.....	15
Mandible.....	15
Maxillofacial cavities.....	17
Orbits.....	17
Nose.....	18
Paranasal sinuses.....	19

Maxillary sinus.....	19
Frontal sinus.....	20
Sphenoid sinus.....	21
Ethmoid sinus.....	21
PHYSIOLOGY.....	22
 SPECIAL PART	
CHAPTER3.STUDY OF TRAUMATIC PATHOLOGY.....	24
Posttraumatic lesions types.....	25
Inferior floor fractures.....	26
Middle floor fractures.....	27
Le Fort I fracture.....	27
Le Fort II fracture.....	28
Le Fort III fracture.....	29
Zygomatic complex fractures.....	29
Nasal bones fractures.....	33
Inferior floor fractures.....	34
CHAPTER 4.Clinic and imagistic diagnostic.....	38
Superior floor.....	38
Middle floor.....	38
Inferior floor.....	42
CHAPTER 5.Treatment principles.....	43
Superior floor.....	43
Middle floor.....	44
Inferior floor.....	50
 Materials.....	51
Fracture healing mechanisms.....	53
Complications.....	53

SPECIAL PART.....	55
CHAPTER 6.Clinical study.....	55
Material and method.....	56
Results.....	58
Clinical cases.....	119
Postoperative indications.....	144
 Discussions.....	146
Clinical and statistical study importance.....	151
Personal contribution.....	152
Prevention proposals.....	154
 Conclusions.....	155
 Bibliography.....	159

ABSTRACT CONTENTS

I.GENERAL PART.....	6
CHAPTER I. Introduction.....	6
CHAPTER II. Anatomy.....	6
II.SPECIAL PART.....	7
CHAPTER III. Study of traumatic pathology.....	7
III.PERSONAL PART.....	7
CHAPTER IV. Clinical study	7
Material and method.....	8
Results.....	9
CHAPTER V. Clinical cases.....	19
Discution.....	22
Clinical and statistical study importance.....	22
Personal contribution.....	23
Prevention proposal.....	23
Conclusions.....	24
Bibliography.....	25

Key words: maxillofacial structures, trauma mechanism, osteosynthesis

GENERAL PART

CHAPTER I. INTRODUCTION

The face is the element on which human interaction focus, and represents a source of man fascination, when it relates to beauty. Ironically this is the most damaged region in case of trauma.

Maxillofacial fractures etiology varies from one geographic region to another, and between different group ages. The main cause of maxillofacial trauma are car accidents, in developing countries, and attacks in developed countries. Last years the importance of terrorism and armed violence increased.

Head trauma is the most frequent cause of decease and permanent disability in traumatic pathology. The lesions appear when the energy, usually kinetic, transferred to the body exceeds the tissues tolerance.

Traditionally they are classified as penetrating or blunt, but in many cases there is an association.

The face contains many structures which are essential to different senses: sight, smell, taste, hearing. The human communication depends not just on facial structures required for speaking and hearing, but on structures which define the face expression. Many elements associate to create human identity, and their protection is important from an aesthetic and functional point of view. Damaging them may cause important disabilities which can be avoided by early recognition and treatment[1].

After a thorough examination the surgeon must focus on the regions which suffered the most. Maxillofacial fracture treatment must be lead very thorough and predictable. The key element is for the doctor to choose techniques that have minimal influence on the form and shape of the face. It is essential to obtain a result as close as possible to ideal by using minimal incisions, located ideal to obtain easily hidden scars.

Imagistic evaluation represents an important segment to detect possible fractures and associated lesions. It evolved over time, and if in the past they used x-ray in different incidences focused on different segments, which had their own limitations, today there is computed tomography, MRI, 3D reconstruction which offers information for a complete and correct diagnostic.

Treatment purpose is to bring back the ocular, masticatory and nasal functions to normal, reestablishing normal speech and a fast bone healing.

Results relate to surgeon abilities, knowledge and experience acquired, and ability to fixate and position the fragments in ideal positions.

The clinical trials were made on a patients lot which were treated in ENT clinic and OMF surgery compartment of Constanta County Hospital, between 1 of january 2017-1 june 2017, courtesy of Prof Univ Dr Comsa Gheorghe Ionel, Conf Univ Creanga Adrian and Dr Vlad Daniel.

CHAPTER II. ANATOMY

The top layer of the face is represented by skin. It is formed by 3 layers: epiderma, dermis and subcutaneous layer.

Muscles are in the subcutaneous tissues of the anterior and posterior scalp, face and neck regions. The majority are attached to bone and fascia, and they act by traction of the skin. They are moving the skin to change the face expression and emphasize a state of mind. They are surrounding the mouth, eyes and nose orifices, acting as sphincters and dilators to open and close the orifices.

Face nerves. Many facial expression muscles are innervated by facial, whereas mastication muscles are innervated by trigeminal nerve, mandibular branch. Sensitive innervation is achieved by three main trigeminal branches and secondary spinal nerve branches[4].

Face vascularization. Face presents a rich vascular network made up of two main blood vessels, facial artery and superficial temporal artery, alongside a series of arterioles which accompany sensitive nerves.

Facial skeleton is composed of 14 bones, of which 6 are pairs(maxillary bones, zygomatic bones, nasal bones, lacrimal bones, palatal bones, inferior turbinates) and two unpaired(vomer and mandible).

Cranial bones are united by fixed structures, called sutures. The exception is the mandible, which is attached to the skull through temporomandibular joint [5].

SPECIAL PART

CHAPTER III. TRAUMATIC PATHOLOGY STUDY OF DIFFERENT CAUSES

The most frequent causes in the world are car accidents, falling, aggressions, wounds produced by fire arms, sport accidents and work accidents. These etiological factors are related to geographic conditions, socioeconomic status, cultural character. Car accidents are very frequent in developing countries, and violence is first in developed countries. Adults suffer mainly due to car accidents, and young populations suffers due to falling accidents. The epidemiological studies showed that age and sex are key elements which influence trauma. The highest incidence appears in 20 to 40 age group, whereas the rarest cases appear under 5 years and over 60 years. Recent data shows a male: female ratio 3:1 all around the world.

Trauma represents a physical aggression secondary to release of energy towards and inside the victim determined by penetrating or a blunt mechanism. Anatomic lesions and their consequences depend on their location and the amount of energy released.

PERSONAL PART

CHAPTER IV. CLINICAL STUDY

Aims at obtaining the next results:

- Finding trauma mechanisms, age, sex, patients provenance environment
- Establishing prognostic indices based on clinical, imagistic criteria and socio-economic reinsertion ratio
- Statement criteria of choosing medical and surgical treatments depending on affected structures, types of trauma and mechanism
- Pursuing the reworded therapeutic plan and adjust it to the type of lesion
- Achieving a thorough research to establish the main types of lesions included in the study
- Studying cases which represent the ground for processing data
- Graphic and chart interpretation
- Establishing benefits and limitations of every therapeutic procedure

In order to establish a study group, it is necessary to develop inclusion and exclusion criteria.

Inclusion criteria (clinical and imagistic):

- moderate lesions, closed or opened which include isolated fractures with displacement
- severe trauma, affecting bone and sinuses structures without cerebral, cervical spine and septic complications
- very severe traumatic lesions with dish face and cerebral repercussions
- substance loss and important functional and aesthetic sequelae
- possibility to evaluate the patient on medium and long term to establish the treatment efficiency and the degree of social reinsertion.

Exclusion criteria:

- superficial lesions

- simple contusions which interests only the soft tissues(ecchymosis and edema)
- traumas which interests bone structures without displacement and without damaging the sinuses
- disobliging patients, alienated and with mental disorders which cannot be thoroughly examined with regard to the conditions and trauma mechanisms

Material and methods

The research involves 129 patients, with maxillofacial trauma, hospitalized in ENT Clinic and OMF compartment of Constanta County Hospital which suffered surgical interventions between 1 of January 2013 and 1 June 2017.

To establish a complete diagnosis, patients were submitted to clinical and imagistic examinations. During face and oral cavity evaluation we looked up for the next signs:

-pericrania hematoma, superior floor bone deformation, supraorbital rims deformation, zygomatic hematoma and zygomatic complex deformation, nose deformation, nose hematoma, facial palsy, superior lip hematoma, oral cavity superior vestibule ecchymosis, oral hematoma, superior palate, oral bleeding, malocclusion, soft tissues edema, raccoon eyes, subconjunctival haemorrhage, epistaxis, rhinoliquorrhea, ocular motility limitation, diplopia, enophthalmia, painful mandible in motion, pain, soft tissues lesions, foreign bodies.

Palpation was used to discover the deformation, crepitations, abnormal mobility of bone fragments, pain, loss of sensitivity.

For imagistic evaluation we used:- Computed tomography in axial, coronal and sagittal sections

- 3D reconstruction
- cranial MRI in axial, coronal and sagittal sections
- facial radiography frontal and side face view
- verticosubmental radiography(Hirtz)
- panoramic radiography
- mandible radiography frontal and side face view
- Caldwell' view radiography
- Blondeau View
- anterior sinuses radiography(Tscheboul)

Interdisciplinary exams were necessary in certain cases in order to establish the presence of associated lesions which interest other structures and organs, affecting patients, evolution and body's capacity to bear a surgical intervention:

- neurosurgical examination to determine the presence of associated brain or cervical spine lesions
- ophthalmologic exam to evaluate the visual field, ocular motility, presence on any lesion
- anesthesiology exam for surgical interventions

RESULTS

The study group has 108 men(83,72%) and 21 women(16,28%). From a statistic point of view the two categories have different percentage ($p < 0.001 < \alpha = 0.05$ -CHI-Square Test).

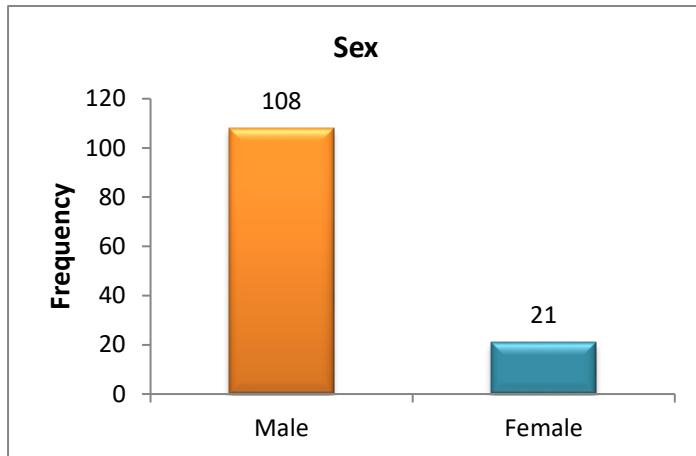


Fig 1. Representation of variable sex

In the study group there are 26 patients (20,16%), age between 0-20 years, 60(46,51%), age between 20 and 40 years, 23(17,83%), age between 40 and 60 years and 20 (15,50%) over 60 years. From a statistic point of view the two categories have different percentage ($p < 0.001 < \alpha = 0.05$ -CHI-Square Test).

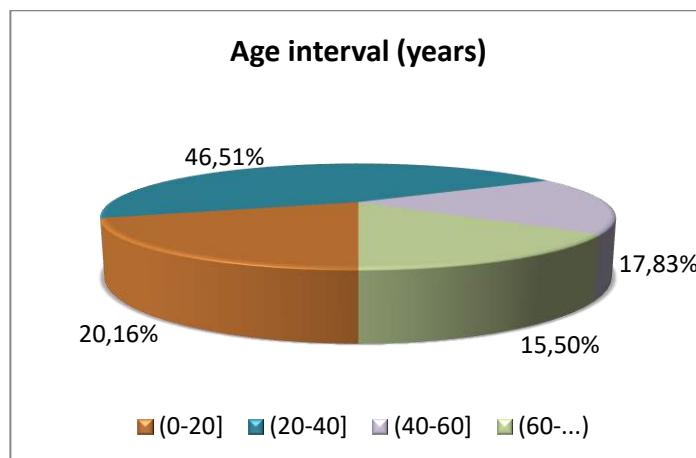


Fig 2. Representation of variable age

To establish the provenance in the study group there were observed 91(70,54%) patients from urban environment and 38(29,46%) from rural side. From a statistic point of view the two categories have different percentage ($p < 0.001 < \alpha = 0.05$ -CHI-Square Test).

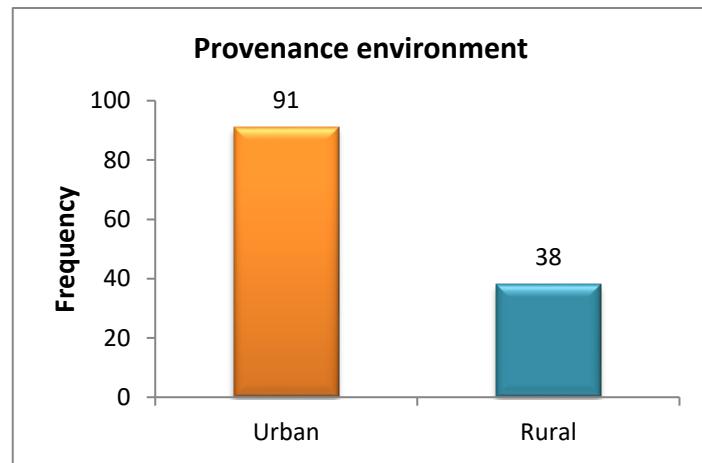


Fig 3. Representation of variable provenance environment

From the number of cases produced annually, point of view, we can see that there were 29 traumas(22,48%) in 2013, 36 traumas (27,91%) in 2014, 35 traumas (27,13%) in 2015, 24 traumas (18,60%) in 2016, 5 traumas (3,88%) in 2017. . From a statistic point of view the two categories have different percentage ($p < 0.001 < \alpha = 0.05$ -CHI-Square Test). There are no notable difference in the first 3 years, but we can observe a decrease in 2016 and 2017, keeping account that in the last year were included cases from the first 5 month.

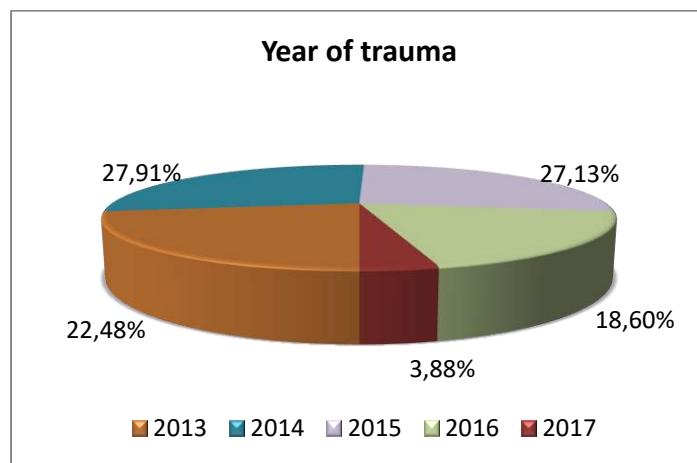


Fig 4. Representation of variable-year of trauma

The maxillofacial structures were divided in 3 floors-superior floor which include the frontal bone and sinus, the inferior border is represented by a line which crosses the supraorbital rims and the base of the nose.

-middle floor is separated from the inferior floor by a plane which divides the two dental arcades. It includes a series of anatomic elements: nasal bones, lacrimal bones, maxillary bones, zygomatic complex, palatal bones, vomer, ethmoid, sphenoid bone and cavities: orbits, nasal fossae, maxillary sinuses, ethmoid sinuses, and sphenoid sinus. It represents the most complex segment of the face.

-inferior floor is represented by a single bone, mandible.

89 patients (68,99%) suffered lesions after aggressions, 15 patients (11,63%) suffered after a car accident, 15 (11,63%) by falling, 2 cases (1,55%) by falling from high ground, 2 patients (1,55%) suffered after a sports accident, 3 patients (2,33%) were a victim of a work accident and 3 cases appeared after an accidental blow. From a statistic point of view the two categories have different percentage ($p < 0.001 < \alpha = 0.05$ -CHI-Square Test).

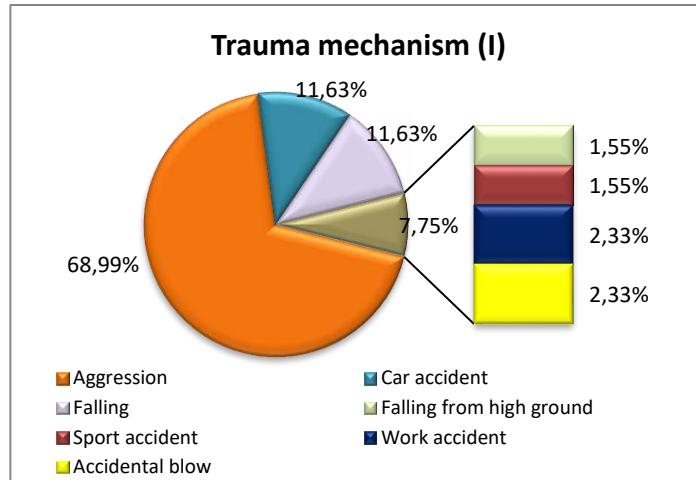


Fig 5. Representation of the variable trauma mechanism

The most frequent trauma mechanisms observed in the study group were aggressions followed by car accidents. This represents the tendency in the international studies.

89 patients (68,99%) suffered traumas after aggressions and 40 patients (31,01%) suffered traumas due to different forms of accidental mechanisms. From a statistic point of view the two categories have different percentage ($p < 0.001 < \alpha = 0.05$ -CHI-Square Test).

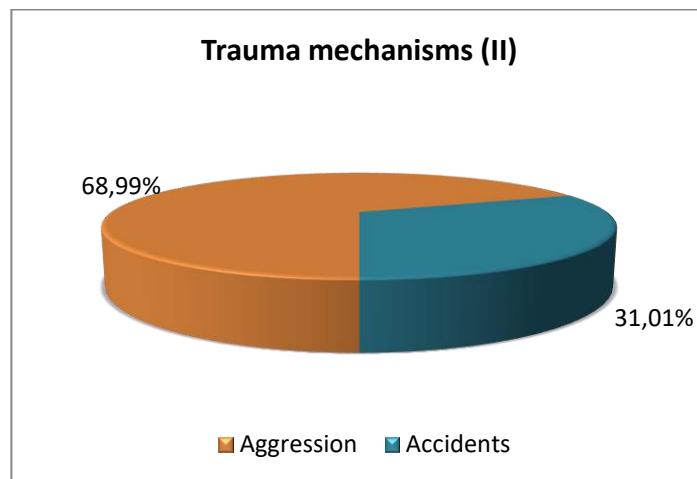


Fig 6. Representation of variable trauma mechanisms

Analyzing the trauma mechanism, out of the 108 male patients 83 (76,5%) suffered following aggressions, in 9 cases (8,3%) the lesions appeared following car accidents, 8 patients (7,4%) suffered due to falling, in 2 patients (1,9%) the mechanism was falling from high ground, 1 patient (0,9) suffered following a sports accident, in 3 patients (2,8%) the mechanism was work accident and 2 patients (1,9%) suffered due to an accidental blow. Out of 21 female patients 6 patients (28,6%) suffered following aggressions, 6 patients (28,6%) were victims of car accidents, 7 patients suffered due to falling, 0 cases after falling from high ground, 1 patient (4,8%) was a victim of a sports accident, no cases due to work accidents and 1 case(4,8%) following a accidental blow.

		Sex		Total
		Male	Female	
	Car accident	9	6	15
	Falling	8	7	15
	Falling from high ground	2	0	2
	Sports accident	1	1	2
	Work accident	3	0	3
	Accidental blow	2	1	3
Total		108	21	129

Table 1. Representation, trauma mechanism related to patient sex

Ratio between age groups and the trauma mechanisms shows the next aspects:

- aggression was the main mechanism for 18 patients (20,22%) with age between 0 and 20 years, 47 patients (52,8%) between 20 to 40 years, 12 patients (13,5%) between 40 and 60 years, 12 patients (13,5%) over 60 years
- car accidents were the main mechanism for 8 patients (20%) between 0 and 20 years, 13 patients (32,5%) between 20 and 40 years, 11 patients(27,5%) between 40 and 60 years and 8 patients(20%) over 60 years.

		Age interval (years)				Total
		(0-20] years	(20-40] years	(40-60] years	(60-...) years	
Trauma mechanism(II)	Aggression	18	47	12	12	89
	Accidents	8	13	11	8	40
Total		26	60	23	20	129

Table 2. Representation, the main mechanisms related to age

The next chart reveals the distribution of fractures in the middle floor of the face, nasal bones have the indicative 1,zygomatic bone 2, temporozygomatic arch 3,orbits 4 and superior maxilla 5. It can be seen a predominance of nasal bones fracture.

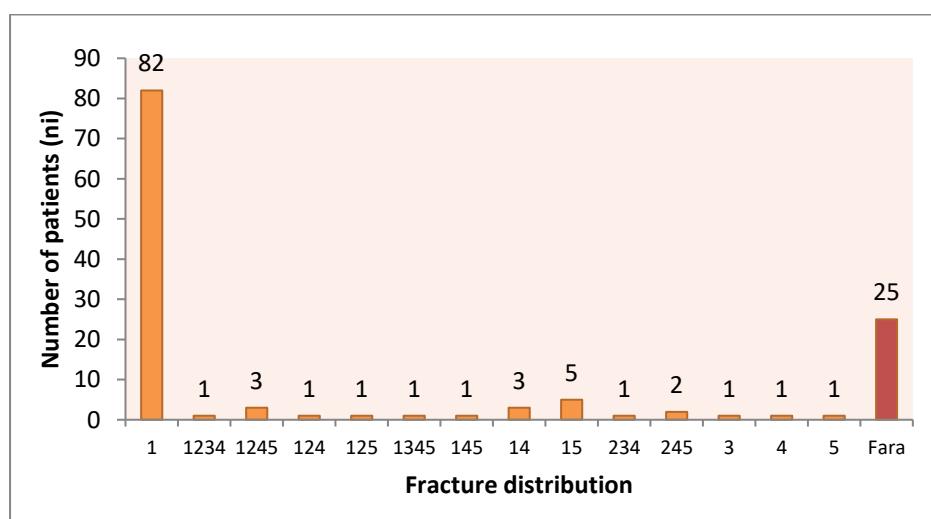


Fig 7. Middle floor fracture distribution

Establishing an association between nasal bone fracture and sex distribution shows that there were 79 male patients (80,6%) and 19 female patients(19,4%). Also inside the male group 73,1% suffered a nose fracture, and inside female group 90,5% had such a lesion.

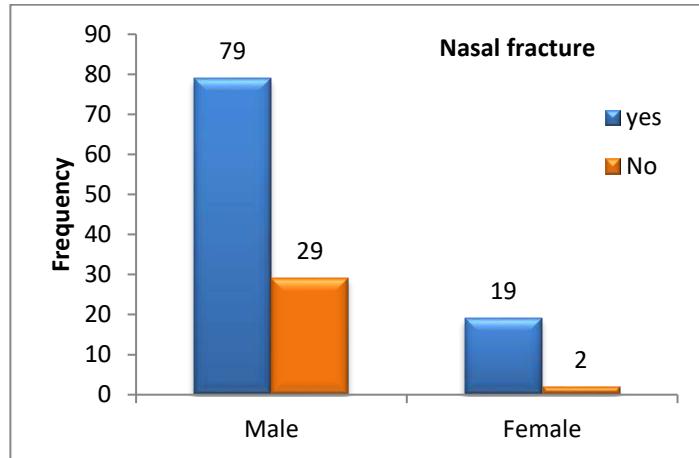


Fig 8. Representation, nasal fracture related to sex

Zygomatic fractures were found in 7 male patients (77,8%) and 2 female patients(22,2%). From the entire male group 6,5% had this type of lesion, and in female group 9,5% had it.

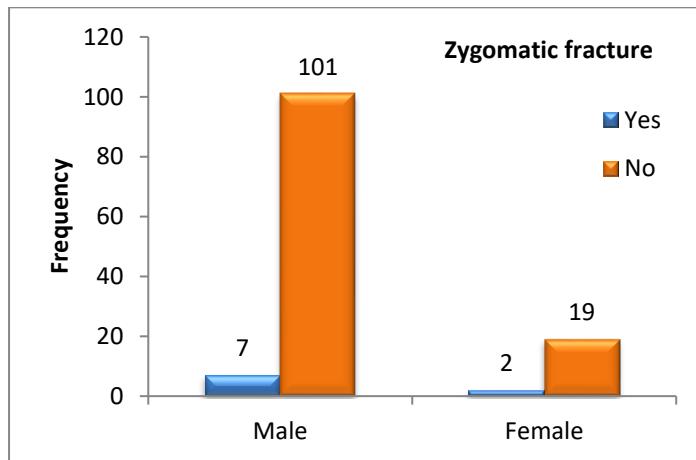


Fig 9. Representation of zygomatic fracture related to patient' sex

Orbit fractures were found in 11 male patients (78,6,6%) and 3 female patients (21,4%). In the male group 10,2% suffered this type of fracture, in female grup the percentage was 14,3%.

		Sex		Total
		Male	Female	
Orbit fracture	Yes	11	3	14
	No	97	18	115
Total		108	21	129

Table 3. Representation of the orbit fractures related to patient's sex

Maxillary fractures were found in 13 male patients (92,9%) and 1 female patient (7,1%). From the total of male patients 12% suffered this type of fracture, in the female group 4,8%.

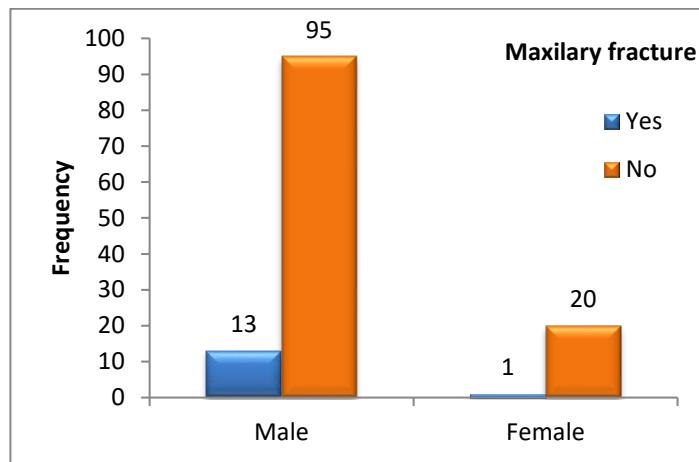


Fig 10. Representation of maxillary fractures related to patient's sex

The next chart presents the distribution of fractures at the inferior floor, where 1 is the angle, 2 body, 3 ramus and 4 the condyle.

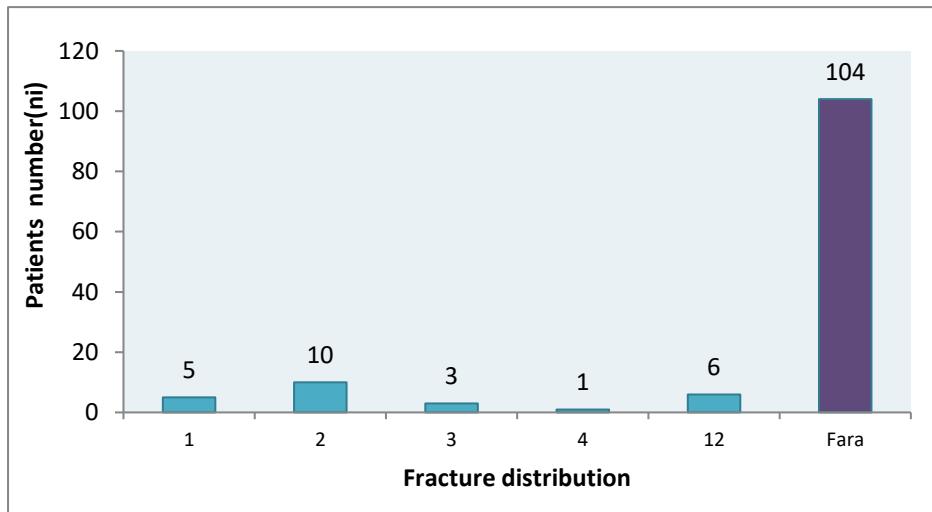


Fig 11. Mandible fractures distribution

Mandibular angle fracture existed in 11 male patients and no female patient. They represent 10,2% of all fractures.

		Sex		Total
		Male	Female	
Mandibular angle fracture	Yes	11	0	11
	No	97	21	118
Total		108	21	129

The body fractures appeared in 16 male patients and no female patient. They represent 14,8% of all fractures in male patients.

		Sex		Total
		Male	Female	
Mandibular body fracture	Yes	16	0	16
	No	92	21	113
Total		108	21	129

Table 5. Representation of mandibular body fracture related to patient's sex

Mandibular ramus fractures appeared in 3 male patients and no female patient. They represent 2,8% of all fractures.

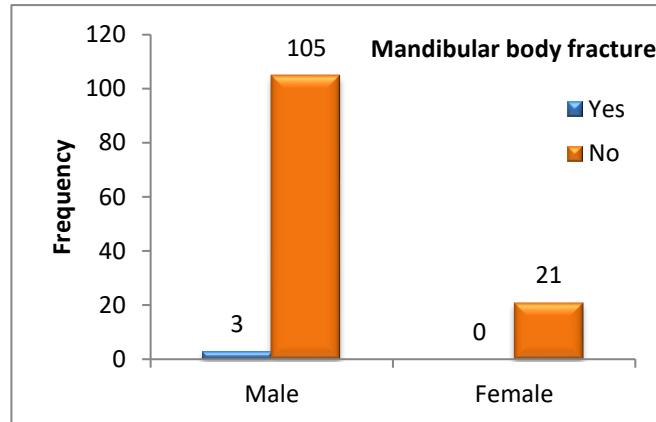


Fig 12. Representation of the mandibular ramus fracture related to sex

There was a male patient with condyle fracture and no female patient. It represents 0,9% of all fractures found in male patients.

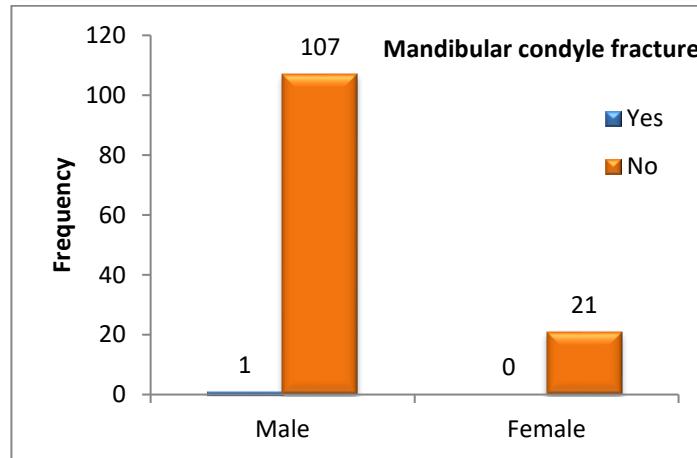


Fig 13. Representation of the condyle fractures related to patient's sex

There were 7 male patients with superior floor fractures representing 87,5% and 1 female patient(12,5%). It represents 6,5% of all fractures in the male group and 4,8% in female group.

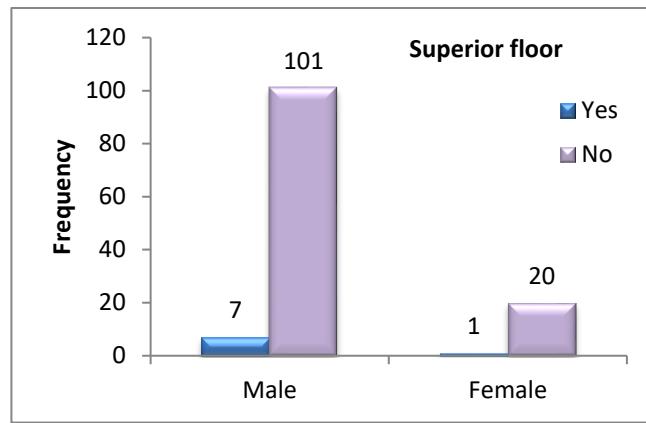


Fig 14. Representation of superior floor fractures related to patient's sex

There were 103 middle floor fractures distributed like this: 83 male patients (80,6%) and 20 female patients (19,4%). These lesions are found in 76,9% of all male patients and 95,2% of all female patients.

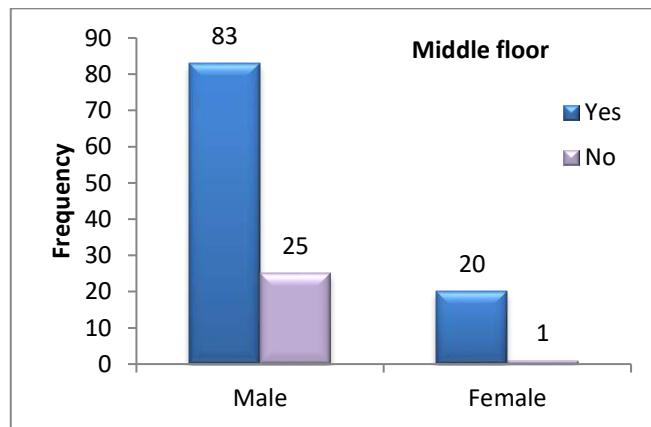


Fig 15. Representation of middle floor fractures related to sex

Inferior floor fractures affected 27 male patients and represents 25 % of all fractures found in this group. There were no female patients.

		Sex		Total
		Male	Female	
Inferior floor	Yes	27	0	27
	No	81	21	102
Total		108	21	129

Table 6. Representation of mandible fractures related to sex

In the superior floor there were 5 patients (62,5%) with closed fractures and 3 patients (37,5%) with open fractures. Closed fractures at this level represent 5,4% of all maxillofacial closed fractures and 3,9% from all maxillofacial fractures. Open fractures represent 8,3% of all maxillofacial open fractures and 2,3% of all maxillofacial fractures.

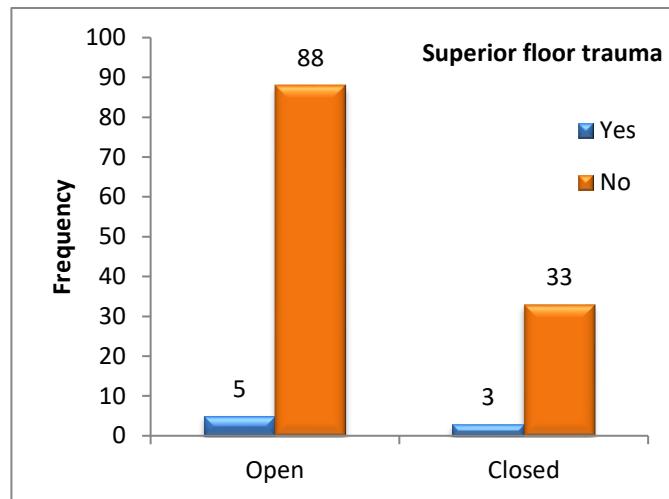


Fig 16. Representation of superior floor fracture types

In the middle floor level there were 73 patients (70,9%) with closed fractures and 30 patients (29,1%) with open fracture. Closed fractures at this level represent 78,5% from all maxillofacial closed fractures and 56,6% from all maxillofacial fractures. Open fractures represent 83,3% from all maxillofacial open fractures and 23,3% from all type of fractures.

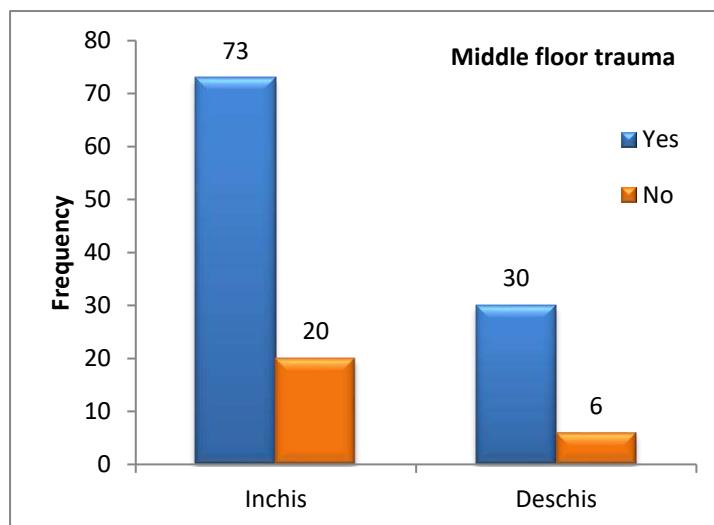


Fig 17. Representation of middle floor fracture types

Regarding the inferior floor there were 20 patients (74,1%) with closed fracture and 7 patients(25,9%) with open fractures. Closed fractures represent 21,5% of all closed maxillofacial fractures and 15,5% of all fractures. Open fractures represent 19,4% of all open maxillofacial fractures and 5,4% of all maxillofacial fractures.

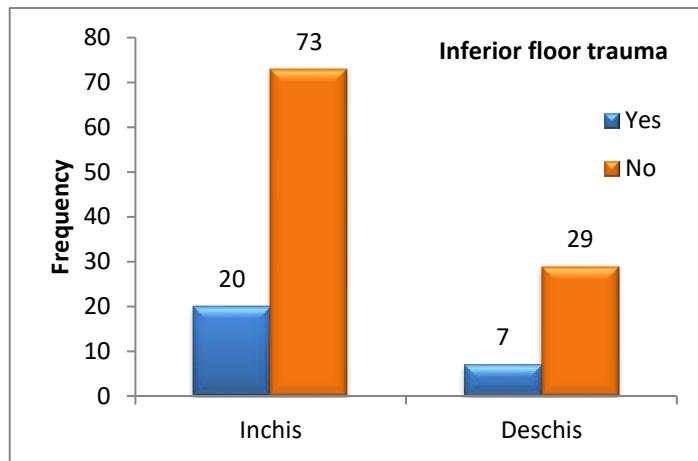


Fig 18. Representation of the inferior floor fracture types

From the treatment point of view there were used closed reduction techniques in 93 male patients (83,8%) and 18 female patients. Open reduction techniques were used in 15 male patients and 3 female patients (16,7%). Closed reduction techniques were used in 86,1% of men and 85,75 of women.

Fracture reduction type		Sex		Total
		Male	Female	
Closed		93	18	111
Open		15	3	18
Total		108	21	129

Table 7. Representation of type of treatment related to patient's sex

In study group were identified next type of traumas:

	Yes	Yes %	No	No %	Total
Frontal bone	8	6,20%	121	93,80%	129
Nasal bones	98	75,97%	31	24,03%	129
Zygomatic bone	9	6,98%	120	93,02%	129
Temporozyg. arch	4	3,10%	125	96,90%	129
Orbits	14	10,85%	115	89,15%	129
Maxillary	14	10,85%	115	89,15%	129
Mandibular angle	11	8,53%	118	91,47%	129
Mandibular body	16	12,40%	113	87,60%	129
Mandibular body	3	2,33%	126	97,67%	129
Condyl	1	0,78%	128	99,22%	129

Table 8. Representation of maxillary fractures

CHAPTER V. CLINICAL CASES

CASE I

Patient S.A. age 21, male, from rural environment, presented in the Emergency Room of Constanta County Hospital. He was a victim of an aggression. He was accusing local pain, mastication and speaking disorders. Clinical exam established presence of a left mandibular paramedian opened fracture. There weren't any associated lesions or pre-existing pathology that might need interdisciplinary evaluation.

Fig 19. Left paramedian mandibular fracture (left view)

Fig 20. Left paramedian mandibular fracture (frontal view)

The case presented the next following characteristic:

- there was a unique paramedian fracture
- the fracture reduction can be done manually
- there were enough dental units for placing the intermaxillary fixation elements
- orthopedic methods allowed fixing the fracture and establishing a normal occlusion

Based on this fact the decision was to use intermaxillary fixation. Splints were attached to the teeth with wires. Initially the splint was fixed to the superior dental arcade. We used the teeth which allowed applying the wires shaped to dental form. After a splint was attached to the inferior dental arcade. This was interrupted at the fracture line to avoid maintaining a defect. The intermaxillary fixation of the two dental arcades was done with elastic units. After 24h was applied a rigid fixation.

The antibiotic and anti-inflammatory medication was given from the beginning to the end of hospitalization. There was no need of osteosynthetic materials.

Fig 21. Intermaxillary fixation

Fig 22. Intermaxillary fixation (after 24h)

Evolution was favourable, there were no complications during hospitalization. The patient was discharged after 48h with antibiotic and anti-inflammatory medication. The recommendations were oral hygiene and weekly follow-ups.

Patient presented to follow-up. There were no complications during this period. The intermaxillary fixation was maintained for 4 weeks. The fracture was consolidated, and the occlusion was normal. The mandible regained normal functions and the patient could resume his normal lifestyle.

Case II

B.I. patient, age 68, male, urban environment, victim of an aggression presented to the Emergency Room of Constanta County Hospital with an opened craniomaxillofacial trauma, loss of consciousness and anterior bilateral nasal bleeding. After interdisciplinary evaluation ENT, OMF and imagistic evaluation the presence of cerebral lesions was established. The patient was hospitalized under permanent watch in the intensive care department and the surgical intervention was postponed until the patient's condition was stable.

Imagistic (Computed Tomography) and clinical exam established the presence of a maxillofacial comminute fracture with total disorganization of the facial structures, extension to the skull base and multiple plaques.

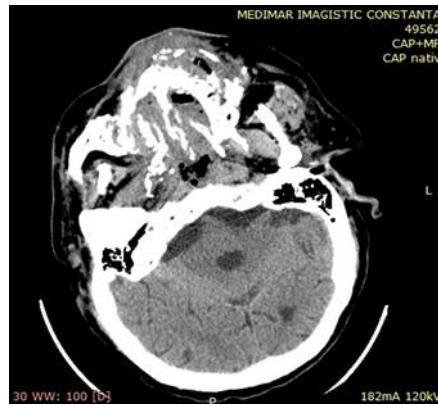


Fig 23. CT B.I. patient in axial section

First stage, when the patient presented to the Emergency Room, the plaques were cleaned and sutured to prevent any infections and to stop bleeding, nasal plugging. It was given antibiotic and anti-inflammatory medication.

Fig 24. Preoperative photos

Fig 25. CT – 3D reconstruction

After health improvement, based on clinical and imagistic data offered by CT and 3D reconstruction, the medical team established the surgical plan. The approach was complex:

-intraoral access by superior vestibule to have open access to maxillary bones bilateral for fixing the fracture lines with osteosynthetic plates and fixing the occlusion

-bilateral infraorbital incision for an easy access to the superior maxillary bones, zygomatic bones and orbital cavities reconstruction. There were no global eyes, lacrimal glands, nerves and vessels lesions.

-going through soft tissues scars.

The medical team reconstructed the nose, superior maxillary and the two zygomatic bones. They used titanics plates and screws adapted to local anatomy. There were no sensitive or motor dysfunctions. The patient was maintained for 24h under intensive care and was afterwards transferred in the OMF compartment.

Fig 26. Postoperative photo

Patient's evolution was favourable. He continued the antibiotic and anti-inflammatory medication. The plagues were cleaned every day. There were no infectious complications or rejection reaction of the osteosynthetic material.

After 7 days the wires were removed, and the patient was discharged with indication of periodic follow-ups.

DISCUSSIONS

These studies have the object of developing a unitary image ENT, OMF over traumatic maxillofacial pathology. The necessity comes from the desire to determine what needs to be changed in order to improve the quality of life and the degree of health population. These informations establish the mechanism through which these patients are affected, there provenance environment, social behaviour, and how do all these influence the type of trauma. We pursuit establishing the best techniques which can be used to assure the proper healing and avoiding the possible complications.

The study group involved patients who suffered maxillofacial fractures from isolated forms with a single bone fracture to complex forms which passed the field of these two specialities. Were covered the main types of lesions which appear in this type of pathology. There were no LeFort fractures and other described types, but this confirms tendencies found in present studies, according to which by increasing trauma force appears the tendency to comminuted fractures which don't respect the classic lines. The treatment aims to the best functional and aesthetic results. The techniques used varied from simple to complex adapted to every case.

CLINICO-STATISTICAL STUDY IMPORTANCE

A clear image of the high incidence of this pathology, in this part of the country, was created, to bring it in front and to underline the necessity of prevention measures and the importance of a quality medical procedure from the moment when a correct and complete diagnostic is established until the medical and surgical procedures are applied.

It was established that male victims were in higher number with a ratio 4:1 male: female, but regarding women, domestic aggressions play an important role. Young males are the most affected. These elements play an important role in improving prevention techniques.

Relationships between trauma mechanism and patient's particularities were studied. Some stereotypes related to patient's age, very young patients, young adults, elders, victim's sex and provenience environment were encountered.

The type of medical and surgical techniques used for every type of trauma was identified. The best type of intervention and approach, closed or open, was established. This data is creating a model of the proper techniques to be used in lesion's treatment.

Analysing the type of intervention for every patient was performed to identify possible influence of several factors, like age and sex, on operation procedure.

The obtained information's were explored from classic and modern parameters point of view.

All these elements lead to creating a big picture over traumatic pathology located in the maxillofacial area, which exceeded the borders of every speciality and included data which covers both ENT and OMF, to give a global vision and a unitary terminology.

PERSONAL CONTRIBUTION

The aim of this study was to prove the importance of maxillofacial trauma, the implications and repercussions on the individuals and society, in general.

Starting from the premise that a quality surgical act needs a good knowledge of anatomy and physiology the doctoral thesis pursued the description of every anatomical element, from the superficial layers to the bone structures and sensitive elements located at this level.

I identified the types of lesions present at this level, the cause and factors.

I obtained classifications and comparisons of different types of lesions, which lead to discovering statistical information, important to issue a series of recommendations, to decrease the incidence of this trauma with fatal potential or irreversible damage.

From an etiological point of view, a series of relevant social facts were identified with major influence over the incidence.

Complete anamnesis and investigations, including the imagistic exams adapted to every type of trauma, are necessary to develop a diagnosis which allows a correct treatment,

PREVENTION PROPOSALS

Improve the infrastructure to decrease the risk of car accident. Enlightenment the population about the risk they are exposing themselves by non-use of the seatbelt and failure to respect the safety measures.

Giving lectures addressed to young population, in order to understand the risks of driving with high speed and under alcohol and drug influence.

Taking legislative measures to protect domestic violence victims and enhance the sanctions for the aggressors. Developing special units for the accommodation of the victims and their counselling.

Teaching the population about the measures that must be taken to help a trauma patient, to increase the survival chances and avoiding procedures with negative effect over victims. Introducing in schools lectures on first aid, obtaining haemostasis, and avoiding infection.

CONCLUSIONS

- The face represents the main element of human interaction and trauma at this level has functional and aesthetic consequences on the individual. This type of pathology has known variations in human evolution from trauma mechanism point of view and techniques utilized in modern era for treatment. There can be temporary or permanent repercussions, and there is a need of a psychiatrist or psychologist help for social reinsertion. Maxillofacial trauma may be a part of a polytrauma which can affect other organs and structures. In these situations, a multidisciplinary approach is needed and choosing the treatment base on lesion gravity.
- The lesions can vary from easy with soft tissues damage or fractures without any displacement, serious with large fractures, without affecting cerebral tissue or infectious complications, and very serious with maxillofacial deformation or brain damage.
- Maxillofacial structures are divided in 3 floors defined by 3 demarcation lines: border line between superior and middle floor passes supraorbital rims and fronto-nasal sutures, and the border line between middle and inferior floor is represented by a plane which passes the 2 dental arcades.
- Some parameters were fixed: sex, age, environment provenance, trauma mechanism used as a base for studying the cases. A high percentage was observed in males, 20 to 40 years patients, urban environment and the most common mechanism was aggression. After examining the cases the fractures were divided on 3 floors, and there were identified some types: frontal bone fracture, nasal bone fracture, temporo-zygomatic fracture, maxillary, orbit fracture, mandible. There were established some associations between parameters and every lesion.
- Repartition based on percentage discovered that most cases appeared at middle floor, followed by the inferior floor. The most common fractures interested the nasal bone. There was identified an etiological model for every type of fracture of the patients included in this study.
- There was a follow up on every type of approach, depending on trauma type in order to identify the proper techniques for a good recuperation, with functions recovery, and avoiding any complications and aesthetic sequelae.
- Comparisons with other studies from different countries were made for this type of pathology. Apart from small differences based on the level of development and cultural model of the countries, most of the results were similar.

BIBLIOGRAPHY

- 1.D. Demetriades, E. Newton „Color Atlas of Emergency Trauma” Cambridge University Press, October,2011,p 30-49.
2. R.S.Snell,MD,PHD „Clinical Anatomy By Regions” 8th Edition, Lippincott Williams&Wilkins,Wolters Kluwer,2008,p668-732.
- 3.K.L.Moore,Anne M.R.Ajur „Essential Clinical Anatomy” 3th Edition,Lippincott Williams&Wilkins,2007,p492-523.
- 4.Susan Standring „Gray’S Anatomy,The Anatomical Basis of Clinical Practice”40th Edition, Elsevier Limited,2008,p25-41.
- 5.V. Papilian „Anatomia Omului” Ediția a10a revizuită de Prof.Dr Ion Albu,Ed BIC ALL BUCURESTI,2001, p29-53.
- 6.F. H.Netter M.D „Atlas de anatomie umana” Ediția a3a, Editura Medicala Callisto,2005, p17-60.
- 7.C. Sarafoleanu „Rinologie” Editura Medicală București,2003, p35-81.
- 8.G. J.Tortora&B. Derrickson „Principles of anatomy&physiology” 13 Edition,Biological Science Textbooks Inc and Bryan Derrickson,2012, p974-980.
- 9.Comsa G. I. „Curs de rinologie”Editura Europolis Constanta,2000.
- 10.Sobotta „Anatomie des Menschen” Elsevier GmbH,Munchen,2007,p102.
- 11.A. Bucur „Compendiu de chirurgie oro-maxilo-facială” vol1,2009,Ed Q Med Publishing S.R.L, p311-312.
- 12.R. J Fonseca,R. Walker,M. P.Powers,H.Dexter Barber „Oral&Maxillofacial trauma” Fourth Edition,Elsevier Inc,2013, p77, p239-246.
- 13.M. Perry&S. Holmes „Manual of Operative Maxillofacial Trauma Surgery” Springer International Publishing Switzerland,2014, p7-20.
- 14.Prof.Dr.Doc Șt Gârbea „Rinologie-Patologia nasului și a sinusurilor paranasale” Editura Stiințifică și Enciclopedică București,1985, p469-476.
- 15.J.Lang „Clinical Anatomy of the Nose,Nasal Cavity and Paranasal Sinuses” Thieme Medical Publishers,Inc.New York,1989, p64,73,82.
- 16.D.W.Kennedy,P.H.Hwang „Rhinology,Diseases of the Nose,Sinuses, and Skull Base” Thieme Medical Publisher New York,2012,p 1-69.
- 17.J.B.Snow Jr,J.J.Ballenger „Ballenger’s Otorhinolaryngology Head and Neck Surgery”Sixteenth Edition,BC Decker,2003,p553-557.
- 18.M. Perry&S. Holmes „Manual of Operative Maxillofacial Trauma Surgery” Springer International Publishing Switzerland,2014,p3-12,p20-21,p33-37.
- 19.R. H. Mathog, T. Shibuya, M. A. Carron „ Mathog's Atlas of Craniofacial Trauma”2nd Edition, WOLTERS KLUWER,2012,p307-320,p337-475.
- 20.A. Ernst,M. Herzog,R. O. Seidl „Head and Neck Trauma- An Interdisciplinary Approach” Thieme Medical Publishers; 1 edition,2006,p27-35,p69-90,p100-105,p112-119.
- 21.A.B.Peitzman,M.Rhodes,C.W.Schwab,D.M.Yealy,T.C.Fabian,„The Trauma Manual”2nd Edition,Lippincott Williams&Wilkins, 2002,p15-17.
- 22.F. Haerle,M. Champy,B. Terry „Osteosynthesis-Microplates,Miniplates, and Screws” Thieme, 2011,p 12-34,p95-108.
- 23.Kristina Arvidson,B.M Abdallah,Elisabetta Cenni,D.P. Pioletti „Bone regeneration and stem cells” Journal of Cellular and Molecular Medicine Vol 15 No 4 2011,p718-746.
- 24.S.R.Thaller,J.P.Bradley,J.I.Garry „Craniofacial Surgery”Informa Healthcare 2008,p289-315.
25. S.R.Thaller,W.S.McDonald „Facial trauma”Marcel Dekker,2004, p289-297.
- 26.D.G. Gossman MD,Sanford M.A. MD, Oneida Arosarena MD,, Management of Frontal Sinus Fractures: A Review of 96 Cases”The Laryngoscope,Volume116, Issue8,August 2006,p 1357-1362.
- 27.T.S. Kühnel,T.E. Reichert „Trauma of the midface” GMS Curr Top Otorhinolaryngol Head Neck Surg,Published online 2015 Dec.
- 28.E. Gonzalez, C. Pedemonte, I. Vargas, D. Lazo, H. Pérez, M. Canales, F. Verdugo-Avello „Facial fractures in a reference center for Level I Traumas. Descriptive study”Revista Española de Cirugía Oral y Maxilofacial (English Edition),Volume 37, Issue 2, April–June 2015, p 65-70.
- 29.K. L. Fridrich, G. Pena-Velasco, R. A. J. Olson „Changing trends with mandibular fractures: A review of 1,067 cases” Journal of Oral and Maxillofacial Surgery,Volume 50, Issue 6, June 1992, p 586-589.
- 30.M. Adi ,G.R. Ogden ,D.M. Chisholm „An analysis of mandibular fractures in Dundee, Scotland (1977 to 1985)” British Journal of Oral an Maxillofacial Surgery, Volume 28, Issue 3, June 1990,p 194–199.
- 31.A. B. Bataineh „Etiology and incidence of maxillofacial fractures in the north of Jordan” Oral Surgery Oral Medicine Oral Pathology Oral Radiology, July 1998,Volume 86, Issue 1, p 31–35.
- 32.B. K. Moore, R. B. Smit, A. N. Colquhoun, W. M. Thomson „ Maxillofacial fractures at Waikato Hospital, New Zealand: 2004 to 2013” The New Zealand Medical Journal,4th December 2015,Volume 128,Number 1426.

- 33.C. Ungari , F. Filiaci , E. Riccardi , C. Rinna , G. Iannetti „, Etiology and incidence of zygomatic fracture: a retrospective study related to a series of 642 patients” Eur Rev Med Pharmacol Sci 2012,Oct, 16 (11),p 1559-1562.
- 34.O. Antonyshyn , J.S. Gruss , E. E. Kassel „,Blow-in fractures of the orbit” ,Plastic Reconstructive Surgery,1989 Jul,84(1),p 10-20.
- 35.A. O. Paza, A. Abuabara,L. A. Passeri „,Analysis of 115 Mandibular Angle Fractures”Journal of Oral and Maxillofacial Surgery, January 2008,Volume 66, Issue 1,p 73–76.
- 36.M. Z. Martini,A. Takahashi,H. G. de Oliveira Neto,J. P. de Carvalho Junior, R. Curcio,E. H. Shinohara „,Epidemiology of mandibular fractures treated in a Brazilian level I Trauma Public Hospital in the city of São Paulo, Brazil” Brazilian Dental Journal,vol.17,no.3, Ribeirão Preto 2006.
- 37.O. Obuekwe,F. Owotade,O. Osaiyuwu „,Etiology and pattern of zygomatic complex fractures: a retrospective study Journal of the National Medical Association,2005 Jul, 97(7),p 992–996
- 38.Kathleen N. Hartzell,Alison A.Botek,S. H. Goldberg „, Orbital Fractures in Women due to Sexual Assault and Domestic Violence” Ophthalmology,Elsevier,Volume 103,Issue 6,June 1996,p953-957.
- 38.P.N. Manson,B. Markowitz,.S Mirvis „,Toward CT-based facial fracture treatment” Plast Reconstr Surg, 1990,p 85-202.
- 39.H.D. Gillies, Kilner, T.P. Stone „,Fractures of the malarzygomatic compound, with a description of a new x-ray position” Br J Surg,1927, p 14-651.
- 40.R.M. Barr, A.D. Gean „,Fundamentals of Diagnostic Radiology” 3rd ed,Philadelphia:Lippincott Williams & Wilkins, 2007, p 55–85.
- 41.J.H. Harris Jr, M. Castillo, M.M. Smith Face „,The Radiology of Emergency Medicine” 4th ed, Philadelphia: Lippincott Williams& Wilkins, 2000, p 40–135.
- 42.D.E. Jones, J.N. Evans „,Blow-out fractures of the orbit: An investigation into their anatomic basis” J Laryngol Otol, 1967,p 81,1109–1120.
- 43.J.R. Werther „,Cutaneous approaches to the lower lid and orbit” J Oral Maxillofac Surg,1998,p 56-60.
- 44.A. Wallis, P.J. Donald „,Frontal sinus fractures: a review of 72 cases” Laryngoscope 98,1988, p 593-598.
- 45.E.A. Luce „,Frontal sinus fractures: guidelines to management” Plast Reconstr Surg 80, 1987,p 500-510.
- 46.R.B. Stanley Jr „,Fractures of the frontal sinus” Clin Plast Surg 16, 1989,p 115-123.
- 47.R.J. Rohrich, L.H. Hollier „,Management of frontal sinus fractures. Changing concepts” Clin Plast Surg 19, 1992,p 219-232.
- 48.R.A. Chole, J. Yee „,Antibiotic prophylaxis for facial fractures” Arch Otolaryngol Head Neck Surg 113, 1987,p 1055–1057.
- 49.R.B. James,C. Fredrickson, J.N. Kent „,Prospective study of mandibular fractures” J Oral Surg 39,1981,p 275.
- 50.J. Leach, J. Truelson „,Traditional methods vs rigid internal fixation of mandiblefractures” Arch Otolaryngol Head Neck Surg,1995,p121-752.
- 51.V. Tuovinen, S.E. Norholt,S. Sindet-Pedersen „,A retrospective analysis of 279 patients with isolated mandibular fractures treated with titanium miniplates” J Oral Maxillofac Surg 52, 1994,p 931–935.
- 52.R.F. Busch „,Mandibular osteosynthesis with intraoral miniplates and cortical bone screws” Ear Nose Throat J, 1995,p 815.
- 53.M.F. Zide, J.N. Kent „,Indications for open reduction of mandibular condyle fractures” J Oral Maxillofac Surg,1983,p89–98.
- 54.M.J. Busuito, D.J. Smith, M.C. Robson „, Mandibular fractures in an urban trauma center” J Trauma,1986,p 26-826.
- 55.D.A. MMotamedi ,K.T. Taheri „,Textbook of Temporomandibular Disorders”Shayan Nemodar Publications, Tehran, 2009,p 5-100.
- 56.D.S. Jorgenson,M.H. Mayer, R.G. Ellenbogen,J.A. Centeno,F.B. Johnson,F.G. Mullick,P.N. Manson „,Detection of titanium in human tissues after craniofacial surgery” Plast Reconstr Surg, 1997,p 9-976.
- 57.A. Wallis, P.J. Donald „,Frontal sinus fractures: a review of 72 cases”Laryngoscope 98, 1988,p 593-598.
- 58.V.Popescu „,Chirurgie buco-maxilo-facială” Editura Didactică și pedagogică,București,1967
- 59.L. Lindahl „,Condylar fractures of the mandible.Classification and relation toage,occlusion, and concomitant injuries of the teeth and teeth-supporting structures, and fractures of the mandibular body” Int J Oral Surg 6,1977,p 12-21.
- 60.R. Le Fort „,Etude experimental sur les fractures de la machoir superieure” Parts I,II,III,Revue de chirurgie,Paris,1901,p 23-201,360,479.
- 61.M. Wassmund „,Frakturen und Luxationen des Desichtsschaedels” Meusser, Berlin,1927.
- 62.A.G. Fernandez,I.G. Recuero,G.S. Aniceto,F.G. Marin „,Tratamiento de las fracturas de mandibula” Cirurgia oral y maxillofacial,Aran Ediciones, Madrid,2004.
- 63.N.L. Rowe,H.C. Killee „,Fractures of the facial skeleton” Livingstone, Edinburgh,1968.
- 64.E. Kruger,W. Schilli „,Oral and Maxillofacial Traumatology” Vol 2, Quintessence, Chicago, 1986,p 19-43.

- 65.V.H. Kazanjian,J.M. Converse „The surgical treatment of facial injuries” 3 ed,Williams & Willkins,Baltimore,1974.
- 66.L.R. Peterson,E. Ellis, Hupp „Contemporary Oral and Maxillofacial Surgery” 3rd edn, Mosby-Year Book, Missouri, 1998.
- 67.J. Hawkesford, J.G. Banks „Maxillofacial and Dental Emergencies” Oxford University Press, Oxford, 1994.
- 68.M.F. Adeyemo,M.O. Ogunlewe,A.L. Ladeinde „Is healing outcome of 2 weeks intermaxillary fixation different from that of 4 to 6 weeks intermaxillary fixation in the treatment of mandibular fractures? ” J Oral Maxillofac Surg,2012,p 902-1896.
- 69.M. Mosbah,D. Oloyede,D. Koppel,K. Moos,D. Stenhouse „Miniplate removal in trauma and orthognathic surgery—a retrospective study” Int J Oral Maxillofac Surg 32,2003,p 51-148.
- 70.D.Y. Nagase,D.J. Courtemanche,D.A. Peters „Plate removal in traumatic facial fractures: 13-year practice review” Ann Plast Surg 55,2005; p 11-608.
- 71.A. Rosenberg,K.W. Grätz,H.F. Sailer „Should titanium miniplates be removed after bone healing is complete? ” Int J Oral Maxillofac Surg 22,1993,p 8-185.
- 72.T.G. Bui,R.B. Bell,E.J. Dierks „Technological advances in the treatment of facial trauma” Atlas Oral Maxillofac Surg, ClinNorthAm,2012,p 81-94.
- 73.N.D. Futran „Maxillofacial trauma” Facial Plast Surg Clin North Am, 2009, p 51-239.
- 74.L. Doonquah,P. Brown,W. Mullings „Management of frontal sinus fractures” Oral Maxillofac Surg,Clin North Am,2012,p 265.
- 75.E. Ellis „Sequencing treatment for naso-orbito-ethmoid fractures” J Oral Maxillofac Surg, 1993,p 58-543.
- 76.R. Fabio,B. Paolo,G. Valeria „Role of the maxillofacial surgeon in the management of severe ocular injuries after maxillofacial fractures” J Emerg Trauma Shock,2011,p 93-188.
- 77.T. Fattahi, J. DiPasquale „Utility of the pericranial flap in frontal sinus and anterior cranial fossa trauma” Int J Oral Maxillofac Surg,2009, p 1263.
- 78.J.S. Knight,J.F. North „The classification of malar fractures: an analysis of displacement as a guide to treatment” Br J Plast Surg,1961,p 325.
- 79.M.G. Stanwix,A.J. Nam P.N. Manson „Critical computed tomographic diagnostic criteria for frontal sinus fractures” J Oral Maxillofac Surg,2010,p 2714.
- 80.M. Zingg,K. Laedrach,J. Chen „Classification and treatment of zygomatic fractures: a review of 1,025 cases” J Oral Maxillofac Surg,1992,p 778.
- 81.B.M. Achauer,E. Eriksson „Plastic surgery: indications, operations and outcomes” Mosby, St Louis, 2000.
- 82.D.V. Powers „Maxillofacial trauma treatment protocol” Oral Maxillofac Surg Clin, North Am, 2005,p 55-341.
- 83.J.B. Ludlow, M. Ivanovic „Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology” OOOOE,2008,p 14-106.
- 84.R. Mukerji,G. Mukerji,M. McGurk „Mandibular fractures: historical perspective” Br J Oral Maxillofac Surg, 2006,;p 8- 222.
- 85.R.M. Wald Jr,E. Abemayor,J. Zemplenyi „The transoral treatment of mandibular fractures using noncompression miniplates: a prospective study GJ Ann Plast Surg,1988,p 13-409.
- 86.R.E. King,J.M. Scianna,G.J. Petruzzelli „Mandible fracture patterns:a suburban trauma center experience” Am J Otolaryngol, 2004,p 7-301.
- 87.E. Ellis „Outcome of patients with teeth in the line of mandibular angle fractures treated with stable internal fixation” J Oral Maxillofac Surg,1996,p 858.
- 88.P. Kyle,D. Hayes,J. Blice „Prevention and Management of infections associated with combat-related Head and Neck injuries” J Trauma,2008,p 76-265.
- 89.P.A. Kyzas „Use of antibiotics in the treatment of mandible fractures: a systematic review [review] ” J Oral Maxillofac Surg,2011,p 45-1129.
- 90.R. Klinke,H.C. Pape, S. Silbernagl „Physiologie”, Thieme, Stuttgart,2005.
- 91.E. Houtmeyers,R. Gosselink,G. Gayan-Ramirez,M. Decramer „Regulation of mucociliary clearance in health and disease” Eur Respir J,1999,p 1177–1188.
- 92.J.S. Haight, P. Cole „Nasal responses to local unilateral stimuli in man” Rhinology, 1983,p 67–72.
- 93.J. Hanif,S.S. Jawad, R. Eccles „The nasal cycle in health and disease” Clin Otolaryngol Allied Sci, 2000,p 461–467.
- 94.H.G. Gassner,A. Rafii,A. Young,C. Murakami,K. Moe,W.F. Larrabee „Surgical anatomy of the face.Implications for modern face-lift techniques” Arch Facial Plast Surg 10,2008,p 9–19.
- 95.A. Alvi,T. Doheny,G. Lewen „Facial fractures and concomitant injuries in trauma patients” Laryngoscope 113,2003,p 102-106.
- 96.A. Parhiscar,G. Har-EI „Frontal sinus obliteration with the pericranial flap” Otolaryngol Head Neck Surg 24, 2001,p 304-307.
- 97.R.L. Coodale,W.W. Montgomery „Anterior osteoplastic frontal sinus obliterations:five years experience” Ann Otol 70,1961,p 860-863.

- 98.B.M. Wenig „Atlas of Head and Neck Pathology” W.O. Saunders, Philadelphia,1993.
- 99.O.E. Van Ayela „Ethmoid labyrinth: anatomic study with consideration of the clinical significance of its structural characteristics” Arch Otolaryngol,1939,p 881-902.
- 100.S.J. Zinreich, M. Abldin,O.W. Kennedy „Sectional imaging of the nasal cavity and paranasal sinuses” OperTech Otolaryngol Head Neck Surg,1990,p 98-194.
- 101.H.R. Slammberger,O.W. Kennedy „Paranasal sinuses: anatomic terminology and nomenclature” The Anatomic Terminology Group, Ann Otol Rhinol Laryngol Suppl 167,1995,p 7-16.
- 102.D.W. Thomas,C.M. Hill „Etiology And Changing Patterns Of Maxillofacial Trauma. In: Booth PW, Schendel SA, Hausamen JE” (Eds) Maxillofacial Surgery, Vol. 3,Churchill Livingstone, 2000.
- 103.H.E. Cook,M. Rowe „A Retrospective Study Of 356 Midfacial Fractures Occurring in 225 Patients” J Oral Maxillofac Surg 48,1990,p 574-578.104.P. Banks,A. Brown „Etiology, Surgical Anatomy And Classification. In: Banks P,Brown”A (Eds), Fractures Of The Facial Skeleton, Philadelphia, USA,Elsevier,2001.
- 105.H.D. Gillies,T.P. Kilner,D. Stone „Fractures of the malarzygomatic compound, with a description of a new x-ray position” Br J Surg,1927,p 651.
- 106.R.O. Dingman,P. Natvig „Surgery of Facial Fractures”W.B. Saunders, New York,1964.
107. Mihail D.L., Comşa G. I. „ Etiology and treatment in craniofacial fracture"Rev ARS MEDICA Tomitana, The Journal of "Ovidius" University of Constanta, Volume 23, Issue 3 (Aug 2017)