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UNIVERSITATEA OVIDIUS DIN CONSTANŢA
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Introducere

Odată cu evoluţia tehnologică problemele legate de reconstrucţia imaginilor şi
procesarea imaginilor (recunoaşterea formelor/feţelor) au căpătat o răspândire
din ce ı̂n ce mai mare şi beneficiază de un real interes. Problemele legate de
reconstrucţia de imagini apar ı̂n domenii ca: medicină (tomografia computeri-
zată), geologie (geotomografia electromagnetică), etc. Recunoaşterea feţelor
este o problemă de mare interes ı̂n domenii ca: siguranţă şi probleme de
supraveghere, probleme medico-legale (criminalistice), interfaţa om-calculator,
comunicaţii multimedia, şi aşa mai departe.

Lucrarea de faţă tratează aceste două direcţii de actualitate:

1. reconstrucţia de imagini, mai exact demonstrarea, pe o cale de demonstra-
ţie complet diferită de cea din [28], a convergenţei algoritmului Simulta-
neous Algebraic Reconstruction Technique (SART) prin ı̂ncadrarea
acestui algoritm ı̂ntr-o clasă generală de metode proiective;

2. recunoaşterea feţelor, mai exact propunem doi algoritmi noi care să re-
zolve problema recunoaşterii feţelor. Primul algoritm este de tip Prin-
cipal Component Analisys (PCA) (bazat pe proiectarea bazei de date
pe un subspaţiu de dimensiune mai mică) şi este o personalizare a algo-
ritmului prezentat ı̂n [6] şi [7]. Cel de-al doilea algoritm este bazat pe
tensori şi este indicat pentru baze de date de dimensiuni mari, ı̂n care
numărul de poze din baza de date este mai mare decât rezoluţia unei
imagini.

Teza este structurată pe cinci capitole după cum urmează.
În primul capitol sunt prezentate noţiuni şi concepte de bază de algebră

liniară şi analiză numerică folosite pe parcursul tezei. Noţiuni despre norme
vectoriale şi matriceale, descompunerea ı̂n valori singulare, proiecţii ortogonale
şi proiecţii oblice, probleme ı̂n sensul celor mai mici pătrate. Este de asemenea
prezentată şi problema reconstrucţiei algebrice a imaginilor.

În acest prim capitol este prezentat şi un algoritm de generare a matricei de
scanare ı̂n Geotomografia Electromagnetică (EGT). Este descris algoritmul de
obţinere a matricei de scanare pentru diverse tipuri de scanare: “well to well”,
“surface to well” şi scanare totală. Pentru toate cele trei tipuri de scanare
există câte un rezultat ı̂n ceea ce priveşte numărul de elemente nenule ale
matricei de scanare ce trebuie obţinută. Mai mult, este descris şi un procedeu
de optimizare a algoritmilor de generare a matricei de scanare, pentru a reduce
timpii de calcul ai algoritmilor.

În capitolul al doilea sunt introduse Tehnicile de Reconstrucţie Algebrică
a imaginilor (TRA), tehnici de reconstrucţie algebrică bazate pe proiecţii suc-
cesive şi tehnici de reconstrucţie algebrică bazate pe proiecţii simultane. Mai
mult, se studiază convergenţa tehnicilor de reconstrucţie algebrică bazate pe
proiecţii succesive.
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Tot ı̂n acest capitol se studiază convergenţa unor extensii ale tehnicilor
de reconstrucţie algebrică la probleme inconsistente şi la probleme cu con-
strângeri. Acest studiu se face prin prisma unei metode generale proiective,
introdusă ı̂n [38], care ı̂nglobează metodele de reconstrucţie algebrică cunos-
cute: Kaczmarz, Cimmino, etc.

Capitolul al treilea se ocupă de studiul convergenţei tehnicilor de reconstruc-
ţie algebrică bazate pe proiecţii oblice simultane, mai exact studiul convergenţei
algoritmului SART. Algoritmul SART a fost introdus de A. H. Andersen şi A.
C. Kak ı̂n 1984 (a se vedea [1]) ca o alternativă simultană la algoritmul Kacz-
marz care este bazat pe proiecţii ortogonale succesive.

Algoritmul SART se bazează pe proiecţii oblice simultane, iar termenii
de corectare a erorilor se aplică simultan pentru toate razele unei anumite
proiecţii.

Studiul convergenţei acestui algoritm este făcut prin integrarea algoritmului
SART la metoda generală proiectivă introdusă ı̂n capitolul doi, adică o cale
nouă de demonstraţie a convergenţei. Încadrarea algoritmului SART la metoda
generală proiectivă permite aplicarea constrângerilor asupra acestui algoritm,
ceea ce va conduce la reconstrucţii mai bune.

În capitolul patru sunt prezentate clase de algoritmi pentru recunoaşterea
formelor. Pe parcursul capitolului sunt descrişi algoritmi bazaţi pe analiza
liniară, adică proiecţia pe un subspaţiu de dimensiune mai mică. La ı̂nceputul
capitolului este prezentat algoritmul “feţelor proprii” (eigenfaces) care deşi
este una dintre cele mai vechi metode (a se vedea [26], [29] şi [40]) folosite ı̂n
recunoaşterea feţelor, are ı̂ncă rezultate satisfăcătoare.

PCA (Principal Component Analisys) este un algoritm matematic prin
care se obţine dintr-un set de date iniţial, de dimensiune mare, un alt set de
date, de dimensiune mai mică, cu anumite proprietăţi, date numite compo-
nente principale. Această metodă este definită ı̂n aşa fel ı̂ncât componentele
principale sunt alese ı̂n ordinea importanţei. Prima componentă principală
obţinută corespunde celei mai mari valori proprii, cea de-a doua componentă
corespundei următoarei valorii proprii (ca mărime) şi tot aşa. În acelaşi timp
se ţine cont de restricţia ca fiecare componentă principală să fie ortogonală pe
toate componentele precedente.

Apoi, este propus un algoritm nou pentru recunoaşterea feţelor, algoritmul
COD-A1. Acest algoritm este o variantă personalizată a algoritmului prezentat
ı̂n [6] şi [7]. Pornind de la ideea de a aproximare din [6] şi [7], şi de la ideea de
a reprezenta toate imaginile din baza de date ı̂ntr-un subspaţiu de dimensiune
mai mică, propunem acest algoritm COD-A1 care, după cum se poate vedea
din Capitolul cinci, capitolul de experimente, are o rată de recunoaştere mai
mare decât cea a algoritmului PCA.

Nu ı̂n ultimul rând este propus un nou algoritm bazat pe tensori, algoritmul
A2. Acest algoritm este mult mai potrivit pentru cazul ı̂n care mulţimea de
date este bine organizată şi numărul de poze din baza de date este mai mare
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decât rezoluţia unei imagini, lucru care nu a fost luat ı̂n considerare până
acum deoarece bazele de date disponibile erau de dimensiuni mici (numărul
imaginilor dintr-o bază de date era mic). Acest algoritm bazat pe tensori are
o rată de recunoaştere mai mare decât cea a algoritmului PCA.

Motivaţia pentru care tensorii sunt utilizaţi ı̂n recunoaşterea feţelor este
faptul că de multe ori datele sunt stocate sub formă de tensor. În loc de a
stoca toate datele sub formă de matrice, toate fotografiile aparţinând aceleiaşi
persoane se pot stoca ı̂ntr-o matrice, iar toate matricele corespunzătoare tu-
turor persoanelor formează un tensor. Acest lucru conduce la o organizare mai
bună a imaginilor din baza de date.

Capitolul cinci este rezervat experimentelor numerice. În acest capitol
sunt prezentate teste realizate cu algoritmul de generare a matricei de scanare
ı̂n Geotomografia Electromagnetică din Capitolul unu; comparaţii ı̂ntre rezul-
tatele obţinute cu algoritmul SART (prezentat ı̂n Capitolul trei) şi cele obţinute
cu algoritmul Kaczmarz, algoritm standard pentru clasa algoritmilor de tip
TRA, experimentele fiind efectuate pe două “fantome” frecvent utilizate ı̂n
literatura de specialitate (a se vedea [24]); şi experimente cu toţi algoritmii
descrişii pe parcursul Capitolului patru, testele fiind efectuate pe patru baze
de date, două baze de date proprii (CTOVF şi CTOVD) şi alte două baze de
date cunoscute ı̂n literatura de specialitate (ORL şi ExtYaleB).

Rezultatele originale prezentate ı̂n această teză sunt cuprinse ı̂n lucrările:

• [16] Popa C., Grecu L., Constrained SART algorithm for invers problems
in image reconstruction, Inverse Problems and Imaging, 1(7) (2013), 199-
216. (Scor Relativ de Influenţă = 2.13, Factor de Impact = 1.074)

• [18] Grecu L., On the construction of the scanning matrix in Electromag-
netic Geotomography, Buletinul Ştiinţific al Universităţii ”Politehnica”
din Timişoara, Seria Matematică - Fizică, 1 (2012), 42-56.

• [17] Grecu L., Nicola A., Some results on simultaneous algebraic tech-
niques in image reconstruction from projections, ROMAI Journal, 2 (2009),
79-96, http://rj.romai.ro/

• [41] Pelican E., Grecu L., Comparison Between Some Matrix Methods
with Applications in Pattern Recognition, prezentată la Applied Linear
Algebra Conference, May 24-28, 2010, Novi Sad, Serbia.

• [20] Grecu (Liţă) L. , Pelican E., Customized Orthogonalization via De-
flation Algorithm with Applications in Face Recognition, trimisă spre pu-
blicare la Carpathian Journal of Mathematics, 2013.

• [21] Grecu (Liţă) L. , Pelican E., A Low-Rank Tensor-Based Algorithm
for Face Recognition, trimisă spre publicare la Pattern Recognition Let-
ters, 2013.
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• [43] Pelican E., Grecu (Liţă) L., Solving the Pattern Recognition Prob-
lem with some Low-Rank Approximation Based Algorithms, prezentată la
XIème Colloque Franco-Roumain de Mathématiques Appliquées, 24-30
August, 2012, Bucureşti.

• [19] Grecu (Liţă) L. , Pelican E., Systematic and comparative experiments
with some algorithms for pattern recognition, acceptată pentru publi-
care ı̂n volumul conferinţei Nineth Workshop on Mathematical Mod-
elling of Environmental and Life Sciences Problems, November 1-4, 2012,
Constanţa, Romania.

• [42] Pelican E., Grecu L., Low-Rank Matrix Methods in Pattern Recog-
nition, prezentată la Balkan Conference on Operational Research (BAL-
COR), 2009, publicată electronic cu ISBN: 973-86979-9-9.

Constanţa, martie 2013

Lăcrămioara (Liţă) Grecu
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1 Preliminarii

1.1 Noţiuni introductive

Prezentăm ı̂n acest capitol câteva noţiuni şi concepte de bază de algebră liniară
şi analiză numerică folosite pe parcursul lucrării: norme vectoriale şi ma-
triceale, descompunerea ı̂n valori singulare (SVD), proiecţii ı̂n IRn, probleme
liniare ı̂n sensul celor mai mici pătrate.

Pe parcursul lucrării vom folosi următoarele notaţii: Ai linia i din matricea
A, Aj coloana j din matricea A, Aij elementul de pe poziţia (i, j) din ma-
tricea A, In matricea identitate de ordin n, AT transpusa matricei A, N (A) =
{x ∈ IRn, Ax = 0}, R (A) = {y ∈ IRm, ∃ x ∈ IRn, y = Ax}. Notaţia S ⊕ T
este folosită pentru suma ortogonală directă a subspaţiilor S şi T , adică E =
S ⊕ T ⇔

(i) ∀ x ∈ E, ∃ s ∈ S, t ∈ T astfel incât x = s+ t;

(ii) S ∩ T = {0} ;

(iii) ∀ s ∈ S, t ∈ T, 〈s, t〉 = 0.

(1)

1.2 Reconstrucţia algebrică a imaginilor

Formularea matematică a problemei reconstrucţiei algebrice a imaginilor constă
ı̂n aflarea unei funcţii de două variable atunci când se cunosc proiecţiile sale,
adică integralele sale curbilinii pentru orice dreaptă din plan. Există două
formulări: problema directă şi problema inversă.

Problema directă presupune calculul integralei unei funcţii f (cunoscute)
pe o dreaptă C din plan, notată prin

IC (f) =

∮

C

f (x, y) dI. (2)

Pentru problema inversă se presupune cunoaşterea valorii integralei IC (f) din
(2), adică se pot determina valorile funcţiei de absorbţie f (x, y) ı̂n orice punct
(x, y) din domeniu.

Legea lui Lambert stabileşte că există o dependenţă logaritmică ı̂ntre inten-
sitatea de transmisie (IS) a razei şi cea de recepţie (IR). În acest caz, pentru
o rază SR avem

ln

(
IR
IS

)
=

∮

SR

f (x, y) dI. (3)

Pentru rezolvarea algebrică a acestei probleme de reconstrucţie a imag-
inilor se consideră două nivele de discretizare: discretizarea mulţimii valorilor
funcţiei de absorbţie f (discretizarea imaginii) şi discretizarea dreptelor SR
din plan (discretizarea scanării). Discretizarea imaginii presupune ı̂mpărţirea
acesteia ı̂n elemente de imagine numite pixeli. Discretizarea scanării presupune
o mulţime finită de raze de scanare, SR ∈ IR2.
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Dacă folosim un număr de m raze şi o discretizare a imaginii ı̂n n pixeli,
matricea de scanare A va fi de dimensiune m× n. Matricea A este rară (a se
vedea Lema 1), nu este de rang plin, are nucleul nenul şi este rău condiţionată.

Măsurând intensitatea surselor de emisie (Si) şi recepţie (̂ın detectorii Rj)
pentru raza X cu numărul i, obţinem componenta bi a termenului liber b
din modelul discret al problemei de reconstrucţie. Această tehnică care re-
duce reconstrucţia imaginilor la rezolvarea problemei ı̂n sensul celor mai mici
pătrate: să se determine x ∈ IRn a.̂ı.

‖Ax− b‖ = min {‖Az − b‖ , z ∈ IRn} , (4)

sau pe scurt
‖Ax− b‖ = min! (5)

se numeşte reconstrucţie algebrică. Pentru a rezolva problema (5) a fost
dezvoltată o clasă de metode iterative bazate pe proiecţii, numită Tehnici de
Recon-strucţie Algebrică (TRA).

1.3 Un algoritm de generare a matricei de scanare ı̂n
geotomografia electromagnetică

Rezultatele din acestă secţiune au fost publicate ı̂n lucrarea [18] L. Grecu
(Liţă), On the construction of the scanning matrix in Electromagnetic Geoto-
mography, unde este prezentat un algoritm de generare a matricei de scanare.
Procedura de scanare a fost mai ı̂ntâi folosită ı̂n Tomografia Computerizată
(CT) (a se vedea [24]). Această idee a fost utilizată cu succes şi ı̂n Geotomo-
grafia Electromagnetică (EGT).

În geotomografie, procedura de scanare constă ı̂n forarea a două puţuri de
forare (“well”) paralele, şi scanarea secţiuni transversale dintre ele, folosind
emiţători şi receptori amplasaţi de-a lungul celor două sonde. Această metodă
oferă informaţii despre fisurile apărute ı̂n urma cutremurelor sau fisuri ale con-
ductelor subterane. După scanarea secţiunii dorite, este obţinută o matrice de
scanare. Această matrice este folosită de algoritmii de reconstrucţie a imag-
inilor (a se vedea [11]).

Procesul de scanare din geotomografie implică un set de emiţători (surse)
(S1, S2, . . . , Sp) şi un set de receptori (R1, R2, . . . , Rq) localizaţi ı̂n cele două
puţuri de forare paralele. Din fiecare emiţător este trimisă o rază de scanare
către fiecare receptor. Aceasta este scanarea “well to well”.

Modelul discret al problemei reconstrucţiei algebrice este (4) (a se vedea
[11], [24]), unde A este matricea de scanare şi fiecare element Aij este obţinut
măsurând lungimea segmentului determinat de intersecţia razei i cu pixelul j.
Cu ajutorul intensităţilor surselor de emisie (S1, S2, . . . , Sp) şi de recepţie (din
receptorii R1, R2, . . . , Rq) pentru raza i, se obţine componenta bi a termenului
liber b a modelului discret (4). Vom nota prin xLS soluţia de normă minimă a
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problemei ı̂n sensul celor mai mici pătrate (4), dată de xLS = A+b, unde A+

este pseudoinversa Moore−Penrose a matricei A (a se vedea [15]).
O imagine de dimensiune α× α, este ı̂mpărţită ı̂n pixeli şi notăm pixeli cu

P1, P2, . . . , Pn. Obţinem matricea de scanare A, de dimensiune m× n, unde
m = numărul de emiţători × numărul de receptori şi n = numărul de pixeli.
Matricea A se construieşte “linie cu linie”, fiecare linie corespunzând unei raze.
Mai mult, vom presupune ca pixeli sunt normalizaţi, adică au muchia egală cu
1.

1.3.1 Scanarea “well to well”

Pentru această metodă de generare a matricei de scanare, fără a restrânge ge-
neralitatea, am presupus că numărul de emiţători şi numărul de receptori este
egal şi că emiţătorii/receptorii sunt poziţionaţi ı̂n mijlocul muchiei pixelului.

Din fiecare emiţător, o rază de scanare este trimisă spre fiecare receptor.
Fie Pj1 , . . . , Pjq pixelii care intersectează raza i. Ecuaţia razei de scanare i este
obţinută cu ajutorul coordonatelor punctelor corespunzătoare emiţătorului şi
receptorului razei respective. Apoi, din ecuaţia razei de scanare, este calculată
lungimea segmentului determinat de intersecţia razei i cu pixelul Pj.

Linia i din matricea A corespunde razei i. Dacă raza i intersectează pixelul
j, atunci elementul Aij va fi egal cu lungimea intersecţiei dintre raza i şi pixelul
j; dacă raza i nu intersectează pixelul j, Aij = 0. Aşa cum vom demonstra ı̂n
Lema 1, matricea A este rară.

Observaţia 1 Aceste consideraţii pot fi făcute şi pentru o imagine dreptunghi-
ulară de dimensiune α× β. Atunci numărul de pixeli este n = α× β. Metoda
de generare a matricei de scanare nu se modifică ı̂n acest caz.

Lema următoare (prezentată fără demonstraţie ı̂n [32]) afirmă că matricea
de scanare A este rară.

Lema 1 [32] Pentru scanarea “well to well” matricea de scanare A are cel
mult m + n − 1 elemente nenule pe o linie, pentru o imagine de dimensiune
n×m.

Demonstraţia a acestei leme, care ne va ajuta ı̂n construcţia algoritmică a
matricei de scanare.

1.3.2 Scanarea “surface to well”

Pentru a obţine rezultate mai bune ı̂n reconstrucţia de imagini putem folosi
de asemenea emiţători la suprafaţă. În acest caz, receptorii sunt poziţionaţi
ı̂n ambele sonde şi razele sunt emise de la suprafaţă spre ambele părţi. Acest
tip de scanare este numit scanare “surface to well”. În cazul acestui tip de
scanare sunt obţinute informaţii suplimentare despre zona din subteran care
se analizează.
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Lema 2 Pentru cazul de scanare “surface to well”, matricea de scanare A are
cel mult m+n−1 elemente nenule pe o linie, pentru o imagine de dimensiune
n×m.

1.3.3 Scanare totală

Procedura de scanare totală include scanarea “well to well” cât şi scanarea
“surface to well”. Această procedură de scanare oferă cele mai bune rezultate.

Şi ı̂n cazul scanării totale linia i din matricea A corespunde razei i, care
poate fi o rază “well to well” sau o rază “surface to well”. Structura densităţii
matricei corespunzătoare este dată de lema următoare care rezultă din Lemele
1 şi 2.

Lema 3 În cazul scanării totale, matricea de scanare A are cel mult m+n−1
elemente nenule pe o linie, pentru o imagine de dimensiune n×m.

1.3.4 Optimizarea algoritmului

Pentru construcţia matricei de scanare, trebuie determinată “banda” minimă
care este intersectată de o anumită rază. Nu este necesar a se verifica dacă
raza intersectează toţi pixelii din imagine, ci numai cei din zona respectivă. În
acest fel este redus timpul de calcul.

Pentru a găsi zona de pixeli prin care raza este cel mai probabil să treacă
trebuie luate ı̂n considerare rândurile de imagine pe care sunt poziţionaţi
emiţătorul şi receptorul, şi să se verifice dacă raza intersectează pixelii de
pe aceste rânduri şi pe cei dintre aceste rânduri. Acest lucru poate fi realizat
având ı̂n vedere numărul de emiţători/receptori dintr-un pixel (̂ın cazul ı̂n care
există mai mult de un emiţător/ receptor ı̂ntr-un pixel, aceştia sunt poziţionaţi
echidistanţi). Deoarece emiţătorii/ receptorii sunt plasaţi ı̂ntr-o anumită or-
dine şi pentru fiecare rază se cunoaşte emiţătorul şi receptorul corespunzător, se
pot deduce rândurile de imagine ı̂n care este poziţionat emiţătorul/receptorul.

Algoritmul pentru aflarea “benzii” de imagine pe care raza o străbate este
următorul (a se vedea Figura 1, α×α este rezoluţia unei imagini şi presupunem
că αi > αj):

Pasul 1. Se determină intervalul i pe muchia AD unde este poziţionată
sursa Si(0,αi), i = α− floor(αi) cu αi ∈ (0, α);
Pasul 2. Se determină intervalul j pe muchia BC unde este poziţionat
receptorul Rj(α,αj), j = α− floor(αj) cu αj ∈ (0, α);
Pasul 3. Se obţine banda [i, j];
Pasul 4. Pixelii din bandă sunt cei cu indicii (i− 1) ∗ α + 1, · · · , j ∗ α.

unde floor(α) este partea ı̂ntreagă a lui α.
Apoi se determină pixelii din bandă intersectaţi de raza SR.
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Figura 1: Optimizarea algoritmului

Pentru scanarea “surface to well” este mai uşor de determinat porţiunea de
imagine care este cel mai probabil să fie intersectată de rază. Cu fiecare linie
din imagine, numărul de pixeli care sunt mai probabil a fi intersectaţi de rază
scade cu 1. Deci, se obţine un triunghi de pixeli, care s-ar putea intersecta cu
raza. Algoritmul pentru a determina aceşti pixeli este următorul (avem S(i, α)
şi R(0, j)):

Pentru fiecare linie de imagine, r = 1, 2, . . . , j;
pixelii care prezintă interes sunt: (r − 1)α+1, . . . , (r − 1)α+j−(r − 1) .

2 Metode iterative bazate pe proiecţii ortogo-

nale pentru rezolvarea problemei reconstrucţiei

algebrice a imaginilor

2.1 Metodele Kaczmarz şi Cimmino

Metoda Kaczmarz apare pentru prima dată ı̂n 1937 ı̂n lucrarea matematicia-
nului polonez S. Kaczmarz [30], dar un studiu teoretic riguros al proprietăţilor
sale este făcut de abia ı̂n 1971 de matematicianul japonez K. Tanabe (a se vedea
[50]). Metoda Kaczmarz este cunoscută şi sub numele de metoda proiecţiilor
datorită modalităţii particulare de construcţie a aproximaţiilor x1, x2, . . . .
Definim aplicaţiile fi(b; ·) : IR

n → IRn, i = 1,m şi F (b; ·) : IRn → IRn prin

fi(b; x) = x−
〈x,Ai〉 − bi

‖Ai‖
2 Ai = PHi

(x), (6)

şi
F (b; x) = (f1 ◦ f2 ◦ . . . ◦ fm) (b; x) . (7)

Metoda Kaczmarz se scrie atunci astfel

xk+1 = F (b; xk), k ≥ 0, (8)

unde x0 ∈ IRn este aproximaţia iniţială.
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Observaţia 2 O iteraţie (8) a metodei Kaczmarz constă ı̂n proiecţii (ortog-
onale) succesive pe toate hiperplanele Hm, Hm−1, . . . , H1 asociate ecuaţiilor
problemei (4), ı̂ntr-o anumită ordine fixată a priori.

Metoda standard ı̂n acest cazul Tehnicilor de Reconstrucţie Algebrică (TRA)
bazate pe proiecţii simultane este algoritmul propus de G. Cimmino ı̂n [5].
Autorul consideră ı̂n loc de proiecţiile ortogonale din metoda lui Kaczmarz,
simetricele unei aproximaţii xk ∈ IRn faţă de hiperplanele

Hi = {x ∈ IRn, 〈x,Ai〉 = bi} .

Avem

Si(x) = x− 2
〈x,Ai〉 − bi

‖Ai‖
2 Ai. (9)

Metoda Cimmino se scrie atunci

xk+1 =
m∑

i=1

ωi

ω
Si(x

k) = xk −
2

ω

m∑

i=1

ωi

〈
xk, Ai

〉
− bi

‖Ai‖
2 Ai, (10)

unde ωi > 0 şi ω =
m∑
i=1

ωi.

Astfel xk+1 este o combinaţie convexă a simetricelor
{
Si(x

k), i = 1, . . . ,m
}
.

Vom analiza convergenţa metodelor Kaczmarz (8) şi Cimmino (10) prin in-
termediul unei abordări generale prezentate ı̂n lucrarea [38]. Autorii consideră
acolo un algoritm general de forma: x0 ∈ IRn, pentru k = 0, 1, . . . definim şirul

xk+1 = Txk +Rb, (11)

unde T : n × n, R : n × m, pentru matricele T şi R se impun următoarele
proprietăţi

I − T = RA, (12)

∀ y ∈ IRm, Ry ∈ R
(
AT

)
, (13)

dacă T̃ = TPR(AT ) atunci
∥∥∥T̃

∥∥∥ < 1. (14)

Observaţia 3 Din (14) obţinem T = TPR(AT ) + TPN (A) = T̃ + TPN (A),

PN (A)T̃ = PN (A)TPR(AT ) = 0, şi T̃PN (A) = TPR(AT )PN (A) = 0.

Propoziţia 1 Metoda Kaczmarz (6)-(8) se poate scrie sub forma (11), cu

T = P1P2 . . . Pm, unde Pi (x) = x − 〈x,Ai〉

‖Ai‖
2Ai, şi R

i = 1
‖Ai‖

2P1P2 . . . Pi−1 (Ai) ,

unde Ri este coloana i a matricei R.

Metoda Cimmino (10) se poate scrie sub forma (11), cu T =
m∑
i=1

ω1

ω
Si, unde

Si = I − 2
AiA

T
i

‖Ai‖
2 , şi R =

m∑
i=1

ω1

ω
1

‖Ai‖
2Ai.

10



Propoziţia 2 ([38]) Dacă au loc relaţiile (12)-(14) atunci
(i)

Dacă x ∈ N (A) atunci Tx = x ∈ N (A) , (15)

şi
dacă x ∈ R

(
AT

)
atunci Tx ∈ R

(
AT

)
. (16)

(ii) Matricea I − T̃ este inversabilă şi matricea G : n×m definită de

G =
(
I − T̃

)−1

R, (17)

satisface
AGA = A (18)

şi
GPR(A) (b) = xLS. (19)

(iii) Matricea T are proprietăţile

‖Tx‖ = ‖x‖ ⇔ x ∈ N (A) (20)

şi
‖T‖ ≤ 1. (21)

(iv) Pentru şirul
(
xk
)
k≥0

generat de (11) avem

PN (A)(x
k) = PN (A)(x

0), ∀ k ≥ 0. (22)

Teorema 1 ([38]) Dacă au loc relaţiile (12)-(14), şirul (xk)k≥0 definit de (11),
cu x0 ∈ IRn converge, şi

lim
k→∞

xk = PN (A)(x
0) +Gb, (23)

unde G este dat de (17).

2.2 Extinderi la probleme cu constrângeri şi la prob-
leme inconsistente

În lucrarea [32] se consideră o funcţie de constrângere de forma C : IRn → IRn,
cu Im (C) ⊂ IRn ı̂nchisă şi cu următoarele proprietăţi:

‖Cx− Cy‖ ≤ ‖x− y‖ , (24)

dacă ‖Cx− Cy‖ = ‖x− y‖ atunci Cx− Cy = x− y, (25)

dacă y ∈ Im (C) atunci Cy = y. (26)

Un exemplu de astfel de aplicaţie ı̂l constituie proiecţia ortogonală pe o mulţime
convexă şi ı̂nchisă ı̂n IRn.
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Exemplul 1 C : IRn → [a, b] = [a1, b1]× . . .× [an, bn], dată de

(Cx)i =





ai, dacă xi < ai
xi, dacă xi ∈ [ai, bi]
bi, dacă xi > bi

. (27)

Lema 4 Avem C = P[a,b], deci satisface condiţiile (24)-(26).

2.2.1 Metoda proiectivă generală cu constrângeri

Pentru metoda proiectivă generală (11) considerăm varianta cu constrângeri:

x0 ∈ IRn, xk+1 = C
(
Txk +Rb

)
, k ≥ 0. (28)

Dacă ξ este limita şirului
(
xk
)
k≥0

din (11) (a se vedea (23)), pornind cu x0 ∈

R
(
AT

)
, şi folosind (19) rezultă ξ = Gb = GPR(A) (b)+GPN (AT ) (b) = xLS + δ,

unde δ = PN (AT ) (b) .Definim mulţimea V = {y ∈ Im (C) , y − δ ∈ LSS (A; b)}
şi presupunem că V 6= ∅.

Observaţia 4 Dacă problema (4) este consistentă, atunci δ = 0, şi

V = S (A; b) ∩ Im (C) . (29)

Lema următoare demonstrează că imaginea unui vector h ∈ Im (C) prin
aplicaţia (28) este mai aproape de V decât vectorul h.

Lema 5 [38] Fie C cu proprietăţile (24)-(26). Dacă h ∈ Im (C) şi

g = C (Th+Rb) , (30)

atunci, pentru orice y ∈ V

‖g − y‖ ≤ ‖h− y‖ (31)

şi, sau
‖g − y‖ < ‖h− y‖ (32)

sau
g = h ∈ V . (33)

Teorema 2 [38] Fie C cu proprietăţile (24)-(26). Dacă x0 ∈ Im (C) şi(
xk
)
k≥0

este definit de (28), atunci lim
k→∞

xk există şi aparţine lui V.
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2.2.2 Metoda proiectivă generală extinsă

În lucrarea [38] se consideră următoarea variantă extinsă a metodei proiective
ge-nerale (11). Fie matricele U şi S de dimensiuni m × m, respectiv m × n,
similare matricelor T şi R din (11), pentru sistemul

ATy = 0. (34)

Algoritmului iterativ de forma (11) devine ı̂n acest caz

y0 ∈ IRm, yk+1 = Uyk + S · 0 = Uyk, ∀ k ≥ 0. (35)

Pentru algoritmul (35) avem următorul rezultat de convergenţă (corespunzător
lui (23)): pentru orice y0 ∈ IRm, şirul (yk)k≥0, generat cu algoritmul (35),
converge şi

lim
k→∞

yk = PN (AT )(y
0). (36)

Dacă y0 = b, din (36) obţinem lim
k→∞

yk = PN (AT )(b), deci lim
k→∞

(b − yk) =

PR(A)(b).
Metoda proiectivă generală extinsă
Fie x0 ∈ IRn, y0 = b; pentru k = 0, 1, . . . calculează

yk+1 = Uyk, (37)

bk+1 = b− yk+1, (38)

xk+1 = Txk +Rbk+1. (39)

Pentru algoritmul (37)-(39), ı̂n [38] se demonstrează următoarea propri-
etate de convergenţă.

Teorema 3 [38] Dacă matricele T şi R satisfac proprietăţile (12)-(14), ∀ x0 ∈
IRn, şirul (xk)k≥0 generat de (37)-(39) converge şi

lim
k→∞

xk = PN (A)(x
0) + xLS ∈ LSS(A; b). (40)

2.2.3 Metoda proiectivă generală extinsă cu constrângeri

În lucrarea [38] se consideră următorul algoritm.
Metoda proiectivă generală extinsă cu constrângeri
Fie x0 ∈ Im(C), y0 = b; pentru k = 0, 1, . . . calculează

yk+1 = Uyk, (41)

bk+1 = b− yk+1, (42)
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xk+1 = C[Txk +Rbk+1]. (43)

Dacă mulţimea V∗ definită de

V∗ = LSS(A; b) ∩ Im(C) (44)

este nevidă, se arată că şirul
(
xk
)
k≥0

generat de (41)-(43) converge la un e-
lement din V∗.

Lema 6 [38] Pentru orice y ∈ V∗ avem egalităţile

(I − T ) y = (I − T ) xLS = RbA, (45)

cu
bA = PR(A)(b). (46)

Lema 7 [38] Fie k ≥ 0 fixat şi presupunem că aplicaţia C satisface ipotezele
(24) şi (26). Atunci, pentru orice y ∈ V∗ avem

∥∥xk+1 − y
∥∥ ≤

∥∥∥T
(
xk − y

)
−RŨk+1bA

∥∥∥ . (47)

Mai mult, şirul
(
xk
)
k≥0

generat de (41)-(43) este mărginit.

Din Lema 7, obţinem că şirul
(
xk
)
k≥0

generat de (41)-(43) are un subşir con-

vergent
(
xks

)
s≥0

, i.e.

lim
s→∞

xks = u ∈ Im(C). (48)

Lema 8 [38] În ipotezele Lemei 7, elementul u din (48) aparţine mulţimii V∗

din (44).

Lema 9 [38] Dacă şirul
(
xk
)
k≥0

din (41)-(43) are un subşir convergent
(
xks

)
s≥0

,

a cărui limită este u ∈ V∗, atunci orice alt subşir convergent,
(
xk̄s

)
s≥0

, con-

verge la aceeaşi limită u ∈ V∗.

Toate lemele de mai sus contribuie direct la demonstraţia teoremei următoare.

Teorema 4 [38] Dacă V∗ din (44) este nevidă şi au loc (24), (26) şi ma-
tricea A are toate liniile şi coloanele nenule, atunci pentru orice x0 ∈ IRn şirul(
xk
)
k≥0

generat cu algoritmul (41)-(43) converge la un element din V∗.
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3 Studiul convergenţei tehnicilor de reconstrucţie

algebrică bazate pe proiecţii oblice simul-

tane

În lucrarea [16] L. Grecu, C. Popa, Constrained SART algorithm for inverse
problems in image reconstruction este prezentată ı̂ncadrarea algoritmului SART
la metoda generală (11)-(14), care permite apoi aplicarea constrângerilor asupra
algoritmului SART.

În lucrarea [16] am obţinut convergenţa algoritmului SART printr-o altă
cale de demonstraţie complet diferită şi mult mai generală faţă de rezultatul
obţinut de autori ı̂n lucrările [27] şi [28]. Integrând algoritmul SART ı̂n
metoda generală iterativă din [38] (prezentată ı̂n Capitolul doi) obţinem nu
doar convergenţa lui, chiar mai mult, putem aplica algoritmului SART con-
strângeri şi putem demonstra convergenţa algoritmului SART cu constrângeri.

Algoritmul SART a fost introdus de Andersen şi Kak ı̂n 1984 ı̂n lucrarea [1]
ca o alternativă simultană la algoritmul Kaczmarz care este bazat pe proiecţii
ortogonale succesive. Algoritmul SART se bazează pe proiecţii oblice simul-
tane. Prima demonstraţie de convergenţă a algoritmului SART a fost făcută
ı̂n lucrarea [28].

Algoritmul SART: x0 ∈ IRn

xk+1 = xk + λkV
−1ATW

(
b− Axk

)
, k ≥ 0, (49)

unde V şi W sunt matrice diagonale pozitiv definite

V = diag (V11, . . . , Vnn) , W = diag (W11, . . . ,Wmm) , (50)

cu

Vjj =
m∑

i=1

|Aij| , j = 1, . . . n,
1

Wii

=
n∑

j=1

|Aij| , i = 1, . . . ,m. (51)

Vom nota cu 〈·, ·〉V , 〈·, ·〉W , ‖·‖V , ‖·‖W produsele scalare energetice de-
finite pe IRn, IRm de matricele V , respectiv W şi respectiv normele cores-
punzătoare. Pentru S ⊂ IRn, T ⊂ IRm subspaţii vectoriale vom nota cu
P V
S , PW

T proiecţiile ortogonale pe S, T ı̂n raport cu 〈·, ·〉V , respectiv 〈·, ·〉W ,
unde 〈x, y〉V = 〈V x, y〉, ‖x‖V =

√
〈x, x〉V , ‖A‖V,W = sup

‖x‖V =1

‖Ax‖W . Notaţia

S ⊕⊥V
T este folosită pentru suma ortogonală directă a subspaţiilor S şi T ı̂n

raport cu produsul scalar energetic 〈·, ·〉V , adică E = S ⊕⊥V
T ⇔

(i) ∀ x ∈ E, ∃ s ∈ S, t ∈ T astfel incât x = s+ t;

(ii) S ∩ T = {0} ;

(iii) ∀ s ∈ S, t ∈ T, 〈s, t〉V = 0.

(52)
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3.1 Studiul convergenţei algoritmului SART

Considerăm matricea A şi adjuncta sa Aτ ca aplicaţii liniare

A : (IRn, 〈·, ·〉V ) → (IRm, 〈·, ·〉W ) , Aτ : (IRm, 〈·, ·〉W ) → (IRn, 〈·, ·〉V ) (53)

cu Aτ unic definită de

〈Ax, y〉W = 〈x,Aτy〉V , ∀ x ∈ IRn, y ∈ IRm. (54)

Pentru algoritmul SART (49) considerăm problema ı̂n sensul celor mai mici
pătrate: căutăm x ∈ IRn astfel ı̂ncât

‖Ax− b‖W = min {‖Az − b‖W , z ∈ IRn} . (55)

Fie LSSV,W (A; b) mulţimea soluţiilor pentru (55), iar xV,W
LS soluţia de normă

‖·‖V minimă. Problema

∥∥∥∥
1

ρ
Ax−

1

ρ
b

∥∥∥∥
W

= min! (56)

este echivalentă cu (55), iar dacă ρ satisface

ρ ≤ min

{
1

‖A‖V,W
,

1

‖Aτ‖W,V

}
(57)

obţinem ∥∥∥∥
1

ρ
A

∥∥∥∥
V,W

≤ 1. (58)

Lema 10 Adjuncta Aτ a matricei A din (53) este dată de

Aτ = V −1ATW. (59)

Mai mult, avem descompunerea

IRn = N (A)⊕⊥V
R(Aτ ), IRm = N (Aτ )⊕⊥W

R (A) , (60)

unde ⊕⊥V
şi ⊕⊥W

sunt sumele ortogonale directe corespunzătoare produselor
scalare 〈·, ·〉V şi respectiv 〈·, ·〉W .

Pentru
λk = λ, ∀ k ≥ 0, (61)

scriem algoritmul SART (49) sub forma (11), cu T : n×n şi R : n×m definite
astfel

T = I − λV −1ATWA, R = λV −1ATW. (62)
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Lema 11 Matricele T şi R din (62) au următoarele proprietăţi (similare cu
(12)-(14))

I − T = RA, (63)

∀ y ∈ IRm, Ry ∈ R (Aτ ) , (64)

dacă 0 < λ < 2 si T̃ = T · P V
R(Aτ ), atunci

∥∥∥T̃
∥∥∥
V,V

< 1, (65)

unde
∥∥∥T̃

∥∥∥
V,V

= sup
‖x‖V ≤1

∥∥∥T̃ x
∥∥∥
V
.

Propoziţia 3 La fel ca ı̂n [38], dar conform cu descompunerea (60) avem

T = T̃ ⊕⊥V
P V
N (A). (66)

Teorema 5 Dacă (63)-(65) au loc, sunt adevărate următoarele afirmaţii
(i)

Dacă x ∈ N (A) atunci Tx = x, (67)

şi
dacă x ∈ R (Aτ ) atunci Tx ∈ R (Aτ ) . (68)

(ii) Matricea I − T̃ este inversabilă şi G definită astfel

G =
(
I − T̃

)−1

R, (69)

satisface
AGA = A (70)

şi
GPW

R(A) (b) = xV,W
LS . (71)

(iii) Matricea T are proprietăţile

‖Tx‖V = ‖x‖V ⇔ x ∈ N (A) . (72)

(iv) Pentru şirul
(
xk
)
k≥0

definit de (49) avem

P V
N (A)(x

k) = P V
N (A)(x

0), ∀ k ≥ 0. (73)

(v) Dacă (63)-(65) au loc atunci (xk)k≥0 definit de (49), cu x0 ∈ IRn converge,
şi

lim
k→∞

xk = P V
N (A)(x

0) + xV,W
LS , (74)

unde matricea G este definită de (69).

Observaţia 5 Forma simultană a metodei SART permite paralelizarea com-
pletă a acestui algoritm. Consideraţii privind acest aspect sunt prezentate ı̂n
Capitolul 5.
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3.2 Algoritmul SART cu constrângeri

Încadrarea algoritmului SART la metoda generală (11)-(14) permite aplicarea
constrângerilor asupra acestui algoritm, obţinând algoritmul SART cu con-
strângeri (CSART). Acest rezultat nu este obţinut ı̂n [27] sau [28].

Fie C : IRn → IRn o aplicaţie (̂ın general neliniară) cu Im (C) ⊂ IRn

mulţime ı̂nchisă. Vom ı̂nlocui relaţiile (24)-(26) cu

‖Cx− Cy‖V ≤ ‖x− y‖V , (75)

dacă ‖Cx− Cy‖V = ‖x− y‖V atunci Cx− Cy = x− y, (76)

dacă y ∈ Im (C) atunci Cy = y. (77)

Definim algoritmul SART cu constrângeri ca şi ı̂n [32].
Algoritmul CSART
Fie x0 ∈ IRn, pentru k = 0, 1, . . .

xk+1 = C
(
Txk +Rb

)
. (78)

Din (23), pentru x0 ∈ R (Aτ ) avem lim
k→∞

xk = xV,W
LS deci, conform lucrării

[32] definim mulţimea S ⊆ IRn prin

S = Im (C) ∩ LSSV,W (A; b) , (79)

şi presupunem că S 6= ∅.

Teorema 6 Presupunem că C satisface relaţiile (75)-(77). Dacă x0 ∈ Im (C)
şi şirul

(
xk
)
k≥0

este dat de (78), atunci lim
k→∞

xk există şi aparţine mulţimii S.

Propoziţia 4 Aplicaţia C : IRn → [a, b] = [a1, b1]× . . .× [an, bn], dată de

(Cx)i =





ai, dacă xi < ai
xi, dacă xi ∈ [ai, bi]
bi, dacă xi > bi

.

este o aplicaţie de constrângere şi satisface (75)-(77).

Observaţia 6 Aplicaţia de constrângere definită anterior este folositoare deoarece
ı̂n realitate intervalele [ai, bi] se cunosc (a se vedea [24] pentru reconstrucţia
de imagini ı̂n medicină).

Propoziţia 5 Aplicaţia C : IRn → S = [0,∞)× . . .× [0,∞), definită astfel

(Cx)i =

{
xi, dacă xi ≥ 0
0, dacă xi < 0

.

este o aplicaţie de constrângere şi satisface (75)-(77).

18



4 Clase de algoritmi pentru recunoaşterea formelor

În lucrările [20] L. Grecu (Liţă), E. Pelican, Customized Orthogonalization via
Deflation Algorithm with Applications in Face Recognition şi [21] L. Grecu
(Liţă), E. Pelican, A Low-Rank Tensor-Based Algorithm for Face Recogni-
tion este tratată problema recunoaşterii feţelor, o subproblemă a problemei
recunoaşterii formelor.

Pentru o mai clară expunere a algoritmilor descrişi ı̂n această lucrare, vom
stabili mai ı̂ntâi problema pentru care vom aplica algoritmii. Fiind dată o bază
de date cu imagini aparţinând unor P persoane, toate imaginile sunt transfor-
mate ı̂n vectori {Γ1, Γ2, . . . , ΓN}. Aceste N imagini sunt ı̂mpărţite ı̂n două
submulţimi disjuncte: submulţimea de antrenare (training) şi submulţimea
de testare (testing). Problema luată ı̂n considerare este următoarea: fiind
dată o imagine Γ (imaginea unei persoane) din mulţimea de testare, vrem să
aflăm dacă algoritmul identifică ı̂n mod corect persoana folosind imaginile din
mulţimea de training.

4.1 Algoritmul “feţelor proprii” (PCA)

“Feţele proprii” sunt componentele principale ale unei mulţimi de feţe, sau
echivalent, vectorii proprii ai matricei de covarianţă a unei mulţimi de feţe (a
se vedea [51] şi [52]). Aceşti vectori proprii sunt numiţi “feţe proprii” (eigen-
faces) pentru că atunci când sunt reprezentaţi, ei seamănă cu feţele umane. O
mulţime de feţe proprii poate fi obţinută printr-un procedeu matematic numit
Analiza Componentelor Principale (Principal Component Analysis - PCA),
pe o mulţime de dimensiuni mari, alcătuită din imagini reprezentând diferite
feţe. Aceşti vectori proprii sunt aleşi ı̂n ordinea descrescătoare a importanţei
lor, dată de mărimea valorilor proprii asociate. Prima componentă principală
corespunde celei mai mari valori proprii, cea de-a doua componentă corespunde
următoarei valori proprii ca mărime, şi aşa mai departe. În acelaşi timp, se ia
ı̂n considerare limitarea ca fiecare componentă principală să fie ortogonală ı̂n
raport cu toate componentele principale anterioare.

Componentele principale sunt date de vectorii proprii ai matricei de covarian-
ţă. Prima componentă principală este vectorul propriu corespunzător celei mai
mari valori proprii, cea de-a doua componentă principală este vectorul propriu
corespunzător următoarei valori proprii ca mărime şi aşa mai departe.

Ideea de a folosi componentele principale pentru a reprezenta feţele umane
a fost dezvoltată de Sirovich şi Kirby (a se vedea [31] şi [49]) şi folosită de către
Turk şi Pentland (a se vedea [51] şi [52]) pentru detectarea şi recunoaşterea
feţelor.

Pentru o bază de date cu N imagini, fiecare imagine trebuie să aibă aceeaşi
rezoluţie M = n1 × n2 şi este transformată ı̂ntr-un vector Γi de dimensiune
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M × 1. Apoi se calculează vectorul medie Ψ = 1
N

N∑
i=1

Γi, care se scade din toţi

vectorii ϕi = Γi − Ψ, i = 1, . . . , N adică, ı̂n terminologia statistică, datele
sunt “centrate”. După cum se menţionează ı̂n [13] (pagina 116) prima imagine
singulară, care este definită de perechea de vectori singulari principali, seamănă
foarte mult cu vectorul medie. Astfel, se pare că nu există nici un beneficiu
prin scăderea vectorului medie din toţi ceilalţi. Aceeaşi remarcă se poate face
pentru algoritmul COD-A1. Pentru algoritmul “feţelor proprii” urmărim ı̂n
continuare ideea din [51].

Algoritmul PCA este aplicat unei mulţimi de vectori de dimensiuni mari
ϕ1, ϕ2, . . . , ϕN . Se caută o mulţime de vectori ortonormali u1, u2, . . . , uN

care descriu cel mai bine tiparele apărute ı̂n baza de date.

Lema 12 [51] [53] Vectorul uk este ales astfel ı̂ncât cantitatea

λk =
1

N

N∑

i=1

(
uT
kϕi

)2
(80)

este maximă ţinând cont de restricţia

uT
i uk = δik =

{
1, dacă i = k
0, altfel

(81)

unde vectorii uk şi scalarii λk sunt vectori proprii şi valori proprii ai matricei
de covarianţă C = 1

N
AAT pentru A = [ϕ1 ϕ2 . . . ϕN ] .

Dimensiunea matricei de covarianţă C este M ×M , unde M este rezoluţia
unei imagini. Deoarece, ı̂n practică, numărul M este foarte mare, efortul
computaţional pentru a determina M valori proprii şi M vectori proprii pentru
matricea C este foarte mare. În acest caz se doreşte reducerea dimensiunii şi
deci a volumului de calcul. Fie L = ATA, o matrice de dimensiune N × N .
De obicei, N numărul de imagini din baza de date este mult mai mic decât
dimensiunea unui vector, M , şi este mult mai uşor să se calculeze N valori
proprii şi N vectori proprii pentru o matrice de dimensiune N ×N .

Pentru matricea L considerăm vectorii proprii vi, adică ATAvi = µivi.
Şi obţinem AATAvi = µiAvi, şi obţinem că Avi este vector propriu pentru
matricea C. Căutăm N vectori proprii, vi, pentru matricea L. Din cei N
vectori proprii obţinuţi, sunt păstraţi doar primii K, corespunzători celor mai
mariK valori proprii, care sunt suficienţi pentru a caracteriza mulţimea iniţială
de date. Ceilalţi N − K vectori, corespunzători celor mai mici valori proprii
sunt ı̂nlăturaţi deoarece informaţia asociată cu ei este mai puţin semnificativă.
Prin urmare, baza de vectori ortonormaţi din IRM (care vor fi folosiţi pentru
a obţine imagini/vectori): u1, u2, . . . , uN va fi trunchiată la u1, u2, . . . , uK ,
cu K << N .
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Pentru a alege nivelul de trunchiere K, putem folosi una dintre cele trei
metode menţionate ı̂n [10]. În experimente vom folosi prima metodă unde sunt
eliminaţi aproximativ 90% din ultimii vectori proprii.

Pentru a identifica o nouă imagine Γ, aceasta este reprezentată folosind vec-
torii proprii {u1, u2, . . . , uK} . Avem ωi = uT

i (Γ−Ψ) , i = 1 : K. Coeficienţii
ωi formează vectorul ΩT = [ω1, ω2, . . . , ωK ] . Vectorul Ω descrie contribuţia
fiecărei “feţe proprii” la reprezentarea imaginii Γ şi este folosită pentru a clasi-
fica imaginea Γ.

4.2 Algoritmul Nearest Neighbour (NN)

În această secţiune vom prezenta succint un alt algoritm folosit ı̂n recunoaşterea
formelor. În Capitolul de experimente şi ı̂n lucrarea [19] Grecu (Liţă) L. , Pe-
lican E., Systematic and comparative experiments with some algorithms for
pattern recognition sunt prezentate comparaţii ı̂ntre rezultatele obţinute cu
acest algoritm şi cele obţinute cu ceilalţi algoritmi prezentaţi ı̂n cadrul acestui
capitol.

Cea mai simplă metodă care poate fi folosită ı̂n recunoaşterea feţelor/forme-
lor este căutarea secvenţială, adică găsirea celui mai apropiat “vecin”, ı̂n cazul
nostru persoana/cifra care “seamană” cel mai bine cu persoana/cifra căutată.
Aşadar fiind dată o imagine Γ (imaginea unei persoane sau a unei cifre) vrem
să găsim cea mai apropiată imagine din baza de date {Γ1, Γ2, . . . , ΓN} de
imaginea respectivă. Căutarea secvenţială (algoritmul Nearest Neighbour, a
se vedea [36]) presupune compararea imaginii Γ cu fiecare Γi şi găsirea unui
indice i0 astfel ı̂ncât

‖Γ− Γi0‖ = min
1≤i≤N

‖Γ− Γi‖ . (82)

Aşadar indicele i0 ne va da imaginea aflată la cea mai mică distanţă faţă de
imaginea căutată.

4.3 Algoritmul COD-A1

În lucrarea [20] L. Grecu (Liţă), E. Pelican, Customized Orthogonalization
via Deflation Algorithm with Applications in Face Recognition propunem un
algoritm pentru recunoaşterea feţelor.

Pentru a ı̂mbunătăţi (ca rată de recunoaştere), algoritmul PCA (un algo-
ritm bazat de SVD trunchiat), trebuie căutată o bună aproximare de rang
redus pentru matricea A. Chiar dacă algoritmii bazaţi pe SVD trunchiat
dau cele mai bune aproximări de rang redus atât ı̂n norma Frobenius cât şi ı̂n
norma L2, pentru matricele de dimensiuni mari, obţinerea descompunerii SVD
poate fi costisitoare. O opţiune se bazează pe metoda Lanczos şi este potrivită
pentru lucrul cu matrice de dimensiuni mari. Se ştie că metoda Lanczos are

21



două potenţiale dezavantaje. În primul rând, ı̂n timp ce este de aşteptat să
dea estimări bune pentru cele mai mari şi cele mai mici valori proprii (valori
singulare), are o dificultate ı̂n a estima valorile intermediare. În al doilea rând,
pe măsură ce creşte numărul de iteraţii, vectorii singulari calculaţi pot pierde
proprietatea de ortogonalitate. Acest ultim aspect este deja rezolvat prin re-
ortogonalizare. În lucrările [4] şi [14], autorii au utilizat deja metoda Lanczos
pentru aproximarea de rang redus. Dar, după cum este raportat ı̂n lucrările
respective rata de recunoaştere a metodelor propuse nu o depăşeşte pe cea a
PCA.

O altă variantă pentru a calcula rangul k de trunchiere al descompunerii
SVD este algoritmul propus ı̂n [6] şi [7]. În aceste lucrări, pentru o matrice
A : M × N, M ≥ N , se generează o secvenţă de matrice A1, A2, . . . , Ak+1,
pentru care

Ak+1 = Ak − σ̃kũkṽ
T
k = A−

k∑

j=1

σ̃jũj ṽ
T
j = A− ŨkD̃kṼ

T
k = A− B̃k, (83)

unde ũk, ṽk şi σ̃k sunt date de (84), (85), şi respectiv (86), Ũk = [ũ1 ũ2 . . . ũk] ,
Ṽk = [ṽ1 ṽ2 . . . ṽk] , D̃k = diag (σ̃1, σ̃2, . . . , σ̃k) , şi B̃k = ŨkD̃kṼ

T
k . Matricea

B̃k serveşte drept aproximare de rang redus a matricei A.
Fie ûk ∈ R (Ak) şi v̂k ∈ R

(
AT

k

)
o pereche arbitrară de vectori care satisface

ûT
kAkv̂k > 0. Avem

ũk = Akv̂k/ ‖Akv̂k‖2 , (84)

ṽk = AT
k ûk/

∥∥AT
k ûk

∥∥
2
, (85)

şi
σ̃k =

(
‖Akv̂k‖2

∥∥AT
k ûk

∥∥
2

)
/
(
ûT
kAkv̂k

)
. (86)

Teorema 7 (a se vedea [6] şi [7]) Fie matricele Ûk ∈ IRM×k, V̂k ∈ IRN×k, şi
D̂k ∈ IRk×k definite de relaţiile

Ûk = [û1 û2 . . . ûk] , V̂k = [v̂1 v̂2 . . . v̂k] si D̂k = (σ̂1, σ̂2, . . . , σ̂k) , (87)

unde σ̂j = ûT
j Av̂j, pentru j = 1, . . . , r = rank(A). Atunci, relaţiile următoare

au loc pentru k = 1, . . . , r:

R (Ak+1) ⊆ R (Ak) , R
(
AT

k+1

)
⊆ R

(
AT

k

)
, (88)

R
(
Ûk

)
⊆ R (A) , R

(
V̂k

)
⊆ R

(
AT

)
, (89)

ÛT
k Ak+1 = 0, Ak+1V̂k = 0, (90)
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ÛT
k Ûk = I, V̂ T

k V̂k = I. (91)

Deci, pentru k = r coloanele matricelor Ûr şi V̂r constituie bază ortonormată
pentru R(A) şi R(AT ), respectiv. Prin urmare,

Ar+1 = 0 (92)

şi
A = ŨrD̃rṼ

T
r (93)

Pornind de la ideea de a aproxima matricea A cu matricea Bk, şi de la
ideea de a reprezenta toate imaginile ı̂ntr-un subspaţiu de dimensiune mai
mică, ı̂n cele ce urmează propunem o versiune personalizată a algoritmului
(83)-(86), algoritmul COD-A1 (Customized Orthogonalization via Deflation
Algorithm). Personalizarea constă ı̂ntr-o alegere adecvată la fiecare iteraţie
pentru ûi+1 ∈ R (Ai) şi v̂i+1 ∈ R

(
AT

i

)
. Am testat şi alte variante pentru

aceste iniţializări (pentru fiecare iteraţie), dar rezultatele obţinute nu au fost
satisfăcătoare.

Cu acest algoritm ı̂ncercăm să aproximăm matricea U din descompunerea
ı̂n valori singulare a matricei A, A = UΣV T cu matricea Ũk din (83), care va
servi drept bază ortonormată pentru R (A). Apoi urmăm procesul de clasifi-
care de la algoritmul “feţelor proprii”: vom compara noua expresie a imaginii
căutate cu toate coloanele din noua matrice obţinută (baza de date) şi căutăm
imaginea din baza de date, care este cel mai aproape (̂ıntr-o anumită metrică)
de imaginea căutată.

Algoritmul propus este următorul.

Algoritmul COD-A1:

Pasul 1. Se iniţializează û1, û1 = û1/ ‖û1‖, v̂1, v̂1 = v̂1/ ‖v̂1‖ şi A1 = A.
Pasul 2. for i = 1, 2, . . . , k

ũi = Aiv̂i/ ‖Aiv̂i‖2
ṽi = AT

i ûi/
∥∥AT

i ûi

∥∥
2

σ̃i =
(
‖Ai ∗ v̂i‖2

∥∥AT
i ûi

∥∥
2

)
/
(
ûT
i Aiv̂i

)

Ai+1 = Ai − σ̃iũiṽ
T
i

se reiniţializează ûi+1, ûi+1 = ûi+1/ ‖ûi+1‖ şi v̂i+1, v̂i+1 = v̂i+1/ ‖v̂i+1‖
end
Pasul 3. Fie U = [ũ1 ũ2 . . . ũk] şi B = Ak+1.

Pasul 4. Se obţine ΩT
i = [ωi

1, ωi
2, . . . , ω

i
k] unde coliA =

k∑
j=1

ωi
jũj.

Pasul 5. Fiind dată o imagine Γ, se obţine Γ =
k∑

j=1

ωjũj.

Pasul 6. Se reprezintă Γ ca fiind ΩT = [ω1, ω2, . . . , ωk].
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Pasul 7. Se căută i0 ∈ {1, . . . , k} care satisface ‖Ω− Ωi0‖ = min
1≤i≤k

‖Ω− Ωi‖ .

4.4 Descompunerea ı̂n valori singulare pentru tensori

În lucrarea [21] L. Grecu (Liţă), E. Pelican, A Low-Rank Tensor-Based Algo-
rithm for Face Recognition propunem un algoritm pentru recunoaşterea feţelor
bazat pe descompunerea ı̂n valori singulare pentru tensori.

Motivaţia pentru care tensorii sunt utilizaţi ı̂n recunoaşterea feţelor este
faptul că de multe ori datele sunt stocate sub formă de tensor. În loc de a
stoca toate datele sub formă de matrice, toate imaginile aparţinând aceleiaşi
persoane se pot stoca ı̂ntr-o matrice, iar toate matricele corespunzătoare tu-
turor persoanelor formează un tensor. Acest lucru conduce la o organizare
mai bună a imaginilor din baza de date. În această organizare, feţele sunt
clasificate ı̂ntr-un număr de grupuri de diferite “expresii”. Această clasifi-
care se referă la unghiuri fotografice (de exemplu, profil stânga, profil dreapta,
portret), condiţiile de iluminare (̂ıntuneric, luminat, etc) sau expresii faciale
(fericit, trist, furios, etc), şi aşa mai departe.

În continuare prezentăm o generalizare a teoremei SVD de la matrice pentru
tensori (a se vedea [8] şi [13]).

Fie A ∈ IRl×m×n, U ∈ IRl0×l şi A ×1 U un tensor de dimensiune l0 ×m ×
n, avem următorul mod de ı̂nmulţire (modul-1 de ı̂nmulţire tensor-matrice)

(A×1 U) (j, i2, i3) =
l∑

k=1

uj,kak,i2,i3 . Pentru A ∈ IRl×m×n, U ∈ IRm0×m şi A×2U

un tensor de dimensiune l×m0×n avem (modul-2 de ı̂nmulţire tensor-matrice)

(A×2 U) (i1, j, i3) =
m∑
k=1

uj,kai1,k,i3 , şi pentru A ∈ IRl×m×n, U ∈ IRn0×n şi A×3U

un tensor de dimensiune l×m×n0 avem (modul-3 de ı̂nmulţire tensor-matrice)

(A×3 U) (i1, i2, j) =
n∑

k=1

uj,kai1,i2,k. Modul-i şi modul-j de ı̂nmulţire comută

dacă i 6= j, i, j ∈ {1, 2, 3} : (A×i U)×j V = (A×j V )×i U = A×i U ×j V.
Un tensor poate fi desfăşurat ı̂ntr-o matrice, A(i) = unfoldi(A), deci:
A(1) = unfold1 (A) = (A (:, 1, :) A (:, 2, :) . . . A (:,m, :)) ,

A(2) = unfold2 (A) =
(
A (:, :, 1)T A (:, :, 2)T . . . A (:, :, n)T

)
,

A(3) = unfold3 (A) =
(
A (1, :, :)T A (2, :, :)T . . . A (l, :, :)T

)
.

Pentru toate desfăşurările, linia i din A(j) conţine toate elementele tensoru-
lui A care au indexul j egal cu i. Operaţia inversă desfăşurării este ı̂nfăşurarea
foldi (unfoldi (A)) = A.

Folosind aceste desfăşurări obţinem: A ×1 U = fold1 (U · unfold1 (A)) ,
A ×2 U = fold2 (U · unfold2 (A)) , şi A ×3 U = fold3 (U · unfold3 (A)) . Pro-
dusul scalar 〈A,B〉 a doi tensori A, B ∈ IRl×m×n, este definit astfel 〈A,B〉 =
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l∑
i=1

m∑
j=1

n∑
k=1

A (i, j, k)B (i, j, k) .

Teorema 8 (HOSVD, a se vedea [8] şi [13]) Tensorul A ∈ IRl×m×n poate fi
scris ca

A = S ×1 U
(1) ×2 U

(2) ×3 U
(3) (94)

unde U (1) ∈ IRl×l, U (2) ∈ IRm×m, U (3) ∈ IRn×n sunt matrice ortogonale. Ma-

tricele U (i) sunt obţinute din A(i) = U (i)Σ(i)
(
V (i)

)T
, A(i) = unfoldi(A), fără ca

matricele V (i) sa fie formate explicit. S este un tensor de aceeaşi dimensiune
ca şi A şi satisface

• oricare două “felii” diferite fixate ı̂n acelaşi mod sunt ortogonale
〈S (i, :, :) , S (j, :, :)〉 = 0, i 6= j, 〈S (:, i, :) , S (:, j, :)〉 = 0, i 6= j,
〈S (:, :, i) , S (:, :, j)〉 = 0, i 6= j.

• normele “feliilor” ı̂n orice mod sunt ordonate, de exemplu pentru primul
mod avem ‖S (1, :, :)‖ ≥ ‖S (2, :, :)‖ ≥ . . . ≥ 0.

• descompunerea (94) nu este unică (a se vedea pentru detalii [13] şi [8])

Fie A ∈ IRni×ne×np un tensor reprezentând baza de date (mulţimea de
training) şi fie un vector din IRni reprezentând o poză din mulţimea de testing.
Aici ni este rezoluţia unei imagini (ni = M din secţiunile anterioare), np este
numărul de persoane din baza de date (np = P din secţiunile anterioare), şi
ne este numărul de expresii pentru o persoană (ne · np = N din secţiunile

anterioare). Vrem să vedem dacă algoritmul o identifică corect. În [13], pentru
algoritmii de la paginile 173-174 se presupune că ni >> nenp. Pentru o bază
de date mare (de exemplu baza de date ExtYaleB), reducând dimensiunea
imaginilor, se obţine ni << nenp. În urma experimentelor cu algoritmul din
[13] pentru baza de date ExtYaleB am obţinut o rată de recunoaştere mai mică
decât pentru algoritmul PCA.

Pentru a soluţiona această problemă propunem un nou algoritm pentru
recunoaşterea feţelor, pentru cazul ı̂n care ni << nenp.

Pentru problema ı̂n discuţie, folosim următoarea formă a teoremei HOSVD
A = C ×e G, C = S ×i F ×p H, unde ×i = ×1, ×e = ×2, ×p = ×3 şi
F = U (1) ∈ IRni×ni , G = U (2) ∈ IRne×ne , H = U (3) ∈ IRnp×nP din teorema
HOSVD.

Pentru o anumită persoană p avem: A (:, :, p) = C (:, :, p)×e G.
Tensorii A (:, :, p) şi C (:, :, p) sunt de fapt matrice, notate cu Ap şi, respectiv

Cp. Deci Ap (:, e) este imaginea unei persoane p ı̂n expresia e şi coloanele
matricei Cp formează o bază de vectori pentru persoana p. Obţinem că Ap =
CpG

T , p = 1, 2, . . . , np.
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FieGT = (g1 . . . gne
), atunciAp (:, e) = Cpge. Prin urmare ge, e = 1, 2, . . . , ne

sunt coordonatele imaginiiAp (:, e) a persoanei p ı̂n expresia e ı̂n baza menţionată
anterior.

Fie z ∈ IRni o imagine din mulţimea de testing. Vrem să vedem dacă
imaginea este identificată corect. Pentru acest lucru, trebuie să rezolvăm
min
αp

‖Cpαp − z‖2 . Pentru fiecare imagine z trebuie să rezolvăm np probleme

ı̂n sensul celor mai mici pătrate cu Cp ∈ IRni×ne . Din C = S ×i F ×p H
obţinem că Cp = FBp, unde Bp ∈ IRnenp×ne , Bp = (S ×p H) (:, :, p).

Putem trunchia tensorii şi matricele astfel ı̂ncât să obţinem o descom-
punere HOSVD trunchiată pentru tensorul A. Fie Fk = F (:, 1 : k) şi obţinem

Ĉ = (S ×p H) (1 : k, :, :) ×i Fk. Deci, trebuie să rezolvăm min
αp

∥∥∥Ĉpαp − z
∥∥∥
2
.

Algoritmul propus este următorul, pentru ni << nenp.
Algoritmul pentru tensori - A2:

Fie z imaginea pe care o căutăm
for p = 1, 2, . . . , np

Fie Ĉ = (S ×p H) (1 : k, :, :)×i Fk

Se rezolvă min
αp

∥∥∥Ĉpαp − z
∥∥∥
2
.

for e = 1, 2, . . . , ne

dacă ‖αp − ge‖2 < tol, atunci este persoana p şi ne oprim
end

end

Observaţia 7 Nivelul de trunchiere k poate fi ales ca şi ı̂n [42] sau [10] sau
[14] şi nu empiric cum se sugerează ı̂n [13] (paginile 116 şi 173).

5 Experimente

În acest capitol sunt prezentate experimente şi rezultate obţinute cu algoritmii
prezentaţi ı̂n Capitolele 1, 3 şi 4. Acest capitol cuprinde următoarele secţiuni.

5.1 Experimente cu generarea matricei de scanare ı̂n geotomografia elec-
tromagnetică

5.2 Experimente cu algoritmul SART
5.2.1 Paralelizarea algoritmului SART

5.3 Experimente cu clase de algoritmi pentru recunoaşterea formelor
5.3.1 Experimente cu clase de algoritmi pentru recunoaşterea feţelor
5.3.2 Studiu comparativ al algoritmilor NN, PCA şi COD-A1 ı̂n re-

cunoaşterea formelor
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for Face Recognition, trimisă spre publicare la Pattern Recognition
Letters, 2013.

[22] Guo G.-D., Zhang H.-J., Li S.Z., Pairwise Face Recognition, Proc. of the
Eighth IEEE International Conference on Computer Vision, ICCV 2001, 2
(2001), Vancouver, Canada, 282-287.

[23] Guo G.-D., Zhang H.-J., Boosting for Fast Face Recognition, Second Interna-
tional Workshop on Recognition, Analysis and Tracking of Faces and Gestures
in Real-time Systems, RATFG-RTS’01, Vancouver, Canada, 96-100.

[24] Herman G. T., Image reconstruction from projections. The fundamentals of
computerized tomography, Academic Press, New York, 1980.

[25] Horn R. A., Johnson C. R., Matrix analysis, Cambridge University Press, New
York, 1990.

28



[26] Hotelling H., Analysis of a complex of statistical variables into principal com-
ponents, J. Educ. Psychol., 24 (1933), 417-441, 498-520.

[27] Jiang M., Wang G., Convergence of the simultaneous algebraic reconstruc-
tion technique (SART), in Proc. 35th Asilomar Conf. Signals, Systems, and
Computers, Pacific Grove, CA, 2001, 360-364.

[28] Jiang M., Wang G., Convergence studies on iterative algorithms for image
reconstruction, IEEE Trans. on Medical Imaging, 22 (2003), 569-579.

[29] Jolliffe I.T. , Principal Component Analysis, Springer-Verlag, Second Edition,
New York, 2002.

[30] Kaczmarz S., Angenaherte Auflosung von Systemen linearer Gleichungen, Bull.
Acad. Polonaise Sci. et Lettres A (1937), 355-357.

[31] Kirby M., Sirovich L., Application of the Karhunen-Loeve Procedure for the
Characterization of Human Faces, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12(1) (1990), 103-108.

[32] Koltracht I., Lancaster P., Smith D., The structure of some matrices arising
in tomography, Linear algebra and its applications, 130 (1990), 193-218.

[33] Koltracht I., Lancaster P., Constraining Strategies for Linear Iterative Pro-
cesses, IMA Journal of Numerical Analysis, 10 (1990), 555-567.

[34] Martinez A.M., Kak A.C., PCA versus LDA, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(2) (2001), 228-233.

[35] Meyer C. D., Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia,
2000.

[36] Murty M. Narasimha, Devi V. Susheela, Pattern Recognition. An Algorithmic
Approach, Springer, First Edition, London, 2011.

[37] Natterer F., The Mathematics of Computerized Tomography, John Wiley and
Sons, New York, 1986.

[38] Nicola A., Petra S., Popa C. and Schnörr C., On a general extending and con-
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