

**University „OVIDIUS” of Constanta
Physiology Department**

**CORELATIONS BETWEEN CLINICAL ASPECTS, NT-PROBNP VALUES AND
OTHERS MYOCARDIAL CYTOLITIC ENZYMES IN PATIENTS WITH
THORACIC TRAUMATHISMS**

PHD THESIS SUMMARY

SCIENTIFIC LEADER
Prof. Dr. ION ILEANA

PHD STUDENT,
TASE CRISTINA RAMONA

**CONSTANȚA
2008**

TABLE OF CONTENTS

GENERAL PART

INTRODUCTION	6
Chapter I. Politrauma epidemiologic features.....	7
I.1. Global assesment of traumatic lesions.....	7
I.2. Etiology and vulnerable groups.....	9
I.3 Data sources for politrauma studies.....	10
I.4. Mortality rates: the importance of patients age lesion tracking.....	12
Bibliography.....	13
Chapter II. Trauma mechanisms. Types of thoracic injuries, consequensces, evaluation methods.....	15
II.1. Overview of Traumatic Injury Patterns.....	16
II.2. Classification Systems and Triage of victims.....	16
II.3. Causes of non-penetrating thorax trauma injuries.....	19
II.3.1 Thoracic trauma – acceleration and deceleration	19
II.3.2. Cardiac clinical findings due to car accidents.....	20
II.3.3. Altitude falls.....	20
II.4. Trauma evaluation in the Emergency Department.....	21
II.4.1. Primary Survey	21
II.4.2. Secondary survey and management.....	24
Chapterl III. Cardiac Trauma.....	29
III.1. Non-penetrating cardiac injury	29
III.1.1. Physiopathology	30
III.1.2. Clinical features of non-penetrating cardiac trauma.....	34
III.1.3. Diagnostic	35
III.2. Penetrating cardiac Injuries.....	36
III.2.1. Anatomy and pathophysiology.....	37

III.3. Cardiac traumatic lesions treatment	39
III.3.1. Pre-hospital management of cardiac trauma.....	39
III.3.2. Emergency Department Management of penetrating cardiac trauma.....	40
III.3.3. Emergency Department Management of non-penetrating cardiac trauma.....	41
Bibliography.....	42
Chapter IV. Cardiac Natriuretic Peptides.....	44
IV.1. Biochemistry of natriuretic peptides	44
IV.1.1. Biosynthesis of natriuretic peptides.....	44
IV.1.2. Molecular receptors of natriuretic peptides.....	46
IV.1.3. Physiological functions.....	47
IV.2. Biochemistry and physiology of NT-proBNP.....	48
IV.2.1. NT-proBNP secretion.....	49
IV.2.2. Physiological implications of NT-proBNP.....	50
IV.2.3. Clearance of NT-proBNP.....	51
IV.3. Clinical utility of plasmatic natriuretic peptides in cardio-vascular disease.....	51
IV.3.1. Cardiac Failure.....	51
IV.3.2. Therapeutical guidance in cardiac failure.....	52
IV.3.3. Arterial hypertension	53
IV.3.4. Atherosclerosis.....	53
IV.3.5. Heart Valves pathology.....	53
PERSONAL RESEARCH PART	
V. Personal Study	61
VI. Material and methods.....	62
Study protocol.....	62
Clinical study inclusion criteria	64
Clinical study exclusion criteria	64
VII. Results.....	67
VIII. Haemodynamic evolution of patients in 24 hours.....	114
IX. Discutions.....	123
X. Thesis original contribution.....	125
XI. General Conclusions...	126
Bibliography.....	127

1.GENERAL PART

INTRODUCTION

Hystorical researches about natriuretic peptides begings early in 1956 when studies that used electronic microspcopy shown that molecular granules similar with those seen in endocrine glands were found in atrial myiocardial cells. Grater discovery and hudge advance in the identification of atrial natriuretic peptide was made by Bold in 1981, who determined that by intravenous injection of that particular atrial extract he obtained a fast and powerfull reaction in rats. Secondary purification and a proper characterization of that biological factor made by numerous researchers lead to the discovery of the ANP factor in the period of 1983-1984. Future studies revealed the rest of natriuretic peptides family members by isolating two different molecular forms, named as : Brain Natriuretic Peptide BNP and C type Natriuretic Peptide CNP.

Even though BNP was initially isolated from cerebral material, studies proved that it's functional expression has a ventricular origin, cardiac myocites beying the major source of production for BNP and for eliberating it in the circulatory flow. In the blood stream, the active part of BNP hormone is composed by 32 AA framents, completely separated by the N-terminal fragment of the pro-hormone, entitled NT-proBNP. This hormone is an important biomarker of classification of cardiac failure in all specific guidelines. At a time with chronic alteration of cardiac myocites, an over production and expression of natriuretic peptides has been proven.

Nowadays, important studies and researches have an eager to highlight the prognostic role of NT-proBNP in ventricular post traumatic failure. Mortality rates are second highest after head traumatic injury, which underlines the importance of initial management and evaluation criteria for life threatening risk patients .

2. EPIDEMIOLOGY OF TRAUMA

Worldwide, approximately 16,000 people die every day due to traumatic lesions (~ 5.8 million deaths/year), and the perspective for 2020 is a rise to an estimated for the year 2020 a rise to 8.4 million deaths/year. Mortality being second highest after AIDS. The origin and severity of the pathology are in connection with the type and magnitude of the impact energy but also with the vulnerable state of the patient, most of them being male patients aged between 60-65 years old. Noticing the fact that polytraumatic events are the result of high energy impact mechanisms, car crashes are at the top of the mortality lists in Europe and worldwide.

3. CARDIAC TRAUMA

Penetrating cardiothoracic lesions represent the cause of 25% of deaths in the first critical hours after a traumatic event, in 85% of them is needed a simple interventional procedure for treatment, being 85%, 15% requiring thoracotomy and the majority of them involving myocardial lesions or on the great vessels. Non penetrating cardiac trauma is reported to have an 8 to 71% incidence of occurrence. Special attention is required in observing the clinical signs of shock alongside with ECG, cardiac tamponade, haemothorax and identifying the top 6 immediate fatal lesions: upper airway obstruction, tension pneumothorax, flail chest, cardiac tamponade, massive haemothorax, hypoxia, hypoventilation. 20% of the car accidents mortality rates are due to non penetrating heart injury.

4. NATRIURETIC PEPTIDES WITH CARDIOVASCULAR ROLE

Encountering ANP biomarker in 1981 by Bold and its ventricular expression beautifully described by Nemer et al., followed by the descriptive role of BNP made the progression of cardiac endocrinology at that time and an innovative perspective for diagnosis of cardiac failure. Genetic studies of BNP and ANP and expression models implied a new set of regulatory pathways which confirm the role of these biomarkers in myocardial wall stress. Within daily medical practice, enzymatic levels had a qualitative implication as a marker of congestive heart failure stages and in the risk stratification of this group of patients, allowing also the screening of underlying heart disease.

There is no prognostic role determined by now for this enzyme applied in patients with acute heart damage as a cause for traumatic events.

4.1 Biochemistry and pathophysiology of NT-proBNP

BNP human gene is located on chromosome 1 coding the 108 AA of the prohormone proBNP. In the bloodstream, BNP active hormone is composed by 32 AA parts being separated from the N-terminal part of the pro hormone, NT-proBNP. The cleavage and specific location of pro BNP it is still on research.

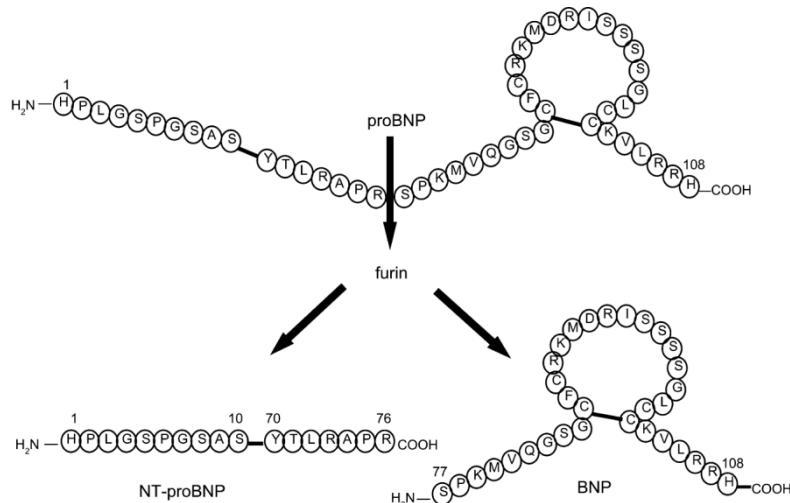


Figure 1. proBNP – enzymatic cleavage in BNP active form and inactive NT-proBNP

4.2 Secretion of NT-proBNP

Cardiac myocytes represent the major source for BNP type peptide in the blood stream. A recent discovery highlighted the role of fibroblasts in the conception of BNP. This finding is still unclear by the actual mechanism pathways. The main stimulus for production and liberating of ANP and BNP the myocardial wall stress. *in vitro* Experiments indicated that the release of BNP on paracrine or endocrine way is modulated by specific neurohormones in acute atrial stress. If we speak about atrial stress, then we speak about a higher release and a proper response of ANP. This is another argument for attributing a ventricular origin to the BNP hormone. It is also a clear fact proven that when a pathology regarding ventricular suffering with ischemic events occurs such as myocardial infarction, we have a higher expression for BNP rather than ANP.

PERSONAL RESEARCH PART

PERSONAL STUDY TARGHETS

1. The evaluation of the relationship between enzymatic rates and și the patients general clinical state who suffered a major traumatic event mostly implying the thoracic wall as a predictive positive outcome
2. Primary survey in the Emergency room of the patients and 24 hours
3. Identify the enzymatic abnormalities and their dynamic changes from the admission in the ED and in the first 12 hours of hospitalisation
4. Identify the imagistic patterns and how they change during the evolution of the patients
5. Imidiate outcome , surviving expectations at 12 h and și and departure /death
6. Evaluation of the predictive role of the enzymatic, imagistic and epidemiology parameters amongst

MATERIALS AND METHODES

I included in this study a group of 33 patients with severe thorax politrauma due to vehicle accidents, registered in the Emergency Room of the Constanta Emergency Clinical Hospital. The study was made in 4 years , and I present the following Criteria:

STUDY PROTOCOL

- I. Primary survey
- II. A. Biological enzymatic determinations
- B. Imagistic results at admission and followup 12-24 h
- III. Analysis of the results obtained
- IV. Creating a data base for all the findings

I.Clinical evaluation of the patients:

- Evaluation of the accident mechanism and the cause of the traumatic event
- Primary survey in the Emergency room
- Monitoring the patient – vital signs, blood pressure, SpO₂, heart rate, ECG

II Biological examn:

- A. Laboratory findings:

1. ASTRUP arterial puncture
2. Venous puncture : CBC, Troponin I, CK-MB, NT-proBNP

NT-PRO BNP(reference value of 125 pg/mL)

The biological tests were made in the personal ED with : SYSMEX XS 1000i, for CBC, COBAS INTEGRA 400, COBAS h232, RESPONE BIOMEDICAL for cardiac enzymes.

Imagistic examination::

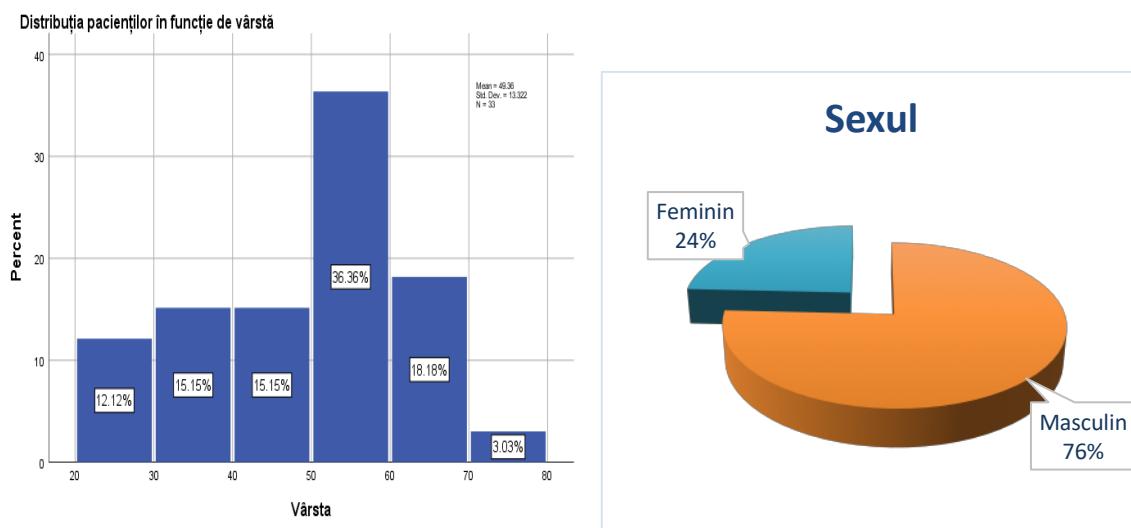
All of them are made with the specification the the emetgency clinician respecting all the trauma emergency protocols

CLINICAL STUDY INCLUSION CRITERIA

1. Age over 16 years old
2. Diagnostic of severe thoracic trauma in pre-hospital.
3. Existance of medical documents that provide informations about the patients past clinical history with no cardiac pathology , monitorisation, evaluation chart, enzymatic notes and imagistic ones at submission and at 12 h after.
4. Documented data requiring the mechanisms of trauma, general state of the patient

CLINICAL STUDY EXCLUSION CRITERIA

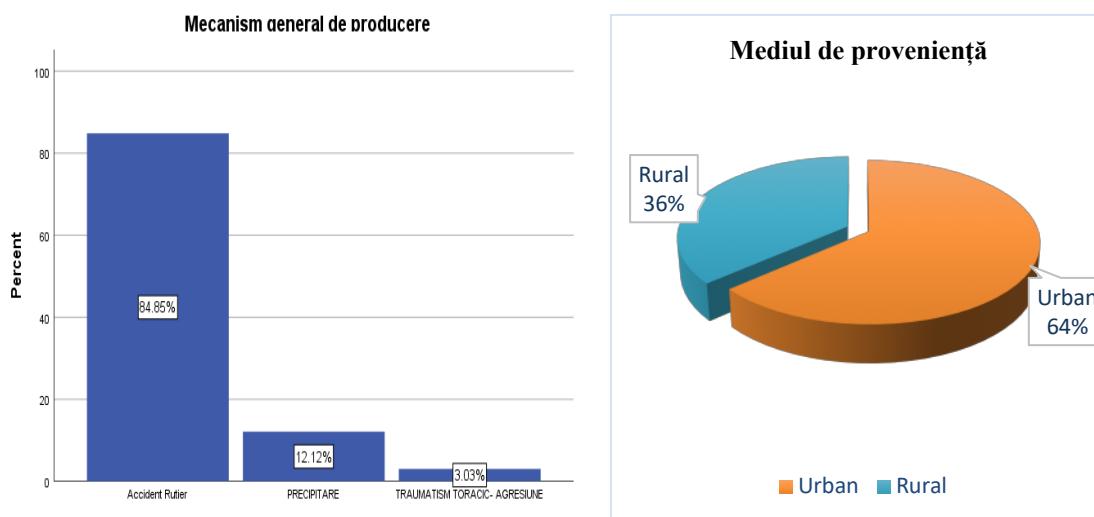
1. Minor patients <16 yrs
2. Patients with no thoracic trauma or minor lesions
3. Patients with no medical history documents or with no possibility of following data
4. Patients with no information about the traumatic events (spoken or documented)


4. RESULTS

AGE

Over 57% of the patients have 50 years old

SEX


The majority of the patients were male victims summing up a 76% of total .

Figures 2,3 Distribution of the patients regarding age and sex

MECHANISM OF THE TRAUMATIC EVENT

Very important for the primary survey and also to evaluate the possible complications, car crash events representing 85%, followed by traumatic falls and physical aggression, 40% of the patients being drivers ,24,24% right seated patients, 64% of the victims having an urban origin

Figurres 4, 5 traumatic mechanism and origin

A. Clinical evaluation

General status

At the primary survey I noted that 42% of the patients were initially stable, the rest of them having an altered general response, with clinical instability signs.

Glasgow Coma Scale

36%. Of the patients had a low value of GCS score with deeply implication of the neurological status , GCS 3 was evaluated in 21,21%, of the cases.

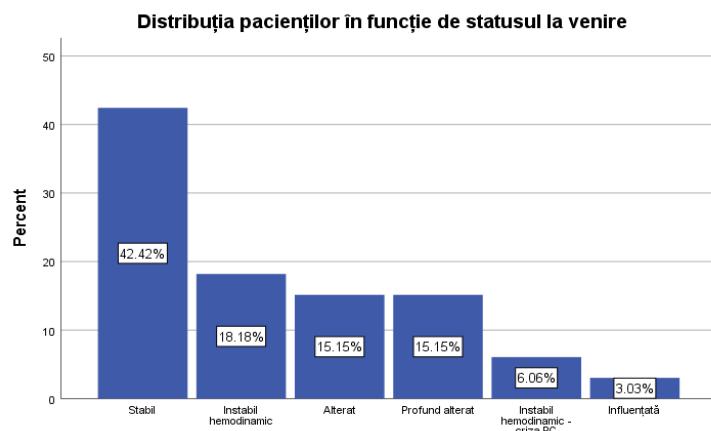


Figure 6. General status at presentation

SpO₂ values were 95 – 99%, in a percent of 36,36 of patients , with good breathing response

Orotraheal Intubation

As a result of the critical status of the patients, 36,4% of the victims were intubated to protect the airwaves and to supply proper oxygenation levels.

Systolic blood pressure and Dyastolic blood pressure

33,33% were hypotensive with values of 110 – 129 /90 – 119

Heart rate and arrhythmias

-there were two types of patients mostly with the same prevalence: one group with normal heart rate, another one with bradicardic rhythm 33,33% and a high incidents of tachiarhythmias with medium frequency 100-115 bpm (30,30%) such as Atrial Fibrillation with fast ventricular response 50% , followed up by severe atrio-ventricular block 25%. With ventricular extra beats.

B. BIOLOGICAL FINDINGS

B1. CK-MB at admission, 88% had elevated values with severe muscular injury

B2. CK-MB series

Starting with 24U/L as a normal value for this biomarker, only 15% of the patients had normal levels.

B3. Troponin I at admission

Negative in results lower than 0,02 ng/ml(40%),

Positive + in results more than 0,02 – 0,059 ng/ml(27%),

B4. Troponin I series

45,45% of the patients had no enzymatic high rates, representing the exclusion of myocardial infarction in this category

B5. NT-PROBNP

61% had values at the first prelevation much higher than the normal state, with an evolution in numbers up to 64%, the medium value reported was 462,03U/L and a maximum number of 6580 U/L

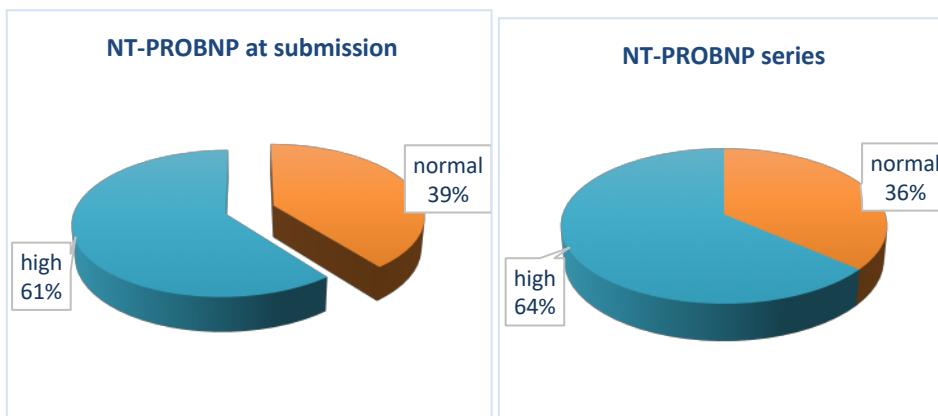


Figure 7,8 NT-proBNP values

C. RADIOLOGY RESULTS

56% presented multiple rib fractures, 12% severe haemothorax, 19% associated upper limb fractures and 25% lower limb fractures such as complete right femur fracture

D. CARDIAC ULTRASOUND

Within the echocardiological findings- trans thoracic ultrasound- the most important of them are as expected the presence of pericardial effusion with different measured volumes, rupture of valvular cordage and aneurisms. This procedure was performed by the cardiologist doctor on call in the emergency room, after the primary survey practiced by the emergency doctor to evaluate the function of the heart and the cardiac outcome of the patients.

D1.ECHOCARDIOGRAPHY CHECK

The pathology encountered was complex and associated with the initial findings or with the severity of the outcome and then with the interventional procedures. I noticed that at a percent of 6,1 of the cases, the pericardial fluid was still present in the subxifoidian loop mostly at a quantity of 8mm in the right ventricle. I also noticed the positive evolution of the drainage of cardiac tamponade. Still there has been a worrying number of patients in which the cardiac ultrasound confirmed the asistola..

HAEMODINAMIC STATUS

-80% of the patients had an abnormal WBC level at presentation due to hypovolemic shock imparing a percent of 20 norohaemodynamic patients. This fact proves the severity of the impact with a response in internal bleeding or severe acute anemic syndromes.

Leukocytosis due to traumatic shock and sepsis contributed in the complex approach in treatment and management for severe politrauma patients. Up to 42% had values 12,5 – 15 *10³/mm³. And sever cases with sepsis (9%) , 35*10³ /mm³,

5. DISCUSION

- The patients who passed the inclusion criteria for the study were mainly male patients (75,8%), older than 50 years (57%), drivers, cars crash victims. (80%),
- At the primary survey in the ED, although the majority of them had stable vital signs(40%), a oercent of 20 had a deeply altered neurological status with a GCS 3 points who needed mechanical respiratory support (36%).
- Durig the secondary survey we prelevated biological blood tests. The worring results revealed the incidence of hypovolemic shock, leukocytosis, muscular injury and possible acute cardiac traumatic event with NT-proBNP serum levels elevated.
- To confirm the cardiac injury and to mesure the cardiac output we performed a cardiac ultrasound in the ED. This imagistic approach showed in a majority of cases the presence of cardiac tamponade and pericardial effusion that were immediately drained. It also confirmed in some situations a NON-STEMI myocardial infarction
- The emergency physician recommended a series of imagistic investigations adapted to the pathological findings and useful to complet the diagnosis.Radiological findings were mainly regarded to rib fractures, haemothorax and limb fractures

- CT scans also associated in 30% of the cases traumatic brain injuries, pulmonary concussions and haemothorax.

- Following the evolution of the patients 30% had a poor outcome, 21% of them with deep alteration of neurological status, NT-proBNP results in 24 hours maintaining increased..

- I suspected a connection between the traumatic event and biomarker high rates and a prognostic role of it can be attributed, showing once again the importance of time and management in cardiac trauma.

LONG TERM PERSPECTIVE

Non invasive procedure, no additional costs, with major impact for the politrautized patients outcome and with a result obtained in short time.

6.THESES ORIGINAL CONTRIBUTION

With this paper I had the aim to prove a predictive role and vital importance in determining NT-proBNP in Emergency Units in the case of patients with severe traumatic chest lesions.

There are no recent studies to complete all the researches about this subject and also to find proper correlations between acute ventricular injury and enzymatic rates.

Introducing in the approach of the politraumatized patients in the current practice of emergency departments the prognostic value of NT-proBNP it would be a real life-saving procedure in risk stratification and outcome. There are no supplementary costs added, and the results are obtained in short time up to 5 minutes.

Due to the high mortality rates worldwide this enzyme might provide an improvement in the management and surviving rates of traumatic heart injuries.

7.GENERAL CONCLUSIONS

1. Politraumatic patients and thoracic trauma have an increased mortality rate worldwide secondary to acute pathology but also to the vital complications.
2. An adequate diagnosis of the primary lesions and an appropriate management of medical resources are essential keys for surviving
3. Post traumatic heart pathology puts in difficulty for many times the physician in order to establish a correct diagnosis
4. NT-proBNP values might have a prognostic role associated with clinical asses and imagistic findings
5. Obtaining the result of the blood tests requires a minim invasive procedure with no supplementary costs in the ED.
6. Applicable in all Emergency Units and in prehospital
7. The information regarding the value of the biomarkers is given in short time

BIBLIOGRAPHY

1. American Collegeof Surgeons Committeeon Trauma. Advanced Trauma Life (ATLS®), Support Program for Doctors, 7th edn. Chicago, IL: American Collegeof Surgeons, 2004.
2. Bansal MK, Maraj S, Chewaprooug D, Amanullah A: Myocardial contusion injury: redefining the diagnostic algorithm. *Emerg Med J* 2005; 22: 465.
3. Bhardwaj A, Januzzi JL. Natriuretic peptide-guided management of acutely destabilized heart failure. Rationaleand treatment algorithm. *Critical Pathways Cardiol* 2009; 8:146–150.
4. Bock JS, Benitez RM: Blunt cardiac injury. *Cardiol Clin* 2012; 30: 545.
5. Branney SW, MooreEE, Cantrill SV, et al. Ultrasound based key clinical pathway reduces the useof hospital resources for the evaluation of blunt abdominal trauma. *J Trauma* 1997;42(6): 1086–90.
6. Baker SP, O'Neill B, Haddon W, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. *J Trauma* 1974; 14: 187–196.
7. Ball C, Williams B, Wyrzykowski A, et al: Acaveat to the performanceof pericardial ultrasound in patients with penetrating cardiac wounds, *J Trauma* 67:1123-1124, 2009
8. BarbatoE, Rubattu S, Bartunek J, Berni A, Sarno G, Vanderheyden M, Delrue L, Zardi D, Pace B, De Bruyne B, Coluccia R, WijnsW
9. Bastida JL, Aguilar PS, González BD. Theeconomiccosts of trafficaccidents in Spain. *J Trauma* 2004; 56: 883–889.
10. BouamraO, Wrotchford AS, Hollis S, Vail A, Woodford M, Lecky FE. A new approach tooutcome prediction in trauma: acomparison with the TRISS model. *Journal of Trauma* 2006; 61:701–710.
11. Boerrigter G, Costello-Boerrigter LC, Burnett JC Jr. Natriuretic peptides in the diagnosis and management of chronic heart failure. *Heart Fail Clin* 2009; 5:501–514.
12. Chiara O, Cimbanassi S. Organized traumacare: does volume matter and do traumacenters save lives? *Curr Opin Crit Care* 2003; 9(6):510–14.
13. CRASH-2 Trial Collaborators, Roberts I, Shakur H, et al: The Importanceof early treatment with tranexamic acid in bleeding trauma patients: an exploratory
14. Currie MG, Geller DM, Cole BR et al. Bioactivecardiac substances: potent vasorelaxant activity in mammalian atria. *Science* 1983; 221:71–73.

15. Cao L, Gardner DG. Natriuretic peptides inhibit DNA synthesis in cardiac fibroblasts. *Hypertension* 1995;25:227–234.
16. Committee on injury scaling, Association for the Advancement of Automotive Medicine. The Abbreviated Injury Scale. 1990 Revision. Update 98. Des Plaines, Illinois: 1990.
17. Cocchi M, Kimlin E, Walsh M, et al. Identification and resuscitation of the trauma patient in shock. *Emerg Med Clin N Am* 2007; 25(3):623–42.
18. Dan Dermengiu, George C, Valentin G. Medicină legală : Note de curs 2011; DOI:10.5682 / 9786065912717
19. Desouza KA, Desouza NA, Pinto RM, et al: Transthoracic echocardiogram is a useful tool in the hemodynamic assessment of patients with chest trauma. *Am J Med Sci* 2011; 34: 340.
20. Di Bartolomeo S, Sanson G, Michelutto V, Nardi G, Burba I, Francescutti C, Lattuada L, Scian F. The regional study-group on major injury. Epidemiology of major injury in the population of Friuli Venezia Giulia – Italy. *Injury, Int J Care Injured* 2004; 35: 391–400.
21. Driscoll P, Lecky F. Primary prevention is better than cure. *Emergency Medicine Australasia* 2004; 16:265–266.
22. Drewett JG, Garbers DL. The family of guanylyl cyclase receptors and their ligands. *Endocr Rev* 1994; 15:135–162.
23. Dutton RP, Mackenzie CF, Scalea TM. Hypotensive resuscitation during active hemorrhage: impact on in-hospital mortality. *J Trauma* 2002; 52(6):1141–6.
24. de Bold AJ, Borenstein HB, Veress AT et al. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. *Life Sci* 1981;8:89–94.
25. de Bold AJ. Heart atria granularity effects of changes in water-electrolyte balance. *Proc Soc Exp Biol Med* 1979;161:508–511.
26. Del Ry S, Cabiati M, Lionetti V, Emdin M, Recchia FA, Giannessi D. Expression of C-type natriuretic peptide and of its receptor NPR-B in normal and failing heart. *Peptides* 2008; 29:2208–2215.
27. Demetriades D, Murray J, Sinz B, Myles D, Chan L, Sathyaragiswaran L, Noguchi T, Bongard FS, Cryer GH, Gaspard DJ. Epidemiology of major trauma and trauma deaths in Los Angeles County. *J Am Coll Surg* 1998; 187: 373–383.
28. Elie MC: Blunt cardiac injury. *Mt Sinai J Med* 2006; 73: 542.

29. El-Menyar A, Al Thani H, Zarour A, Latifi R: Understanding traumatic blunt cardiac injury. *Ann Card Anaesth* 2012; 15: 287.

30. Flynn TG, de Bold ML, de Bold AJ. The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties. *Biochem Biophys Res Commun* 1983; 117:859–865.

31. Guillamondegui OD, Pryor JP, Gracias VH, et al. Pelvic radiography in blunt trauma resuscitation: a diminishing role. *J Trauma* 2002;53(6):1043–7.

32. Gambaryan S, Wagner C, Smolenski A, et al. Endogenous or overexpressed cGMP-dependent protein kinases inhibit cAMP-dependent renin release from rat isolated perfused kidney, microdissected glomeruli, and isolated juxtaglomerular cells. *Proc Natl Acad Sci U S A* 1998; 95:9003–9008.

33. Goetze JP, Kastrup J, Pedersen F, Rehfeld JF. Quantification of pro-B-type natriuretic peptide and its products in human plasma by use of an analysis independent of precursor processing. *Clin Chem* 2002; 48:1035 –42.

34. Hoffman JR, Wolfson AB, Todd K, et al. Selective cervical spine radiography in blunt trauma: methodology of the National Emergency X-Radiography Utilization Study (NEXUS). *Ann Emerg Med* 1998;32(4):461–9.

35. [Http://responsebio.com/cardiovascular/nt-probnp](http://responsebio.com/cardiovascular/nt-probnp)

36. [Http://responsebio.com/cardiovascular/troponin-I](http://responsebio.com/cardiovascular/troponin-I)

37. <http://www.euro.who.int/eprise/main/WHO/InformationSources/Data/2005>

38. <https://drmjjr.blogspot.com/2012/09/notes-forensic-traumatology.html>

39. <https://fineartamerica.com/featured/haemopericardium-pr-r-abelanet-cnri.html>

40. <https://cardioguard.files.wordpress.com/2017/07/comotio-cordis-softball1.jpg>

41. Hunt PJ, Richards AM, Nicholls MG, Yandle TG, Doughty RN, Espiner EA. Immunoreactive amino-terminal pro-brain natriuretic peptide (NT-PROMP): a new marker of cardiac impairment. *Clin Endocrinol* 1997; 47:287 –96.

42. Hunt PJ, Yandle TG, Nicholls MG, Richards AM, Espiner EA. The amino-terminal portion of pro-brain natriuretic peptide (Pro-BNP) circulates in human plasma. *Biochem Biophys Res Commun* 1995; 214:1175 –83.

43. Hystad ME, Geiran OR, Attramadal H, Spurkland A, Vege A, Simonsen S, et al. Regional cardiac expression and concentration of natriuretic peptides in patients with severe chronic heart failure. *Acta Physiol Scand* 2001; 171:395 –403.

44. Hall C. Essential biochemistry and physiology of (NT-pro)BNP. *The Eur J of Heart Fail* 2003; 6:257-260.

45. Harada M, Saito Y, Kuwahara K, Ogawa E, Ishikawa M, Nakagawa O, et al. Interaction of myocytes and non-myocytes is necessary for mechanical stretch to induce ANP/BNP production in cardiocyte culture. *J Cardiovasc Pharmacol* 1998;31(suppl 1): S357–359.

46. He JG, Chen YL, Chen BL, Huang YY, Yao FJ, Chen SL, Dong YG. B-type natriuretic peptide attenuates cardiac hypertrophy via TGF-beta1/smad7 pathway in vivo and in vitro. *Clin Exp Pharmacol Physiol* 2009.

47. Heublein DM, Huntley BK, Boerrigter G, Cataliotti A, Sandberg SM, Redfield MM, Burnett JC, Jr. Immunoreactivity and guanosine 3',5'-cyclic monophosphate-activating actions of various molecular forms of human B-type natriuretic peptide. *Hypertension* 2007; 49:1114–1119.

48. Hoyt DB, Coimbra R, Potenza B. Management of acute trauma. In Townsend CM, Beauchamp RD, Evers BM, et al. (eds.), *Sabiston Textbook of Surgery*, 17th edn. Philadelphia, PA: WB Saunders, 2004: pp. 311–44.

49. J. Bayer, R. Lefering, S. Reinhardt, J. Kühle N. P. Südkamp, T. Hammer and Trauma Register DGU. Severity-dependent differences in early management of thoracic trauma in severely injured patients - Analysis based on the Trauma Register DGU. *Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine* 2017;25:10

50. Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, Konstam MA, Mancini DM, Rahko PS, Silver MA, Stevenson LW, Yancy CW. 2009 Focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. *Circulation* 2009; 119:1977–2016.

51. Kirkpatrick AW, Sirois M, Laupland KB, et al. Hand-held thoracic sonography for detecting post-traumatic pneumothoraces: The Extended Focused Assessment with Sonography for Trauma (EFAST). *J Trauma* 2004;57(2):288–95.

52. Kirchhoff C, Stegmaier J, Bogner V, Buhmann S, Mussack T, Kreimeier U, Mutschler W, Biberthaler P: Intrathecal and systemic concentration of NT-proBNP in patients with severe traumatic brain injury. *J Neurotrauma* 2006, 23:943-949.

53. Kia M, Cooley A, Rimmer G, MacDonald T, Barber K, Manion P, Shapiro B, Socey J, Iddings D: The efficacy of B-type natriuretic peptide for early identification of blood loss in traumatic injury. *Am J Surg* 2006; 191:353-357.

54. Kjetil Søreide, Andreas J. Krüger, Anne Line Vårdal, Christian Lycke Ellingsen, Eldar Søreide, Hans Morten Lossius. Epidemiology and Contemporary Patterns of Trauma Deaths: Changing Place, Similar Pace, Older Face. *World J Surg* 2007;31:2092.

55. Knudtson JL, Dort JM, Helmer SD, et al. Surgeon performed ultrasound for pneumothorax in the trauma suite. *J Trauma* 2004; 56(3):527-30.

56. Krug EG, Sharma GK, Lozano R. The Global Burden of Injuries. *Am J Public Health* 2000; 90: 523-526.

57. Kuhn M. Molecular physiology of natriuretic peptide signaling. *Basic Res Cardiol* 2004; 99:76-82.

58. Kursch B. Electron microscopy of theatrium of the heart. *Exp Med Surg* 1956; 13:99-111.

59. Kaleghi M, Al-Omari MA, Kondragunta V, Morgenthaler NG, Struck J, Bergmann A, Mosley TH, Kuoo IJ. Relation of plasma midregional natriuretic peptide to target organ damage in adults with systemic hypertension. *Am J Cardiol* 2009; 103: 1255-1260.

60. Kangawa K, Matsuo H. Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-hANP). *Biochem Biophys Res Commun* 1984;118:131-139.

61. Karmali S, Laupland K, Harrop AR, Findlay C, Kirkpatrick AW, Winston B, Kortbeek J, Crowshoe L, Hameed M. Epidemiology of severe trauma among status aboriginal Canadians: a population-based study. *CMAJ* 2005; 172: 1007-1011.

62. Lateef Wani M, Ahangar AG, Wani SN, Irshad I, Ul-Hassan N: Penetrating cardiac injury: a review. *Trauma Mon* 2012; 17: 230.

63. Li P, Wang D, Lucas J, et al. Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. *Circ Res* 2008; 102:185-192.

64. Livingston DH, Lavery RF, Passannante MR, et al. Admission or observation is not necessary after a negative abdominal computed tomographic scan in patients with suspected blunt abdominal trauma: results of a prospective, multi-institutional trial. *J Trauma* 1998; 44(2):273-80.

65. Liang F, O'Rear J, Schellenberger U, et al. Evidence for functional heterogeneity of circulating B-type natriuretic peptide. *J Am Coll Cardiol* 2007; 49:1071–1078.
66. Liener UC, Rapp U, Lampl L, Helm M, Richter G, Gaus M, Wildner M, Kinzl L, Gebbhard F. Incidence of severe injuries. Results of a population – based analysis. *Unfallchirurg* 2004; 107: 483–490.
67. Lyons RA, Jones SJ, Deacon T, Heaven M. Socioeconomic variation in injury in children and older people: a population based study. *Inj Prev* 2003; 9: 33–37.
68. Labovitz AJ, Noble VE, Bierig M, et al: Focused cardiac ultrasound in the emergent setting: a consensus statement of the American Society of Echocardiography and American College of Emergency Physicians, *J Am Soc Echocardiogr* 23(12):1225-1230, 2010.
69. Lassus J, Gayat E, Mueller C, Peacock WF, Spinar J, Harjola V-P, van Kimmenade R, Pathak A, Mueller T, Di Somma S, Metra M, Pascual-Figal D, Laribi S, Logeart D, Nouira S, Sato N, Potocki M, Parenica J, Collet C, Cohen-Solal A, Januzzi JL Jr, Mebazaa A for the Great-Network. Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: The Multinational Observational Cohort on Acute Heart Failure (MOCA) study. *Int J Cardiol* 2013; 168:2186–2194.
70. Ledwidge M, Gallagher J, Conlon C, Tallon E, O'Connell E, Dawkins I, Watson C, O'Hanlon R, Birmingham M, Patle A, Badabagni MR, Murtagh G, Voon V, Tilson L, Barry M, McDonald L, Maurer B, McDonald K. Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial. *JAMA* 2013; 310:66–74.
71. Legome E, Shockley LW. Trauma A Comprehensive Emergency Medicine Approach. Cambridge University Press 2011.
72. Lee CY, Burnett JC Jr. Natriuretic peptides and therapeutic applications. *Heart Fail Rev* 2007; 12:131–142.
73. Molina EJ, Gaughan JP, Kulp H, et al: Outcomes after emergency department thoracotomy for penetrating cardiac injuries: a new perspective. *Interact Cardiovasc Thorac Surg* 2008; 7: 845.
74. Mrochuk M, Odochartaigh D, Chang E: Rural trauma patients cannot wait: tranexamic acid administration by helicopter emergency medical services. *AirMed J* 2015; 34: 37.

75. Murray CL, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020. *Lancet* 1997; 349: 1498–1504.

76. Murakami S, Nagaya N, Itoh T, et al. C-type natriuretic peptide attenuates bleomycin-induced pulmonary fibrosis in mice. *Am J Physiol Lung Cell Mol Physiol* 2004; 287:L1172–L1177.

77. Mair J. Clinical significance of pro-B-type natriuretic peptide glycosylation and processing. *Clin Chem* 2009; 55:394–397.

78. Maier B, Lefering R, Lehnert M, Laurer HL, Steudel WI, Neugebauer EA, Marzi I: Early versus late onset of multiple organ failure is associated with differing patterns of plasmacytokerin biomarker expression and outcome after severe trauma. *Shock* 2007, 28:668-674.

79. Mandavia DP, Joseph A. Bedside echocardiography in chest trauma. *Emerg Med Clin North Am* 2004; 22(3):601–19.

80. Mantymaa P, Vuolteenaho O, Marttila M, Ruskoaho H. Atrial stretch induces rapid increase in brain natriuretic peptide but not in atrial natriuretic peptide gene expression in vitro. *Endocrinology* 1993; 133:1470 –3.

81. Mathews L, Singh RK: Cardiac output monitoring. *Ann Card Anaesth* 2008, 11:56-68.

82. Mohr AM, Holcomb JB, Dutton RP, et al. Recombinant activated factor VIIa and hemostasis in critical care: a focus on trauma. *Crit Care* 2005; 9(Suppl. 5):S37–42.

83. Nadler EP, Potoka DA, Shultz BL, et al. The high morbidity associated with handlebar injuries in children. *J Trauma* 2005; 58(6):1171–4.

84. Nakao K, Kanagawa K. The natriuretic peptide family 1st Edition. Tokyo L Kodansha Scientific 1995.

85. Nemer M, Lavigne JP, Drouin J, Thibault G, Gannon M, Antakly T. Expression of atrial natriuretic factor gene in heart ventricular tissue. *Peptides* 1986; 7:1147–1152.

86. Pauze DR, Pauze DK: Emergency management of blunt chest trauma in children: an evidence-based approach. *Pediatr Emerg Med Pract* 2013; 10:1.

87. Philip L, Dimitrios K: Critical Care Ultrasound, Elsevier Saunders, ISBN: 978-1-4557-5357-4, 2015

88. Pape H-C, Zelle B, Lohse R, Hildebrand F, Krettek C, Panzica M, Duhme V, Sittaro NA. Evaluation and outcome of patients after polytrauma – Can patients be recruited for long- term follow up? *Injury* 2006;37(12):1197–1203.

89. Pasquier M, Sierro C, Yersin B, et al: Traumatic mitral valve injury after blunt chest trauma: a case report and review of the literature. *J Trauma* 2010; 68: 243.

90. Pemberton CJ, Johnson ML, Yandle TG, Espiner EA. Deconvolution analysis of cardiac natriuretic peptides during acute volumeoverload. *Hypertension* 2000; 36:355–9.
91. Qi W, Kjekshus J, Hall C. Differential responses of plasmaatrial and brain natriuretic peptidestoacutealteration in atrial pressure in pigs. *Scand J Clin Lab Invest* 2000; 60:55 –63.
92. Reddy D, Muckart DJ: Holes in the heart: an atlas of intracardiac injuries following penetrating trauma. *Interact Cardiovasc Thorac Surg* 2014; 19: 56.
93. Rootman DB, Mustard R, Kalia V, et al. Increased incidence of complications in trauma patients cointoxicated with alcohol and other drugs. *J Trauma* 2007;62(3):755–8.
94. Rubattu S, Sciarretta S, MorrielloA, Calvieri C, Battistoni A, Volpe M.NPR-C: acomponent of the natriuretic peptide family with implications in human diseases. *J Mol Med* 2010; 88:889–897.
95. Rubattu S, Sciarretta S, Valenti V, Stanzione R, Volpe M. Natriuretic peptides: an updateon bioactivity, potential therapeutic useand implication in cardiovascular diseases. *Am J Hypertens* 2008; 21:733–741.
96. RestrepoCS, Lemos DF, Lemos JA, et al: Imagingfindings in cardiac tamponade with emphasis on CT, *Radiographics* 27:1595-1610, 2007
97. Roberts I, Shakur H, Ker K, Coats T, CRASH-2 Trial Collaborators: Antifibrinolytic drugs for acute traumatic injury (review). *Cochrane Database Syst Rev* 2011; 1:CD004896.
98. Rosen C, LegomeEL, Wolfe RE. Blunt abdominal trauma. In Adams J (ed.), *Emergency Medicine*. Philadelphia, PA: WB Saunders, 2008: pp. 827–40.
99. Schultz JM, Trunkey DD: Blunt cardiac injury. *Crit Care Clin* 2004; 20: 57.
100. Shamsi F, Tai JM, Bokhari S: Coronary artery dissection after blunt chest trauma. *BMJ* 2014; Case Rep September 22.
101. Skinner DL, Laing GL, Rodseth RN, Ryan L, Hardcastle TC, Muckart DJ: Blunt cardiac injury in critically ill trauma patients: a singlecentrexperience. *Injury* 2014; 46: 66.
102. Smith MW, Espiner EA, Yandle TG, Charles CJ, Richards AM. Delayed metabolism of human brain natriuretic peptide reflects resistance to neutral endopeptidase. *J Endocrinol* 2000; 167:239 –46.

103. Spencer RJ, Sugumar H, Jones E, Farouque O: Commotio cordis: a case of ventricular fibrillation caused by a cricket ball strike to the chest. *Lancet* 2014; 383: 1358.

104. Sudoh T, Kangawa K, Minamino N, Matsuo H. A new natriureticpeptide in porcine brain. *Nature* 1988;332:78–81.

105. Sudoh T, Minamino N, Kangawa K, Matsuo H. C-type natriureticpeptide (CNP): a new member of natriuretic peptide family identified in porcine brain. *Biochem Biophys Res Commun* 1990;168:863–870.

106. Sybrandy KC, Cramer MJ, Burgersdijk C: Diagnosing cardiaccontusion: old wisdom and new insights. *Heart* 2003; 89: 485.

107. Sabrane K, Kruse MN, Fabritz L, et al. Vascular endothelium is critically involved in the hypotensiveand hypovolemicactions of atrial natriuretic peptide. *J Clin Invest* 2005; 115:1666–1674.

108. Santaniello JM, Esposito TJ, Luchette FA, et al. Mechanism of injury does not predict acuity or level of service need: field triagecriteria revisited. *Surgery* 2003; 134(4):698–703.

109. Savarese G, Trimarco B, Dellegrattaglie S, Prastaro M, Gambardella F, Rengo G, Leosco D, Perrone-Filardi P. Natriuretic peptide-guided therapy in chronic heart failure: a meta-analysis of 2,686 patients in 12 randomized trials. *PLoS ONE* 2013; 8: e58287.

110. Sawada Y, Suda M, Yokoyama H, et al. Stretch-induced hypertrophic growth of cardiocytes and processing of brain-type natriuretic peptidearecontrolled by proprotein-processing endoprotease furin. *J Biol Chem* 1997; 272:20545–20554.

111. Seidman CE, Bloch KD, Zisfein J, et al. Molecular studies of theatrial natriuretic factor gene. *Hypertension* 1985; 7:I31–I34.

112. Semenov AG, Postnikov AB, Tamm NN, et al. Processing of pro-brain natriuretic peptide is suppressed by O-glycosylation in the region close to thecleavage site. *Clin Chem* 2009; 55:489–498.

113. Seronde MF, Gayat E, Logeart D, Lassus J, Laribi S, Boukef R, Sibellas F, Launay JM, Manivet P, Sadoune M, Nouira S, Cohen Solal A, MebazaaA. Great Network. Comparison of the diagnosticand prognostic values of B-typeand atrial-type natriuretic peptides in acute heart failure. *Intern J Cardiol* 2013; 168:3404–3411.

114. Schmidt GA, Koenig S, Mayo PH: Shock: ultrasound to guide diagnosis and therapy, *Chest*, 142:1042-1048, 2012.

115. Scotland RS, Cohen M, Foster P, Lovell M, Mathur A, Ahluwalia A, Hobbs AJ. C-type natriuretic peptide inhibits leukocyte recruitment and platelet-leukocyte interactions via suppression of P-selectin expression. *Proc Natl Acad Sci USA* 2005; 102:14452–14457.

116. Talving P, Demetriades D: Cardiac trauma during teenage years. *Pediatr Clin North Am* 2014; 61: 111.

117. Tintinalli KE. Stapeczynski JS, MaOJ, Yealy DM, Mecker HD, Cline DM. *Tintinalli's Emergency Medicine A Comprehensive Study Guide 8th Edition*. American College of Emergency Physicians, McGraw Hill Education 2011.

118. Tsuneyoshi H, Nishina T, Nomoto T, et al. Atrial natriuretic peptide helps prevent late remodeling after left ventricular aneurysm repair. *Circulation* 2004; 110:II174–179.

119. Tamura N, Ogawa Y, Chusho H, et al. Cardiac fibrosis in mice lacking brain natriuretic peptide. *Proc Natl Acad Sci USA* 2000; 97:4239 –44.

120. van Veldhuisen DJ, Linssen GC, Jaarsma T, van Gilst WH, Hoes AW, Tijssen JG, Paulus WJ, Voors AA, Hillege HL. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. *J Am Coll Cardiol* 2013; 61:1498–1506.

121. Volpe M, Francia P, Tocci G, Rubattu S, Cangianiello S, Rao MAE, Trimarco B, Condorelli M. Prediction of long-term survival in chronic heart failure by multiple biomarker assessment: A 15-year prospective follow-up study. *Clin Cardiol* 2010; 33:700–707.

122. Volpe M, Rubattu S, Burnett Jr J. Natriuretic peptides in cardiovascular diseases: current use and perspectives. *Eur Heart J* 2014; 35:419-425.

123. Wu C, Wu F, Pan J, Morser J, Wu Q. Furin-mediated processing of Pro-C-type natriuretic peptide. *J Biol Chem* 2003; 278:25847–25852.

124. www.tarn.ac.uk

125. Yan W, Wu F, Morser J, Wu Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. *Proc Natl Acad Sci U S A* 2000; 97:8525–8529.