

**“OVIDIUS” UNIVERSITY OF CONSTANȚA**

**DOCTORAL SCHOOL OF MEDICINE**

**DOCTORAL DOMAIN OF MEDICINE**

**DIABETES TYPE II RISK FACTOR FOR  
HEPATOCELLULAR CARCINOMA**

**ABSTRACT OF DOCTORAL DISSERTATION**

**Supervisor,  
Prof.univ.dr. ULMEANU VICTORIA**

**PhD student,  
GHEORGHE ANDREEA-DANIELA**

**CONSTANTA, 2015**

## Content

### PARTEA GENERALĂ

|                                                                                           |    |
|-------------------------------------------------------------------------------------------|----|
| INTRODUCTION.....                                                                         | 3  |
| CARCINOMUL HEPATOCELULAR.....                                                             | 5  |
| Epidemiology of hepatocellular carcinoma.....                                             | 5  |
| Risk factors involved in the occurrence of HCC and hepatic carcinogenesis mechanisms..... | 7  |
| DIABETES MELLITUS AND LIVER DISEASE.....                                                  | 22 |
| Non-alcoholic steatosis and steatohepatitis .....                                         | 23 |
| The pathogenesis of insulin resistance in patients with chronic hepatitis C .....         | 24 |
| Changes in pancreatic beta cells in patients with chronic liver disease .....             | 25 |
| Assessment of diabetes in patients with chronic liver disease .....                       | 26 |
| Impact of antidiabetic agents on patients with chronic liver disease .....                | 27 |
| HEPATOCELLULAR CARCINOMA – DIAGNOSTIC AND SCREENING.....                                  | 30 |
| Clinical features .....                                                                   | 30 |
| Laboratory findings.....                                                                  | 34 |
| Imaging.....                                                                              | 38 |
| SPECIAL PART                                                                              |    |
| AIMS AND OBJECTIVES.....                                                                  | 43 |
| MATERIAL AND METHODS.....                                                                 | 44 |
| Inclusion and exclusion criteria.....                                                     | 44 |
| Study protocol.....                                                                       | 45 |
| Data collection and statistical analysis.....                                             | 46 |
| Study limitation.....                                                                     | 46 |
| Ethical problems.....                                                                     | 46 |
| RESULTS AND DISCUSSION .....                                                              | 47 |
| Demographic characteristics of study group.....                                           | 47 |
| Analysis of risk factors involved in the occurrence of HCC.....                           | 51 |
| Study on the impact of type 2 diabetes in patients with HCC.....                          | 65 |
| Multivariate analysis of risk of developing HCC.....                                      | 91 |
| CONCLUSION .....                                                                          | 93 |
| REFERENCES .....                                                                          | 96 |

## INTRODUCTION

Hepatocellular carcinoma is the 6th neoplasia incidence and the third leading cause of cancer death in the world. Throughout the world are diagnosed each year approximately 630,000 new cases of HCC. Hepatocellular carcinoma mortality index reach 94% [1].

The most common and known risk factor are viral infection, virus B or C, toxic factors - alcohol and aflatoxin, immune diseases like primary biliary cirrhosis plus in recent years metabolic risk factors like diabetes and non-alcoholic hepatic steatosis

A possible explanation for the association of diabetes with hepatocellular carcinoma is that diabetes is often part of the metabolic syndrome characterized by clinical and biochemical changes that include alterations in glucose metabolism and insulin causing hyperglycemia and hyperinsulinemia, dyslipidemia and hypertension. Metabolic disorders associated with metabolic syndrome can cause diabetes and furthermore contribute to the development of NAFLD (non-alcoholic fatty liver disease) and its most severe form non-alcoholic steatohepatitis, so HCC can result from liver cirrhosis caused by NAFLD.

Thus appears to justified an accurate assessment of the risk factors of hepatocellular carcinoma to develop new therapeutic modalities and correct assessment of the evolution and prognosis.

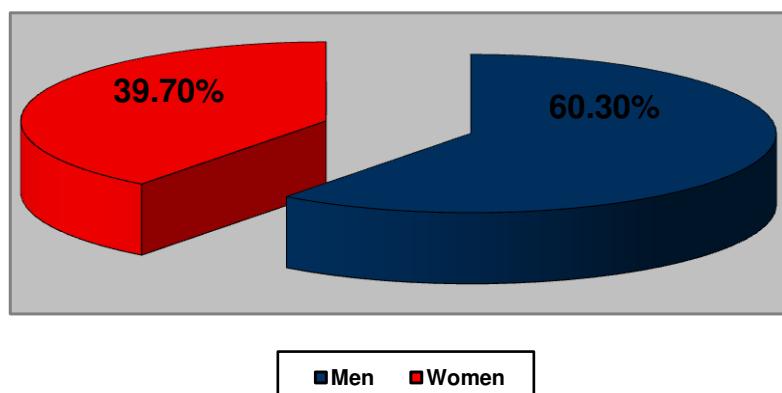
## AIM AND OBJECTIVES

- assessment of the main risk factors associated with the development of hepatocellular carcinoma
- description of the clinical features and metabolic patients with type 2 DM and HCC.
- exploring the link between type 2 DM and HCC and establishing a temporal relationship between type 2 DM and HCC occurs
- The impact of oral antidiabetics and insulin therapy in HCC occurrence.
- The impact of diabetes and other risk factors on the development of hepatocellular carcinoma

## MATERIAL AND METHODS

It is a retrospective study conducted in Medical Clinic, Oncology and Diabetes and Metabolic Diseases of the Emergency County Hospital “St. Andrei” Constanța, for a period of four years, from 2009 to 2012 and includes a total of 156 patients diagnosed with hepatocellular carcinoma.

### ***Inclusion criteria:***


- aged over 18 years.
- Patients with HCC diagnosed by abdominal ultrasound, CT, MRI, laboratory tests.
- Patients with confirmed type 2 diabetes treated with oral antidiabetic agents and / or insulin.

## RESULTS AND DISCUSSION

### **Demographic characteristics of the batch total**

The study included a total of 156 patients diagnosed with HCC, later total group was divided into subgroups according to the study objectives and parameters evaluated.

The distribution of cases according to sex show predominance in men 94 HCC cases (60.3%) vs women 62 cases (39.7%), consistent with the data from the literature indicating the male gender as a risk factor for hepatocellular carcinoma.



*Figure No. 1 Distribution of patients by gender*

The average age was 64.39 years for men and 69.53 years for women. (Figure no.2)

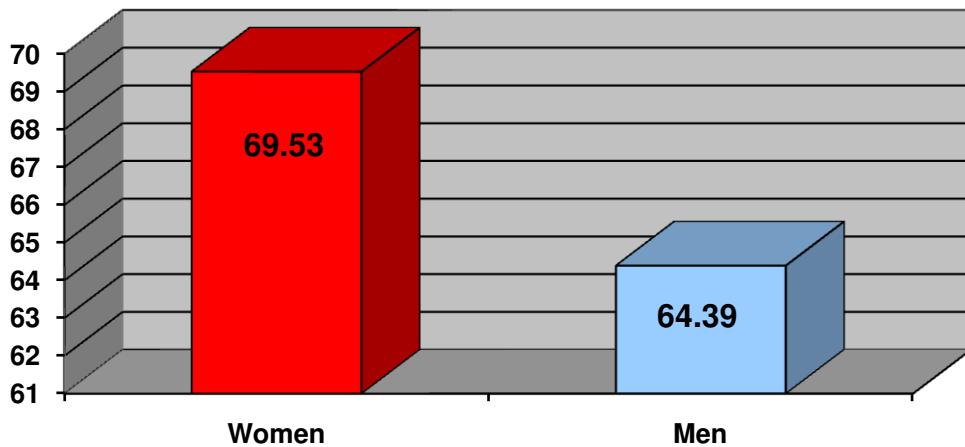



Figure no.2 distribution by age and sex

#### ***Analysis of risk factors involved in the occurrence of HCC***

Regarding risk factors for HCC occurrence in the studied group distribution was as follows taking into account the most frequent risk factors known: the highest percentage of patients with HCC were associated C virus infection 32.7% of cases, followed by infection with virus B 21.8%, and 14.7% of the associate alcohol. A total of 48 cases (30.76%) were considered unknown origin, patients are B or C virus infection and also deny alcohol.

Also 3.20% of the cases associating mixed etiology viruses B and C infection, HCV infection, among cases with associated 3.84% and alcohol and 2.56% of the cases with HBV associated alcohol consumption.

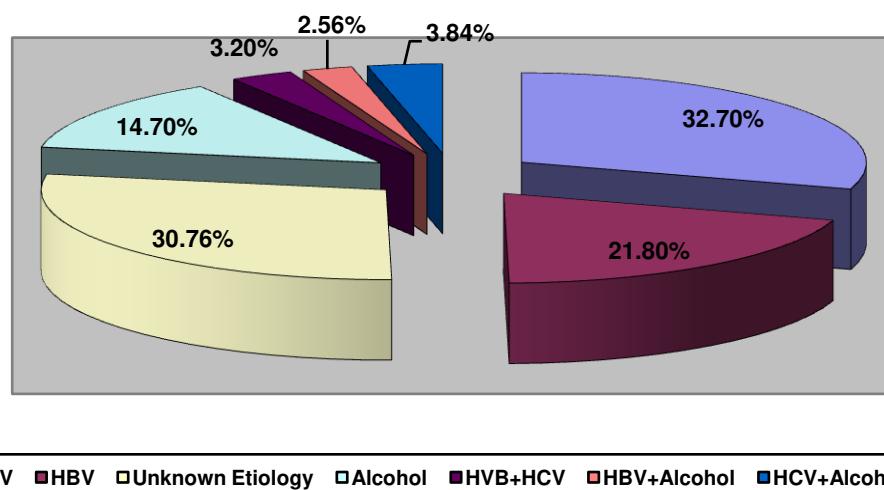



Figure 3. Distribution of cases according to risk factors for HCC

## **Liver cirrhosis**

Patients with liver cirrhosis regardless of the etiology have an increased risk for developing HCC. Studies have shown that age, male gender and disease severity are predictors for the occurrence of HCC regardless of the the etiology of cirrhosis.

In the study of the 156 total, patients with HCC 94 (60.3%) had cirrhosis at diagnosis of HCC. It notes the predominance of males in the study group. The age of patients in the study varied between 38 and 90 years with a mean age of 65.48 years and found the occurrence of liver cirrhosis in older women, compared to men.

*Table 1 Distribution of cases of liver cirrhosis by sex*

|            |       | <b>Liver cirrhosis</b> | <b>Total</b> |
|------------|-------|------------------------|--------------|
| <b>Sex</b> | Women | 38                     | 38           |
|            | Man   | 56                     | 56           |
| Total      |       | 94                     | 94           |

## **Study on the impact of diabetes mellitus in patients with HCC**

### **Comparative analysis of patients with HCC diabetics and non-diabetics**

Diabetes was associated with HCC development in recent years, trials suggesting involvement in hepatic carcinogenesis of chronic hiperisulinemia and insulin-like growth factor.

In total lot of 156 patients with HCC studied, the presence of diabetes mellitus type II is represented by a total of 37 cases which represents a rate of 23.7%. Data from the literature show an incidence of DM variable, thereby a study in Taiwan show an incidence of 15.8% of cases. [44], while another study by JA Davila United States in 2005 proves the presence of diabetes in patients with HCC in a percentage of 43.3% [45].

#### **1. Distribution of cases according to sex and age**

Both groups showed a higher incidence of HCC in men, 61.3% in HCC group respectively 56.8% in the group of patients with HCC and DZ data show no statistically significant difference between the two groups ( $p > 0.05$ ), the data are comparable with the literature indicates males as risk factor for hepatocellular carcinoma.

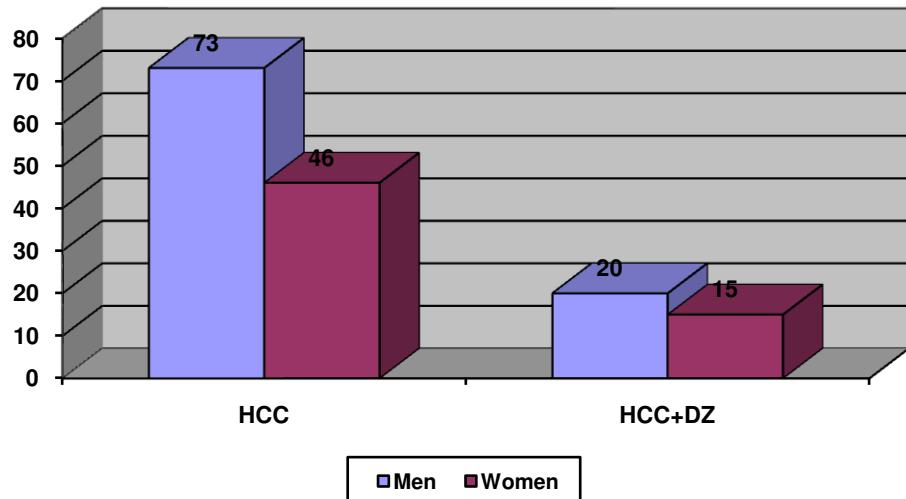



Figure No. 4 Distribution of lots by gender

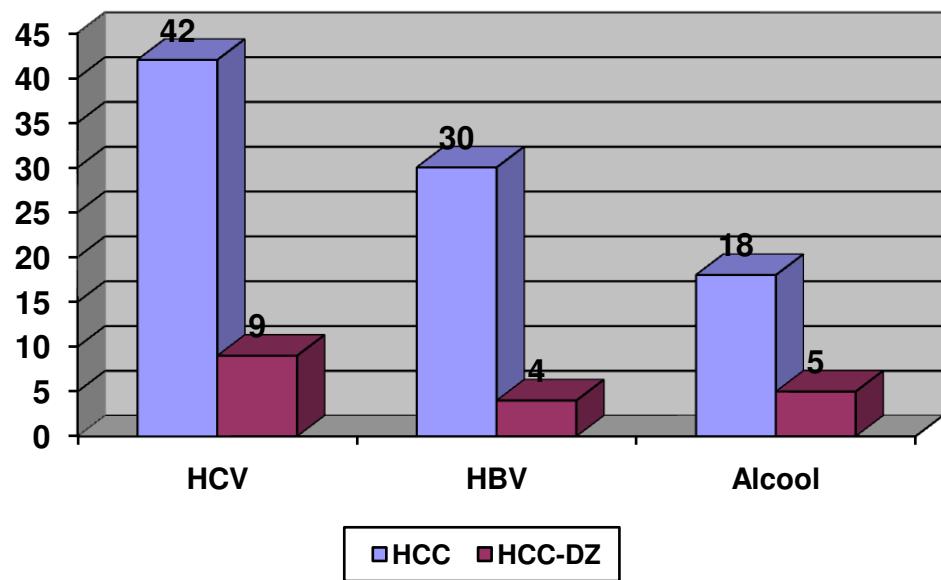
The average age in the group of HCC was 70.0 years, compared to the group of diabetic patients in which the mean age was of 65.38 years, statistically significant difference  $p < 0.05$  ( $p = 0.03$ ) so the data indicating the occurrence of HCC in younger diabetic patients compared to non-diabetics.

Table no.2 Correlation according to age

|                |        | Age                     | DZplusHHC |
|----------------|--------|-------------------------|-----------|
| Spearman's rho | Age    | Correlation coefficient | 1,000     |
|                |        | Sig. (2-tailed)         | ,171      |
|                |        | N                       | 156       |
|                | DZ-HHC | Correlation coefficient | ,033      |
|                |        | Sig. (2-tailed)         | 1,000     |
|                |        | N                       | 156       |

\*. Significant correlation level 0.05 (2-tailed).

## 2. Distribution of cases according to the presence of other risk factors


In the group of non-diabetic patients with HCC, out of 119 , 42 cases (35.3%) has associated with HCV infection, 30 cases (25.2%) B viral infection and 18 (15.1 %) associated with alcohol consumption.

Of the total 37 cases HCC-DM group, 9 cases (24.3%) presented associated HCV infection, 4 cases (10.8%) were associated with HBV infection and 5 cases (13.5%) associated with alcohol consumption .

It is known that HCV infection has a distinct metabolic profile, associating insulin resistance (IR), hepatic steatosis and cholesterol, thus outlining a particular Metabolic Syndrome. Insulin resistance may thus lead to the emergence of type 2 diabetes.

*Table 3. Distribution of lots with the combinations of other risk factors*

| Lot    |                | Alcohol | VHC  | VHB  |
|--------|----------------|---------|------|------|
| HCC    | Total          | 119     | 119  | 119  |
|        | Medie          | .15     | .35  | .25  |
|        | Std deviation. | .360    | .480 | .436 |
|        | Minim          | 0       | 0    | 0    |
|        | Maxim          | 1       | 1    | 1    |
| HCC-DZ | Total          | 37      | 37   | 37   |
|        | Medie          | .14     | .24  | .11  |
|        | Std. deviation | .347    | .435 | .315 |
|        | Minim          | 0       | 0    | 0    |
|        | Maxim          | 1       | 1    | 1    |



*Figure 5. Distribution of cases according to the association of other risk factors*

### 3. Distribution of cases according to the presence of liver cirrhosis

Cirrhosis of the liver in the non-diabetic group was present in a higher percentage compared to the group of diabetic patients, 78 cases (65.5%) and 16 cases (43.2%), which indicates that the hepatocarcinoma in patients with diabetes mellitus occurs in the absence of the hepatic cirrosis, comparison between the two groups is statistically significant ( $p < 0.05$ ).

*Table 4. Statistical correlation between diabetes and liver cirrhosis*

|                |                 |                         | DZ-HHC | Ciroza Hepatica |
|----------------|-----------------|-------------------------|--------|-----------------|
| Spearman's rho | DZ-HHC          | Correlation coefficient | 1,000  | -,194*          |
|                |                 | Sig. (2-tailed)         | .      | ,015            |
|                |                 | N                       | 156    | 156             |
|                | Ciroza Hepatica | Correlation coefficient | -,194* | 1,000           |
|                |                 | Sig. (2-tailed)         | ,015   | .               |
|                |                 | N                       | 156    | 156             |

\*. Significant correlation level 0.05 (2-tailed).

### 4. Analysis of cases according to aspect of liver tumor

It is observed in the studied groups a higher percentage of multiple tumors in the group HCC-DM (51.4%) compared with non-diabetic patients group (47.9%) but no statistically significant difference ( $p > 0.05$ ), data are comparable with data from the literature specialty.

Following data depending on the size of liver tumor seen in both groups studied higher percentage of tumors with diameter greater than 3cm 83.1% for non-diabetic patients group and 54.4% respectively for the group of diabetic patients.

Comparing the two groups based on the size of liver tumors is observed statistically significant difference ( $p < 0.05$ ), so it can be concluded that in non-diabetic patients were observed more advanced HCC.

The data are not consistent with the literature; a study by Deepak N. reveal more advanced HCC patients compared to non-diabetics diabetics tumors larger than 3 cm are present in a higher percentage in this study in diabetic patients [46]

*Table No.5 Correlation between tumor size and the presence of diabetes*

|                |            | Tumor size              | DZplusHHC |
|----------------|------------|-------------------------|-----------|
| Spearman's rho | Tumor size | Correlation coefficient | 1,000     |
|                |            | Sig. (2-tailed)         | ,006      |
|                |            | N                       | 93        |
| DZ-HHC         | DZ-HHC     | Correlation coefficient | -,286**   |
|                |            | Sig. (2-tailed)         | ,006      |
|                |            | N                       | 93        |
|                |            |                         | 156       |

\*\*. Significant correlation level 0.01 (2-tailed).

Portal vein thrombosis is present in the group of non-diabetic patients the percentage of 47.1% compared to the group of diabetic patients in which portal vein thrombosis was present in 18.9% of cases studied.

Depending on the presence of portal vein thrombosis is observed that there is statistically significant difference between the two groups studied, which means more advanced forms of HCC as were found in the studied groups in non-diabetic patients ( $p < 0.05$ ).

The data are not consistent with the literature, studies showing the presence of portal vein thrombosis percent higher in diabetic patients.

*Table 6 Correlation between the presence of VP thrombosis and diabetes*

|                |             | Portal vein thrombosis  | DZ-HHC |
|----------------|-------------|-------------------------|--------|
| Spearman's rho | Tromboza VP | Correlation coefficient | 1,000  |
|                |             | Sig. (2-tailed)         | ,002   |
|                |             | N                       | 156    |
| DZ-HHC         | DZ-HHC      | Correlation coefficient | 1,000  |
|                |             | Sig. (2-tailed)         | ,002   |
|                |             | N                       | 156    |

\*\*. Significant correlation level 0.01 level (2-tailed).

## 5. Analysis of cases according to laboratory findings

Comparing laboratory findings between the two groups studied are not observed statistically significant differences, except as expected blood glucose values that are statistically significantly higher in the group of diabetic patients. The data are presented in Tables 7

*Table 7 Biological parameters in parameters studied groups*

| Parameters        | Diabetes  | Non-diabetes | P value |
|-------------------|-----------|--------------|---------|
| Bilirubin         | 3.73      | 3.10         | 0.582   |
| Hemoglobin        | 11.76     | 11.22        | 0.280   |
| Platelets         | 133648.65 | 155705.88    | 0.435   |
| APTT              | 75.87     | 71.94        | 0.274   |
| Glucose           | 195.16    | 113.99       | 0.00    |
| Total cholesterol | 157.14    | 199.58       | 0.091   |
| Lipids            | 146.17    | 119.00       | 0.492   |

## 6. Analysis of cases according to the AFP

The average values of AFP were higher in the group of non-diabetic patients (AFP = 4386.99ng / ml) compared with diabetic group (AFP = 3329.12ng / ml) but not statistically significant difference was found between groups ( $p > 0.05$ ). Data are consistent with those in the literature.

There is no significance between sex, age, Child-Pugh class, tumor appearance, tumor size, presence of metastases and AFP.

Comparing the presence of thrombosis AFP and VP statistical significance is observed in the group of non-diabetic patients ( $p < 0.05$ ), in the group of diabetic patients is not observed statistical significance between the presence of VP thrombosis and AFP value ( $p > 0.05$ ).

*Table 8 Correlation between the presence of thrombosis VP and AFP value*

|                | DZ-HHC |                         | AFP   | Portal Vein Thrombosis |
|----------------|--------|-------------------------|-------|------------------------|
| Spearman's rho | No     | Correlation coefficient | 1,000 | ,200*                  |
|                |        | AFP                     | .     | ,030                   |
|                |        | Sig. (2-tailed)         |       |                        |
|                |        | N                       | 118   | 118                    |
|                | Yes    | Correlation coefficient | ,200* | 1,000                  |
|                |        | Portal Vein Thrombosis  | ,030  | .                      |
|                |        | Sig. (2-tailed)         |       |                        |
|                |        | N                       | 118   | 119                    |

\*. Significant correlation level 0.05 (2-tailed).

## 7. Analysis of cases according to metastases

Of the 31 included in the study (19.1%) had metastases at diagnosis. 23 cases in the group of non-diabetic patients, and 8 patients in the group of diabetic patients.

*Tabel nr 9 Distribuția cazurilor în funcție de prezența metastazelor*

| DZ-HHC |       |       | Total | Percent | Valid percent | Cumulativ percent |
|--------|-------|-------|-------|---------|---------------|-------------------|
| No     | Valid | No    | 96    | 80,7    | 80,7          | 80,7              |
|        |       | Yes   | 23    | 19,3    | 19,3          | 100,0             |
|        |       | Total | 119   | 100,0   | 100,0         |                   |
| Yes    | Valid | No    | 29    | 78,4    | 78,4          | 78,4              |
|        |       | Yes   | 8     | 21,6    | 21,6          | 100,0             |
|        |       | Total | 37    | 100,0   | 100,0         |                   |

Analyzing by gender, metastases are observed in males in both groups of patients with no statistically significant difference ( $p > 0.05$ ). There are also no statistical significance between age and the presence of metastases.

## 8. Analysis of cases according to CLIP score

CLIP score system is the latest assessment of prognosis for patients with HCC. The score combines data on tumor characteristics (morphology, serum AFP levels, and the presence or absence of portal vein thrombosis with an index of severity of cirrhosis to determine a prognostic score ranges from 0 to 6.

Comparing the two groups was observed in the group of diabetic patients that the most patients have a CLIP score 0 (40.5%) which shows a median survival of 42.5 months compared with non-diabetic group that most patients were 2 score falling by an average of 16.5 spraviețuire months statistically significant difference ( $p < 0.05$ )

Table no.10 Correlation between the 2 groups according to CLIP score

| DZ-HHC |       | Total | Percent | Valid Percent | Cumulativ percent |
|--------|-------|-------|---------|---------------|-------------------|
| No     | Valid | 0     | 17      | 14,3          | 14,3              |
| Yes    | Valid | 1     | 20      | 16,8          | 31,1              |
|        |       | 2     | 36      | 30,3          | 61,3              |
|        |       | 3     | 30      | 25,2          | 86,6              |
|        |       | 4     | 11      | 9,2           | 95,8              |
|        |       | 5-6   | 5       | 4,2           | 100,0             |
|        |       | Total | 119     | 100,0         | 100,0             |
|        |       | 0     | 15      | 40,5          | 40,5              |
|        |       | 1     | 9       | 24,3          | 64,9              |
|        |       | 2     | 10      | 27,0          | 91,9              |
|        |       | 3     | 2       | 5,4           | 97,3              |
|        |       | 4     | 1       | 2,7           | 100,0             |
|        |       | Total | 37      | 100,0         | 100,0             |

Tabel no 11 Correlations of CLIP score in DM patients

|                |        |                         | DZ-HHC              | CLIP scor           |
|----------------|--------|-------------------------|---------------------|---------------------|
| Spearman's rho | DZ-HHC | Correlation coefficient | 1,000               | -,342 <sup>**</sup> |
|                |        | Sig. (2-tailed)         | .                   | ,000                |
|                |        | N                       | 156                 | 156                 |
| CLIP scor      |        | Correlation coefficient | -,342 <sup>**</sup> | 1,000               |
|                |        | Sig. (2-tailed)         | ,000                | .                   |
|                |        | N                       | 156                 | 156                 |

\*\*. Significant correlation level 0.01 (2-tailed).

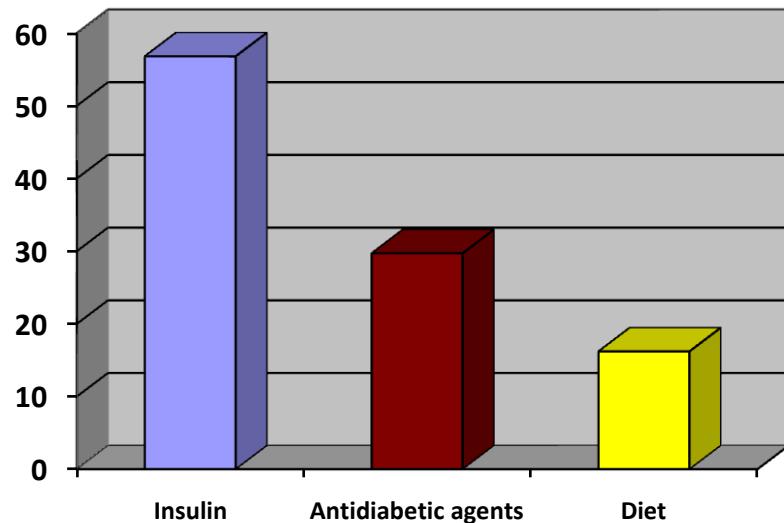
Looking at CLIP score according to gender in the two groups is not observed statistically significant association ( $p > 0.05$ ).

*Table No.12 Correlation of CLIP score by gender*

|                |     | DZ-HHC                  |                 | CLIP score | Sex  |  |
|----------------|-----|-------------------------|-----------------|------------|------|--|
| Spearman's rho | No  | Correlation coefficient | 1,000           | ,052       |      |  |
|                |     | CLIP score              | Sig. (2-tailed) | ,          | ,572 |  |
|                |     | N                       | 119             | 119        |      |  |
|                | Yes | Correlation coefficient | ,052            | 1,000      |      |  |
|                |     | Sex                     | Sig. (2-tailed) | ,572       | ,    |  |
|                |     | N                       | 119             | 119        |      |  |
|                |     | Correlation coefficient | 1,000           | -,162      |      |  |
|                |     | CLIP score              | Sig. (2-tailed) | ,          | ,339 |  |
|                |     | N                       | 37              | 37         |      |  |
|                |     | Correlation coefficient | -,162           | 1,000      |      |  |
|                |     | Sex                     | Sig. (2-tailed) | ,339       | ,    |  |
|                |     | N                       | 37              | 37         |      |  |

Analyzing the CLIP score according to age is observed statistically significant association in the sense the presence of a higher score once with age ( $p < 0.05$ ) in the group of non-diabetic patients. In the group of patients with diabetes there is statistically significant association between CLIP score and age.

*Tabel no.13 Correlation of CLIP score by age*


|                |     | DZ-HHC                  |                 | CLIP score | Varsta |  |
|----------------|-----|-------------------------|-----------------|------------|--------|--|
| Spearman's rho | No  | Correlation coefficient | 1,000           | -,219*     |        |  |
|                |     | CLIP score              | Sig. (2-tailed) | ,          | ,017   |  |
|                |     | N                       | 119             | 119        |        |  |
|                | Yes | Correlation coefficient | -,219*          | 1,000      |        |  |
|                |     | Age                     | Sig. (2-tailed) | ,017       | ,      |  |
|                |     | N                       | 119             | 119        |        |  |
|                |     | Correlation coefficient | 1,000           | -,122      |        |  |
|                |     | CLIP score              | Sig. (2-tailed) | ,          | ,471   |  |
|                |     | N                       | 37              | 37         |        |  |
|                |     | Correlation coefficient | -,122           | 1,000      |        |  |
|                |     | Age                     | Sig. (2-tailed) | ,471       | ,      |  |
|                |     | N                       | 37              | 37         |        |  |

### **The study of patients group with diabetes**

The group of diabetic patients is made up of a total of 37 patients, the majority of male 21 cases, 16 female. Descriptive data were presented earlier versus the non-diabetic patients.

Treatment of diabetes might affect cancer incidence and mortality [47]. Since the 1960s, metformin (one of the most popular biguanide) has become first-line therapy in diabetic type 2 diabetes worldwide [48]. It has been shown to have a protective potential against cancer as observed in a pilot study on the incidence of Scotland [49] and in a cohort study conducted later [50] in Saskatchewan, Canada [51].

Analyzing according existing antidiabetic notice the following: 21 cases have oral antidiabetic therapy (56.8%), 11 cases insulin (29.7%) and 6 cases have no therapy, only diet 16.2%



*Figure no 6 Distribution of cases according to the type of therapy*

According to the oral therapy most cases have as treatment Sulfonylureas 12 cases (32.4%), followed by treatment with metformin in 8 cases (21.6%), and combination of both in 1 patient (2.7%).



*Figure No. 7 Distribution of cases according to the type oral therapy*

The distribution by sex is as follows: oral antidiabetic therapy for most patients are men 14 cases and only 7 women. Regarding insulin therapy most cases were women, 8 cases and only 3 men. (table 14 and 15)

*Table no.14 Distribution by oral therapy and gender*

| DZ-HHC |       |       | Oral therapy |     | Total |
|--------|-------|-------|--------------|-----|-------|
|        |       |       | No           | Yes |       |
| da     | Sex   | Women | 9            | 7   | 16    |
|        |       | Men   | 7            | 14  | 21    |
|        | Total |       | 16           | 21  | 37    |

*Table no.15 Distribution by insulin therapy and gender*

| DZ-HHC |       |       | Insulin |     | Total |
|--------|-------|-------|---------|-----|-------|
|        |       |       | No      | Yes |       |
| da     | Sex   | Women | 8       | 8   | 16    |
|        |       | Men   | 17      | 3   | 20    |
|        | Total |       | 25      | 11  | 36    |

There were no statistically significant differences between type of therapy and the AFP value, tumor type or presence of portal vein thrombosis ( $p > 0.05$ ), but comparative statistical analysis of the type of therapy with tumor size data show statistically significant in patients treated with oral antidiabetic in the sense that these patients have tumor size  $< 3$  cm ( $p < 0.05$ )

*Table No.16 Correlation between oral therapy and tumor size*

|                |                 | DZ-HHC |                                            | Oral therapy     | Tumor size     |
|----------------|-----------------|--------|--------------------------------------------|------------------|----------------|
| Spearman's rho | Oral therapy    | Yes    | Correlation coefficient<br>Sig. (2-tailed) | 1,000<br>. ,450* | ,036<br>22     |
|                | Tumor size (Cm) | yes    | Correlation coefficient<br>Sig. (2-tailed) | ,450*<br>,036    | 1,000<br>. ,22 |
|                |                 |        | N                                          | 37               |                |
|                |                 |        | N                                          |                  | 22             |

\*. Significant correlation level 0.05 (2-tailed).

*Table No.17 Correlation between insulin therapy and tumor size*

|                |                 | DZ-HHC |                                            | Tumor size     | Insulin therapy |
|----------------|-----------------|--------|--------------------------------------------|----------------|-----------------|
| Spearman's rho | Tumor size (Cm) | Yes    | Correlation coefficient<br>Sig. (2-tailed) | 1,000<br>. ,22 | -,304<br>21     |
|                | Insulin therapy | Yes    | Correlation coefficient<br>Sig. (2-tailed) | -,304<br>,180  | 1,000<br>. ,36  |
|                |                 |        | N                                          |                |                 |
|                |                 |        | N                                          | 21             |                 |

Regarding glycated hemoglobin values were higher in women with a mean of 8.68 compared with men, with a mean of 8, but with no statistically significant differences ( $p > 0.05$ ).

In addition was observed no statistically significant associations between type of therapy and glycated hemoglobin values.

*Table no.18 Glycated hemoglobin values according to gender*

| Sex   |                   | N  | Minim | Maxim | Medie | Std.deviation |
|-------|-------------------|----|-------|-------|-------|---------------|
| Women | Glycated Hb value | 16 | 6,5   | 11,8  | 8,688 | 1,6665        |
|       | Valid Nr.         | 16 |       |       |       |               |
| Men   | Glycated Hb value | 19 | 5,2   | 9,8   | 8,000 | 1,3988        |
|       | Valid Nr.         | 19 |       |       |       |               |

In respect to the time from the date of diabetes diagnosis and date of diagnosis of HCC, diabetes has been diagnosed with at least 6 months prior to HCC in 34 patients out of 37 cases (91.89%).

The time between the diagnosis of DM and HCC diagnosis was calculated accurately so diabetes was present before the HCC with a mean of  $54.43 \pm 41.4$  months, duration of diabetes was higher in patients treated with insulin ( $87.42 \pm 39.6$  months) compared to patients treated with oral antidiabetic agents ( $53.64 \pm 40.5$  months), the data being comparable with those in the literature.

### **Multivariate analysis of risk of developing HCC**

Multivariate analysis of risk of developing HCC in patients with diabetes was calculated as compared with a control group of 160 patients number in relation to the data of the the group of HCC patients in terms of age, gender, history of diabetes .

Data show that type 2 diabetes is associated with an increased risk of HCC regardless of the gender, age or other risk factors as association HCV, HBV or alcohol consumption data were comparable to those in the literature.

*Tabel no 19 Risck of developing HCC in patients with DM*

| Cases     | DZ+         | DZ-         | OR             | P value |
|-----------|-------------|-------------|----------------|---------|
| Total     |             |             |                |         |
| HHC (156) | 37 (23.7%)  | 119 (76.3%) | 3.10 (2.1-4.2) | <0.05   |
| CO (160)  | 21 (13.2%)  | 139 (86.8%) | 2.07 (1.4-2.7) | <0.05   |
| Men       |             |             |                |         |
| HHC (94)  | 21 (56.8%)  | 73 (61.3%)  | 3.11 (1.9-4.3) | <0.05   |
| CO (97)   | 13 (13.41%) | 84 (86.59%) | 1.96 (1.2-2.7) | <0.05   |
| Women     |             |             |                |         |
| HHC (62)  | 16 (43.2%)  | 46 (38.7%)  | 3.08 (1.3-6.9) | <0.05   |
| CO (63)   | 7 (11.11%)  | 56 (88.88%) | 2.48 (1.2-5.8) | <0.05   |

Regarding therapy can see that most patients were treated with Sulphonylureas HCC (12 cases), followed closely by patients with insulin therapy and the smallest number of patients in this group have as Metformin treatment versus control group in which most subjects have oral diabetes treatment Metformin in a percentage of 61.9% (13 cases) and treatment with Sulphonylureas in 4 cases (19.04%) and 4 cases have insulin treatment (19.04%)

*Table no.20 Statistical comparison of the two treatment groups*

|         | Metformin  | Sulphonylurea | Insulin     | P value |
|---------|------------|---------------|-------------|---------|
| HCC     | 8 (21.62%) | 12 (32.43%)   | 11 (29.72%) | <0.05   |
| Control | 13 (61.9%) | 4 (19.04%)    | 4 (19.04%)  | <0.05   |

## CONCLUSIONS

1. The study included a total of 156 patients diagnosed with HCC (94 men and 62 women). The average age was 64.39 years for men and 69.63 years for women. The highest incidence by age is the age group > 70 years.
2. Type 2 Diabetes was present in 23.7% percent (37 cases), a percentage which fall within the data from the literature showing the incidence of diabetes between 15.8% and 43.3%
3. The average age at diagnosis of HCC within the group of diabetic patients (65.38 years) was significantly lower ( $p < 0.05$ ) compared with the average age of the group of non-diabetic patients (70.0 years).
4. Known risk factors involved in the development of HCC in the group total were HCV 32.7%, HBV 21.8%, 17.7% alcohol. A percentage of 30.76% of the cases (48 cases) were considered of unknown origin, of whom type 2 diabetes showed 19 cases.
5. Liver cirrhosis is one of the most important risk factors for HCC development in total group of patients 94 cases (60.5%) had cirrhosis at diagnosis of HCC. Of these Type 2 Diabetes was present in 16 cases which shows that HCC in patients with type 2 diabetes can occur in the absence of cirrhosis ( $p < 0.05$ ). After Child-Pugh most cases were in class B in both groups with no statistically significant difference ( $p > 0.05$ ).
6. Analysis of groups according to tumor appearance showed a higher percentage of multicentric tumors in diabetic patients without statistical significance ( $p > 0.05$ )
7. Analysis according to liver tumor size show statistically significant difference between groups ( $p < 0.05$ ) in the studied groups so in non-diabetic patients were observed more advanced HCC. The ***data are not consistent with the literature.***
8. Depending on the presence of portal vein thrombosis is observed that there is statistically significant difference between the two groups studied, which means more advanced forms of HCC as were found in the studied groups in non-diabetic patients ( $p < 0.05$ ). ***The data are not consistent with the literature, studies showing the presence of portal vein thrombosis percent higher in diabetic patients.***

**9.** The average values of AFP were higher in the group of non-diabetic patients (AFP = 4386.99ng / ml) compared with diabetic group (AFP = 3329.12ng / ml) but not statistically significant difference was found between groups ( $p > 0.05$ ). ***Data are consistent with those in the literature.***

**10.** CLIP score analysis compared to the two groups shows that in the group of diabetic patients most have a CLIP score 0 (40.5%) which shows a median survival of 42.5 months compared with non-diabetic group that most patients were classified score 2 with an average survival of 16.5 months statistically significant difference ( $p < 0.05$ ). The presence of liver cirrhosis is an important factor that can influence the survival average and in the group of diabetic patients with advanced liver cirrhosis was significantly smaller percentage compared to non-diabetic patients group.

**11.** Following Type of therapy most cases have as treatment Sulfonylureas 12 cases (32.4%), followed by treatment with metformin 8 cases (21.6%) and 11 of insulin. ***There were no statistically significant differences between type of therapy and the AFP value, tumor type or presence of portal vein thrombosis ( $p > 0.05$ ).***

**12.** The time between the diagnosis of DM and HCC diagnosis was calculated accurately so diabetes was present before the HCC with a mean of  $54.43 \pm 41.4$  months, duration of diabetes was higher in patients treated with insulin ( $87.42 \pm 39.6$  months) compared to patients treated with oral antidiabetic agents ( $53.64 \pm 40.5$  months), ***the data being comparable with those in the literature.***

**13.** Multivariate analysis of risk of developing HCC in patients with diabetes was calculated compared to with a control group of 160 patients with data compared to the patients of the the group of HCC in terms of age, gender, history diabetes. ***Data show that type 2 diabetes is associated with an increased risk of HCC regardless of the gender, age or other risk factors as association HCV, HBV or alcohol consumption ( $p < 0.05$ ), the data are comparable with those in literature.***

**14.** ***Regarding therapy we can see that most patients in group were treated with Sulphonylureas HCC (12 cases), followed closely by patients with insulin therapy and the smallest number of patients in this group have Metformin as treatment versus control group in which most subjects have oral diabetes treatment with Metformin in a percentage of 61.9% (13 cases) and treatment with Sulphonylureas in 4 cases (19.04%) and 4 cases with insulin treatment (19.04%)***

*15. In conclusion, this study confirms that diabetes type 2 is an independent risk factor for the occurrence of HCC and long precede the diagnosis of HCC. I showed that diabetes does not influence the clinical characteristics and biological parameters in patients with HCC, AFP levels are also significantly lower in patients with HCC and diabetes, further studies are needed to investigate the role of this marker in the diagnosis of HCC in patients with diabetes . In addition further studies are needed to determine the role of antidiabetic therapy in the prognosis and response to treatment of HCC*

## References

1. Barlett DL, Di Bisceglie AM, Laura Dawson W. Cancer of the liver. In: DeVita VT Jr, Hellman S, Rosenberg A, eds. *Cancer: principles and practice of oncology*. 8th ed. Wolter Kluiwer/ Lippincott, Williams & Wilkins, Philadelphia 2008: 1129- 1156
2. Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB. Diabetes increases the risk of hepatocellular carcinoma in the United States: a population based case control study. *Gut* 2005;54:533-539.
3. El-Serag HB, Tran T, Everhart JE. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. *Gastroenterology* 2004;126:460-468.
4. Shimada M, Hashimoto E, Taniai M, Hasegawa K, Okuda H, Hayashi N, et al. Hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. *J Hepatol* 2002;37:154-160.
5. Hung CH, Lee CM, Wang JH, Hu TH, Chen CH, et al. (2011) Impact of diabetes mellitus on incidence of hepatocellular carcinoma in chronic hepatitis C patients treated with interferon-based antiviral therapy. *Int J Cancer* 128:2344–2352.
6. Gomaa AI, Khan SA, Toledano MB et al. Hepatocellular carcinoma: Epidemiology, risk factors and pathogenesis. *World J Gastroenterol.* 2008; 14(27): 4300–4308.
7. Fattovich G, Llovet JM (2006). Risk factors for hepatocellular carcinoma in HCV-cirrhosis: What we know and what is missing. *J Hepatol*, 44, 1013-6.
8. IARC (2008). World cancer report 2008. Lyon: IARC Press
9. He P, Huang TR (2009). The relationship between HBV genotypes and primary liver cancer. *J Appl Prev Med*, 15, 315-8.
10. Laura Mazilu, Andra Iulia Suceveanu. Hepato-biliary tumors, Ed ExPonto, Constanța 2014 ISBN:978-606-598-299-4
11. Sherman M. Hepatocellular carcinoma: epidemiology, risk factors, and screening. *Semin Liver Dis* 2005; 25: 143-154
12. Ed Bini, M.D. Epidemiology and Risk Factors Associated with Cirrhosis and Hepatocellular Carcinoma. AGA 2001, The Burden of Gastrointestinal Diseases.
13. Yu MC, Yuan JM (2004). Environmental factors and risk for hepatocellular carcinoma. *Gastroenterology*, 127, S72-8.
14. Uetake S, Yamauchi M, Itoh S, Kawashima O, Takeda K, Ohata M. Analysis of risk factors for hepatocellular carcinoma in patients with HBs antigen- and anti-HCV

antibody-negative alcoholic cirrhosis: clinical significance of prior hepatitis B virus infection. *Alcohol Clin Exp Res* 2003; 27(Suppl): 47S-51S.

15. Adami HO, Hsing AW, McLaughlin JK, et al (1992). Alcoholism and liver cirrhosis in the etiology of primary liver cancer. *Int J Cancer*, 51, 898-902.
16. Donato F, Tagger A, Gelatti U, et al (2002). Alcohol and hepatocellular carcinoma: the effect of lifetime intake and hepatitis virus infections in men and women. *Am J Epidemiol*, 155, 323-31
17. Morgan TR, Mandayam S, Jamal MM (2004). Alcohol and hepatocellular carcinoma. *Gastroenterology*, 127, S87-96.
18. Hassan MM, Hwang LY, Hatten CJ, et al (2002). Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and diabetes mellitus. *Hepatology*, 36, 1206-13.
19. Kenya PR (1990). Oral contraceptives use and liver tumors: a review. *East Afr Med J*, 67, 146-53.
20. Valter Donadon, Massimiliano Balbi, Pietro Casarin, Alessandro Vario, Alfredo Alberti, Association between hepatocellular carcinoma and type 2 diabetes mellitus in Italy: Potential role of insulin, *World J Gastroenterol* 2008 October 7; 14(37): 5695-5700
21. Bohan EM. Diabetes mellitus and cirrhosis of the liver; a case report. *Del Med J* 1947; 19: 212-215
22. Megyesi C, Samols E, Marks V. Glucose tolerance and diabetes in chronic liver disease. *Lancet* 1967; 2: 1051-1056
23. Douglas MW, George J. Molecular mechanisms of insulin resistance in chronic hepatitis C. *World J Gastroenterol* 2009; 15: 4356-4364
24. Negro F, Alaei M. Hepatitis C virus and type 2 diabetes. *World J Gastroenterol* 2009; 15: 1537-1547
25. Pazhanivel M, Jayanthi V. Diabetes mellitus and cirrhosis liver. *Minerva Gastroenterol Dietol* 2010; 56: 7-11
26. Sanyal AJ, Campbell-Sargent C, Mirshahi F, et al. Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial abnormalities. *Gastroenterology* 2001; 120: 1183-1192.
27. Falck-Ytter Y, Younossi ZM, Marchesini G, et al. Clinical features and natural history of nonalcoholic steatosis syndromes. *Semin Liver Dis* 2001; 21: 17-26.

28. Adams LA, Lymp JF, St Sauver J, et al. The natural history of nonalcoholic fatty liver disease: A population-based cohort study. *Gastroenterology* 2005; 129: 113-121.
29. Clark JM, Brancati FL, Diehl AM. Nonalcoholic fatty liver disease. *Gastroenterology* 2002; 122: 1649-1657.
30. Thuluvath PJ, John PR. Association between hepatitis C, diabetes mellitus, and race. a case-control study. *Am J Gastroenterol* 2003; 98: 438-441
31. Buzzelli G, Chiarantini E, Cotrozzi G, Relli P, Matassi L, Romanelli RG, Gentilini P. Estimate of prevalence of glucose intolerance in chronic liver disease. Degree of agreement among some diagnostic criteria. *Liver* 1988; 8: 354-359
32. Del Vecchio Blanco C, Gentile S, Marmo R, Carbone L, Coltorti M. Alterations of glucose metabolism in chronic liver disease. *Diabetes Res Clin Pract* 1990; 8: 29-36
33. Bianchi G, Marchesini G, Zoli M, Bugianesi E, Fabbri A, Pisi E. Prognostic significance of diabetes in patients with cirrhosis. *Hepatology* 1994; 20: 119-125
34. Hassan MM, Curley SA, Li D, Kaseb A, Davila M, Abdalla EK, Javle M, Moghazy DM, Lozano RD, Abbruzzese JL, Vauthey JN. Association of diabetes duration and diabetes treatment with the risk of hepatocellular carcinoma. *Cancer* 2010; 116: 1938-1946
35. Donadon V, Balbi M, Valent F, Avogaro A. Glycated hemoglobin and antidiabetic strategies as risk factors for hepatocellular carcinoma. *World J Gastroenterol* 2010; 16: 3025-3032
36. Kwon SY, Kim SS, Kwon OS, Kwon KA, Chung MG, Park DK, Kim YS, Koo YS, Kim YK, Choi DJ, Kim JH. Prognostic significance of glycaemic control in patients with HBV and HCV-related cirrhosis and diabetes mellitus. *Diabet Med* 2005; 22: 1530-1535
37. Hung CH, Wang JH, Hu TH, Chen CH, Chang KC, Yen YH, Kuo YH, Tsai MC, Lu SN, Lee CM. Insulin resistance is associated with hepatocellular carcinoma in chronic hepatitis C infection. *World J Gastroenterol* 2010; 16: 2265-2271
38. Lawson DH, Gray JM, McKillop C, Clarke J, Lee FD, Patrick RS. Diabetes mellitus and primary hepatocellular carcinoma. *Q J Med* 1986; 61: 945-955
39. Donadon V, Balbi M, Gheretti M, Grazioli S, Perciaccante A, Della Valentina G, Gardenal R, Dal Mas M, Casarin P, Zanette G, Miranda C. Antidiabetic therapy and increased risk of hepatocellular carcinoma in chronic liver disease. *World J Gastroenterol* 2009; 15: 2506-2511

40. El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. *Gastroenterology* 2008; 134: 1752-1763.
41. Peng SY, Chen WJ, Lai PL, et al. High alpha-fetoprotein level correlates with high stage, early recurrence and poor prognosis of hepatocellular carcinoma: significance of hepatitis virus infection, age, p53 and beta-catenin mutations. *Int J Cancer* 2004; 112(1): 44-50.
42. Toyoda H, Kumada T, Kiriyma S, et al. Prognostic significance of simultaneous measurement of three tumor markers in patients with hepatocellular carcinoma. *Clin Gastroenterol Hepatol* 2006; 4: 111-117.
43. Llovet JM, Bru C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. *Semin Liver Dis* 1999; 19: 329-338.
44. Toyoda H, Kumada T, Nakano S, Takeda I, Sugiyama K, Kiriyma S, Tanikawa M, Sone Y, Hisanaga Y. Impact of diabetes mellitus on the prognosis of patients with hepatocellular carcinoma. *Cancer* 2001; 91: 957-963
45. Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB (2005) Diabetes increases the risk of hepatocellular carcinoma in the United States: a population based case control study. *Gut* 54: 533-539
46. Deepak N. Amarapurkar; Nikhil D. Patel; Praful M. Kamani. Impact of diabetes mellitus on outcome of HCC *Annals of Hepatology* 2008; 7(2): April-June: 148-151
47. Oliveria SA, Koro CE, Yood MU, Sowell M: Cancer incidence among patients treated with antidiabetic pharmacotherapy. *Cancer incidence among patients treated with antidiabetic pharmacotherapy* 2008, 2(1):47-57
48. Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B: Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. *Diabetes Care* 2009, 32(1):193-203.
49. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD: Metformin and reduced risk of cancer in diabetic patients. *BMJ* 2005, 330(7503):1304-1305
50. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM: New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. *Diabetes Care* 2009, 32(9):1620-1625

51. Bowker SL, Majumdar SR, Veugelers P, Johnson JA: Increased cancer related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. *Diabetes Care* 2006, 29(2):254-258.