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Introducere

Odata cu evolutia tehnologica problemele legate de reconstructia imaginilor si
procesarea imaginilor (recunoagterea formelor /fetelor) au capatat o raspandire
din ce in ce mai mare si beneficiaza de un real interes. Problemele legate de
reconstructia de imagini apar in domenii ca: medicina (tomografia computeri-
zata), geologie (geotomografia electromagnetica), etc. Recunoagterea fetelor
este o problema de mare interes in domenii ca: siguranta si probleme de
supraveghere, probleme medico-legale (criminalistice), interfata om-calculator,
comunicatii multimedia, si asa mai departe.
Lucrarea de fata trateaza aceste doua directii de actualitate:

1. reconstructia de imagini, mai exact demonstrarea, pe o cale de demonstra-
tie complet diferita de cea din [28], a convergentei algoritmului Simulta-
neous Algebraic Reconstruction Technique (SART) prin incadrarea
acestui algoritm intr-o clasa generala de metode proiective;

2. recunoagterea fetelor, mai exact propunem doi algoritmi noi care sa re-
zolve problema recunoasterii fetelor. Primul algoritm este de tip Prin-
cipal Component Analisys (PCA) (bazat pe proiectarea bazei de date
pe un subspatiu de dimensiune mai mica) si este o personalizare a algo-
ritmului prezentat in [6] si [7]. Cel de-al doilea algoritm este bazat pe
tensori si este indicat pentru baze de date de dimensiuni mari, in care
numarul de poze din baza de date este mai mare decat rezolutia unei
imagini.

Teza este structurata pe cinci capitole dupa cum urmeaza.

In primul capitol sunt prezentate notiuni si concepte de baza de algebra
liniara i analiza numerica folosite pe parcursul tezei. Notiuni despre norme
vectoriale si matriceale, descompunerea in valori singulare, proiectii ortogonale
si proiectii oblice, probleme in sensul celor mai mici patrate. Este de asemenea
prezentata gi problema reconstructiei algebrice a imaginilor.

In acest prim capitol este prezentat si un algoritm de generare a matricei de
scanare in Geotomografia Electromagnetica (EGT). Este descris algoritmul de
obtinere a matricei de scanare pentru diverse tipuri de scanare: “well to well”,
“surface to well” si scanare totala. Pentru toate cele trei tipuri de scanare
exista cate un rezultat in ceea ce priveste numarul de elemente nenule ale
matricei de scanare ce trebuie obtinuta. Mai mult, este descris gi un procedeu
de optimizare a algoritmilor de generare a matricei de scanare, pentru a reduce
timpii de calcul ai algoritmilor.

In capitolul al doilea sunt introduse Tehnicile de Reconstructie Algebrica
a imaginilor (TRA), tehnici de reconstructie algebrica bazate pe proiectii suc-
cesive gi tehnici de reconstructie algebrica bazate pe proiectii simultane. Mai
mult, se studiaza convergenta tehnicilor de reconstructie algebrica bazate pe
proiectii succesive.



Tot in acest capitol se studiaza convergenta unor extensii ale tehnicilor
de reconstructie algebrica la probleme inconsistente si la probleme cu con-
strangeri. Acest studiu se face prin prisma unei metode generale proiective,
introdusa in [38], care inglobeaza metodele de reconstructie algebrica cunos-
cute: Kaczmarz, Cimmino, etc.

Capitolul al treilea se ocupa de studiul convergentei tehnicilor de reconstruc-
tie algebrica bazate pe proiectii oblice simultane, mai exact studiul convergentei
algoritmului SART. Algoritmul SART a fost introdus de A. H. Andersen gi A.
C. Kak in 1984 (a se vedea [1]) ca o alternativa simultana la algoritmul Kacz-
marz care este bazat pe proiectii ortogonale succesive.

Algoritmul SART se bazeaza pe proiectii oblice simultane, iar termenii
de corectare a erorilor se aplica simultan pentru toate razele unei anumite
proiectii.

Studiul convergentei acestui algoritm este facut prin integrarea algoritmului
SART la metoda generala proiectiva introdusa in capitolul doi, adica o cale
noua de demonstratie a convergentei. Incadrarea algoritmului SART la metoda
generala proiectiva permite aplicarea constrangerilor asupra acestui algoritm,
ceea ce va conduce la reconstructii mai bune.

In capitolul patru sunt prezentate clase de algoritmi pentru recunoasterea
formelor. Pe parcursul capitolului sunt descrisi algoritmi bazati pe analiza
liniara, adica proiectia pe un subspatiu de dimensiune mai mica. La inceputul
capitolului este prezentat algoritmul “fetelor proprii” (eigenfaces) care desi
este una dintre cele mai vechi metode (a se vedea [26], [29] si [40]) folosite In
recunoasterea fetelor, are inca rezultate satisfacatoare.

PCA (Principal Component Analisys) este un algoritm matematic prin
care se obtine dintr-un set de date initial, de dimensiune mare, un alt set de
date, de dimensiune mai mica, cu anumite proprietati, date numite compo-
nente principale. Aceasta metoda este definita in aga fel incat componentele
principale sunt alese in ordinea importantei. Prima componenta principala
obtinuta corespunde celei mai mari valori proprii, cea de-a doua componenta
corespundei urmatoarei valorii proprii (ca marime) si tot asa. In acelagi timp
se tine cont de restrictia ca fiecare componenta principala sa fie ortogonala pe
toate componentele precedente.

Apoi, este propus un algoritm nou pentru recunoasterea fetelor, algoritmul
COD-A1. Acest algoritm este o varianta personalizata a algoritmului prezentat
in [6] si [7]. Pornind de la ideea de a aproximare din [6] si [7], si de la ideea de
a reprezenta toate imaginile din baza de date intr-un subspatiu de dimensiune
mai mica, propunem acest algoritm COD-A1 care, dupa cum se poate vedea
din Capitolul cinci, capitolul de experimente, are o rata de recunoagtere mai
mare decat cea a algoritmului PCA.

Nu in ultimul rand este propus un nou algoritm bazat pe tensori, algoritmul
A2. Acest algoritm este mult mai potrivit pentru cazul in care multimea de
date este bine organizata si numarul de poze din baza de date este mai mare



decat rezolutia unei imagini, lucru care nu a fost luat in considerare pana
acum deoarece bazele de date disponibile erau de dimensiuni mici (numarul
imaginilor dintr-o baza de date era mic). Acest algoritm bazat pe tensori are
o rata de recunoagtere mai mare decat cea a algoritmului PCA.

Motivatia pentru care tensorii sunt utilizati in recunoasterea fetelor este
faptul ¢ de multe ori datele sunt stocate sub formé de tensor. In loc de a
stoca toate datele sub forma de matrice, toate fotografiile apartinand aceleiasi
persoane se pot stoca intr-o matrice, iar toate matricele corespunzatoare tu-
turor persoanelor formeaza un tensor. Acest lucru conduce la o organizare mai
buna a imaginilor din baza de date.

Capitolul cinci este rezervat experimentelor numerice. In acest capitol
sunt prezentate teste realizate cu algoritmul de generare a matricei de scanare
in Geotomografia Electromagnetica din Capitolul unu; comparatii intre rezul-
tatele obtinute cu algoritmul SART (prezentat in Capitolul trei) si cele obtinute
cu algoritmul Kaczmarz, algoritm standard pentru clasa algoritmilor de tip
TRA, experimentele fiind efectuate pe doua “fantome” frecvent utilizate in
literatura de specialitate (a se vedea [24]); si experimente cu toti algoritmii
descrisii pe parcursul Capitolului patru, testele fiind efectuate pe patru baze
de date, doua baze de date proprii (CTOVF si CTOVD) si alte doua baze de
date cunoscute in literatura de specialitate (ORL si ExtYaleB).

Rezultatele originale prezentate in aceasta teza sunt cuprinse in lucrarile:

e [16] Popa C., Grecu L., Constrained SART algorithm for invers problems
in image reconstruction, Inverse Problems and Imaging, 1(7) (2013), 199-
216. (Scor Relativ de Influenta = 2.13, Factor de Impact = 1.074)

e [18] Grecu L., On the construction of the scanning matriz in Electromag-
netic Geotomography, Buletinul Stiintific al Universitatii ”Politehnica”
din Timisoara, Seria Matematica - Fizica, 1 (2012), 42-56.

e [17] Grecu L., Nicola A., Some results on simultaneous algebraic tech-
niques in image reconstruction from projections, ROMAI Journal, 2 (2009),
79-96, http://rj.romai.ro/

e [41] Pelican E., Grecu L., Comparison Between Some Matriz Methods
with Applications in Pattern Recognition, prezentata la Applied Linear
Algebra Conference, May 24-28, 2010, Novi Sad, Serbia.

e [20] Grecu (Lita) L. , Pelican E., Customized Orthogonalization via De-
flation Algorithm with Applications in Face Recognition, trimisa spre pu-
blicare la Carpathian Journal of Mathematics, 2013.

e [21] Grecu (Lita) L. , Pelican E., A Low-Rank Tensor-Based Algorithm
for Face Recognition, trimisa spre publicare la Pattern Recognition Let-
ters, 2013.



o [43] Pelican E., Grecu (Lita) L., Solving the Pattern Recognition Prob-
lem with some Low-Rank Approximation Based Algorithms, prezentata la
XIeme Colloque Franco-Roumain de Mathématiques Appliquées, 24-30
August, 2012, Bucuresti.

e [19] Grecu (Lita) L. , Pelican E., Systematic and comparative experiments
with some algorithms for pattern recognition, acceptata pentru publi-
care in volumul conferintei Nineth Workshop on Mathematical Mod-
elling of Environmental and Life Sciences Problems, November 1-4, 2012,
Constanta, Romania.

e [42] Pelican E., Grecu L., Low-Rank Matriz Methods in Pattern Recog-
nition, prezentata la Balkan Conference on Operational Research (BAL-
COR), 2009, publicata electronic cu ISBN: 973-86979-9-9.
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1 Preliminarii

1.1 Notiuni introductive

Prezentam in acest capitol cateva notiuni si concepte de baza de algebra liniara
si analiza numerica folosite pe parcursul lucrarii: norme vectoriale si ma-
triceale, descompunerea in valori singulare (SVD), proiectii in IR", probleme
liniare in sensul celor mai mici patrate.

Pe parcursul lucrarii vom folosi urmatoarele notatii: A; linia ¢ din matricea
A, A’ coloana j din matricea A, A;; elementul de pe pozitia (4,7) din ma-
tricea A, I,, matricea identitate de ordin n, AT transpusa matricei A, N (A) =
{reR", Azx =0}, R(A) = {ye R™, 3z € R", y= Ax}. Notatia S® T
este folosita pentru suma ortogonala directa a subspatiilor S si 7', adica £ =
SeT &

(i)VeeE, 3se€ 8, teT astfel incat v = s+ t;
(i) SOT = {0} 1)
(i) VsesS, teT, (s,t) =0.

1.2 Reconstructia algebrica a imaginilor

Formularea matematica a problemei reconstructiei algebrice a imaginilor consta
in aflarea unei functii de doua variable atunci cand se cunosc proiectiile sale,
adica integralele sale curbilinii pentru orice dreapta din plan. Exista doua
formulari: problema directa si problema inversa.

Problema directa presupune calculul integralei unei functii f (cunoscute)
pe o dreapta C' din plan, notata prin

Io(f) = 740 f () dI. 2)

Pentru problema inversa se presupune cunoasterea valorii integralei I (f) din
(2), adica se pot determina valorile functiei de absorbtie f (z,y) in orice punct
(x,y) din domeniu.

Legea lui Lambert stabileste ca exista o dependenta logaritmica intre inten-
sitatea de transmisie (Ig) a razei si cea de receptie (Ir). In acest caz, pentru
o raza SR avem
In (I—R) = f(z,y)dl. (3)
SR

Pentru rezolvarea algebrica a acestei probleme de reconstructie a imag-
inilor se considera doua nivele de discretizare: discretizarea multimii valorilor
functiei de absorbtie f (discretizarea imaginii) si discretizarea dreptelor SR
din plan (discretizarea scanarii). Discretizarea imaginii presupune impartirea
acesteia in elemente de imagine numite pixeli. Discretizarea scanarii presupune
o multime finitd de raze de scanare, SR € IR?.



Daca folosim un numar de m raze si o discretizare a imaginii in n pixeli,
matricea de scanare A va fi de dimensiune m x n. Matricea A este rara (a se
vedea Lema 1), nu este de rang plin, are nucleul nenul gi este rau conditionata.

Masurand intensitatea surselor de emisie (.5;) si receptie (in detectorii R;)
pentru raza X cu numarul ¢, obtinem componenta b; a termenului liber b
din modelul discret al problemei de reconstructie. Aceasta tehnica care re-
duce reconstructia imaginilor la rezolvarea problemei in sensul celor mai mici
patrate: sa se determine x € IR" a.l.

| Az —b]| = min {[| Az —b]|, = € R"}, (4)

sau pe scurt
||Az — || = min! (5)

se numeste reconstructie algebrica. Pentru a rezolva problema (5) a fost

dezvoltata o clasa de metode iterative bazate pe proiectii, numita Tehnici de
Recon-structie Algebrica (TRA).

1.3 Un algoritm de generare a matricei de scanare in
geotomografia electromagnetica

Rezultatele din acesta sectiune au fost publicate in lucrarea [18] L. Grecu
(Lita), On the construction of the scanning matriz in Electromagnetic Geoto-
mography, unde este prezentat un algoritm de generare a matricei de scanare.
Procedura de scanare a fost mai intai folosita in Tomografia Computerizata
(CT) (a se vedea [24]). Aceasta idee a fost utilizata cu succes si in Geotomo-
grafia Electromagnetica (EGT).

In geotomografie, procedura de scanare consta in forarea a doua puturi de
forare (“well”) paralele, gi scanarea sectiuni transversale dintre ele, folosind
emitatori gi receptori amplasati de-a lungul celor doua sonde. Aceasta metoda
ofera informatii despre fisurile aparute in urma cutremurelor sau fisuri ale con-
ductelor subterane. Dupa scanarea sectiunii dorite, este obtinuta o matrice de
scanare. Aceasta matrice este folosita de algoritmii de reconstructie a imag-
inilor (a se vedea [11]).

Procesul de scanare din geotomografie implica un set de emitatori (surse)
(S1, Sa, ..., Sp) siun set de receptori (R, Rs, ..., R,) localizati in cele doua
puturi de forare paralele. Din fiecare emitator este trimisa o raza de scanare
catre fiecare receptor. Aceasta este scanarea “well to well”.

Modelul discret al problemei reconstructiei algebrice este (4) (a se vedea
[11], [24]), unde A este matricea de scanare si fiecare element A;; este obtinut
masurand lungimea segmentului determinat de intersectia razei ¢ cu pixelul j.
Cu ajutorul intensitatilor surselor de emisie (S, Sa, ..., Sp) si de receptie (din
receptorii Ry, R, ..., R,) pentruraza i, se obtine componenta b; a termenului
liber b a modelului discret (4). Vom nota prin z¢ solutia de norma minima a



problemei in sensul celor mai mici patrate (4), data de xpg = ATb, unde A"
este pseudoinversa Moore—Penrose a matricei A (a se vedea [15]).

O imagine de dimensiune a X «, este impartita in pixeli si notam pixeli cu
P, P, ..., P,. Obtinem matricea de scanare A, de dimensiune m x n, unde
m = numarul de emitatori x numarul de receptori i n = numarul de pixeli.
Matricea A se construieste “linie cu linie”, fiecare linie corespunzand unei raze.
Mai mult, vom presupune ca pixeli sunt normalizati, adica au muchia egala cu
1.

1.3.1 Scanarea “well to well”

Pentru aceasta metoda de generare a matricei de scanare, fara a restrange ge-
neralitatea, am presupus ca numarul de emitatori si numarul de receptori este
egal gi ca emitatorii/receptorii sunt pozitionati in mijlocul muchiei pixelului.

Din fiecare emitator, o raza de scanare este trimisa spre fiecare receptor.
Fie P, ..., P;, pixelii care intersecteaza raza i. Ecuatia razei de scanare i este
obtinuta cu ajutorul coordonatelor punctelor corespunzatoare emitatorului si
receptorului razei respective. Apoi, din ecuatia razei de scanare, este calculata
lungimea segmentului determinat de intersectia razei 7 cu pixelul P;.

Linia ¢ din matricea A corespunde razei ¢. Daca raza ¢ intersecteaza pixelul
J, atunci elementul A;; va fi egal cu lungimea intersectiei dintre raza i si pixelul
J; daca raza @ nu intersecteaza pixelul j, A;; = 0. Asa cum vom demonstra in
Lema 1, matricea A este rara.

Observatia 1 Aceste consideratii pot fi facute si pentru o imagine dreptunghi-
ulara de dimensiune o X 3. Atunci numarul de pixeli este n = a X 3. Metoda
de generare a matricei de scanare nu se modifica in acest caz.

Lema urmatoare (prezentata fara demonstratie in [32]) afirma ca matricea
de scanare A este rara.

Lema 1 [32] Pentru scanarea “well to well” matricea de scanare A are cel
mult m + n — 1 elemente nenule pe o linie, pentru o imagine de dimensiune
nxm.

Demonstratia a acestei leme, care ne va ajuta in constructia algoritmica a
matricei de scanare.

1.3.2 Scanarea “surface to well”

Pentru a obtine rezultate mai bune in reconstructia de imagini putem folosi
de asemenea emitatori la suprafata. In acest caz, receptorii sunt pozitionati
in ambele sonde si razele sunt emise de la suprafata spre ambele parti. Acest
tip de scanare este numit scanare “surface to well”. In cazul acestui tip de
scanare sunt obtinute informatii suplimentare despre zona din subteran care
se analizeaza.



Lema 2 Pentru cazul de scanare “surface to well”, matricea de scanare A are
cel mult m+n —1 elemente nenule pe o linie, pentru o imagine de dimensiune
n x m.

1.3.3 Scanare totala

Procedura de scanare totala include scanarea “well to well” cat si scanarea
“surface to well”. Aceasta procedura de scanare ofera cele mai bune rezultate.

Si in cazul scanarii totale linia ¢ din matricea A corespunde razei i, care
poate fi o raza “well to well” sau o raza “surface to well”. Structura densitatii
matricei corespunzatoare este data de lema urmatoare care rezulta din Lemele
1si 2.

Lema 3 In cazul scanarii totale, matricea de scanare A are cel mult m—+n —1
elemente nenule pe o linie, pentru o imagine de dimensiune n X m.

1.3.4 Optimizarea algoritmului

Pentru constructia matricei de scanare, trebuie determinata “banda” minima
care este intersectata de o anumita raza. Nu este necesar a se verifica daca
raza intersecteaza toti pixelii din imagine, ci numai cei din zona respectiva. In
acest fel este redus timpul de calcul.

Pentru a gasi zona de pixeli prin care raza este cel mai probabil sa treaca
trebuie luate in considerare randurile de imagine pe care sunt pozitionati
emitatorul si receptorul, si sa se verifice daca raza intersecteaza pixelii de
pe aceste randuri si pe cei dintre aceste randuri. Acest lucru poate fi realizat
avand in vedere numarul de emitatori/receptori dintr-un pixel (in cazul in care
exista mai mult de un emitator/ receptor intr-un pixel, acestia sunt pozitionati
echidistanti). Deoarece emitatorii/ receptorii sunt plasati intr-o anumita or-
dine si pentru fiecare raza se cunoaste emitatorul si receptorul corespunzator, se
pot deduce randurile de imagine in care este pozitionat emitatorul /receptorul.

Algoritmul pentru aflarea “benzii” de imagine pe care raza o strabate este
urmatorul (a se vedea Figura 1, a X a este rezolutia unei imagini i presupunem
ca a; > ay):

Pasul 1. Se determind intervalul i pe muchia AD unde este pozitionata
sursa S;(0,a;), i = a — floor(a;) cu a; € (0,);

Pasul 2. Se determina intervalul j pe muchia BC unde este pozitionat
receptorul R;(a,c;), j = o — floor(a;) cu a; € (0,a);

Pasul 3. Se obtine banda [i, j];

Pasul 4. Pizelii din banda sunt cei cu indicii (i — 1) xa+1,---, j*a.

unde floor(«) este partea intreaga a lui «.
Apoi se determina pixelii din banda intersectati de raza SR.
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Figura 1: Optimizarea algoritmului

Pentru scanarea “surface to well” este mai ugor de determinat portiunea de
imagine care este cel mai probabil sa fie intersectata de raza. Cu fiecare linie
din imagine, numarul de pixeli care sunt mai probabil a fi intersectati de raza
scade cu 1. Deci, se obtine un triunghi de pixeli, care s-ar putea intersecta cu
raza. Algoritmul pentru a determina acesti pixeli este urmatorul (avem S(i, «)

si 12(0, 7)):

Pentru fiecare linie de imagine, r =1, 2,..., j;
pizelii care prezintd interes sunt: (r — 1) a+1,...,(r—1)a+j—(r —1).

2 Metode iterative bazate pe proiectii ortogo-
nale pentru rezolvarea problemei reconstructiei
algebrice a imaginilor

2.1 Metodele Kaczmarz si Cimmino

Metoda Kaczmarz apare pentru prima data in 1937 in lucrarea matematicia-
nului polonez S. Kaczmarz [30], dar un studiu teoretic riguros al proprietatilor
sale este facut de abia in 1971 de matematicianul japonez K. Tanabe (a se vedea
[50]). Metoda Kaczmarz este cunoscuta si sub numele de metoda proiectiilor

datorita modalitatii particulare de constructie a aproximatiilor z!, z%, ....

Definim aplicatiile f;(b;-) : R" — IR™, i = 1,m si F(b;-) : IR" — IR" prin

(b :x_wA.: (@

fi(b; ) g Py, (z), (6)
si

F(b;x) = (fiofao...0 fn)(b;z). (7)

Metoda Kaczmarz se scrie atunci astfel
" = F(b "), k>0, (8)

unde 2° € IR™ este aproximatia initial.



Observatia 2 O iteratie (8) a metodei Kaczmarz consta in proieclii (ortog-
onale) succesive pe toate hiperplanele H,,, H,,_1,...,H; asociate ecuatiilor
problemei (4), intr-o anumita ordine fizata a priori.

Metoda standard in acest cazul Tehnicilor de Reconstructie Algebrica (TRA)
bazate pe proiectii simultane este algoritmul propus de G. Cimmino in [5].
Autorul considera in loc de proiectiile ortogonale din metoda lui Kaczmarz,
simetricele unei aproximatii 2% € IR" fata de hiperplanele

Hi={z e R", (x,4;) =bi}.

Avem

Si(x) =0 —2——F5—A;. (9)
144]1*
Metoda Cimmino se scrie atunci
b1 N Wi 2 ¢ —bi
35 - 33w
unde w; > 08l w = > w;.
i=1
Astfel zF*! este o combinatie convex a simetricelor {Si(xk), 1=1,... ,m}.

Vom analiza convergenta metodelor Kaczmarz (8) si Cimmino (10) prin in-
termediul unei abordari generale prezentate in lucrarea [38]. Autorii considera
acolo un algoritm general de forma: z° € IR", pentru k = 0, 1, ... definim sirul

= Ta* + Rb, (11)

unde 7' : n X n, R : n X m, pentru matricele 7" gsi R se impun urmatoarele
proprietati
I —T = RA, (12)

VyeR" RyeR(AT), (13)

daci T = T Prary atunci ‘fH <L (14)

Observa’gla 3 Din (14) ob;mem T = TPrry + TPy = T + T Pray,
P N(A )T PN( )TP'R(AT) —O §Z TPN( A) = TPR(AT)PN( A) = 0.

Propozitia 1 Metoda Kaczmarz (6)-(8) se poate scm’e sub forma (11), cu

T = PP,... P, unde P;(z) = z — ngAl, si R = PPy... Py (A),

unde R" este coloana i a matricei R. .
Metoda Cimmino (10) se poate scrie sub forma (11), cu T = Y “1S;, unde
i=1

IIA [

=] — ' :mﬂ;
Si=1-2{0 5i R L T

10



Propozitia 2 (/38]) Daca au loc relatiile (12)-(14) atunci
()

Daca x € N (A) atunci Tx =z € N (4), (15)
§1
daca z € R (A") atunci Tz € R (A"). (16)
(ii) Matricea I — T este inversabild si matricea G = n x m definitd de
-1
G = <I—T> R, (17)
satisface
AGA=A (18)
1
GPR(A) (b) = TLs- (19)
(i1i) Matricea T are proprietatile
|ITz]| = [l«]| = = € N (A) (20)
§%
17 < 1. (21)

(iv) Pentru girul (a:k)k>0 generat de (11) avem
Pray(z") = Py(ay(2°), ¥V k> 0. (22)

Teorema 1 (/38]) Dacd au loc relatiile (12)-(14), sirul (x*)g>o definit de (11),
cu 2 € IR™ converge, si

lim 2% = Pya)(2°) + Gb, (23)

k—o0

unde G este dat de (17).

2.2 Extinderi la probleme cu constrangeri si la prob-
leme inconsistente

In lucrarea [32] se considera o functie de constrangere de forma C' : IR" — IR",
cu I'm (C') C IR" inchisa si cu urmatoarele proprietati:

|Cz = Cyl| < [lz =yl (24)
daca ||Cz — Cy|| = ||z — y|| atunci Cz —Cy =x — v, (25)
daca y € I'm (C) atunci Cy = y. (26)

Un exemplu de astfel de aplicatie 1l constituie proiectia ortogonala pe o multime
convexa gi inchisa in R".
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Exemplul 1 C: R" — [a,b] = [a1,b1] X ... X [an, b,], datad de

a;, daca z; < q;
(Cx); =< m, daca x; € [a;,b;] . (27)
b;, daca x; > b;

Lema 4 Avem C = Py, deci satisface conditiile (24)-(26).

2.2.1 Metoda proiectiva generala cu constrangeri
Pentru metoda proiectiva generala (11) consideram varianta cu constrangeri:
2° € R*, «* = C (T2* + Rb), k> 0. (28)

Dacd ¢ este limita sirului (2¥),_ din (11) (a se vedea (23)), pornind cu z° €
R (A7), si folosind (19) rezultd £ = Gb = GPra) (b) + GPyar) (b) = x5+,
unde § = P47y (b) . Definim multimea V = {y € Im (C), y —d € LSS (A;b)}
si presupunem cd V # ().

Observatia 4 Daca problema (4) este consistentd, atunci 6 =0, gi
V=S(AbNIm(C). (29)

Lema urmatoare demonstreaza ca imaginea unui vector h € Im (C) prin
aplicatia (28) este mai aproape de V decat vectorul h.

Lema 5 [38] Fie C cu proprietatile (24)-(26). Daca h € Im (C) si

g=C(Th+ Rb), (30)
atunci, pentru orice y € V
lg =yl < [l =yl (31)
§t, sau
lg =yl < [Ih =yl (32)
sau
g=he. (33)

Teorema 2 [38] Fie C cu proprietdtile (24)-(26). Dacd 2° € Im(C) si

(wk)kzo este definit de (28), atunci ]}erolo a¥ existd si apartine lui V.

12



2.2.2 Metoda proiectiva generala extinsa

In lucrarea [38] se considera urmatoarea varianta extinsa a metodei proiective
ge-nerale (11). Fie matricele U i S de dimensiuni m X m, respectiv m X n,
similare matricelor T i R din (11), pentru sistemul

ATy =o0. (34)
Algoritmului iterativ de forma (11) devine in acest caz
WL eR™ YT =Uy +S5-0=Uy" VEk>0. (35)

Pentru algoritmul (35) avem urmatorul rezultat de convergenta (corespunzator
lui (23)): pentru orice y° € IR™, sirul (y*)i>0, generat cu algoritmul (35),
converge si

lim y* = Pyar)(y°). (36)

k—o0

Daca 3y° = b, din (36) obtinem ]}Lrgoyk = Pprary(b), deci /}1—{20(6 — k) =

Pray(b).
Metoda proiectiva generala extinsa
Fie 2° € IR", y° = b; pentru k = 0, 1, ... calculeaza
Y =Uyt, (37)
bk+1 —p— yk—i-l’ (38)
a* T = Ta% 4 RYFTL (39)

Pentru algoritmul (37)-(39), in [38] se demonstreaza urméatoarea propri-
etate de convergenta.

Teorema 3 [38] Dacd matricele T si R satisfac proprietdtile (12)-(14), ¥ 2° €
IR™, sirul (2%)y>0 generat de (37)-(39) converge si

klim 2% = Py(ay(2°) + x5 € LSS(A;b). (40)
—00

2.2.3 Metoda proiectiva generala extinsa cu constrangeri

In lucrarea [38] se considers urmstorul algoritm.
Metoda proiectiva generala extinsa cu constrangeri
Fie 2 € Im(C), 3° = b; pentru k =0, 1, ... calculeaza

yk-i-l _ Uyk, (41)

bk+1 —ph— yk+1 (42)

Y
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o*t = C[Tx* + RV . (43)

Daca multimea V* definita de
V* = LSS(A;b) N Im(C) (44)

este nevida, se arata ca sirul (xk)k>0 generat de (41)-(43) converge la un e-
lement din V*. N

Lema 6 [38] Pentru orice y € V* avem egalitatile
(]—T)y:(I—T)[ELS:RbA, (45)

cu

ba = Pra(b). (46)

Lema 7 [38] Fie k > 0 fizat si presupunem ca aplicatia C satisface ipotezele
(24) si (26). Atunci, pentru orice y € V* avem

[2* T =y < HT (2 —y) — Rﬁk“bAH : (47)

Mai mult, sirul (z%),_ generat de (41)-(43) este marginit.

k>0

Din Lema 7, obtinem cd girul (z*) _  generat de (41)-(43) are un subsir con-

k>0
vergent (xk5)5>0, ie.

lim 2" = u € Im(C). (48)

5§—00

Lema 8 [38] In ipotezele Lemei 7, elementul u din (48) apartine mulfimii V*

Lema 9 [38/ Daca sirul (xk)k>0 din (41)-(43) are un subsir convergent (xks)s>0,

a carut limita este w € V*, atunci orice alt subsir convergent, <xk5) , con-
s>0

verge la aceeasi limita u € V*.

Toate lemele de mai sus contribuie direct la demonstratia teoremei urmatoare.

Teorema 4 [38] Daca V* din (44) este nevida si au loc (24), (26) si ma-
tricea A are toate lindile si coloanele nenule, atunci pentru orice 2° € IR™ sirul
(xk)k>0 generat cu algoritmul (41)-(43) converge la un element din V*.
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3 Studiul convergentei tehnicilor de reconstructie
algebrica bazate pe proiectii oblice simul-
tane

In lucrarea [16] L. Grecu, C. Popa, Constrained SART algorithm for inverse
problems in image reconstruction este prezentata incadrarea algoritmului SART
la metoda generala (11)-(14), care permite apoi aplicarea constrangerilor asupra
algoritmului SART.

In lucrarea [16] am obtinut convergenta algoritmului SART printr-o alta
cale de demonstratie complet diferita si mult mai generala fata de rezultatul
obtinut de autori in lucrarile [27] si [28]. Integrand algoritmul SART in
metoda generala iterativa din [38] (prezentata in Capitolul doi) obtinem nu
doar convergenta lui, chiar mai mult, putem aplica algoritmului SART con-
strangeri si putem demonstra convergenta algoritmului SART cu constrangeri.

Algoritmul SART a fost introdus de Andersen si Kak in 1984 in lucrarea [1]
ca o alternativa simultana la algoritmul Kaczmarz care este bazat pe proiectii
ortogonale succesive. Algoritmul SART se bazeaza pe proiectii oblice simul-
tane. Prima demonstratie de convergenta a algoritmului SART a fost facuta
in lucrarea [28].

Algoritmul SART: 2° € IR"
gF = ok 4\ VAT (b— Axk) , k>0, (49)

unde V gi W sunt matrice diagonale pozitiv definite

V =diag Vi1, ..., Van), W =diag(Wi1, ..., Wpm), (50)
cu
- . 1 n .
Vig=D Ayl j=1.n o= |4yl i=1...m (51
i=1 n j=1
Vom nota cu (-,-), ¢ )w, lI'lly» |-l produsele scalare energetice de-

finite pe IR", IR™ de matricele V', respectiv W si respectiv normele cores-
punzatoare. Pentru S C IR", T C IR™ subspatii vectoriale vom nota cu
PY, P}V proiectiile ortogonale pe S, T in raport cu (-, )., respectiv (-, )y,
unde (z,y), = (Va,y), [[zlly, = (@, 2)y, [Allyw = sup [|Az]y,. Notatia

llzlly=1
S @, T este folosita pentru suma ortogonala directa a subspatiilor S si 7" in
raport cu produsul scalar energetic (-, ), adica E=5®,, T &

()VzxeE s, teT astfel incat z = s+ ¢;
(15) SNT ={0}; (52)
(i) Vse S, teT, (st),=0.
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3.1 Studiul convergentei algoritmului SART

Consideram matricea A si adjuncta sa A7 ca aplicatii liniare
A (an <'7 >V) — (Rm7 <'7 >W) ) AT (Rm7 <’7 >W) — (an <'7 >V) (53)
cu A” unic definita de
(Az, )y = (2, A"y)y, Ve e R", y € R™. (54)

Pentru algoritmul SART (49) consideram problema in sensul celor mai mici
patrate: cautam z € IR" astfel incat

| Az = bl = min{|[ Az — bl , = € R} (55)

Fie LSSyw(A;b) multimea solutiilor pentru (55), iar z}¢ solutia de normi
||l;; minima. Problema

1 1
H—A:U — —bH = min! (56)
p P |l
este echivalenta cu (55), iar daca p satisface
1 1
p < min TR (57)
{ Al T HW,V}
obtinem
1
H—A <1 (59)
P V,W

Lema 10 Adjuncta A™ a matricei A din (53) este data de
AT =V AT (59)
Mai mult, avem descompunerea
R'=NA)®,, R(AT), R" =N (A7) ®,,, R(A), (60)

unde @y, st B, sunt sumele ortogonale directe corespunzatoare produselor
scalare (-,-),, si respectiv (-, )y, -

Pentru
M=\, YV k>0, (61)

scriem algoritmul SART (49) sub forma (11), cu T : n xn §i R : n x m definite
astfel
T=I1-)\NVT'1ATWA, R=\V"1ATW. (62)
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Lema 11 Matricele T gi R din (62) au urmdtoarele proprietati (similare cu

(12)-(14))

[—T=RA, (63)

Vye R", Rye R(A"), (64)

dacs 0 < A<2siT=T- P%(AT), atunci HTH <1, (65)
1A%

unde

i pp—
(A% Vv

lllly <1
Propozitia 3 La fel ca in [38], dar conform cu descompunerea (60) avem
T=Ta&., P\, (66)

Teorema 5 Daca (63)-(65) au loc, sunt adevdrate urmdatoarele afirmatii

()

Dacd z € N (A) atunci Tz = z, (67)
1
dacd z € R(A") atunci Tx € R(A"). (68)
(ii) Matricea I — T este inversabild si G definitd astfel
-1
G = (1 - T) R, (69)
satisface
AGA=A (70)
51
V,W
GPRa (b) = z[5 . (71)
(iii) Matricea T are proprietatile
1Tzlly, = llzlly & = € N(A). (72)

(iv) Pentru girul (xk)k>0 definit de (49) avem
Py (2*) = P ay(2%), ¥ k> 0. (73)

(v) Dacd (63)-(65) au loc atunci (%) definit de (49), cu 2° € IR™ converge,
sl
lim z* = P%(A)(mo) +ayd (74)

k—o00

unde matricea G este definita de (69).

Observatia 5 Forma simultand a metodei SART permite paralelizarea com-
pleta a acestui algoritm. Consideratii privind acest aspect sunt prezentate in
Capitolul 5.
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3.2 Algoritmul SART cu constrangeri

Incadrarea algoritmului SART la metoda generald (11)-(14) permite aplicarea
constrangerilor asupra acestui algoritm, obtinand algoritmul SART cu con-
strangeri (CSART). Acest rezultat nu este obtinut in [27] sau [28].

Fie C : R" — IR"™ o aplicatie (in general neliniara) cu Im (C) C R"
multime inchisa. Vom inlocui relatiile (24)-(26) cu

1€z = Cylly <l =yl (75)
daca ||Cx —Cylly, = ||z —yl|,, atunci Cz — Cy =z —y, (76)
daca y € Im (C') atunci Cy = y. (77)

Definim algoritmul SART cu constrangeri ca si in [32].
Algoritmul CSART
Fie 2° € IR", pentru k =0, 1, ...

a" = C (T2" + Rb) . (78)
Din (23), pentru z° € R (A7) avem kh_{go o* = 278 deci, conform lucrérii
[32] definim multimea S C IR" prin
S=Im(C)NLSSyw (4;b), (79)
si presupunem ca S # (.
Teorema 6 Presupunem ca C satisface relatiile (75)-(77). Dacd 2° € Im (C)

st sirul (a:k) este dat de (78), atunci lim x* existd si apartine multimii S.

k>0 k—o0

Propozitia 4 Aplicatia C : IR™ — [a,b] = [a1,b1] X ... X [a,, b,], data de

a;, daca x; < a;
(Cl’)z = Xy, daca x; € [ai, bz]
bi, daca z; > b;

este o aplicatie de constrangere si satisface (75)-(77).

Observatia 6 Aplicatia de constrangere definita anterior este folositoare deoarece
in realitate intervalele |a;, b;] se cunosc (a se vedea [24] pentru reconstructia
de imagini in medicing).

Propozitia 5 Aplicatia C : R" — S = [0,00) X ... x [0,00), definita astfel

xr;, daca x; >0
(C)i = { 0, daciaz; <0

este o aplicatie de constrangere si satisface (75)-(77).
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4 Clase de algoritmi pentru recunoasterea formelor

In lucrarile [20] L. Grecu (Litd), E. Pelican, Customized Orthogonalization via
Deflation Algorithm with Applications in Face Recognition si [21] L. Grecu
(Lita), E. Pelican, A Low-Rank Tensor-Based Algorithm for Face Recogni-
tion este tratata problema recunoasterii fetelor, o subproblema a problemei
recunoasterii formelor.

Pentru o mai clara expunere a algoritmilor descrisi in aceasta lucrare, vom
stabili mai intai problema pentru care vom aplica algoritmii. Fiind data o baza
de date cu imagini apartinand unor P persoane, toate imaginile sunt transfor-
mate in vectori {I'y, I'y, ..., I'y}. Aceste N imagini sunt impartite in doua
submultimi disjuncte: submultimea de antrenare (training) si submultimea
de testare (testing). Problema luata in considerare este urmatoarea: fiind
data o imagine I' (imaginea unei persoane) din multimea de testare, vrem sa
aflam daca algoritmul identifica in mod corect persoana folosind imaginile din
multimea de training.

4.1 Algoritmul “fetelor proprii” (PCA)

“Fetele proprii” sunt componentele principale ale unei multimi de fete, sau
echivalent, vectorii proprii ai matricei de covarianta a unei multimi de fete (a
se vedea [51] si [52]). Acesti vectori proprii sunt numiti “fete proprii” (eigen-
faces) pentru ca atunci cand sunt reprezentati, ei seamana cu fetele umane. O
multime de fete proprii poate fi obtinuta printr-un procedeu matematic numit
Analiza Componentelor Principale (Principal Component Analysis - PCA),
pe o multime de dimensiuni mari, alcatuita din imagini reprezentand diferite
fete. Acesti vectori proprii sunt alesi in ordinea descrescatoare a importantei
lor, data de marimea valorilor proprii asociate. Prima componenta principala
corespunde celei mai mari valori proprii, cea de-a doua componenta corespunde
urmatoarei valori proprii ca marime, si aga mai departe. In acelagi timp, se ia
in considerare limitarea ca fiecare componenta principala sa fie ortogonala in
raport cu toate componentele principale anterioare.

Componentele principale sunt date de vectorii proprii ai matricei de covarian-
ta. Prima componenta principala este vectorul propriu corespunzator celei mai
mari valori proprii, cea de-a doua componenta principala este vectorul propriu
corespunzator urmatoarei valori proprii ca marime si aga mai departe.

Ideea de a folosi componentele principale pentru a reprezenta fetele umane
a fost dezvoltata de Sirovich si Kirby (a se vedea [31] si [49]) si folosita de catre
Turk si Pentland (a se vedea [51] si [52]) pentru detectarea si recunoasterea
fetelor.

Pentru o baza de date cu N imagini, fiecare imagine trebuie sa aiba aceeasi
rezolutie M = n; X ng si este transformata intr-un vector I'; de dimensiune
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N
M x 1. Apoi se calculeaza vectorul medie ¥ = % > T, care se scade din toti
vectorii ¢; = I, — W, ¢+ = 1,..., N adica, in terlmlinologia statistica, datele
sunt “centrate”. Dupa cum se mentioneaza in [13] (pagina 116) prima imagine
singulara, care este definita de perechea de vectori singulari principali, seamana
foarte mult cu vectorul medie. Astfel, se pare ca nu exista nici un beneficiu
prin scaderea vectorului medie din toti ceilalti. Aceeasi remarca se poate face
pentru algoritmul COD-A1. Pentru algoritmul “fetelor proprii” urmarim in
continuare ideea din [51].
Algoritmul PCA este aplicat unei multimi de vectori de dimensiuni mari

V1, P2,...,pN. Se cauta o multime de vectori ortonormali uy, wug, ..., uy
care descriu cel mai bine tiparele aparute in baza de date.

Lema 12 [51] [53] Vectorul w, este ales astfel incat cantitatea

=3 ()’ (50)

i=1
este maxima tinand cont de restrictia

v _ < _ )1, dacai=k
Uy W = Oik = { 0,  altfel (81)

unde vectorii uy st scalarit A\, sunt vectori proprii si valori proprii ai matrices
de covarianta C = - AAT pentru A = [p1 ¢2...on].

Dimensiunea matricei de covarianta C' este M x M, unde M este rezolutia
unei imagini. Deoarece, in practica, numarul M este foarte mare, efortul
computational pentru a determina M valori proprii si M vectori proprii pentru
matricea C' este foarte mare. In acest caz se doregte reducerea dimensiunii si
deci a volumului de calcul. Fie L = AT A, o matrice de dimensiune N x N.
De obicei, N numarul de imagini din baza de date este mult mai mic decat
dimensiunea unui vector, M, si este mult mai usor sa se calculeze N valori
proprii si N vectori proprii pentru o matrice de dimensiune N x N.

Pentru matricea L consideram vectorii proprii v;, adicd AT Av; = ;.
Si obtinem AAT Av; = p;Av;, si obtinem c& Aw; este vector propriu pentru
matricea C'. Cautam N vectori proprii, v;, pentru matricea L. Din cei N
vectori proprii obtinuti, sunt pastrati doar primii K, corespunzatori celor mai
mari K valori proprii, care sunt suficienti pentru a caracteriza multimea initiala
de date. Ceilalti N — K vectori, corespunzatori celor mai mici valori proprii
sunt inlaturati deoarece informatia asociata cu ei este mai putin semnificativa.
Prin urmare, baza de vectori ortonormati din IRM (care vor fi folositi pentru
a obtine imagini/vectori): uy, wug, ..., uy va fi trunchiata la uy, wus, ..., ug,
cu K << N.
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Pentru a alege nivelul de trunchiere K, putem folosi una dintre cele trei
metode mentionate in [10]. In experimente vom folosi prima metod& unde sunt
eliminati aproximativ 90% din ultimii vectori proprii.

Pentru a identifica o noua imagine I', aceasta este reprezentata folosind vec-
torii proprii {uy, us, ..., ux}. Avemw; = ul (I[' = V), i =1: K. Coeficientii
w; formeaza vectorul Q7 = [wi, wa,...,wk]. Vectorul € descrie contributia
fiecarei “fete proprii” la reprezentarea imaginii I' si este folosita pentru a clasi-
fica imaginea I'.

4.2 Algoritmul Nearest Neighbour (NN)

In aceasti sectiune vom prezenta succint un alt algoritm folosit in recunoasterea
formelor. In Capitolul de experimente si in lucrarea [19] Grecu (Litd) L. , Pe-
lican E., Systematic and comparative experiments with some algorithms for
pattern recognition sunt prezentate comparatii intre rezultatele obtinute cu
acest algoritm si cele obtinute cu ceilalti algoritmi prezentati in cadrul acestui
capitol.

Cea mai simpla metoda care poate fi folosita in recunoagterea fetelor /forme-
lor este cautarea secventiala, adica gasirea celui mai apropiat “vecin”, in cazul
nostru persoana/cifra care “seamana” cel mai bine cu persoana/cifra cautata.
Asadar fiind data o imagine I' (imaginea unei persoane sau a unei cifre) vrem
sa gasim cea mai apropiatd imagine din baza de date {I'y, 'y, ..., I'n} de
imaginea respectiva. Cautarea secventiala (algoritmul Nearest Neighbour, a
se vedea [36]) presupune compararea imaginii I" cu fiecare I'; si gasirea unui
indice ig astfel Incat

7= T4l = min T =Tl (52)

Asadar indicele iy ne va da imaginea aflata la cea mai mica distanta fata de
imaginea cautata.

4.3 Algoritmul COD-A1

In lucrarea [20] L. Grecu (Lita), E. Pelican, Customized Orthogonalization
via Deflation Algorithm with Applications in Face Recognition propunem un
algoritm pentru recunoasterea fetelor.

Pentru a imbunatati (ca rata de recunoastere), algoritmul PCA (un algo-
ritm bazat de SVD trunchiat), trebuie cautata o buna aproximare de rang
redus pentru matricea A. Chiar daca algoritmii bazati pe SVD trunchiat
dau cele mai bune aproximari de rang redus atat in norma Frobenius cat si in
norma L2, pentru matricele de dimensiuni mari, obtinerea descompunerii SVD
poate fi costisitoare. O optiune se bazeaza pe metoda Lanczos si este potrivita
pentru lucrul cu matrice de dimensiuni mari. Se stie ca metoda Lanczos are
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doua potentiale dezavantaje. In primul rand, in timp ce este de asteptat sa
dea estimari bune pentru cele mai mari si cele mai mici valori proprii (valori
singulare), are o dificultate in a estima valorile intermediare. In al doilea rand,
pe masura ce creste numarul de iteratii, vectorii singulari calculati pot pierde
proprietatea de ortogonalitate. Acest ultim aspect este deja rezolvat prin re-
ortogonalizare. In lucririle [4] si [14], autorii au utilizat deja metoda Lanczos
pentru aproximarea de rang redus. Dar, dupa cum este raportat in lucrarile
respective rata de recunoastere a metodelor propuse nu o depaseste pe cea a
PCA.

O alta varianta pentru a calcula rangul k£ de trunchiere al descompunerii
SVD este algoritmul propus in [6] si [7]. In aceste lucrdri, pentru o matrice
A: M x N, M > N, se genereaza o secventa de matrice Ay, As, ..., Api1,
pentru care

k
Apsr = Ay — Gpiigdy = A=Y 60,0] = A= UpDy Vil = A= By, (83)

Jj=1

unde iy, Oy, §i 5 sunt date de (84), (85), si respectiv (86), Uy, = [iy @iy . .. ),
Vi = [0y y... O], Dy = diag (61, Ga,..., 1), st By = UyD,V,T. Matricea
By, serveste drept aproximare de rang redus a matricei A.

Fiedy € R (Ag) sitx € R (Af) o pereche arbitrara de vectori care satisface
4l Apor > 0. Avem

ty, = Apog/ || Axdrll, (84)
Uy = Agﬁk/ HAgﬁk ‘2, (85)

si
O = (HAk@k“g ||A£@k: }2) / (Q{Ak@k) . (86)

Teorema 7 (a se vedea [6] si [7]) Fie matricele Up € RM** Vi € RV*F i
Dy, € IR¥** definite de relatiile

Up = [ig Gy ... ), Vi=1[04 0y ... O] si Dy = (61, 69, ..., %), (87)
unde 6 = Q?A@j, pentru j =1, ..., r = rank(A). Atunci, relatiile urmatoare
au loc pentru k=1, ..., r:

R (A1) € R (), R (AL,) SR (A7), (88)
R (0) CR(A), R (Vi) SR (47), (89)
Ul Ay =0, A1 Vi =0, (90)
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Ulo, =1, ViI'v, = I. (91)

Deci, pentru k = r coloanele matricelor U, $t V. constituie bazd ortonormatd
pentru R(A) si R(AT), respectiv. Prin urmare,

AT—i—l - 0 (92)

§i o
A=UD,VT (93)

Pornind de la ideea de a aproxima matricea A cu matricea By, si de la
ideea de a reprezenta toate imaginile intr-un subspatiu de dimensiune mai
mica, in cele ce urmeaza propunem o versiune personalizata a algoritmului
(83)-(86), algoritmul COD-A1 (Customized Orthogonalization via Deflation
Algorithm). Personalizarea consta intr-o alegere adecvata la fiecare iteratie
pentru ;.1 € R(A;) si 001 € R (AZT) Am testat si alte variante pentru
aceste initializari (pentru fiecare iteratie), dar rezultatele obtinute nu au fost
satisfacatoare.

Cu acest algoritm incercam sa aproximam matricea U din descompunerea
in valori singulare a matricei A, A = UXV7 cu matricea U, din (83), care va
servi drept baza ortonormata pentru R (A). Apoi urmam procesul de clasifi-
care de la algoritmul “fetelor proprii”: vom compara noua expresie a imaginii
cautate cu toate coloanele din noua matrice obtinuta (baza de date) si cautam
imaginea din baza de date, care este cel mai aproape (intr-o anumita metrica)
de imaginea cautata.

Algoritmul propus este urmatorul.

Algoritmul COD-A1:
Pasul 1. Se initializeaza Gy, ty = U1/ ||u1]|, 01, 01 = 01/ ||01]] §i Ay = A.
Pasul 2. fori=1, 2, ..., k

a; = Aibi/ || At

0 = ATt/ [| AT,

G = ([|As % 0ill, || AT Gs|,) / (GF Asdy)

A = Ay — 5ya,0F

se Teimgfialz'zeazd ﬁiﬂ, ﬁi+1 = i\[/i+1/ Hﬂ1+1H §Z ’lA)H,l, ’l/)l'Jrl = /&iJrl/ HTA)Z+1H
end
Pasul 8. Fie U = [ty Uy ... Uy §i B = Agyq.

k
Pasul 4. Se obine Qf = [w], ws, ..., w;] unde col; A ="y wiii;.
j=1

k
Pasul 5. Fiind data o imagine I', se obtine I' = ) wji;.
j=1

Pasul 6. Se reprezinta U ca fiind QT = [wy, wy, ..., ws].
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Pasul 7. Se cautaio € {1,...,k} care satisface |2 — Q;, || = 1r£1i£1k 192 — Q4| .

4.4 Descompunerea in valori singulare pentru tensori

In lucrarea [21] L. Grecu (Litd), E. Pelican, A Low-Rank Tensor-Based Algo-
rithm for Face Recognition propunem un algoritm pentru recunoagterea fetelor
bazat pe descompunerea in valori singulare pentru tensori.

Motivatia pentru care tensorii sunt utilizati in recunoasterea fetelor este
faptul ca de multe ori datele sunt stocate sub forma de tensor. In loc de a
stoca toate datele sub forma de matrice, toate imaginile apartinand aceleiasi
persoane se pot stoca intr-o matrice, iar toate matricele corespunzatoare tu-
turor persoanelor formeaza un tensor. Acest lucru conduce la o organizare
mai buna a imaginilor din baza de date. In aceasti organizare, fetele sunt
clasificate intr-un numar de grupuri de diferite “expresii”. Aceasta clasifi-
care se refera la unghiuri fotografice (de exemplu, profil stanga, profil dreapta,
portret), conditiile de iluminare (intuneric, luminat, etc) sau expresii faciale
(fericit, trist, furios, etc), si aga mai departe.

In continuare prezentam o generalizare a teoremei SVD de la matrice pentru
tensori (a se vedea [8] si [13]).

Fie A € R>™*" U € R"*! gi A x; U un tensor de dimensiune Iy x m x
n, avem urmatorul mod de inmultire (modul-1 de inmultire tensor-matrice)

!
(A X1 U) (], ’iQ, 23) = Z Uj KAk, iois - Pentru A € Rlxmxn7 U e IR™oxm §1 A XQU
k=1
un tensor de dimensiune [ x mg xn avem (modul-2 de inmultire tensor-matrice)
(A X9 U) (Zl,j,’ld) = Z Uj Ay ks §1 pentru Ae ]Rlxmxn’ U e [R™*" §1 AX3U
k=1
un tensor de dimensiune [ x m x ng avem (modul-3 de inmultire tensor-matrice)
(A x3U) (i1,02,]) = D UjkQs iy k- Modul-i s modul-j de Inmultire comuta
k=1
dacai#j, i, je{l, 2,3} : (Ax; U)x; V=Ax;V)x;U=Ax,;Ux, V.
Un tensor poate fi desfagurat intr-o matrice, Ay = unfold;(A), deci:
Aqy =unfold; (A) = (A(:,1,:) A(:,2,:) ... A(:;,m,2)),
Apy =unfoldy (A) = (A D" AG 2T L AG, n)T> :
Ay =unfolds (A) = (A (1,507 A@,0" .. A, :)T>
Pentru toate desfagurarile, linia ¢ din A(;) contine toate elementele tensoru-
lui A care au indexul j egal cu i. Operatia inversa desfagurarii este infagurarea
fold; (unfold; (A)) = A.
Folosind aceste desfagurari obtinem: A x; U = fold; (U - unfold, (4)),

AxoU = foldy (U -unfoldy (A)), st Ax3U = folds (U -unfolds (A)). Pro-
dusul scalar (A, B) a doi tensori A, B € R™*™*", este definit astfel (A, B) =
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33 3 ALID B,

Teorema 8 (HOSVD, a se vedea [8] si [13]) Tensorul A € IR>™ ™ poate fi
scris ca
A=8xUW x,U® x,U® (94)

unde UM ¢ R, U®) ¢ R™ ™ U®) € R™™ sunt matrice ortogonale. Ma-
tricele U™ sunt obtinute din Ay = Ut Z(l (V(l ) , A = unfold;(A), fara ca
matricele VO sa fie formate explicit. S este un tensor de aceeasi dimensiune
ca si A si satisface

e oricare doua “feliv” diferite fizate in acelasi mod sunt ortogonale
<S(Z7:7:>7S(]7:7:)>_0 Z%j7< (7 7:)75(:7j7:>>:07 7’#]7
<S(:7:7Z)7S(:7:7j)>_07 /[/%]'

e normele “feliilor” in orice mod sunt ordonate, de exemplu pentru primul
mod avem ||S (1,:,:)|| > [|S(2,,:)|| > ... > 0.

e descompunerea (94) nu este unica (a se vedea pentru detalii [13] si [8])

Fie A € IR™*"*™ un tensor reprezentand baza de date (multimea de
training) si fie un vector din IR™ reprezentand o poza din multimea de testing.
Aici n; este rezolutia unei imagini (n; = M din sectiunile anterioare), n, este
numarul de persoane din baza de date (n, = P din sectiunile anterioare), si
n. este numarul de expresii pentru o persoana (n.-n, = N din sectiunile
anterioare). Vrem si vedem dacs algoritmul o identifici corect. In [13], pentru
algoritmii de la paginile 173-174 se presupune ca n; >> n.n,. Pentru o baza
de date mare (de exemplu baza de date ExtYaleB), reducand dimensiunea
imaginilor, se obtine n; << n.n,. In urma experimentelor cu algoritmul din
[13] pentru baza de date ExtYaleB am obtinut o rata de recunoastere mai mica
decat pentru algoritmul PCA.

Pentru a solutiona aceasta problema propunem un nou algoritm pentru
recunoasterea fetelor, pentru cazul in care n;, << n.n,.

Pentru problema in discutie, folosim urmatoarea forma a teoremei HOSVD
A=0Cx.G, C=8x;Fx,H unde X; = X, X, = Xg, X, = X3 si
F=U" e R, G=U® ¢ Re*n H =U® ¢ R»*"" din teorema
HOSVD.

Pentru o anumita persoana p avem: A (:,:,p) = C (3,5, p) X G.

Tensorii A (3, :,p) si C (3, 1, p) sunt de fapt matrice, notate cu A, si, respectiv
Cp. Deci A, (:,e) este imaginea unei persoane p in expresia e si coloanele
matricei C), formeaza o baza de vectori pentru persoana p. Obtinem ca A, =

C,GT, p=1,2,...,n,.
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Fie GT = (g1 ...gn.), atunci 4, (:,e) = Cpge. Prin urmare g., e = 1,2,...,n,
sunt coordonatele imaginii A, (:, e) a persoanei p in expresia e in baza mentionata
anterior.

Fie z € IR™ o imagine din multimea de testing. Vrem sa vedem daca
imaginea este identificata corect. Pentru acest lucru, trebuie sa rezolvam
n;in |Cpoyp, — z]|, . Pentru fiecare imagine z trebuie sa rezolvam n, probleme

in sensul celor mai mici patrate cu C, € IR"*". Din C' = S x; F' x, H
obtinem ca C, = FB,, unde B, € R™"*" B, = (S x, H) (:,:,p).

Putem trunchia tensorii si matricele astfel incat sa obtinem o descom-
punere HOSVD trunchiata pentru tensorul A. Fie F, = F (:,1 : k) si obtinem

C = (Sx,H) (1:k,::) x; Fy. Deci, trebuie si rezolvim min

Qp

Cpay, — 2

2
Algoritmul propus este urmatorul, pentru n; << nen,.

Algoritmul pentru tensori - A2:

Fie z imaginea pe care o cautam
forp= 132""’”1’
Fie C= (S %, H)(1:k,:,:) x; F
Se rezolva min C’pap -z
Ap
fore=1,2,... n.
dacd ||, — gell, < tol, atunci este persoana p si ne oprim
end
end

Observatia 7 Nivelul de trunchiere k poate fi ales ca si in [42] sau [10] sau
[14] si nu empiric cum se sugereaza in [13] (paginile 116 si 173).

5 Experimente

In acest capitol sunt prezentate experimente si rezultate obtinute cu algoritmii
prezentati in Capitolele 1, 3 si 4. Acest capitol cuprinde urmatoarele sectiuni.
5.1 Experimente cu generarea matricei de scanare in geotomografia elec-
tromagnetica
5.2 Experimente cu algoritmul SART
5.2.1 Paralelizarea algoritmului SART
5.3 Experimente cu clase de algoritmi pentru recunoasterea formelor
5.3.1 Experimente cu clase de algoritmi pentru recunoasgterea fetelor
5.3.2 Studiu comparativ al algoritmilor NN, PCA si COD-A1 in re-
cunoasterea formelor
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