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Introduction

In recent years due to technical evolution, problems related to image recon-
struction and image processing (pattern/face recognition) have gained great
interest in a wide range of applications. Image reconstruction problems occur
in areas such as medicine (computed tomography), geology (electromagnetic
geotomography), etc.. Face recognition is a matter of great interest in areas
such as security and surveillance issues, forensic (criminal) problems, human-
computer interface, multimedia communications, and so on.

This thesis treats the two topical directions:

1. image reconstruction, namely the demonstration, by a way of proof com-
pletely different from the one in [28], of the convergence of Simulta-
neous Algebraic Reconstruction Technique (SART) algorithm by
integrating this algorithm in a class of general projective methods;

2. face recognition, more precisely we propose two new algorithms to solve
the problem of face recognition. The first algorithm is a Principal Com-
ponent Analisys (PCA) like algorithm (based on projecting the database
onto a subspace of smaller dimension) and is a customization of the al-
gorithm presented in [6] and [7]. The second algorithm is based on mul-
tilinear analysis and it is suitable for large datasets, where the number
of pictures in the dataset is greater than the resolution of an image.

The thesis is structured into five chapters as follows.

In the first chapter are presented notions and concepts based on linear
algebra and numerical analysis used throughout the thesis. We present notions
about vector and matrix norms, singular value decomposition, orthogonal and
oblique projections, least squares problems. It is also presented the problem
of image algebraic reconstruction.

In this first chapter is also presented an algorithm for the construction of
the scanning matrix in Electromagnetic Geotomography (EGT). We describe
the algorithm for the construction of the scanning matrix for different types
of scanning: “well to well”, “surface to well” and total scanning. For all
three types of scanning we present results regarding the number of nonzero
elements of the scanning matrix. Moreover, we describe an optimization of the
construction algorithm, which will reduce the running time of the algorithm.

In the second chapter are introduced the image Algebraic Reconstruction
Techniques (ART), methods based on successive projections and simultaneous
projections. Furthermore, we study the convergence of the algebraic recon-
struction techniques based on successive projections.

We also study the convergence of some extensions of the algebraic recon-
struction techniques to inconsistent problems and constrained problems. This
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study is being done through a general projective method, presented in [38],
which includes the known algebraic reconstruction methods: Kaczmarz, Cim-
mino, etc..

Chapter three deals with the study of the convergence of the algebraic re-
construction techniques based on simultaneous oblique projections, more pre-
cisely, the study of the convergence of SART algorithm. SART algorithm was
introduced by A. H. Andersen and A. C. Kak in 1984 (see [1]) as a simultane-
ous alternative to Kaczmarz algorithm which is based on successive orthogonal
projections.

The SART algorithm is based on simultaneous oblique projections and
error correction terms are applied simultaneously for all rays of a particular
projection.

The proof of convergence is made by integrating the SART algorithm to
the general projective method presented in the second chapter, a new way
of proof. Integrating the SART algorithm to the general projective method
allows us to consider the SART algorithm with constraints, which will give us
better reconstructions.

In chapter four are presented classes of algorithms for pattern recognition.
We describe algorithms based on projection onto a subspace of smaller di-
mension. At the beginning of the chapter we present the eigenfaces algorithm
which is the the oldest method (see [26], [29] and [40]) used for face recognition,
but still has good results.

PCA (Principal Component Analisys) is a mathematic process that allows
us to obtain from an initial large data set, another smaller data set with similar
properties. This new data are called principal components. These components
are chosen in descending order of their importance: the first component has the
highest significance, the second component corresponds to the next eigenvalue
(in magnitude) and so on. At the same time it is taken into account the
restriction that each principal component is orthogonal to all previous principal
components.

Next, we propose a new algorithm for face recognition, COD-A1 algorithm.
This algorithm is a customized version of the algorithm descrided in [6] and [7].
Starting from the idea of low rank approximation from [6] and [7], and the idea
of representing all images in a subspace with smaller dimensions, we propose
the COD-A1 algorithm, which as can be seen in the experiments chapter, has
a higher recognition rate than PCA algorithm.

Last but not least we propose a new algorithm based on tensors, algorithm
A2. This algorithm is more suitable for datasets where the set of images
is well organized and the number of photos in the dataset is greater than
the resolution of an image, which has not been considered so far because the
datasets available had small sizes (the number of images in the dataset was
small). This algorithm based on tensors has a higher recognition rate than the
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one of PCA algorithm.
The motivation why tensors are used in face recognition is that often the

data is stored as a tensor. Instead of storing all the data as a matrix, we
store all photos belonging to the same person as a matrix, and all matrices
coresponding to all persons form a tensor. This leads to a better ordering of
the pictures in the dataset.

Chapter five is reserved to numerical experiments. In this chapter are pre-
sented tests performed with the algorithm for the construction of the scanning
matrix in Electromagnetic Geotomography from Chapter one, comparisons be-
tween the results obtained with SART algorithm (presented in Chapter three)
and those obtained with Kaczmarz algorithm, standard ART class algorithm,
for which the experiments are performed on two “ghosts” commonly used in the
literature (see [24]) and experiments with all algorithms described in Chapter
four, carried out on four databases, two own databases (CTOVF and CTOVD)
and two databases known in the literature (ORL and ExtYaleB).

The original results presented in this thesis are included in the following
papers:

• [16] Popa C., Grecu L., Constrained SART algorithm for invers problems
in image reconstruction, Inverse Problems and Imaging, 1(7) (2013), 199-
216. (Relative Influence Score = 2.13, Impact Factor = 1.074)

• [18] Grecu L., On the construction of the scanning matrix in Electromag-
netic Geotomography, Buletinul Ştiinţific al Universităţii ”Politehnica”
din Timişoara, Seria Matematică - Fizică, 1 (2012), 42-56.

• [17] Grecu L., Nicola A., Some results on simultaneous algebraic tech-
niques in image reconstruction from projections, ROMAI Journal, 2 (2009),
79-96, http://rj.romai.ro/

• [41] Pelican E., Grecu L., Comparison Between Some Matrix Methods
with Applications in Pattern Recognition, presented at Applied Linear
Algebra Conference, May 24-28, 2010, Novi Sad, Serbia.

• [20] Grecu (Liţă) L. , Pelican E., Customized Orthogonalization via De-
flation Algorithm with Applications in Face Recognition, submitted to
Carpathian Journal of Mathematics, 2013.

• [21] Grecu (Liţă) L. , Pelican E., A Low-Rank Tensor-Based Algorithm
for Face Recognition, submitted to Pattern Recognition Letters, 2013.

• [43] Pelican E., Grecu (Liţă) L., Solving the Pattern Recognition Prob-
lem with some Low-Rank Approximation Based Algorithms, presented at
XIème Colloque Franco-Roumain de Mathématiques Appliquées, 24-30
August, 2012, Bucureşti.
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• [19] Grecu (Liţă) L. , Pelican E., Systematic and comparative experiments
with some algorithms for pattern recognition, accepted for publication in
Proceedings of the Nineth Workshop on Mathematical Modelling of En-
vironmental and Life Sciences Problems, November 1-4, 2012, Constanţa,
Romania.

• [42] Pelican E., Grecu L., Low-Rank Matrix Methods in Pattern Recog-
nition, presented at Balkan Conference on Operational Research (BAL-
COR), 2009, published electronically with ISBN: 973-86979-9-9.

Constanţa, march 2013

Lăcrămioara (Liţă) Grecu
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1 Preliminaries

1.1 Introductory notions

In this section are presented notions and concepts based on linear algebra
and numerical analysis used throughout the thesis: vector and matrix norms,
singular value decomposition (SVD), orthogonal and oblique projections in
IRn, linear least squares problems.

We will use the notations: Ai row i of matrix A, Aj column j of matrix A,
Aij the (i, j) entry of matrix A, In identity matrix of order n, AT the transpose
of matrix A, N (A) = {x ∈ IRn, Ax = 0}, R (A) =
{y ∈ IRm, ∃ x ∈ IRn, y = Ax}. The notation S ⊕T is used for the orthogonal
direct sum of the subspaces S and T , i.e. E = S ⊕ T ⇔

(i) ∀ x ∈ E, ∃ s ∈ S, t ∈ T such that x = s + t;

(ii) S ∩ T = {0} ;

(iii) ∀ s ∈ S, t ∈ T, 〈s, t〉 = 0.

(1)

1.2 Image Algebraic Reconstruction

The mathematical formulation of the image algebraic reconstruction problem
consists in finding a function of two variables when are known its projections,
meaning its curvilinear integrals for any line of the plan. There are two forms:
the direct problem and the inverse problem.

The direct problem involves calculating the integral of a (known) function
f on a plane curve C, denoted by

IC (f) =

∮

C

f (x, y) dI. (2)

For the inverse problem is assumed that we know the value of the integral
IC (f) from (2), i.e. we can determin the values of the absorption function
f (x, y) in any point (x, y) from the domain.

Lambert’s law states that there is a logarithmic dependence between the
transmission intensity (IS) of the ray and the reception one (IR). In this case,
for a ray SR we have

ln

(
IR

IS

)
=

∮

SR

f (x, y) dI. (3)

To solve this problem of image algebraic reconstruction are considered two
levels of discretization: discretization of the set of values of the absorption
function f (discretization of the image) and discretization of lines SR in the
plane (discretization of the scan). Discretization of the image involves dividing
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the image in picture elements called pixels. Discretization of the scan involves
a finite-ray scanning, SR ∈ IR2.

If we use a total of m rays and a discretization of the image in n pixels,
scanning matrix A is of size m×n. Matrix A is sparse (see Lemma 1), doesn’t
have full rank, and is ill conditioned.

Measuring the intensity of the emission sources (Si) and reception sources
(in detectors Rj) for the i-th X-ray, we get the component bi of the right hand
side term b of the discrete model. This technique reduces image reconstruction
to solving the least squares problem: determine x ∈ IRn such that.

‖Ax − b‖ = min {‖Az − b‖ , z ∈ IRn} , (4)

or briefly
‖Ax − b‖ = min! (5)

is called algebraic reconstruction. To solve (5) it has been developed a class
of iterative methods based on projections, called Algebraic Reconstruction
Techniques (ART).

1.3 On the construction of the scanning matrix in Elec-
tromagnetic Geotomography

The results in this section were published in [18] L. Grecu (Liţă), On the
construction of the scanning matrix in Electromagnetic Geotomography, where
we present an algorithm for the construction of the scanning matrix. The
scanning procedure was developed particulary in the field of Computed To-
mography (see [24]). However, the idea was taken up successfully also in other
areas such as Electromagnetic Geotomography (EGT).

In Electromagnetic Geotomography the scanning procedure consists in
drilling two parallel wells, and scanning the cross section between them, using
transmitters and receivers placed along the two wells. This method gives us in-
formation about cracks appeared after earthquakes or cleaves of underground
pipelines. After scanning the desired section, a scanning matrix is obtained.
This matrix can be used in various image reconstruction algorithms, which
gives us information about the unknown structure of the underground (see
[11]).

The geotomographic scanning process involves a set of transmitters
(S1, S2, . . . , Sp) and a set of receivers (R1, R2, . . . , Rq) located in two
parallel drilling wells. From each transmitter a scanning ray is send to every
receiver. This is called well to well scanning.

The discrete model of the algebraic reconstruction problem will be a linear
least squares problem of the form (4) (see [11], [24]), where A is the scan-
ning matrix, and each element Aij is obtained by measuring the length of the
segment determined by the intersection of the i-th ray with the j-th pixel.

6



Measuring the intensities of the source emissions (S1, S2, . . . , Sp) and recep-
tion (in the receivers R1, R2, . . . , Rq) of the i-th electromagnetic ray, we will
obtain the component bi of the right hand side b of the discret model (4). We
denote by xLS the minimum norm solution of the least squares problem (4),
given by xLS = A+b, where A+ is the Moore−Penrose pseudoinverse of matrix
A (see e.g.[15]).

An image of dimension α × α is divided into pixels numbered row-wise
P1, P2, . . . , Pn. To this image one associates a matrix A, called scanning
matrix, of size m×n, where m is the number of transmitters multiplied by the
number of receivers, and n is the number of pixels. The matrix A is constructed
row by row and every row corresponds to a scanning ray. Moreover we will
suppose that the pixels are normalized, i.e. with the edge length equal to 1.

1.3.1 The well to well procedure

For this method of obtaining the scanning matrix we have assumed that the
number of transmitters and the number of receivers are equal, and that the
transmitters/receivers are positioned in the middle of the pixel’s boundary.

From each transmitter a scanning ray is send to every receiver. Let
Pj1 , . . . , Pjq

be the pixels that intersect the scanning ray i. The equation
of the scanning ray i is obtained from the coordinates of the points which
correspond to the transmitter and the receiver of this ray. Then, with the help
of this equation of the scanning ray, it is calculated the length of the segment
determined by the intersection of the i-th ray with the pixel Pj.

The i-th row of matrix A corresponds to the i-th ray. If the i-th ray
intersects the j-th pixel, then the element Aij will be equal with the length of
the intersection between the i-th ray and the j-th pixel; if the i-th ray does
not intersect the j-th pixel, then Aij = 0. As we will show in Lemma 1, the
matrix A is sparse.

Remark 1 The same procedure can also be applied to a rectangular image of
size α×β. In such a case the number of pixels in image is n = α×β, and the
method for generating the scanning matrix is the same as for a square image.

The next Lemma (given without proof in [32]) shows that the scanning
matrix A is sparse.

Lemma 1 [32] For the well to well case, the scanning matrix A has at most
m + n − 1 nonzero elements on a row, for an image with size n × m.

1.3.2 The surface to well procedure

For better results with the reconstruction algorithms, we can also use surface
trasmitters. In this case the receivers are positioned on both drilling wells and
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the rays are sent from surface to both sides. This scanning is called surface to
well scanning. Using this scanning procedure we get additional informations
on the underground in comparison to well to well scanning.

Lemma 2 The scanning matrix, A, associated to a surface to well scanning
of an image of size n × m, has at most m + n − 1 nonzero entries on a row.

1.3.3 Total scanning

The total scanning procedure includes well to well scanning as well as surface
to well scanning. This scanning procedure gives the most satisfactory results.

For the total scanning procedure remains valid rule that the i-th row of
matrix A coresponds to the i-th ray. In this case the ray i can be a well to
well ray or a surface to well ray. The density structure of the corresponding
scanning matrix is given by the following result which holds directly from
Lemmas 1 and 2.

Lemma 3 For the total scanning procedure, the obtained scanning matrix A
has at most m+n−1 nonzero elements on a row, for an image with size n×m.

1.3.4 Optimization of the construction algorithm

In this section we will present a procedure for the optimization of the algorithm
for the construction of the scanning matrice. When constructing this matrix,
we must take into account the area of the image which the ray is most likely
to cross and focus on the pixels in that area. There is no need to take one by
one each pixel of the image, and see if the ray intersects it. In this way we
minimize the computational time.

To find the area that the ray is most likely to cross pixels we must focus on
the rows of the image, where the transmitter and the receiver are positioned,
and search all the pixels from those rows and from the rows between them.
This can be done by taking into account the number of transmitters/receivers
from a pixel (if there are more than one transmitter/receiver in a pixel they
are positioned equidistant). Because the transmitters/receivers are placed in a
specific order and for each scanning ray we know the corresponding transmitter
and receiver, we can deduct the image rows where the transmitter/receiver is
positioned.

The algorithm for finding the strip where the ray crosses the image is the
following (see Figure 1, α × α is the image resolution and we suppose that
αi > αj):

Step 1. Find the interval i on the edge AD where the source Si(0,αi) is
positioned, i = α − floor(αi) with αi ∈ (0, α);
Step 2. Find the interval j on the edge BC where the receptor Rj(α,αj)
is positioned, j = α − floor(αj) with αj ∈ (0, α);
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Step 3. Obtain the strip [i, j];
Step 4. The pixels in the strip are those with indices (i − 1)∗α+1, · · · , j∗α.

where floor(α) denotes the integer part of α.
Then we will analyse the intersection of the ray SR only with those pixels.

Figura 1: Optimization of the construction algorithm

For the surface to well procedure it is easier to determin the image area
where the ray is more likely to cross. The number of pixels that are likely to
be intersected by the ray decreases with 1, with each row. Hence we obtain o
triangle of pixels, which may intersect the ray. The algorithm for determining
those pixels is the following (we have S(α, i) and R(0, j)):

For each image row, r = 1, 2, . . . , j;
the pixels of interest are: (r − 1) α + 1, . . . , (r − 1) α + j − (r − 1)

2 Solving the image algebraic reconstruction

problem with iterative methods based on or-

thogonal projections

2.1 Kaczmarz and Cimmino Methods

Kaczmarz method appears first in 1937 in polish mathematician S. Kaczmarz
paper [30], but a rigorous theoretical study of its properties is only made in
1971 by japanese mathematician K. Tanabe (see [50]). Kaczmarz method is
also known as projections method because of its particular modality of con-
struction of approximations x1, x2, . . . .
We define fi(b; ·) : IRn → IRn, i = 1, m and F (b; ·) : IRn → IRn by

fi(b; x) = x −
〈x, Ai〉 − bi

‖Ai‖
2 Ai = PHi

(x), (6)

and
F (b; x) = (f1 ◦ f2 ◦ . . . ◦ fm) (b; x) . (7)

Kaczmarz method is written as

xk+1 = F (b; xk), k ≥ 0, (8)
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where x0 ∈ IRn is the initial aproximation.

Remark 2 One iteration (8) of Kaczmarz method consists of successive (or-
thogonal) projections onto hyperplanes Hm, Hm−1, . . . , H1 associated with the
equations of problem (4), in an a priori fixed order.

The standard method for Algebraic Reconstructions Technique (ART) based
on simultaneous projections is the algorithm proposed by G. Cimmino in [5].
The author considers instead of Kaczmarz’s method orthogonal projections,
the symmetrics of an approximation xk ∈ IRn againts hyperplanes

Hi = {x ∈ IRn, 〈x, Ai〉 = bi} .

We have

Si(x) = x − 2
〈x, Ai〉 − bi

‖Ai‖
2 Ai. (9)

Cimmino method can be written as

xk+1 =
m∑

i=1

ωi

ω
Si(x

k) = xk −
2

ω

m∑

i=1

ωi

〈
xk, Ai

〉
− bi

‖Ai‖
2 Ai, (10)

where ωi > 0 şi ω =
m∑

i=1

ωi.

Hence xk+1 is a convex combination of the symmetrics
{
Si(x

k), i = 1, . . . ,m
}
.

We will analyze convergence of Kaczmarz (8) and Cimmino (10) methods
through a general approach presented in [38]. The authors consider there a
general algorithm of the form: x0 ∈ IRn, for k = 0, 1, . . . we define the sequence

xk+1 = Txk + Rb, (11)

where T : n × n, R : n × m, for matrix T and R are imposed the following
properties

I − T = RA, (12)

∀ y ∈ IRm, Ry ∈ R
(
AT

)
, (13)

if T̃ = TPR(AT ) then
∥∥∥T̃

∥∥∥ < 1. (14)

Remark 3 From (14) we get T = TPR(AT )+TPN (A) = T̃ +TPN (A), PN (A)T̃ =

PN (A)TPR(AT ) = 0, şi T̃PN (A) = TPR(AT )PN (A) = 0.
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Proposition 1 Kaczmarz method (6)-(8) can be written as (11), with T =

P1P2 . . . Pm, where Pi (x) = x − 〈x,Ai〉

‖Ai‖
2 Ai, and Ri = 1

‖Ai‖
2 P1P2 . . . Pi−1 (Ai) ,

where Ri is the i-th column of matrix R.

Cimmino method (10) can be written as (11), with T =
m∑

i=1

ω1

ω
Si, where

Si = I − 2
AiA

T
i

‖Ai‖
2 , and R =

m∑
i=1

ω1

ω
1

‖Ai‖
2 Ai.

Proposition 2 ([38]) If (12)-(14) hold, then
(i)

If x ∈ N (A) then Tx = x ∈ N (A) , (15)

and
if x ∈ R

(
AT

)
then Tx ∈ R

(
AT

)
. (16)

(ii) Matrix I − T̃ is invertible and matrix G : n × m defined by

G =
(
I − T̃

)−1

R, (17)

satisfies
AGA = A (18)

and
GPR(A) (b) = xLS. (19)

(iii) Matrix T has the properties

‖Tx‖ = ‖x‖ ⇔ x ∈ N (A) (20)

and
‖T‖ ≤ 1. (21)

(iv) For the sequence
(
xk

)
k≥0

given by (11) we have

PN (A)(x
k) = PN (A)(x

0), ∀ k ≥ 0. (22)

Theorem 1 ([38]) If (12)-(14) hold, the sequence (xk)k≥0 given by (11), with
x0 ∈ IRn converges, and

lim
k→∞

xk = PN (A)(x
0) + Gb, (23)

where G is given by (17).
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2.2 Extensions to constrained problems and inconsis-
tent problems

In [32] is considered a function C : IRn → IRn, with Im (C) ⊂ IRn closed and
the following properties:

‖Cx − Cy‖ ≤ ‖x − y‖ , (24)

if ‖Cx − Cy‖ = ‖x − y‖ then Cx − Cy = x − y, (25)

if y ∈ Im (C) then Cy = y. (26)

An example of this kind of function is the orthogonal projection onto a convex
and closed set in IRn.

Example 1 C : IRn → [a, b] = [a1, b1] × . . . × [an, bn], given by

(Cx)i =





ai, if xi < ai

xi, if xi ∈ [ai, bi]
bi, if xi > bi

. (27)

Lemma 4 We have C = P[a,b], hence satisfies (24)-(26).

2.2.1 The general projection method with constraints

For the general projection method (11) we consider the constrained version:

x0 ∈ IRn, xk+1 = C
(
Txk + Rb

)
, k ≥ 0. (28)

If ξ is the limit of the sequence
(
xk

)
k≥0

from (11) (see (23)), starting with x0 ∈

R
(
AT

)
, and using (19) it results ξ = Gb = GPR(A) (b)+GPN (AT ) (b) = xLS +δ,

where δ = PN (AT ) (b) . We define the set V = {y ∈ Im (C) , y − δ ∈ LSS (A; b)}
and suppose that V 6= ∅.

Remark 4 If the problem (4) is consistent, then δ = 0, and

V = S (A; b) ∩ Im (C) . (29)

The next lemma proves that the image of vector h ∈ Im (C) by (28) is closer
to V than the vector h.

Lemma 5 [38] Let C with the properties (24)-(26). If h ∈ Im (C) and

g = C (Th + Rb) , (30)
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then, for any y ∈ V
‖g − y‖ ≤ ‖h − y‖ (31)

and, either
‖g − y‖ < ‖h − y‖ (32)

or
g = h ∈ V. (33)

Theorem 2 [38] Let C with the properties (24)-(26). If x0 ∈ Im (C) and(
xk

)
k≥0

is defined by (28), then lim
k→∞

xk exists and belongs to V.

2.2.2 The extended general projection method

In [38] is considered the following extended version of the general projection
method (11). Let matrices U and S of size m×m, respectively m×n, similar
to matrices T and R from (11), for the system

AT y = 0. (34)

The iterative algorithm (11) becomes

y0 ∈ IRm, yk+1 = Uyk + S · 0 = Uyk, ∀ k ≥ 0. (35)

For algorithm (35) we have the following result of convergence (similar to (23)):
for any y0 ∈ IRm, the sequence (yk)k≥0, given by (35), converges and

lim
k→∞

yk = PN (AT )(y
0). (36)

If y0 = b, from (36) we obtain lim
k→∞

yk = PN (AT )(b), hence lim
k→∞

(b − yk) =

PR(A)(b).
The extended general projection method
Let x0 ∈ IRn, y0 = b; for k = 0, 1, . . . compute

yk+1 = Uyk, (37)

bk+1 = b − yk+1, (38)

xk+1 = Txk + Rbk+1. (39)

For algorithm (37)-(39), in [38] is proved the following convergence prop-
erty.

Theorem 3 [38] If matrices T and R satisfy properties (12)-(14), ∀ x0 ∈ IRn,
the sequence (xk)k≥0 given by (37)-(39) converges and

lim
k→∞

xk = PN (A)(x
0) + xLS ∈ LSS(A; b). (40)
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2.2.3 The extended general projection method with constraints

In [38] is considered the following algorithm.
The extended general projection method with constraints
Let x0 ∈ Im(C), y0 = b; for k = 0, 1, . . . compute

yk+1 = Uyk, (41)

bk+1 = b − yk+1, (42)

xk+1 = C[Txk + Rbk+1]. (43)

If the set V∗ defined by

V∗ = LSS(A; b) ∩ Im(C) (44)

is nonempty, it is proved that the sequence
(
xk

)
k≥0

given by (41)-(43) converges
to an element from V∗.

Lemma 6 [38] For any y ∈ V∗ we have the equalities

(I − T ) y = (I − T ) xLS = RbA, (45)

with
bA = PR(A)(b). (46)

Lemma 7 [38] Let k ≥ 0 fixed and suppose that the application C satisfies
(24) and (26). Then, for any y ∈ V∗ we have

∥∥xk+1 − y
∥∥ ≤

∥∥∥T
(
xk − y

)
− RŨk+1bA

∥∥∥ . (47)

Moreover, the sequence
(
xk

)
k≥0

given by (41)-(43) is bounded.

From Lemma 7, we get that the sequence
(
xk

)
k≥0

given by (41)-(43) has a

convergent subsequence
(
xks

)
s≥0

, i.e.

lim
s→∞

xks = u ∈ Im(C). (48)

Lemma 8 [38] In Lemma’s 7 hypotheses, element u from (48) belongs to V∗

from (44).

Lemma 9 [38] If the sequence
(
xk

)
k≥0

from (41)-(43) has a convergent subse-

quence
(
xks

)
s≥0

, with the limit u ∈ V∗, then any other convergent subsequence,(
xk̄s

)
s≥0

, converges to the same limit u ∈ V∗.

Theorem 4 [38] If V∗ from (44) is nonempty, (24) and (26) hold and matrix
A has all rows and columns nonzero, then for any x0 ∈ IRn the sequence(
xk

)
k≥0

given by (41)-(43) converges to an element from V∗.
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3 Convergence study of algebraic reconstruc-

tion techniques based on simultaneous oblique

projections

In [16] L. Grecu, C. Popa, Constrained SART algorithm for inverse problems
in image reconstruction is presented the inclusion of SART algorithm to the
general projection method (11)-(14), which allows us to consider algorithm
SART with constraints.

In [16] we obtain, though a completely different way, the convergence result
from [27] and [28]. Integrating SART algorithm to the general projection
method from [38] (presented in Chapter 2) we obtain not only its convergence,
but furthermore, we can consider algorithm SART with constraints and prove
its convegence.

SART algorithm was introduced by Andersen and Kak in 1984 in [1] as a
simultaneous alternative to Kaczmarz algorithm, which is based on successive
orthogonal projections. SART algorithm is based on simultaneous oblique
projections. First proof of convergence of SART algorithm was given in [28].

SART algorithm: x0 ∈ IRn

xk+1 = xk + λkV
−1AT W

(
b − Axk

)
, k ≥ 0, (49)

where V and W are positive definite diagonal matrices

V = diag (V11, . . . , Vnn) , W = diag (W11, . . . ,Wmm) , (50)

with

Vjj =
m∑

i=1

|Aij| , j = 1, . . . n,
1

Wii

=
n∑

j=1

|Aij| , i = 1, . . . ,m. (51)

We will denote by 〈·, ·〉V , 〈·, ·〉W , ‖·‖V , ‖·‖W the energy scalar products
defined onto IRn, IRm by matrices V and W and the corresponding norms.
For the subspaces S ⊂ IRn, T ⊂ IRm we will denote with P V

S , PW
T the orthog-

onal projections onto S, T with respect to 〈·, ·〉V , respectively 〈·, ·〉W , where
〈x, y〉V = 〈V x, y〉, ‖x‖V =

√
〈x, x〉V , ‖A‖V,W = sup

‖x‖V =1

‖Ax‖W . The notation

S ⊕⊥V
T will be used for the direct orthogonal sum of the subspaces S and T

with respect to the energy scalar product 〈·, ·〉V , i.e. E = S ⊕⊥V
T ⇔

(i) ∀ x ∈ E, ∃ s ∈ S, t ∈ T such that x = s + t;

(ii) S ∩ T = {0} ;

(iii) ∀ s ∈ S, t ∈ T, 〈s, t〉V = 0.

(52)
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3.1 Convergences of SART algorithm

We will consider the matrix A and its adjoint Aτ as linear functions

A : (IRn, 〈·, ·〉V ) → (IRm, 〈·, ·〉W ) , Aτ : (IRm, 〈·, ·〉W ) → (IRn, 〈·, ·〉V ) (53)

with Aτ uniquely defined by the equality

〈Ax, y〉W = 〈x, Aτy〉V , ∀ x ∈ IRn, y ∈ IRm. (54)

For SART algorithm (49) we consider the least squares problem: find x ∈
IRn such that

‖Ax − b‖W = min {‖Az − b‖W , z ∈ IRn} . (55)

Let LSSV,W (A; b) the solutions set for (55), and xV,W
LS its minimum ‖·‖V -norm

solution. The problem
∥∥∥∥

1

ρ
Ax −

1

ρ
b

∥∥∥∥
W

= min! (56)

is equivalent to (55), and if ρ satisfies

ρ ≤ min

{
1

‖A‖V,W

,
1

‖Aτ‖W,V

}
(57)

we get ∥∥∥∥
1

ρ
A

∥∥∥∥
V,W

≤ 1. (58)

Lemma 10 The transpose Aτ of matrix A from (53) is given by

Aτ = V −1AT W. (59)

Moreover, we have the decompositions

IRn = N (A) ⊕⊥V
R(Aτ ), IRm = N (Aτ ) ⊕⊥W

R (A) , (60)

where ⊕⊥V
and ⊕⊥W

are the direct orthogonal sums corresponding to the scalar
products 〈·, ·〉V , and 〈·, ·〉W , respectively.

For
λk = λ, ∀ k ≥ 0, (61)

we write the SART algorithm (49) as in (11), with T : n × n and R : n × m
defined by

T = I − λV −1AT WA, R = λV −1AT W. (62)
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Lemma 11 Matrices T and R from (62) have the following properties (similar
with (12)-(14))

I − T = RA, (63)

∀ y ∈ IRm, Ry ∈ R (Aτ ) , (64)

if 0 < λ < 2 and T̃ = T · P V
R(Aτ ), then

∥∥∥T̃
∥∥∥

V,V
< 1, (65)

where
∥∥∥T̃

∥∥∥
V,V

= sup
‖x‖V ≤1

∥∥∥T̃ x
∥∥∥

V
.

Proposition 3 As in [38], but with respect to the decomposition (60) we get

T = T̃ ⊕⊥V
P V
N (A). (66)

Theorem 5 If (63)-(65) hold then the following are true
(i)

If x ∈ N (A) then Tx = x, (67)

and
if x ∈ R (Aτ ) then Tx ∈ R (Aτ ) . (68)

(ii) Matrix I − T̃ is invertible and G defined by

G =
(
I − T̃

)−1

R, (69)

satisfies
AGA = A (70)

and
GPW

R(A) (b) = xV,W
LS . (71)

(iii) Matrix T has the properties

‖Tx‖V = ‖x‖V ⇔ x ∈ N (A) . (72)

(iv) For the sequence
(
xk

)
k≥0

given by (49) we have

P V
N (A)(x

k) = P V
N (A)(x

0), ∀ k ≥ 0. (73)

(v) If (63)-(65) hold then (xk)k≥0 given by (49), with x0 ∈ IRn converges, and

lim
k→∞

xk = P V
N (A)(x

0) + xV,W
LS , (74)

where matrix G is given by (69).

Remark 5 The simultaneously form of SART method allows complete par-
allelization of this algorithm. Considerations on this issue are presented in
Chapter 5.
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3.2 SART algorithm with constraints

Including SART algorithm to the general projection method (11)-(14) allows
us to consider SART algorithm with constraints (CSART). This result is not
obtained in [27] or [28].

Let C : IRn → IRn an application (generally nonlinear) with Im (C) ⊂ IRn

closed. We shall replace the assumptions (24)-(26) with

‖Cx − Cy‖V ≤ ‖x − y‖V , (75)

if ‖Cx − Cy‖V = ‖x − y‖V then Cx − Cy = x − y, (76)

if y ∈ Im (C) then Cy = y. (77)

According to the paper [32] we define the algorithm SART with constraints
(CSART).

CSART algorithm
Let x0 ∈ IRn, for k = 0, 1, . . .

xk+1 = C
(
Txk + Rb

)
. (78)

From (23), for x0 ∈ R (Aτ ) we have lim
k→∞

xk = xV,W
LS , thus according to [32]

we define the set S ⊆ IRN by

S = Im (C) ∩ LSSV,W (A; b) , (79)

and suppose that S 6= ∅.

Theorem 6 Let us suppose that the constraining function C satisfies (75)-
(77). If x0 ∈ Im (C) and (xn)n≥0 is given by (78), then lim

n→∞
xn exists and

belongs to S.

Proposition 4 The application C : IRn → [a, b] = [a1, b1] × . . . × [an, bn],
defined by

(Cx)i =





ai, if xi < ai

xi, if xi ∈ [ai, bi]
bi, if xi > bi

.

is a constraining function and satisfies (75)-(77).

Remark 6 The above constraining function is useful because in real applica-
tions we know the interval [ai, bi] (see e.g. [24] for medical image reconstruc-
tion).
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Proposition 5 The application C : IRn → S = [0,∞) × . . . × [0,∞), defined
by

(Cx)i =

{
xi, if xi ≥ 0
0, if xi < 0

.

is a constraining function and satisfies (75)-(77).

4 Classes of algorithms for face recognition

In [20] L. Grecu (Liţă), E. Pelican, Customized Orthogonalization via Deflation
Algorithm with Applications in Face Recognition and [21] L. Grecu (Liţă), E.
Pelican, A Low-Rank Tensor-Based Algorithm for Face Recognition we address
the pattern recognition problem.

For a better understanding of the algorithms described in this paper, we
present first the problem we are addressing. For a dataset of images of P
persons, we transform all images into vectors {Γ1, Γ2, . . . , ΓN}. These N
images are split into two nonoverlapping subsets: training subset and testing
subset. The problem under consideration is: given an image Γ of a person from
the testing set, we want to see if the algorithm identifies that person using the
pictures from the training set.

4.1 Eigenfaces algorithm (PCA)

Although this projection method is already well-known, we will include a brief
description for the sake of completeness. The eigenfaces are the principal com-
ponents of a set of faces, or equivalent eigenvectors of the covariance matrix
of a set of faces (see [51] and [52]). These eigenvectors are called eigenfaces
because when represented, they resemble human faces. A set of eigenfaces can
be generated by performing a mathematical process called Principal Compo-
nent Analysis (PCA), on a large set of images that represents different faces.
These eigenvectors are chosen in descending order of their importance: the
first component has the highest significance and so on. At the same time it is
taken into account the restriction that each principal component is orthogonal
to all previous principal components.

The principal components are given by the eigenvectors of the covariance
matrix. The first principal component is the eigenvector corresponding to the
largest eigenvalue, the second principal component is the eigenvector corre-
sponding to the next largest eigenvalue and so on.

The idea of using principal components to represent human faces was devel-
oped by Sirovich and Kirby (see [31] and [49]) and used by Turk and Pentland
(see [51] and [52]) for face detection and face recognition.

For a database with N images, every image has the same resolution M =
n1 × n2 and it is transformed into a vector Γi, whose size is M × 1. Then we
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compute the average face vector Ψ = 1
N

N∑
i=1

Γi, and substract the average face

vector from all vectors ϕi = Γi−Ψ, i = 1, . . . , N i.e. in statistical terminology,
we “center” the data. As noted in [13] (page 116) the first singular image
which is defined by the principal pair of singular vectors looks very much like
the average vector. Thus, it seems that there is no gain in substracting the
average vector. The same remark can be done for the COD-A1 algorithm. For
the Eigenfaces algorithm we still follow the ideea from [51].

The PCA algorithm is applied to this set of large vectors
ϕ1, ϕ2, . . . , ϕN . The algorithm seeks a set of orthonormal vectors u1, u2, . . . , uN

which best describes the patterns that appear in the dataset.

Lemma 12 [51] [53] The vector uk is chosen so that the quantity

λk =
1

N

N∑

i=1

(
uT

k ϕi

)2
(80)

is maximum having the restriction

uT
i uk = δik =

{
1, if i = k
0, otherwise

(81)

where the vectors uk and the scalars λk are eigenvectors and eigenvalues of the
covariance matrix C = 1

N
AAT for A = [ϕ1 ϕ2 . . . ϕN ] .

The size of the covariance matrix C = AAT is M × M , where M is the
resolution of an image. Because in practice, the number M is very large, the
computational effort to determine the M eigenvalues and M eigenvectors for
matrix C is huge. In this case, the idea is to reduce the size and therefore the
amount of calculations. Let L = AT A, L ∈ IRN×N . Usually N , the number
of images in the dataset is much smaller then the size of a vector, M , and in
this case it is much easier to calculate N eigenvectors and N eigenvalues for a
matrix of size N × N .

For the matrix L we consider the eigenvectors vi so AT Avi = µivi. And
obtain AAT Avi = µiAvi, so we get Avi is an eigenvector for matrix C. We
seek N eigenvectors, vi, for matrix L. From all N vectors obtained only first K
vectors corresponding to the largest K eigenvalues are sufficient to characterize
the initial set of images. The other N−K vectors corresponding to the smallest
eigenvalues and the information associated with them is less significant so they
are discarded. Consequently, the orthonormal vector base from IRM (which will
be used to obtain the images/vectors): u1, u2, . . . , uN will be truncated to
u1, u2, . . . , uK , with K << N .

In order to choose the level of truncation K, we can use one of the three
methods mentioned in [10]. In our experiments we use the first method, i.e.
we discarded roughly the last 90% of the eigenvectors.
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To identify a new image, Γ, we represent it using the eigenvectors
{u1, u2, . . . , uK} . We have ωi = uT

i (Γ − Ψ) , i = 1 : K. These coefficients ωi

form the vector ΩT = [ω1, ω2, . . . , ωK ] . The vector Ω describes the contribu-
tion of each eigenface in representing the image Γ and is used to classify the
new image Γ.

4.2 Nearest Neighbour (NN) algorithm

In this section we briefly present an algorithm used in pattern recognition. In
Chapter 5 and in [19] Grecu (Liţă) L. , Pelican E., Systematic and compar-
ative experiments with some algorithms for pattern recognition are presented
comparisons between the results obtained with this algorithm and the ones
obtained with the other algorithms presented in this chapter.

The simplest method that can be used in pattern recognition is sequential
search, i.e. finding the nearest neighbour for the picture we are looking for.
So let Γ be an image (picture of a person or a digit) we want to find the near-
est picture from the database {Γ1, Γ2, . . . , ΓN}. Sequential search (Nearest
Neighbor algorithm, see [36]) implies comparing them with each picture and
find an index i0 such that

‖Γ − Γi0‖ = min
1≤i≤N

‖Γ − Γi‖ . (82)

4.3 COD-A1 algorithm

In [20] L. Grecu (Liţă), E. Pelican, Customized Orthogonalization via Deflation
Algorithm with Applications in Face Recognition we propose a new algorithm
for face recognition.

In order to improve (as recognition rate) the PCA algorithm (a truncated
SVD algorithm), one has to focus on finding a good low-rank approximation
for the matrix A. Even if the truncated SVD gives the best possible low-rank
approximation in both the Frobenius norm and L2 norm, for large matrices,
a full or thin SVD can be too expensive. An option is based on Lanczos’ al-
gorithm and it is suitable for handling large matrices. It is well-known that
Lanczos’ method has two potential drawbacks. First one, while it is expected
to give good estimates of the largest and smallest eigenvalues (singular val-
ues), it has a difficulty to estimate the intermediate values. Second one, as
the number of iterations increases, the computed singular vectors may lose
orthogonality. This last issue is already solved by reorthogonalization. In [4]
and [14] the authors have already used this Lanczos’ method for such low rank
approximation. But, as reported, the accuracy of their proposed methods does
not improve the one of PCA.

Another option for computing a rank k truncated SVD is using orthogonal-
ization via deflation algorithm proposed in [6] and [7]. For a matrix A : M ×
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N, M ≥ N , this method generates a sequence of matrices A1, A2, . . . , Ak+1,
for which

Ak+1 = Ak − σ̃kũkṽ
T
k = A −

k∑

j=1

σ̃jũj ṽ
T
j = A − ŨkD̃kṼ

T
k = A − B̃k, (83)

where ũk, ṽk and σ̃k are given by (84), (85), and respectively (86), Ũk =
[ũ1 ũ2 . . . ũk] , Ṽk = [ṽ1 ṽ2 . . . ṽk] , D̃k = diag (σ̃1, σ̃2, . . . , σ̃k) , and B̃k =
ŨkD̃kṼ

T
k . Matrix B̃k serves as a low-rank approximation of matrix A.

Let ûk ∈ R (Ak) and v̂k ∈ R
(
AT

k

)
be an arbitrary pair of unit vectors that

satisfy ûT
k Akv̂k > 0. We have

ũk = Akv̂k/ ‖Akv̂k‖2 , (84)

ṽk = AT
k ûk/

∥∥AT
k ûk

∥∥
2
, (85)

and
σ̃k =

(
‖Akv̂k‖2

∥∥AT
k ûk

∥∥
2

)
/
(
ûT

k Akv̂k

)
. (86)

Theorem 7 (see [6] şi [7]) Let the matrices Ûk ∈ IRM×k, V̂k ∈ IRN×k, and
D̂k ∈ IRk×k be defined by the equalities

Ûk = [û1 û2 . . . ûk] , V̂k = [v̂1 v̂2 . . . v̂k] and D̂k = (σ̂1, σ̂2, . . . , σ̂k) , (87)

where σ̂j = ûT
j Av̂j, for j = 1, . . . , r = rank(A). Then, in exact arithmetic,

the following relations hold for k = 1, . . . , r:

R (Ak+1) ⊆ R (Ak) , R
(
AT

k+1

)
⊆ R

(
AT

k

)
, (88)

R
(
Ûk

)
⊆ R (A) , R

(
V̂k

)
⊆ R

(
AT

)
, (89)

ÛT
k Ak+1 = 0, Ak+1V̂k = 0, (90)

ÛT
k Ûk = I, V̂ T

k V̂k = I. (91)

Thus, for k = r the columns of Ûr and V̂r constitute orthonormal basis for
R(A) and R(AT ), respectively. Consequently,

Ar+1 = 0 (92)

and
A = ŨrD̃rṼ

T
r (93)
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Starting from the idea of approximating the matrix A with matrix B̃k, and
the idea of representing all the images in a subspace of a smaller dimension, we
propose a customized version of the algorithm (83)-(86), COD-A1 algorithm.
The customization consists in a proper choice at each iteration for ûi+1 ∈
Range (Ai) and v̂i+1 ∈ Range

(
AT

i

)
. We have tested other options for these

initializations (each iteration), but the obtained results were not satisfactory.
Using this algorithm we try to approximate the matrix U (from the singular

value decomposition of matrix A = UΣV T ) with matrix Ũk from (83), which
will serve as orthonormal basis for Range (A). Then we follow the classification
process from the Eigenfaces algorithm: we compare the new expression of the
picture we are looking for with all the columns of the new obtained matrix
(dataset) and we seek the picture from the dataset that is closest (in a specific
metric) to the image we are looking for.

Our proposed algorithm is the next one.

COD Algorithm - A1:

Step 1. Initialize û1, û1 = û1/ ‖û1‖, v̂1, v̂1 = v̂1/ ‖v̂1‖ şi A1 = A.
Step 2. for i = 1, 2, . . . , k

ũi = Aiv̂i/ ‖Aiv̂i‖2

ṽi = AT
i ûi/

∥∥AT
i ûi

∥∥
2

σ̃i =
(
‖Ai ∗ v̂i‖2

∥∥AT
i ûi

∥∥
2

)
/
(
ûT

i Aiv̂i

)

Ai+1 = Ai − σ̃iũiṽ
T
i

reinitialize ûi+1, ûi+1 = ûi+1/ ‖ûi+1‖ and v̂i+1, v̂i+1 = v̂i+1/ ‖v̂i+1‖
end
Step 3. Let U = [ũ1 ũ2 . . . ũk] and B = Ak+1.

Step 4. Obtain ΩT
i = [ωi

1, ωi
2, . . . , ω

i
k] where coliA =

k∑
j=1

ωi
jũj.

Step 5. Given a image Γ, obtain Γ =
k∑

j=1

ωjũj.

Step 6. Represent Γ as ΩT = [ω1, ω2, . . . , ωk].
Step 7. Find i0 ∈ {1, . . . , k} satisfying ‖Ω − Ωi0‖ = min

1≤i≤k
‖Ω − Ωi‖ .

4.4 Singular value decomposition for tensors

In [21] L. Grecu (Liţă), E. Pelican, A Low-Rank Tensor-Based Algorithm for
Face Recognition we propose another algorithm for face recognition, an algo-
rithm based on tensors.

The motivation why tensors are used in face recognition is that often the
data is stored as a tensor. Instead of storing all the data as a matrix, we
store all photos belonging to the same person as a matrix, and all matrices
coresponding to all persons form a tensor. This leads to a better ordering of
the pictures from the dataset. In this ordering, the faces are classified into a
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number of groups of different “expressions”. This classification refers to pho-
tographic angles (e.g. left-portrait, right-portrait, front-portrait), illumination
conditions (dark, lighted, etc.) or facial expressions (happy, sad, angry, etc.)
and so on. For our dataset the “expressions” refers to lighting conditions.

In this section we present a generalization of the SVD theorem for matrices
to SVD for tensors (see [8] and [13]).

Let A ∈ IRl×m×n, U ∈ IRl0×l and A ×1 U a tensor of size l0 × m × n,
we have the following way of multiplication (1-mode tensor-matrix multiplica-

tion) (A ×1 U) (j, i2, i3) =
l∑

k=1

uj,kak,i2,i3 . For A ∈ IRl×m×n, U ∈ IRm0×m and

A×2 U a tensor of size l ×m0 × n we have (2-mode tensor-matrix multiplica-

tion) (A ×2 U) (i1, j, i3) =
m∑

k=1

uj,kai1,k,i3 , and for A ∈ IRl×m×n, U ∈ IRn0×n and

A×3 U a tensor of size l ×m× n0 we have (3-mode tensor-matrix multiplica-

tion) (A ×3 U) (i1, i2, j) =
n∑

k=1

uj,kai1,i2,k. The i-mode and j-mode multiplica-

tion commute if i 6= j, i, j ∈ {1, 2, 3} : (A ×i U) ×j V = (A ×j V ) ×i U =
A ×i U ×j V. A tensor can be unfold into a matrix, A(i) = unfoldi(A), so:
A(1) = unfold1 (A) = (A (:, 1, :) A (:, 2, :) . . . A (:, m, :)) ,

A(2) = unfold2 (A) =
(
A (:, :, 1)T A (:, :, 2)T . . . A (:, :, n)T

)
,

A(3) = unfold3 (A) =
(
A (1, :, :)T A (2, :, :)T . . . A (l, :, :)T

)
.

In all unfoldings, row i of A(j) contains all the elements of A which have
the j-th index equal to i. The inverse of the unfolding operation is fold-
ing foldi (unfoldi (A)) = A. Using these unfoldings we obtain: A ×1 U =
fold1 (U · unfold1 (A)) , A ×2 U = fold2 (U · unfold2 (A)) , and A ×3 U =
fold3 (U · unfold3 (A)) . We also introduce the scalar product 〈A, B〉 of two

tensors A, B ∈ IRl×m×n, as 〈A, B〉 =
l∑

i=1

m∑
j=1

n∑
k=1

A (i, j, k) B (i, j, k) .

Theorem 8 (HOSVD, see [8] and [13]) Tensor A ∈ IRl×m×n can be written
as

A = S ×1 U (1) ×2 U (2) ×3 U (3) (94)

where U (1) ∈ IRl×l, U (2) ∈ IRm×m, U (3) ∈ IRn×n are orthogonal matrices.

Matrices U (i) are obtained from A(i) = U (i)Σ(i)
(
V (i)

)T
, A(i) = unfoldi(A),

without forming the V (i) explicitly. S = A×1

(
U (1)

)T
×2

(
U (2)

)T
×3

(
U (3)

)T
is

a tensor of the same size as A and satisfies: any two different slices fixed in the
same mode are orthogonal (all-orthogonality) 〈S (i, :, :) , S (j, :, :)〉 = 0, i 6= j,
〈S (:, i, :) , S (:, j, :)〉 = 0, i 6= j, 〈S (:, :, i) , S (:, :, j)〉 = 0, i 6= j; and the norms
of the slices along every mode are ordered, e.g., for the first mode we have
‖S (1, :, :)‖ ≥ ‖S (2, :, :)‖ ≥ . . . ≥ 0. The decomposition from (94) is not unique
(see also [13] and [8])
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Let A ∈ IRni×ne×np be a tensor representing our training dataset and let
a vector from IRni represent a picture from the testing set. Here ni is the
resolution of a picture (ni = M from previous sections), np is the number of
persons from the dataset (np = P from previous sections), and ne is the number
of expressions per person (ne ·np = N from previous sections). We want to find
out if the algorithm identifies it correctly. In [13], for the algorithms from page
173-174 it is assumed that ni >> nenp. For a large dataset (e.g. ExtYaleB
dataset), after reducing image size, we get ni << nenp. When performing the
tests for ExtYaleB dataset with the algorithms from [13] we obtain smaller
recognition rate than for PCA (Eigenfaces algorithm).

In order to address this issue we propose another algorithm for face recog-
nition, when ni << nenp. For the problem under consideration, we use the
following form of the HOSVD theorem A = C ×e G, C = S ×i F ×p H, where
×i = ×1, ×e = ×2, ×p = ×3 şi F = U (1) ∈ IRni×ni , G = U (2) ∈ IRne×ne , H =
U (3) ∈ IRnp×nP from HOSVD theorem.

For a given person p we have: A (:, :, p) = C (:, :, p) ×e G. Tensors A (:, :, p)
and C (:, :, p) are, in fact, matrices denoted by Ap and, respectively Cp. Hence
Ap (:, e) is the image of person p in expression e and the columns of matrix
Cp are basis vectors for person p (let us denote this basis by person basis). It
follows that Ap = CpG

T , p = 1, 2, . . . , np. Let GT = (g1 . . . gne
), then Ap (:, e) =

Cpge. Thus ge, e = 1, 2, . . . , ne are the coordinates of the image Ap (:, e) of
person p in expression e in the above mentioned basis.

Let z ∈ IRni be a picture from the testing set. We want to see if the picture
is correctly identified. For this we have to solve min

αp

‖Cpαp − z‖2 . For each

image z we have to solve np least square problems with Cp ∈ IRni×ne . From
C = S ×i F ×p H we obtain that Cp = FBp, where Bp ∈ IRnenp×ne , Bp =
(S ×p H) (:, :, p).

In order to reduce the computational effort we can truncate the tensors and
matrices so that we obtain a truncated HOSVD decomposition for tensor A.
Let k be the level of truncation and Fk = F (:, 1 : k) and we get Ĉ = (S ×p H)

(1 : k, :, :) ×i Fk. Hence, we have to solve min
αp

∥∥∥Ĉpαp − z
∥∥∥

2
. Our proposed al-

gorithm is the next one, forni << nenp.

Tensors Algorithm - A2:

Let z be the image we are looking for and choose k the level of truncation.
for p = 1, 2, . . . , np

Let Ĉ = (S ×p H) (1 : k, :, :) ×i Fk

Solve min
αp

∥∥∥Ĉpαp − z
∥∥∥

2
.

for e = 1, 2, . . . , ne

if ‖αp − ge‖2 < tol, then is person p and STOP
end
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end

Remark 7 The level of truncation k can be chosen as in [42] or [10] or [14]
and not empirically as in [13] (pages 116 and 173).

5 Experiments

In this chapter we present experiments and results obtained with all algorithms
figured in Chapters 1, 3 and 4. This chapter contains the following sections.

5.1 Experiments for the construction of the scanning matrix in Electromag-
netic Geotomography

5.2 Experiments with SART algorithm
5.2.1 Paralelization of SART algorithm

5.3 Experiments with classes of algorithms for pattern recognition
5.3.1 Experiments with classes of algorithms for face recognition
5.3.2 Comparative study of algorithms NN, PCA and COD-A1 for pat-

tern recognition
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