

“OVIDIUS” UNIVERSITY CONSTANTA

FACULTY OF MEDICINE

**CONSIDERATIONS
ON THE EARLY DIAGNOSIS
OF
RHEUMATOID ARTHRITIS**

- ABSTRACT -

Scientific Coordinator
Prof.univ.dr. ȘUȚA MARIA

PhD Student
PAZARA D. (HANZU-PAZARA) LOREDANA

CONSTANȚA, 2014

TABLE OF CONTENTS

INTRODUCTION

PART I – ACTUAL BACKGROUND OF KNOWLEDGE

CHAPTER I

1. Epidemiological aspects.....	11
---------------------------------	----

CHAPTER II

2. Etiological aspects in rheumatoid arthritis.....	15
2.1. Genetic susceptibility.....	15
2.1.1. Association of HLA with rheumatoid arthritis.....	15
2.1.1.1. HLA system, typing and nomenclature.....	16
2.1.1.2. Association of class II HLA antigens with rheumatoid arthritis.....	18
2.1.1.2.1. Individual alleles and shared epitope.....	19
2.1.1.2.2. Association with ethnic groups.....	22
2.1.1.2.3. Association with rheumatoid arthritis severity.....	24
2.1.1.2.4. Pathogenic implications of shared epitope.....	25
2.1.2. Other potential susceptibility genes in rheumatoid arthritis.....	27
2.1.3. Clinical use of genetic markers.....	30
2.1.3.1. Implications in diagnosis and screening of rheumatoid arthritis.....	30
2.1.3.2. Evaluation of rheumatoid arthritis prognosis.....	31
2.1.3.3. Evaluation of treatment.....	31
2.2. Biological and environmental factors.....	32
2.2.1. Hormonal factors.....	32
2.2.2. Smoking.....	33
2.2.3. Infectious agents.....	34
2.2.4. Superantigens.....	35
2.2.5. Auto antibodies.....	36
2.2.6. Professional exposures.....	36

CHAPTER III

3. Pathogenic aspects and biological markers in diagnosing early rheumatoid arthritis.....	37
3.1. Immune mechanisms in rheumatoid arthritis.....	37
3.2. Cytokines involved in inflammatory response in rheumatoid arthritis.....	40
3.3. Biological markers.....	42

CHAPTER IV

4. Clinical and diagnostic aspects in early rheumatoid arthritis.....	47
4.1. Clinical manifestations of rheumatoid arthritis.....	47
4.1.1. Articular manifestations.....	48
4.1.2. Extra-articular manifestations	52
4.2. Diagnostic criteria for rheumatoid arthritis.....	61
4.3. Classification criteria for rheumatoid arthritis.....	65
4.3.1. ACR1987 classification criteria.....	65
4.3.2. ACR/EULAR 2010 classification criteria.....	67

REFERENCES	71
------------------	----

PART II – PERSONAL CONTRIBUTION

CHAPTER V

5. Research rationale and study design.....	89
5.1. Objectives for study I.....	90
5.2. Objectives for study II	91

CHAPTER VI

6. Material and method	93
6.1. Clinical, biological and statutory features of study groups.....	93
6.2. Imagistical evaluation.....	96
6.3. Genetical analysis.....	100
6.4. Statistical analysis	104

CHAPTER VII

7. Results.....	107
7.1. Results - study I	107
7.2. Results - study II	126

CHAPTER VIII

8. Discussion	145
8.1. Discussion - study I	145
8.2. Discussion - study II	160

CHAPTER IX

9. Conclusions.....	169
---------------------	-----

REFERENCES.....	175
------------------------	------------

ANNEXES.....	183
---------------------	------------

INTRODUCTION

Rheumatoid arthritis (RA) represents a pathology that affected man since antiquity, despite the fact that it has reached the incidence peak only in last centuries. Garrod was the first one that made the difference between RA and other rheumatological diseases, like gout and rheumatic fever. Today, both incidence and severity of the disease are declining.

Even though the causes of occurrence are yet not known completely, there were identified several possible factors involved. Important etiological elements were introduced in selecting unique features in populations considered pre-disposed to RA. Along with environmental factors are contributing genetical, hormonal, infectious factors and a large set of other variables.

Due to the new diagnostic and therapeutically options, the number of patients in advanced, severe stages has been reduced lately. Maybe the most important element into fulfilling this goal is the establishment of a complex, complete and rapid diagnosis that allows an optimal therapy and an efficient management of evolution under treatment. Then, the practitioner's goal becomes the remission and even the cure of the disease.

The basic rationale of present research is motivated on one hand by the incidence of rheumatoid arthritis, still high in our country, and the opportunity of modern therapeutically options in early stages, and on the other hand, by the revolution of genetic research in the field made on solid background for this particular pathology. The new ACR/EULAR 2010 classification criteria were released in order to be able to minutiously analyze and classify early cases, especially for those with high risk of persistent and destructive forms that might benefit from disease modifying therapies.

Today, the diagnosis has the chance of going over the limit of conventional clinical and radiological criteria which are sufficiently positive only in late stages of disease, by this wasting time in implementation of new disease modifying and biological therapies. „Everything is new, but still old”, said one of our great writers Eminescu, giving the definition of an absolute truth, applicable also in etiopathogenic research for rheumatoid arthritis, which, even if it was the objective of interest in hundreds of international studies and trials, still remains in the attention of medical world. Indeed, is needed a new, integrate vision that brings the results of fundamental research into the hands of practitioner, as an optimal tool for the diagnosis, treatment and prevention of the disease. Optimizing the management is no longer an ideal goal and the quality of life for these patients can be improved by establishing a clinical-genetical-biochemical-imaginical diagnosis that allows a better integration and a global reduction for medical costs.

Along with previous said, the lack of national trials and studies that might offer a genotipical pattern for rheumatoid arthritis patient and the present access to modern biological and imaginical investigational tools, are creating the rationales for initiating present study.

PERSONAL CONTRIBUTIONS

The special part comprises two research lines, systematized under the form of two studies:

- Comparative analysis of classical ACR 1987 classification and of the new, modern ACR/EULAR 2010 classification criteria, in tight correlation with clinical, biological and imagistic markers, and
- The contribution of analysing the genetic factor in refining the diagnosis and evaluation of prognosis for patients with early rheumatoid arthritis, by integrative correlation with clinical, biological and imagistic markers.

Objectives - study I

Study I makes a detailed analysis of existing classification criteria used in research for rheumatoid arthritis, involving the classical and so much investigated set defined by ACR 1987 classification criteria, but more important the modern set ACR/EULAR 2010 that allows early inclusion of patients, before permanent structural articular damage, correlated with biological and imagistic markers.

The innovative feature is given by the comparative analysis of the criteria in the two sets that enlightens those most correlated with elements of severity, considering the important background of first classification and the need of adjustment for scientific results in the second one.

Main objectives are:

1. Describing population features for patient groups in terms related to age, sex, area of residence, ethnic, period of onset, date of establishing diagnosis based on corroborating clinical, biochemical and imagistic data; associated factors, heredocollateral history and associated pathologies analysis;
2. Analysing the disease activity indicators, defining principal articular areas involved, direct and comparative analysis of radiological and ultrasonographic articular changes;
3. Analysing the variable criteria used for the classification of patients with early rheumatoid arthritis, needed for diagnosis, corroborated with biochemical results, and secondary, establishing correlations between classical and new criteria.

Objectives - study II

The innovative element of our study is given by the lack of national studies addressing to genetic susceptibility given by the carriage of various HLA-DRB1 alleles in different ethnic groups in Romania, mainly caused by the high costs involved in genotyping. This comes along with a personal vision that tries to associate the phenotypical expression given by main characteristics of disease, defined by the classification criteria, with genotypic background.

Main objectives of study II are:

1. describing the genetical pattern expressed by HLA-DRB1 typing in patients with early rheumatoid arthritis compared with a control group selected from general population (matched accordingly with demographical features) and in correlation with

clinical, biochemical and imagistic data; corroborate analysis with associated risk factors and disease activity indicators;

2. Analyzing the association of genetic background with each of the criteria in classical and new, modern classification sets (ACR 1987 and ACR/EULAR 2010), and secondary establishing correlations between genetic factor and implementation of disease modifying therapies, focused on adverse reactions.

MATERIAL AND METHOD

In order to satisfy research requests and objectives it was selected a group of 50 patients diagnosed with early rheumatoid arthritis according to ACR/EULAR 2010 classification criteria. Study included patients evaluated in Rheumatology Department of Central Clinical Emergency Hospital Constanta, respectively in out-patient facility of IOWEMED MEDICAL Center, Supplementary, for the second study it was necessary a population sample from healthy population, matched with age, sex and environment with first group.

Diagnosis was set based on ACR/EULAR 2010 classification criteria, considering joint involvement, serology, acute phase reactants and duration of symptoms. All patients presented a score ≥ 6 .

For the study group were retrospectively applied also ACR 1987 classification criteria.

Immunologic evaluation detected rheumatoid factor by latex-immunoturbidity with reference ranges of <14UI/mL, and anti-cyclic citrullinated peptides by FEIA with reference ranges of < 7 UI/mL – negative, 7-10 UI/mL – equivocal, > 10 UI/mL positive.

Imagistical evaluation included plain radiography, articular ultrasound and MRI.

Genomic DNA isolation and HLA-DRB1 genotyping were determined in Division of Genetics, Faculty of Medicine, "OVIDIUS" University, Constanta during 2012. Genotyping of HLA-DRB1 as low-resolution allele and HLA-DRB1*04 subgroups of allele as high resolution were determined by using PCR-SSP kits (InnoTrain Diagnostik GmbH, Germany; ProTrans Produkte GmbH, Germany from BioSupply) based on polymerase chain reaction, which enables amplification of DNA sequences, followed by sequence specific priming in which only the sequence of primer is responsible for the specification of the allele that has to be identified. Results of molecular detection was evaluated in agarose gel electrophoresis under UV light. Due to dimension of population groups, statistical analysis used chi-square test for evaluation of the statistical significance of differences in DRB1 allele frequencies in patients and in controls.

Statistical analysis assumed completing a database using SPSS v. 20.0 programme. Was considered statistically significant a p value of <0.05 .

RESULTS

Results - study I

Demographical features of patients with early rheumatoid arthritis enrolled in study are shown in table VIII.

Table VIII. Caracteristici demografice și biologice la pacienții cu AR precoce

Demographical and biological features	No. = 50
Age, mean +/- SD (years)	58.54 ±12.223
Onset <3 months (no., %)	22 (44%)
Onset <12 months	42 (84%)
Onset <36 months	50 (100%)
Male (no., %)	10 (20%)
Female (no., %)	40 (80%)
Male:female ratio	4:1
Origin environment urban/rural	37 (74%) / 13 (26%)
ACR/EULAR2010 score (media)	7.24 ± 1.422
RF positive	34 (68%)
RF mean +/-SD (UI/mL)	128.71 ± 158.474
AntiCCP positive	26 (52% of all) (57,77% of 45 with testing)
AntiCCP mean +/-SD (UI/mL)	155.9 ± 175,044
Smokers (nr., %)	23 (46%)
Smokers/Non-smokers (ratio)	23/27 (0,85)
Heterozygots / homozygots HLA-DRB1	45/5

All patients presented an onset shorter than 36 months up to the moment of diagnosis, and 84% were diagnosed in the first 12 months from onset, fulfilling the ACR/EULAR 2010 classification criteria. Less than a half (44%) presented an onset that allowed diagnosing in the first 3 months of evolution. Male:female ratio was 4:1, with 80% in favour of female sex and a predominance of urban environmental origin compared with rural one (74%).

Smoking status presented a similar trend with a ratio of 0.85 in favour of non-smokers (only 46% patients were smokers). Smoking status correlated with environmental origin ($p = 0.030$), most smokers living in cities (Table IX).

Rheumatoid factor was found positive in 68% of patients with a calculated mean value of 128.71 UI/mL, and anti-cyclic citrullinated peptides antibodies in 56.80%, with a mean value of 155.9 UI/mL. So, sero-positivity in early RA patients reached 78%.

There was no statistically significant correlation between the presence of anti-cyclic citrullinated peptides and smoking ($p = 0.841$) nor between positivity for RF and smoking ($p = 0.113$), antiCCP antibodies being present in equal percentages in smokers and in non-smokers (table X). RF presented a slight increase in non-smokers (table XI).

Table X. Correlation between the presence of anti-CCP antibodies and smoking status

	Smokers	Non-smokers
<i>AntiCCP present</i>	12	13
<i>AntiCCP absent</i>	9	11
<i>p= 0.841</i>		

Odds ratio 1.1282

95 % CI 0.3468 to 3.6705

- 5 patients did not perform antiCCP testing

Table XI. Correlation between the presence of rheumatoid factor and smoking status

	Smokers	Non-smokers
<i>RF present</i>	13	21
<i>RF absent</i>	10	6
<i>p= 0.113</i>		

Odds ratio 0.3714

95 % CI 0.1090 to 1.2656

The most important correlation in demographical features analysis was the one showing the status of seropositivity / seronegativity for antiCCP and RF. AntiCCP antibodies correlated significantly with rheumatoid factor – *p = 0.008* (table XII). Only 11 patients were negative for both antibodies.

Table XII. Correlation between presence of rheumatoid factor and anti-cyclic citrullinated peptides antibodies

	AntiCCP +	AntiCCP -
<i>RF present</i>	21	9
<i>RF absent</i>	4	11
<i>p= 0.008</i>		

*(5 patients did not perform anti CCP testing)

Odds ratio 6.4167

95 % CI 1.6056 to 25.6445

Environmental origin (urban/rural) was not significantly associated neither with the presence of rheumatoid factor ($p = 0.423$), nor with the presence of anti-cyclic citrullinated peptide ($p = 0.938$) (Table XIII).

Table XIII. Correlation between environmental origin and presence of anti-CCP antibodies

	AntiCCP +	AntiCCP -
Urban	19	15
Rural	6	5
$p = 0.938$		

Odds ratio 1.0556

95 % CI 0.2692 to 4.1388

Our study shown a neat difference in higher activity scores in males with onset shorter than 3 months compared with the ones presented later.

Table XIV. Demographical and biological features in patients with early rheumatoid arthritis divided by sex

Demographical and biological features	Male No. = 10 (20%)	Female No. = 40 (80%)
Age, mean +/- SD (yrs)	62.40 ± 12.859	57.25 ± 11.833
Urban/rural	7/3	30/10
ACR/EULAR2010 score (mean)	7.50 ± 1.354	7.27 ± 1.501
RF positive	6 (60%)	29 (72,50% of no.)
RF mean +/- SD (UI/mL)	128.60 ± 231.168	128.69 ± 138.681
AntiCCP positive	5 (50% of no.) (11,11% of pac.performing test)	21 (58,33% of no.) (46,66% of pac.performing test)
AntiCCP mean +/- SD (UI/mL)	157.65 ± 181.529	141.07 ± 176.030
Smokers (no., %)	8 (80%)	15 (37,50%)
Smokers/non-smokers (ratio)	8/2 (4)	15/25 (0,6)
ESR mean +/- SD (mm/h)	49.50 ± 24.99	46.62 ± 25.045
CRP mean +/- SD (UI/mL)	5.88 ± 3.255	2.84 ± 3.438
DAS 28 – mean (min-max)	6.646 ± 0.892	6.170 ± 0.9916

Mean value for RF was practically similar in males and females, comparative with mean value observed for antiCCP antibodies that was higher in males (table XIV). Interesting were the values of acute phase reactants superior in range in case of male patients.

Table XV. Correlation between sex and serology for antiCCP antibodies

	Female	Male
<i>antiCCP present</i>	21	5
<i>antiCCP absent</i>	19	4
<i>p= 0,868</i>		

Odds ratio 0.8842
 95 % CI 0.2066 to 3.7842

- 4 females did not perform antiCCP testing; 1 male did not perform antiCCP testing

Table XVI. Correlation between sex and serology for RF

	Female	Male
<i>RF present</i>	29	7
<i>RF absent</i>	11	3
<i>p= 0.874</i>		

Odds ratio 1,129
 95 % CI 0.2471 to 5.1671

Correlations between the presence of different antibodies and the sex of the patients with early rheumatoid arthritis (table XV and XVI), proved to be not statistically significant, even if there were noted differences between sub-groups separated by sex (table XIV) related to sero-positivity to antibodies.

In this way, 40% of male patients were positive for RF, compared with only 27,50% of female patients. In case of antiCCP antibodies, if in male patients the proportion was equal, in female patients the percentage was little lower of 41,66%.

80% of male patients were smokers and only 37,50% of female were smokers.

Smoker status did not correlate significantly with RF or anti-CCP in sub-groups separated by sex, non-smoker females being more positive for RF ($p = 0,523$; OR = 0.63; 95%CI = 0.15-2,59). In case of males, smokers were more sero-negative for RF, but also in this case statistically insufficient. ($p = 0,223$; OR = 0.12; 95%CI = 0.004 to 3,51). Same trend was observed antiCCP antibodies (figure 25).

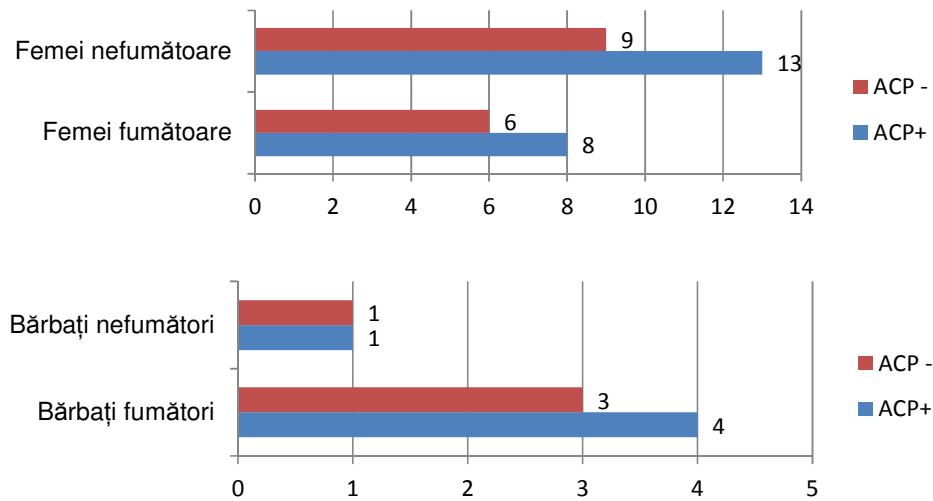


Figure 25. Correlations between smoking and positive serology for ACP divided into sex groups (ACP – antiCCP antibodies)

Generally, the serology did not correlate significantly with the sex of the patients (for FR – $p = 0,874$, respective for antiCCP – $p = 0,868$).

More than a half of male patients were positive for RF or anti-CCP antibodies, and 40 % were negative compared with 22% percentage in general group, showing an independent status compared with females. 80% of male patients with early rheumatoid arthritis were smokers, half of them being positive for anti-CCP antibodies, and 70% positive for RF. The titre of antibodies is interesting, following the trend in the titres demonstrated in general analysis, exactly 128,6 UI/mL for RF (compared with 128,71 UI/mL in general group) and of 157,65 UI/mL for anti-CCP (compared with 155,9 UI/mL in general group).

Antibodies were slightly higher in females compared with males – 72,50% for FR, and antiCCP in a percentage of 58,33%.

80 % of the patients mentioned no heredocollateral history of rheumatismal diseases or collagenoses, compared with the rest of 14% that presented cases of rheumatoid arthritis in close relatives (mother, father, sister/brother) and only 6% with other rheumatismal pathologies (especially psoriasis).

Associated diseases in studied patients, reveals a high incidence for cardiovascular and endocrine pathologies and in smaller amount genitor-urinary ones.

Biological syndrome of inflammation showed a mean for erythrocyte sedimentation rate of 46.28 mm/h +/- 25.059 and of 3.28 UI/mL +/- 3.454 for C reactive protein. Along with this, in table XVII are summarized values of VAS (visual analogue scale) with a mean score of 67,9, but also for DAS 28 with a mean score of 6.25 and with a standard deviation close to 1 (0.957), demonstrating a 88% of patients with highly active form of disease, compared with moderate and low active forms.

Table XVII. Disease activity parameters in early RA patients

Parameters	No. = 50	
No . tender joints – mean (min-max)	17.96 ± 11.514 (min 3- max 47)	
No. swollen joints – mean (min-max)	7.32 ± 6.384 (min 1- max 34)	
VAS – mean (min-max)	67.90 ± 16.228 (min 40- max 100)	
DAS 28– mean (min-max)	6.251 ± 0.957 (min 4.22- max 8.21)	
High active: >5.1 (nr.-%)	44 (88%)	
Moderate active: 3.2-5.1 (no. - %)	6 (12%)	
Extra-articular manif. - total (no. - %)	15 (30%)	
Type of extra-articular manif.(no. – % of total no.)	Chronic anaemia	9 (18%) (45% of ex.ar.manif.)
	Pulmonary changes	4 (8%) (20% of ex.ar.manif.)
	Carpal tunnel sdr.	4 (8%) (20% of ex.ar.manif.)
	other	3 (6%) (15% of ex.ar.manif.)
ESR mean +/-SD (mm/h)	46.28 ± 25.059	
CRP mean +/-SD (UI/mL)	3.28 ± 3.454	

Extra-articular manifestations joined 30% of the cases with early RA, in which the highest proportion was represented by chronic anaemia, in contrast with other like carpal tunnel syndrome and pulmonary manifestations. (table XVII).

In this particular sub-group with extra-articular manifestations, rheumatoid factor was positive in 66,66% case (almost similar with general group), but with a mean calculated range of 169,28 UI/mL. More than that, apparently convergent, the percentage of sero-positivity for anti-cyclic citrullinated antibodies was 53,33%, with a neat superior mean average of 225 UI/mL.

Mean number of tender joints was 17.96, with minimum of 3 and a maximum of 47 involved joints, and the number of swollen joints summed an average of 7.32 +/- 6.384.

The distribution of articular areas revealed as principal metacarpophalangian group, proximal interphalangian joints, radiocubitocarpal joints, but also the knee joint area, compared with main swollen joint areas represented by radiocubitocarpal joint and metacarpophalangian joints.

Imagistic investigation of patients with early RA allowed revealing the structural changes in articulation by the use of plain radiograph and ultrasonographic exam. Main radiographic changes are presented in table XVIII, showing in 20% juxta articular osteoporosis, and resembling 28.57% of the 35 patients undergoing investigation. In lesser percentages of 22.85% and respective 8.57% of radiologically assessed patients were found erosive changes and joint deformities. Important to notice is the favourable ratio for seropositive patients with radiographic changes (16/5 – 3.2 sero+/sero-patients), even if each type of positive serology calculated separately did not correlate statistically significant with radiographic changes ($p = 0.719$ for antiCCP and $p = 0.999$ for RF).

Table XVIII. Radiographic changes in early RA patients

Radiographic changes	Nr. = 35 pacienți care au efectuat Rx
Patients with radiographic changes/patients without radiographic changes	21:14 (1.5)
Erosions/geodes (no., %)	8 (16% of 50, 22.85% of 35 with Rx)
Juxta articular osteoporosis (no., %)	10 (20% of 50, 28.57% of 35 with Rx)
Displacements/joint deforming (no., %)	3 (6% of 50, 8.57% of 35 with Rx)
Sero+/sero- ratio with radiographic changes	16/5 (3.2)

It was observed a high frequency of non-smokers with radiographic changes, even if the differences were not statistically significant compared with smokers ($p = 0.487$) (table XIX).

Tabelul XIX. Correlation between smoking and radiographic changes

	Smokers with Rx	Non-smokers with Rx
<i>Rx changes</i>	6	11
<i>No Rx changes</i>	8	9
$p= 0.487$		

Odds ratio 0.6136

95 % CI 0.1548 to 2.4322

In case of changes seen by ultrasound investigation, the distribution was different (table XX). The sero+/sero- ratio in patients with ultrasonographic changes regardless joint area was only 1.22 (11/9) and maintained the same trend of 1-1.28 at separate analysis of distinct joint area. 82.6% of patients that undergo ultrasonography for different joint areas presented synovial/proliferations (93.8% of those that undergo hand joint US and 57.14% of those for other areas), 69.56% presented tendinitis/tenosynovitis/tendon rupture (87.5% of those that undergo hand joint US and 28.57% of those for other areas), and only 4.34% presented recallable bone erosions (6.3% of those with hand joint US).

Table XX. Ultrasonographic changes in early RA patients

Ultrasonographic changes in hand joints	No. = 16 patients with hand joint US
Synovial effusion/proliferation (no., %)	15 (30% of 50, 93.8% of 16 with US)
Tendinitis/tenosynovitis/tendon rupture (no., %)	14 (28% of 50, 87.5% of 16 with US)
Erosions (no., %)	1 (2% of 50, 6.3% of 16 with US)
Sero+/sero- ratio with ultrasonographic changes	9/7 (1.28)
Ultrasonographic changes in other joint areas	No. = 7 patients with other joint areas US
Synovial effusion/proliferation (no., %)	4 (8% of 50, 57.14% of 7 with US)
Tendinitis/tenosynovitis/tendon rupture (no., %)	2 (4% of 50, 28.57% of 7 with US)
Erosions (no., %)	0
Sero+/sero- ratio with ultrasonographic changes	2/2 (1)
Ultrasonographic changes regardless joint type (total)	No. = 23 patients undergoing US
Patients with ultrasonographic changes/patients without ultrasonographic changes	20:3 (6.66)
Synovial effusion/proliferation (no., %)	19 (38% of 50, 82.6% of 23 with US)
Tendinitis/tenosynovitis/tendon rupture (no., %)	16 (32% of 50, 69.56% of 23 with US)
Erosions (no., %)	1 (2% of 50, 4.34% of 23 with US)
Sero+/sero- ratio with ultrasonographic changes	11/9 (1.22)

AntiCCP corr.with ultrasound changes: p=0.096; RF corr.with ultrasound changes: p=0.230

Anti-cyclic citrullinated peptides correlated better with ultrasonographic changes than rheumatoid factor, yet insufficient to be statistically significant (p = 0.096 for antiCCP, compared with 0.230 for RF).

Total ratio of patients with ultrasonographic changes / without ultrasonographic changes was clearly superior than the one present for radiographic changes (6.66 vs. 1.5).

Comparative analysis of variable criteria used for the classification of rheumatoid arthritis is presented in table XXI. ACR 1987 classification criteria were fulfilled only by 60% (even if applied retrospectively), compared with ACR/EULAR 2010 fulfilment of 100%. We have to mention that this is not surprising facing the fact that the inclusion criteria were extremely strict regarding differential diagnosis.

Interesting was to calculate the frequency of each criterion that revealed equal proportions ($\approx 90\%$) for criteria 1 and 3 (arthritis of 3 or more joints and arthritis of hand joints) in ACR 1987 set and criterion C (acute phase reactants) in ACR/EULAR 2010 classification.

Related to ACR 1987 criteria in early RA patients, field was dominated by arthritis of hand joints, symmetry, morning stiffness and RF positivity. The poorest

presentation was for radiographic changes and rheumatoid nodules (18% and respective, 2%).

ACR/EULAR 2010 criteria analysis showed a mean total score of 7.34 (practically synonymous with a positive diagnosis for all patients); 40% of patients presented at least 10 joints involved, 56% high titres for RF or antiCCP, 92% a biological syndrome of inflammation characterized by high ESR or CRP and 84% a persistence of symptoms over 6 weeks (table XXI).

Table XXI. ACR 1987 vs. ACR/Eular 2010 criteria analysis

ACR 1987 classification criteria		ACR/EULAR 2010 classification criteria	
Fulfilled criteria - total (no.%)	30 (60%)	Fulfilled criteria - total (no.%)	50 (100%)
		Score (mean +/- SD)	7.34 +/- 1.422
1. Arthritis of 3 or more joint areas	45 (90%)	A. Joint involvement (mean score +/- SD)	3.5 +/- 1.359
		1 large joint	0 (0%)
2. Morning stiffness ≥ 60 min	31 (62%)	2-10 large joints	4 (8%)
		1-3 small joints (+/- large joints)	7 (14%)
3. Arthritis in hand joints	45 (90%)	4-10 small joints (+/- large joints)	19 (38%)
		>10 joints (at least 1 small joint)	20 (40%)
4. Symmetric arthritis	36 (72%)	B. Serology (mean score +/- SD)	2.08 +/- 1.309
		RF neg. and antiCCP neg.	11*(24%)
5. Rheumatoid nodules	1 (2%)	RF or antiCCP pos. low titer	10 (20%)
		RF or antiCCP pos. high titer	28 (56%)
6. Positive RF	34 (68%)	C. Acute phase reactants (mean score +/- SD)	0.92 +/- 0.274
		ESR and CRP normal	4 (8%)
		ESR and CRP high	46 (92%)
7. Radiographic changes	9 (18%)	D. Duration of symptoms (mean score +/- SD)	0.84 +/- 0.370
		< 6 weeks	8 (16%)
		≥ 6 weeks	42 (84%)

* 1 RF seronegative patient did not undergo antiCCP testing.

ACR/EULAR 2010 criteria presented a better correlation with smoker/non-smoker status than ACR 1987 criteria, but these correlations were not statistically significant (ACR 1987 per total with smoking status: p= 0.105; ACR/EULAR 2010 per total with smoking status: p= 0.099).

Analysing biological syndrome of inflammation enlightened by acute phase reactants ESR and CRP from ACR/EULAR 2010 criteria, this was statistically significant correlated with disease activity score DAS28 ($p = 0.045$) and more important with extra-articular manifestations in patients with early rheumatoid arthritis ($p=0.0507$). Correlations with RF and antiCCP antibodies were not statistically significant ($p = 0.578$ and respective $p = 0.842$), nor the correlations with radiographic changes ($p = 0.999$). Symmetric arthritis in classic ACR1987 criteria presented the best correlation with biological syndrome of inflammation ($p = 0.021$), implicitly with ESR and CRP ($p = 0.026$, respective $p = 0.017$) and extremely significant ($p = 0.002$) with disease activity score DAS28 (table XXII).

The poor correlation with ultrasonographic changes of this criterion ($p = 0.082$), was sufficient to note that 78.26% of patients with symmetrical arthritis presented ultrasonographic changes. Morning stiffness and arthritis of hand joints criteria correlated with high values of CRP ($p = 0.039$, respective 0.018) (table XXII). Morning stiffness criterion did not correlate nor as presence or as value with none of the new ACR/EULAR 2010 criteria (table XXIII).

Table XXII. Correlation between ACR 1987 classification criteria with disease activity indicators, acute phase reactants and ultrasonographic changes

ACR 1987 criteria	ESR	CRP	DAS28	Ultrasonographic changes
Arthritis of 3 or more joint areas	p=0.102	p=0.447	p=0.045	p=0.923
Morning stiffness	p=0.645	p=0.039	p=0.689	p=0.183
Arthritis of hand joints	p=0.120	p=0.018	p=0.073	p=0.923
Symmetric arthritis	p=0.026	p=0.017	p=0.002	p=0.082
Rheumatoid nodules	p=0.917	p=0.200	p=0.808	p=0.429

Table XXIII. Correlation between ACR/EULAR 2010 classification criteria with morning stiffness, symmetric arthritis and radiographic changes

ACR/EULAR 2010 criteria	Morning stiffness	Symmetric arthritis	Radiographic changes
Joint involvement	p=0.890	p=0.009	p=0.174
Serology	p=0.531	p=0.454	p=0.048
Acute phase reactants (ESR;CRP)	p=0.106	p=0.021	p=0.086
Duration of symptoms	p=0.413	p=0.134	p=0.152

Results - study II

An extremely relevant analysis for the diagnostic and prognostic implications is represented by the study of genetic features of patients with early rheumatoid arthritis, a case-control study made bias a significant control group from general healthy population.

Tables XXIV and XXV present the distribution of HLA-DRB1 alleles observed in patients compared with controls. HLA-DRB1 genotyping showed statistically significant differences both for potentially containing shared epitope alleles and for other alleles. The most important were represented by the statistically significant high frequency of *04 (17% vs. 8.98%; p = 0.0474) and *10 (5% vs. 1.12%; p = 0.0477) alleles, but also for the rest of potentially containing SE like *01 (15% vs. 8.42%; p = 0.0900) allele. *14 presented a comparable frequency with control group, with a non-significant difference. The general distribution of potentially containing SE alleles was striking, our study determining a high frequency in early RA group (44% vs. 21.91%; p = <0.0001). High frequency, but not sufficiently statistic presented also a suspect allele - *07 (7% vs. 3.37%; p = 0.1689).

Reduced frequencies compared with controls were found for *11 (12% vs. 20.22%, p = 0.0816), *13 (6% vs. 14.60%; p < 0.0001) and *15 alleles (5% vs. 12.35%, p = 0.0467), all statistically significant.

With minor percentage differences, the total frequency of homozygots in RA group did not differ statistically significant compared with control group (p = 0.8480), with similar findings in case of homozygots potentially containing SE (*01, *04, *10, *14; p = 0.8497) or the carriage of two different alleles potentially containing SE (table XXIV).

Table XXIV. The frequencies of HLA-DRB1 alleles in patients with early rheumatoid arthritis (ERA) and controls

HLA-DRB1 alleles	ERA (2 x no. = 100)		Controls (2 x no. = 178)		p (<0.05)	O.R	95%CI
	No.	Freq. (%)	No.	Freq. (%)			
*01	15	15%	15	8.42%	0.0900	1.91	0.89-4.10
*03	14	14%	24	13.48%	0.9041	1.04	0.51-2.12
*04	17	17%	16	8.98%	0.0474	2.07	0.99-4.31
*07	7	7%	6	3.37%	0.1689	2.15	0.74-6.60
*08	0	0%	2	1.12%	-		
*10	5	5%	2	1.12%	0.0477	4.63	0.88-24.32
*11	12	12%	36	20.22%	0.0816	0.53	0.26-1.08
*12	1	1%	0	0.00%	-		
*13	6	6%	26	14.60%	0.0309	0.37	0.14-0.94
*14	6	6%	6	3.37%	0.3005	1.82	0.57-5.83
*15	5	5%	22	12.35%	0.0467	0.37	0.13-1.01
*16	12	12%	23	12.92%	0.8241	0.91	0.43-1.93
Carriage of 2 SE allele	9	18% (of no.)	10	11,23% (of no.)	0.2835	1.66	0.65-4.23

Homozygots global	5	10% (of no.)	8	8,98% (of no.)	0.8480	1.11	0.35-3.51
Homozygots potentially SE	2	4% (of no.)	3	3,73% (of no.)	0.8497	1.19	0.19-7.24
Main potentially containing SE alleles (sum *01,*04,*10,*14)	44	44%	39	21.91%	<0.0001	2.80	1.64-4.76

Related to the distribution of HLA-DRB1*04 sub=group alleles, estimation was little difficult due to small of sample that implied the use of binomial exact test. This revealed a statistically significant frequency for *04:04 (23.52% vs. 6.25%; p = 0.0003), but also for *04:08 alleles, even if in this late case without statistical relevance (11.76% vs. 6.25%; p = 0.1382) – significance is given also by the superior O.R. value for *04:04 and *04:08 (4,61, respective 2). In contrast, *04:02 were found significantly low in patients with early RA (11.76% vs. 31.25%; p < 0.00001). *04:01, *04:03 and *04:05 sub-group alleles were slightly reduced as frequency, but the difference is not statistically significant (table XXV).

Tabelul XXV. The frequencies of HLA-DRB1*04 subgroup alleles in patients with early rheumatoid arthritis and controls

DRB1*04 sub-group alleles	ERA (no*04 = 17)		Controls (no *04 = 16)		p (<0.05)	O.R	95%CI
	No.	Freq. (%)	No.	Freq. (%)			
*04:01	3	17.64%	3	18.75%	0.8555	0.92	0.15-5.44
*04:02	2	11.76%	5	31.25%	<0.00001	0.29	0.04-1.80
*04:03	2	11.76%	2	12.5%	0.8306	0.93	0.11-7.55
*04:04	4	23.52%	1	6.25%	0.0003	4.61	0.45-46.67
*04:05	3	17.64%	3	18.75%	0.8555	0.92	0.15-5.44
*04:06	0	0%	1	6.25%			
*04:07	1	5.88%	0	0%			
*04:08	2	11.76%	1	6.25%	0.1382	2.00	0.16-24.48

Calculated relative risk (figure 31) for studied group allowed a stratification of main potentially containing shared epitope alleles. In patients with early RA, the highest relative risk was found in *10 allele (RR = 4.63), followed by *04 (RR = 2.07), and on the last places being *01 and *14 with RR = 1.91, respective RR = 1.81. It was calculated also the relative risk for (figure 32) HLA-DRB1*04 sub-groups, in which the highest value was found for *04:04 (RR = 4.34), compared with lower risks in *04:08 (RR = 2) or *04:01 and *04:05 alleles (RR similar de 0.93).

Relative risk

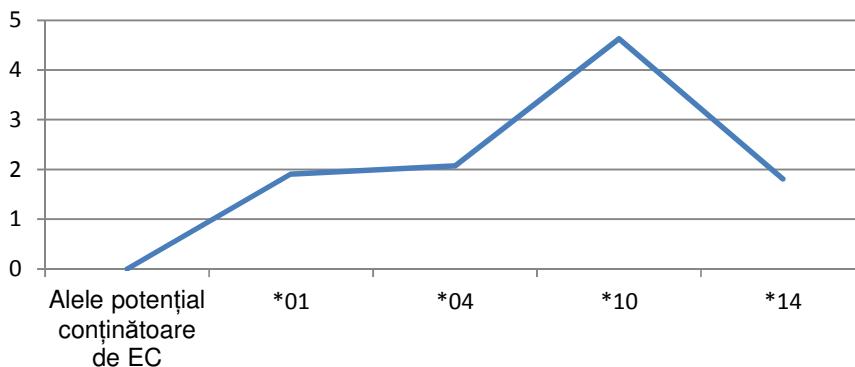


Figure. 31. Relative risk for main potentially containing shared epitope alleles

Relative risk

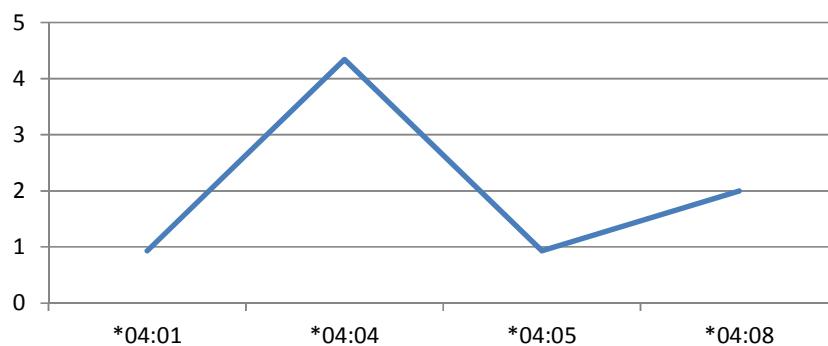


Figure 32. Relative risk for HLA-DRB1*04 sub-group alleles

The stratification of odds ratio brought into attention *10 allele (OR=4,63), followed by *04 and *07 alleles (OR=2,07 and respective OR=2,15) which presented a similar trend with potentially containing shared epitope alleles (OR=2,80). *01 and *14 were parallel similar in trend – OR=1,91 and respective OR=1,82.

Table XXVI. The frequencies of HLA-DRB1 alleles in smoker patients with early rheumatoid arthritis (ERA)

HLA-DRB1 alleles	ERA (2 x no. = 46)	
	No.	Freq. (%)
*01	6	13,04%
*03	3	6,52%
*04	11	23,91%
*07	4	8,69%
*08	0	0%
*10	1	2,17%
*11	4	8,69%
*12	1	2,17%
*13	3	6,52%
*14	3	6,52%
*15	2	4,34%
*16	8	17,39%
Carriage of 2 SE allele	4	17,3% (of no.)
Homozygots global	3	13% (of no.)
Homozygots potentially SE	2	8,69% (of no.)
Main potentially containing SE alleles (sum *01,*04,*10,*14)	19	41,30%

The most frequent alleles found in smoker patients with early RA were *04 (23,91%), closely followed by *01 allele (13,04%), and maybe the most intriguing aspect was given by the general frequency of main potentially containing SE alleles of 41,30%, pretty similar with the one found in general group analysis (Table XXVI). The frequency of *04 sub-group in smoker patients with dominant *04:04, *04:05 and *04:02 seem to complete the pattern of genetic risk factor, somehow parallel with the one in general analysis (Table XXVII).

Table XXVII. The frequencies of HLA-DRB1 sub-group alleles in smoker patients with early rheumatoid arthritis (ERA)

DRB1*04 sub-group alleles	ERA (no. alleles *04 = 11)	
	No.	Freq. (%)
*04:01	1	9,09%
*04:02	2	18,18%
*04:03	1	9,09%
*04:04	3	27,27%
*04:05	2	18,18%
*04:06	0	0%
*04:07	1	9,09%
*04:08	1	9,09%

From potentially containing shared epitope alleles, *04, *10 and *14 (table XXVIII) correlated statistically significant with the presence of anti-cyclic citrullinated peptides ($p = 0.030$, $p = 0.038$, respective $p = 0.006$), in contrast with *01 allele. *14 allele correlated sufficiently with the presence of rheumatoid factor ($p = 0.05$).

Proper analysis involved *13 allele considered to be protective for RA, but also *16 allele with a high presence in studied population (table XXVIII). Statistically significant was the negative association between the presence of *13 allele and rheumatoid factor ($p = 0.052$).

Table XXVIII. Correlations between HLA-DRB1 alleles with biologic parameters and disease severity indicators

	EC*01	EC*04	EC*10	EC*14	*16	*13
Radiographic changes	p=0.999	p=0.697	p=0.999	p=0.545	p=0.999	p=0.146
antiCCP	p=0.797	p=0.030	p=0.038	p=0.006	p=0.985	p=0.420
RF	p=0.726	p=0.318	p=0.544	p=0.050	p=0.643	p=0.052
High activity (DAS28 >5.1)	p=0.756	p=0.510	p=0.384	p=0.708	p=0.217	p=0.708
Extra-articular manifestations	p=0.123	p=0.304	p=0.999	p=0.214	p=0.875	p=0.722

Serologically negative patients had an interesting genetic distribution, the analysis showing a high frequency for *01 allele, compared with *04 or *14.

10% of studied patients with early rheumatoid arthritis were Asiatic ethnics, and was interesting to follow the phenotypical features of this particular sub-group, correlated with HLA-DRB1 genotype, even if the reduced sample size did not allow an important statistical analysis.

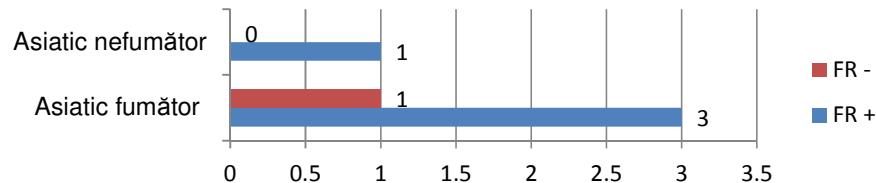
Dominant in Asiatic group was *04 allele, with equal distribution for *04:01, *04:04, *04:05, closely followed by *07 and *15, and lesser *01, *03 and *14.

The pattern of this group was interesting: only one Asiatic patient was negative for RF and/or ACP, 80% were seropositives for RF (with mean titre of $63,80 \text{ UI/mL} \pm 49.77$), and only 60% were seropositives for antiCCP antibodies (with mean titre of $296,79 \text{ UI/mL} \pm 202.79$).

We have to enlighten that the Asiatic patients presented lower RF titers compared with general group, and spectacularly high titers for antiCCP antibodies. Considering the high frequency for *04 allele (30%) compared with Caucasoid patients (15,55%), we performed the comparison between groups, but it did not reveal significant differences (table XXIX).

Table XXIX. The frequencies of HLA-DRB1 alleles in asiatic patients with early rheumatoid arthritis (ERA) vs. Caucasoid patients

HLA-DRB1 alleles	Asiatic ERA alleles (2 x no. = 10)		Caucasoid ERA alleles (2 x no. = 90)		p (<0.05)	O.R	95%CI
	No.	Freq. (%)	No.	Freq. (%)			
*04	3	30%	14	15,55%	0,2595	2,32	0,53-10,09
Main potentially containing SE alleles (sum *01,*04,*10,*14)	5	50%	34	37,77%	0,4556	1,64	0,44-6,10


The ACR/EULAR 2010 classification criteria score was an average of 8 ± 1.22 , and the disease severity indicators presented high ranges (table XXX).

If the correlation is made with entire patient group, the frequency of potentially containing SE alleles becomes statistically significant for Asiatic origin ($p = 0,05$; OR = 3,56 95% CI 0,98-12,94), with a higher risk ratio than in general patient group (3,56 vs. 2,80).

Table XXX. Severity indicators in asiatic patients with early RA

Indicators	No. = 5
DAS 28 – mean (min-max)	6.72 ± 0.91
ESR mean +/- SD (mm/h)	57 ± 20.95
CRP mean +/- SD (UI/mL)	4.37 ± 3.52

From this group, 80% were smokers, with a female:male ratio of 3:2, all of them coming from urban environment.

Odds ratio	0.5556
95 % CI	0.0126 to 24.5152
P =	0.7610

Figure 37. Correlation between smoker status and positive serology for RF antibodies in Asiatic patients with early RA

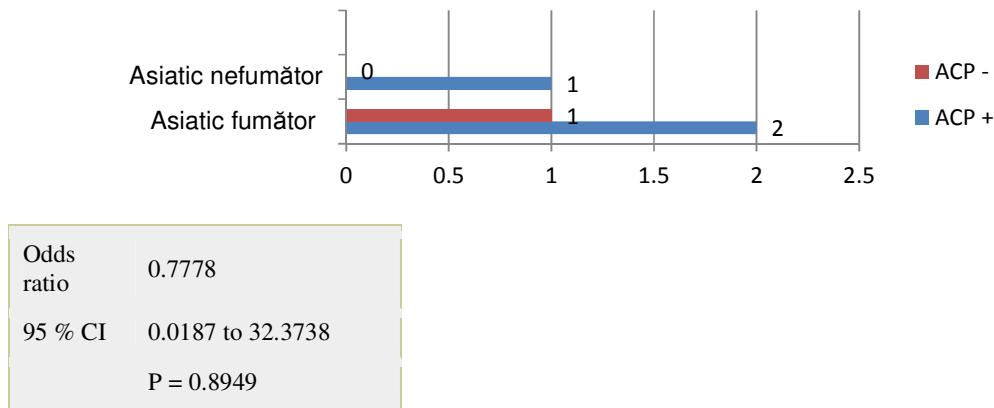


Figure 38. Correlation between smoker status and positive serology for anti-CCP antibodies in Asiatic patients with early RA (ACP- anti-CCP)

Positive serology for RF or antiCCP antibodies did not correlate significantly with smoker status (figures 37 and 38).

40% of Asiatic patients presented ultrasonographic changes and 40% radiographic changes, all of them associating smoking. The correlation of imagistic changes with smoking in asiatic RA group was not statistically significant ($p = 0,55$), but the high risk ratio (OR = 3) seems to sustain the high risk of smoking Asiatic patients to develop severe, destructive forms. We have to add that only one patient of Asiatic origin presented extra-articular manifestations with pulmonary changes (pulmonary rheumatoid nodules associated with pleurisy), patient being non-smoker.

As an observation in asiatic patients, *04:05 sub-group presented radiographic changes, in contrast with *04:01 and *04:04 which presented ultrasonographic changes.

The analysis of homozygote status for patients presenting *01 or *04 potentially containing shared epitope alleles did not reveal statistically significant associations with serology (RF or antiCCP), radiographic changes or disease severity (Table XXXI).

Table XXXI. Correlations between HLA-DRB1 alleles and biological parameters and severity indicators in homozygots

	Homozygots SE*01	Homozygots SE*04	Homozygots *16	Homozygots *13
Radiographic changes	p=0.310	p=0.310	-	-
antiCCP	p=0.246	p=0.246	-	-
RF	p=0.488	p=0.488	p=0.578	-
High activity score	p=0.709	p=0.709	p=0.594	-
Extra-articular manifestations	p=0.409	p=0.409	p=0.239	-

One of the most interesting analysis was represented by the observation of the correlations between potentially containing SE alleles, also *04 sub-group alleles and each criterion in ACR 1987 (tables XXXII and XXXIII) and ACR/EULAR 2010 classifications. (tables XXXIV and XXXV).

Table XXXII. Associations between ACR 1987 classification criteria and potentially containing SE alleles

ACR 1987 criteria	Potentially containing SE alleles	*04	*01	*10	*14
Arthritis \geq 3 joints	p=0.157	p=0.675	p=0.675	p=0.432	p=0.384
Morning stiffness	p=0.566	p=0.392	p=0.836	p=0.285	p=0.802
Arthritis of hand joints	p=0.157	p=0.142	p=0.529	p=0.432	p=0.562
Symmetric arthritis	p=0.089	p=0.955	p=0.178	p=0.675	p=0.103
Rheumatoid nodules	p=0.488	p=0.529	p=0.105	p=0.736	p=0.709
Radiographic changes	p=0.925	p=0.694	p=0.670	p=0.269	p=0.928

Table XXXIII. Associations between ACR 1987 classification criteria and HLA-DRB1*04 sub-group alleles

ACR 1987 criteria	*04:01	*04:02	*04:03	*04:04	*04:05	*04:08
Arthritis \geq 3 joints	p=0.551	p=0.551	p=0.101	p=0.423	p=0.448	p=0.551
Morning stiffness	p=0.360	p=0.423	p=0.360	p=0.930	p=0.080	p=0.360
Arthritis of hand joints	-	-	-	-	-	-
Symmetric arthritis	p=0.423	p=0.360	p=0.423	p=0.930	p=0.770	p=0.360
Rheumatoid nodules	-	-	-	-	-	-
Radiographic changes	p=0.423	p=0.360	p=0.360	p=0.930	p=0.770	p=0.423

If in case of ACR 1987 classification, association of each criterion did not revealed significant data, the correlation of HLA-DRB1 alleles with ACR/EULAR 2010 classification criteria showed promising associations like the correlation between potentially containing alleles and acute phase reactants (p=0,036), particularly of

*04:08 sub-group ($p = 0.036$, respective $p = 0.011$), but also between presence of *14 allele and positive serology for rheumatoid factor and/or anti-cyclic citrullinated antibodies, and supplementary with criterion score ($p = 0.001$).

Table XXXIV. Associations between ACR/EULAR 2010 classification criteria and potentially containing SE alleles

ACR/EULAR 2010 Criteria	Potentially containing SE alleles	*04	*01	*10	*14
Joint involvement	p=0.491	p=0.519	p=0.268	p=0.918	p=0.301
Serology	p=0.889	p=0.0509	p=0.277	p=0.971	p=0.001
Acute phase reactants (ESR;CRP)	p=0.036	p=0.890	p=0.198	p=0.491	p=0.446
Duration of symptoms	p=0.238	p=0.518	p=0.292	p=0.799	p=0.963

Table XXXV. Associations between ACR/EULAR 2010 classification criteria and HLA-DRB1*04 sub-group alleles

ACR/EULAR 2010 Criteria	*04:01	*04:02	*04:03	*04:04	*04:05	*04:08
Joint involvement	p=0.642	p=0.114	p=0.642	p=0.392	p=0.937	p=0.095
Serology	p=0.466	p=0.466	p=0.224	p=0.262	p=0.679	p=0.224
Acute phase reactants (ESR;CRP)	p=0.695	p=0.695	p=0.695	p=0.546	p=0.617	p=0.011
Duration of symptoms	p=0.271	p=0.463	p=0.271	p=0.259	p=0.533	p=0.463

Detailed analysis of positive serology which correlated globally with *04 allele, we observed a statistically significant association with anti-cyclic citrullinated peptides ($p = 0.030$), contrasting with rheumatoid factor (table XXXVI).

Table XXXVI. Associations between positive serology and HLA-DRB1*04 sub-group alleles

	*04	*04:01	*04:02	*04:03	*04:04	*04:05	*04:08
antiCCP	p=0.030	p=0.569	p=0.326	p=0.326	p=0.279	p=0.279	p=0.326
RF	p=0.318	p=0.448	p=0.448	p=0.255	p=0.243	p=0.519	p=0.255

Another important association was given by the disease activity score that correlated statistically significant with main potentially containing SE alleles (p=0.014), but also in particular with *04 or *14 alleles (table XXXVII). Not the same statistic significance was observed comparing with HLA-DRB1*04 sub-groups (table XXXVIII).

Table XXXVII. Associations between DAS28, radiographic changes and echographic changes and potentially containing SE alleles

Potentially containing SE alleles	*04	*01	*10	*14	
DAS28	p=0.014	p=0.052	p=0.658	p=0.258	p=0.054
Radiographic changes	p=0.999	p=0.697	p=0.999	p=0.999	p=0.545
Echographic changes	p=0.960	p=0.659	p=0.392	p=0.382	p=0.519

Table XXXVIII. Associations between DAS28, radiographic changes and echographic changes and HLA-DRB1*04 sub-groups

	*04:01	*04:02	*04:03	*04:04	*04:05	*04:08
DAS28	p=0.368	p=0.999	p=0.234	p=0.695	p=0.999	p=0.865
Radiographic changes	p=0.251	p=0.154	p=0.154	p=0.621	p=0.087	p=0.251
Echographic changes	p=0.919	p=0.104	p=0.919	p=0.876	p=0.605	p=0.155

An important correlation was observed by analysing the association between potentially containing SE alleles and extraarticular manifestations in patients with early RA (table XXXIX). Globally, the best association was between *01 allele and chronic anaemia ($p = 0,042$), and in case of LA-DRB1*04 sub-grops, *0403 allele correlated with same manifestation ($p = 0,008$). *0405 allele presented a surprising correlation with pulmonary manifestations ($p = 0,038$) (table XL).

Table XXXIX. Association between potentially containing SE alleles and extraarticular manifestations in patients with early RA

Potentially containing SE alleles	*04	*01	*10	*14	
Extra-articular manifestations	p=0.322	p=0.304	p=0.123	p=0.999	p=0.214
Chronic anaemia	p=0.377	p=0.213	p=0.042	-	p=0.928
Pulmonary manifestations	p=0.421	p=0.889	p=0.889	p=0.297	-
Carpal tunnel syndrome	p=0.754	p=0.307	p=0.889	p=0.297	-

Table XL. Association between HLA-DRB1*04 sub-groups and extraarticular manifestations in patients with early RA

	*04:01	*04:02	*04:03	*04:04	*04:05	*04:08
Extra-articular manifestations	p=0.591	p=0.283	p=0.591	p=0.680	p=0.999	p=0.591
Chronic anaemia	-	-	p=0.008	-	-	-
Pulmonary manifestations	-	-	-	-	p=0.038	-
Carpal tunnel syndrome	p=0.101	-	-	-	p=0.255	-

Related to the allele considered to be protective against rheumatoid arthritis HLA-DRB1*13, there was observed a powerful negative association with acute phase reactants globally ($p = 0,016$) and with the duration of symptoms ($p = 0,017$), which represent criteria in ACR/EULAR 2010 classification. Clasical criteria presented low

correlations, the only one that was statistically significant being the rheumatoid factor criterion ($p = 0,052$). There were no association with rheumatoid nodules (table XLI).

Table XLI – Associations between ACR 1987 - ACR/EULAR 2010 classification criteria and *13 allele

ACR 1987 classification criteria	*13 allele	ACR/EULAR 2010 classification criteria	*13 allele
1. Arthritis of 3 or more joint areas	$p=0.562$		
2. Morning stiffness ≥ 60 min	$p=0.802$	A. Joint involvement	$p=0.679$
3. Arthritis of hand joints	$p=0.384$		
4. Symmetric arthritis	$p=0.201$	B. Serology (FR, antiCCP global)	$p=0,483$
5. Rheumatoid nodules	-		
6. Serum rheumatoid factor	$p=0.052$	C. Acute phase reactants (global)	$p=0,016$
7. Radiographic changes	$p=0.146$	D. Duration of symptoms	$p=0,017$

Also, was important the therapeutically approach of patients with early RA that beneficiated by initiation of DMARDs therapy (DMARDs – disease modifying antirheumatic drugs) (table XLII). 6 denied or were unable to start therapy, receiving chronic gluco-corticoid treatment. Half of the patients received initially methotrexate, in a calculated average dose of 12 mg, 20,45% received treatment with leflunomide in an average dose of 20 mg, 15,90% treatment with cu hydroxychloroquine and only 6,82% therapy with cu sulphasalazine.

Table XLII. Initial DMARDs therapy in early RA patients

DMARDs (disease modifying antirheumatic drugs)	No. = 44 pac initiating DMARDs	Average dose (mg)	DMARDs per total ever (nr)
METHOTREXATE (nr., %)	22 (50%)	12 mg	24
SULPHASALAZINE (nr., %)	3 (6,82%)	2250 mg	4
HYDROXYCLOROQUINE (nr., %)	7 (15,90%)	400 mg	11
LEFLUNOMIDE (nr., %)	9 (20,45%)	20 mg	15
Combinations (nr., %)	3 (6,82%)	-	6
CYCLOPHOSPHAMIDE*(nr., %)	0	-	1
AR at DMARDs (nr., %)	Total	11 (25%)	
	neurological	1	
	digestive	7	
	cutanate	2	
	general	3	

*patients with associated demielinating pathology

Adverse reactions at DMARDs therapy were present in a procentage of 25%, with leading the digestive manifestations, and in a smaller range the general ones.

There were found no statistically significant correlations between adverse reactions of disease modifying therapy and potentially containing shared epitope alleles (table XLIII).

Table XLIII– Correlations between adverse reactions of disease modifying therapy and potentially containing shared epitope alleles

Potentially containing SE alleles	*04	*01	*10	*14
Adverse reactions of DMARDs	p=0.910	p=0.791	p=0.316	p=0.377

Anti-inflammatory treatment was cvasi-present in patients diagnosed with early RA (table XLIV), 84% using non-steroidal anti-inflammatory drugs and 72% treatment with corticosteroids. Adverse reaction percentage was low, both for NSAD and corticosteroid treatment (2%).

Tabelul XLIV. Steroidal and non-steroidal anti-inflammatory treatment in patients with early RA

Anti-inflammatory therapy	NSAD	corticosteroids
Pac. and % from total	42 (84%)	36 (72%)
Adverse reactions	1 (2%)	1 (2%)

CONCLUSIONS

1. Rheumatoid arthritis represents the most frequent inflammatory rheumatic disease with a multi-factorial aetiology and auto-immune pathogenicity, mainly characterized by articular involvement with chronic, progressive, deforming evolution, but also by systemic and extra-articular manifestations, that implies a complex, individualized treatment represented by disease modifying drugs and biologic therapies.
2. Epidemiological trials analysis enlightens the dynamic character of the disease, with variations of incidence and prevalence that attests the need of close monitoring of cases.
3. The establishment of a complex, complete and very early diagnosis, that allows implementation of optimal therapies and an efficient follow-up over the evolution under treatment is of crucial importance in the assessment of patient in order to reduce the number of late stage, invalidating cases. The goal of the practitioner is obtaining remission, and ideally, the cure.
4. Having in mind that today there is no effective and certain way to diagnose early and very early rheumatoid arthritis, is imperative and justified the need of judicious classification criteria, and their identification represents a huge help in orienting clinical diagnosis.
5. Today, rheumatoid factor and anti-cyclic citrullinated antibodies are the accepted key elements both for the diagnosis of the disease, but also for predictive evaluation of functional and radiological outcome. The large range of sero-positive patients, either for rheumatoid factor, anti-cyclic citrullinated antibodies or both, seems to sustain enough the importance of serological markers into classification and diagnosis of early rheumatoid arthritis.
6. Biological syndrome of inflammation expressed by the acute phase reactants, especially erythrocyte sedimentation rate and C reactive protein must be evaluated for monitoring the evolution of disease and for predictind the functional and radiological damage. Increased values found in patients of our study correlates significantly with disease activity index DAS 28, but also with the presence of extra-articular manifestations.
7. The association with cardio-vascular diseases is definetly related with proinflammatory status and the wide range of cytokines involved into the pathogenesis of disease, but also with the use of cyclooxygenase inhibitors. Compared with general population, mortality and morbidity by cardio-vascular causes are significantly increased in rheumatic patients and especially in rheumatoid arthritic cases, as it was demonstrated also by our results with a high procentage of this type of co-morbidities in the studied patients.
8. Rheumatoid arthritis is traditionally associated with other auto-immune diseases, but these were considered separate entities, especially because of different clinical manifestations (ex.tyroiditis). Data revealed in our study with top places occupied by cardiovascular associated disease and tyroidian associated disease shows the importance of the stratification of patients with RA into specific sub-groups.
9. Extra-articular manifestations were present in 30% of patients with early RA, with the highest incidence of chronic anaemia, compared with carpal tunnel syndrome or pulmonary manifestations, and the analysis of this particular subgroup revealed the importance of the presence of antibodies, but more of the titre of them, in the pathogeny of extraarticular manifestations in RA.

10. Imagistic assessment of early RA patients allowed the evaluation of structural changes by the use of articular x-rays and ultrasonography. Ultrasonography has a higher sensitivity for smooth tissue lesions, and magnetic resonance is considered to be elective in incipient erosions. Unfortunately, the last method is hardly used due to high costs.

11. Articular ultrasound exam reveals the “gold standard” in early rheumatoid arthritis diagnosis – synovitis, as shown by 82.6% from the total of patients performing the investigation that presented effusions/synovial proliferations, especially in hand joints.

12. The ultrasonographic expression of erosions was not important, partially due to the early moment of diagnosis, and the ratio of serologically positive patients with radiological changes was superior compared with the ratio of serologically positive patients with ultrasonographycal changes, showing the huge importance of the early diagnosis.

13. The analysis of ACR 1987 applied on early RA patients revealed the dominance of the criteria of hand arthritis, symmetric involvement and positive RF, compared with minimal range of presentation for radiological changes and rheumatoid nodules criteria.

14. The performance of ACR/EULAR 2010 classification criteria was remarkable, showing important associations stratified on each criterion with the disease activity parameters, underlining the importance of early identification of early RA patients and especially of those predisposed to destructive forms.

15. Many trials are announcing a high risk of developing the disease in serologically positive patients that associate smoking. Our very surprising conclusion of the study was the lack of statistical significance between the presence of anti-cyclic citrullinated peptide antibodies and smoking, antiCCPs being equally present in smokers and non-smokers, and RF had a similar trend with a small increase in non-smokers.

16. There were elaborated tables and algorithms that include the well-known theory of shared epitope, that managed to stratify the risk ratio for RA, but these cannot be applied as a rule for all groups, due to the wide variety of alleles that keeps this subject open, and still providing surprising correlations.

17. Existing studies assessed small population groups, with various ethnicities that must be integrated into a common database, especially because the pathogenic involvement seems to be more and more clearly defined by the citrullination of proteins in RA.

18. Genotyping the HLA-DRB1 alleles showed statistically significant differences both for potentially containing SE, and a number of other alleles. The most significant were the high frequencies for *04 and *10 (5% vs. 1.12%; $p = 0.0477$), but also for other alleles potentially containing SE like *01. HLA-DRB1*14 had a comparable frequency with control group. Very important seems to be the general distribution of alleles potentially containing SE, with a high frequency in early RA group. High, but not sufficiently statistic had a suspect allele *07.

19. With minor percentage differences, the total frequency of homozygots in RA group did not differ statistically significant compared with control group, with similar findings in case of homozygots potentially containing SE (*01, *04, *10, *14) or the carriage of two different alleles potentially containing SE.

20. The highest calculated relative risk was conferred by *10 allele – 4.63, followed by *04 (RR = 2.07), and the lowest for *01 and *14 with RR = 1.91,

respectively RR = 1.81; for the subgroups HLA-DRB1*04, the highest value was for *04:04 (RR = 4.34), compared with lower risks for *04:08 (RR = 2) or *04:01 and *04:05 (RR similar of 0.93).

21. From the potentially containing SE alleles, *04, *10 and *14 correlated very good with the presence of anti-citrullinated peptide antibodies, compared with *01. HLA-DRB1*14 correlated with the presence of rheumatoid factor.

22. More than a half of the smoker patients that presented alleles potentially containing SE were antiCCP positive, and 50% of them with high titres, even if the correlation between smoker status and sero-positivity was not statistically significant.

23. Serologically negative patients presented an interesting genetic pattern, with a high frequency for *01 allele, compared with *04 or *14, and the most intriguing aspect was the absence of *10 (which was generally the most frequent in early RA group), in serologically negative patients for antiCCP and in serologically negative for both patients, underlining a distinct phenotypical entity.

24. Correlating the genetic factors assumed also the inclusion of *13 allele, which presented a statistically significant negative association with early RA compared with control, but also for *15 with a low frequency in studied group and a negative association with the presence of rheumatoid factor.

25. The analysis of the phenotypical association of alleles and allelic subgroups found in our population with ACR1987 classification criteria did not revealed statistical significance, pursuing the definitive revision of the old classification set that represented the background for trials until now.

26. Our results in associating the new ACR/EULAR 2010 classification criteria with different alleles with potential were rough, but yet significant, and this sustains the need of a different, more comprehensive approach of the patient with RA.

27. Detailed analysis of positive serology correlated globally with *04 allele, showed a statistically significant correlation with anti-citrullinated peptides antibodies, in contrast with rheumatoid factor, but also a strong association with disease severity index DAS 28.

28. *13 allele, demonstrated to be protective, presented a powerful negative association with acute phase reactants and the duration of the disease, which represent criteria of ACR/EULAR 2010 classification.

29. Association of potentially containing SE alleles with extra-articular manifestations demonstrated in patients with early RA was dominated by the correlation between *01 and chronic anaemia, and for HLA-DRB1*04 subgroups, *0403 correlated with same manifestation ($p = 0,008$). Surprising was the correlation of *0405 with pulmonary manifestations.

30. The ground of therapeutically approach in rheumatoid arthritis patient is pharmacological treatment, with the goal of stopping the evolution of destructive lesions, reducing inflammation and pain, and implicitly the change in the quality of life. Initiation of a potential remissive therapy in the first year of evolution aims the “window of opportunity” that is hardly found in the absence of an early diagnosis.

31. The efficiency of new therapeutically strategies, including biological agents, on joint destructions, disease activity, functionality and quality of life has a profound social and economical impact. An efficient therapy can lead to reduction of direct and indirect costs given by the readjustment and even maintaining the work capacity in patients with RA.

32. The proper management is no longer an ideal goal, and the quality of life of the patients with this pathology can be improved by establishing an early clinical-

genetical-biological and imagistic diagnosis, that will allow a better integration and a reducement in the health costs. The absence of national trials and scientific research that may offer a genotypical pattern for rheumatoid arthritis patient and provide access to modern investigational tools represents a barrier in realizing this goal.

SELECTIVE REFERENCES

1. Aggarwal R, Liao K, Nair R, Ringold S, Costenbader KH. Anti-citrullinated peptide antibody assays and their role in the diagnosis of rheumatoid arthritis [review]. *Arthritis Rheum* 2009; 61:1472–1483.
2. Alethala D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM, Hobbs K, huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Menard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS, Vencovsky J, Wolfe F, Hawker G. 2010 rheumatoid arthritis classification criteria: an American college of Rheumatology/European League Against Rheumatism collaborative initiative. *Ann Rheum Dis.* 2010 Sep; 69(9):1580-1588. doi: 10.1136/ard.2010.138461
3. Ambreen Gul Muazzam, Atika Mansoor, Lubna Ali, Saima Siddiqi, Abdul Hameed, Muhammad Ajmal, Kehkashan Mazhar. Association of HLA-DRB1 and -DQB1alleles and haplotypes with rheumatoid arthritis in a Pakistani population. *Arthritis Res Ther* 2013, **15**:R95. doi:10.1186/ar4275.
4. Arnett FC, Edworthy SM, Bloch DA, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS, Medsger TA, Mitchell DM, Neustadt DH, Pinals RS, Schaller JG, Sharp JT, Wilder RL, Hunder GG. et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. *Arthritis Rheum* 1988;31(3):315-324
5. Auger I, Sebag M, Vincent C, Balandraud N, Guis S, Nogueira L, Svensson B, Cantagrel A, Serre G, Roudier J. Influence of HLA-DR genes on the production of rheumatoid arthritis-specific autoantibodies to citrullinated fibrinogen. *Arthritis Rheum* 2005; 52:3424-3432.
6. Avouac J, Gossec L, Dougados M. Diagnostic and predictive value of anti-cyclic citrullinated protein antibodies in rheumatoid arthritis: a systematic literature review. *Ann Rheum Dis.* 2006;65:845-851.
7. Backhaus M, Burmester GR, Sandrock D, Loreck D, Hess D, Scholz A, Blind S, Hamm B, Bollow M. Prospective two year follow up study comparing novel and conventional imaging procedures in patients with arthritic finger joints. *Ann Rheum Dis.* 2002;61(10):895-904.
8. Balsa A, Cabezón A, Orozco G, Cobo T, Miranda-Carús E, López-Nevot MA , Vicario JL, Martín-Mola E, Martín J, Pascual-Salcedo D. Influence of HLA DRB1 alleles in the susceptibility of rheumatoid arthritis and the regulation of antibodies against citrullinated proteins and rheumatoid factor, *Arthritis Research & Therapy* 2010 12:R62 doi:10.1186/ar2975.
9. Berglin E, Padyukov L, Sundin U, Hallmans G, Stenlund H, Van Venrooij WJ, Klareskog L, Dahlqvist SR. A combination of autoantibodies to cyclic citrullinated peptide (CCP) and HLA-DRB1 locus antigens is strongly associated with future onset of rheumatoid arthritis. *Arthritis Res Ther.* 2004;6:R303-308.
10. Borg AA, Dawes PT. Measures of pain and disease activity in rheumatoid arthritis. *Br J Rheumatol* 1993; 32: 1028-1029.
11. Calgüneri M, Ureten K, Akif Oztürk M, Onat AM, Ertenli I, Kiraz S, Akdogan A. Extra-articular manifestations of rheumatoid arthritis: results of a university hospital of 526 patients in Turkey. *Clin Exp Rheumatol.* 2006;24:305-308.
12. Choo SY. The HLA system: genetics, immunology, clinical testing, and clinical implications. *Yonsei Med J.* 2007 Feb 28;48(1):11-23. doi: 10.3349/ymj.2007.48.1.11
13. Dale J, Porter D . Optimising the strategy of care in early rheumatoid arthritis, *Best Practice & Research Clinical Rheumatology* nr.24, Elsevier, 2010; 443-455.
14. Davis H, McPherson RA. Human Leukocyte Antigen: The Major Histocompatibility Complex of Man. In Henry's Clinical Diagnosis and Management by Laboratory Methods, Saunders-Elsevier, Ediția 2, 2007, 8, 876-886
15. de Vries-Bouwstra JK, Goekoop-Ruiterman YP, Verpoort KN, Schreuder GM, Ewals JA, Terwiel JP, Ronday HK, Kerstens PJ, Toes RE, de Vries RR, Breedveld FC, Dijkmans BA,

Huizinga TW, Allaart CF. Progression of joint damage in early rheumatoid arthritis: association with HLA-DRB1, rheumatoid factor, and anti-citrullinated protein antibodies in relation to different treatment strategies. *Arthritis Rheum* 2008; 58:1293-1298.

16. Dessein PH, Joffe BI, Stanwick AE. Effect of disease modifying agents and dietary intervention on insulin resistance and dyslipidaemia in inflammatory arthritis. *Arthritis Res Ther* 2002;4:R12.

17. Dixey J, Solymossy C, Young A, Early RA Study. Is it possible to predict radiological damage in early rheumatoid arthritis (RA)? A report on the occurrence, progression, and prognostic factors of radiological erosions over the first 3 years in 866 patients from the Early RA Study (ERAS). *J Rheumatol Suppl* 2004; 69:48-54.

18. Donahue KE, Gartlehner G, Jonas DE, Lux LJ, Thieda P, Jonas BL, Hansen RA, Morgan LC, Lohr KN. Systematic effectiveness and harms of disease-modifying medications for rheumatoid arthritis. *Ann Intern Med*. 2008 Jan 15;148(2):124-134.

19. Doran MF, Pond GR, Crowson CS, O'Fallon WM, Gabriel SE. Trends in incidence and mortality in rheumatoid arthritis in Rochester, Minnesota over a forty-year period. *Arthritis Rheum* 2002;46:625-631.

20. Dougados M, Jousse Jolin S, Mistretta F, d'Agostino MA, Backhaus M, Bentin J, Chales G, Chary-Valkenaere I, Conaghan P, Etceparé F, Gaudin P, Grassi W, van der Hajde D, Sellam J, Naredo E, Szudlarek M, Wakefield R, Saraux A: Evaluation of several ultrasonography scoring systems of synovitis and comparison to clinical examination: Results from a prospective multicenter study of Rheumatoid Arthritis. *Ann Rheum Dis* 2010, 69:828-33

21. du Montcel ST, Michou L, Petit-Teixeira E, Osorio J, Lemaine I, Lasbleiz S, Pierlot C, Quillet P, Bardin T, Prum B, Cornelis F, Clerget-Darpoux F. New classification of HLA-DRB1 alleles supports the shared epitope hypothesis of rheumatoid arthritis susceptibility, *Arthritis rheum* 2005, 52:1063-1068.

22. Fahri Ucar, Murat Karkucak, Emel Alemdaroglu, Erhan Capkin, Burcu Yucel, Mehmet Sonmez, Mehmet Tosun, Adem Karaca. HLA-DRB1 allele distribution and its relation to rheumatoid arthritis in eastern Black Sea Turkish population. *Rheumatol Int* 2012 32:1003-1007.

23. Falgarone G, Zerkak D, Bauer C, Messow M, Dougados M: How to define a Minimal Clinically Individual State (MCIS) with pain VAS in daily practice for patients suffering from musculoskeletal disorders. *Clin Exp Rheumatol* 2005; 23: 235-238.

24. Fries JF, Wolfe F, Apple R, Erlich H, Bugawan T, Holmes T, Bruce B. HLA-DRB1 genotype associations in 793 white patients from a rheumatoid arthritis inception cohort: frequency, severity, and treatment bias. *Arthritis Rheum* 2002; 46:2320-2329.

25. Fuchs HA, Kaye JJ, Callahan LF, Nance EP, Pincus T. Evidence of significant radiographic damage in rheumatoid arthritis within the first 2 years of disease. *J Rheumatol* 1989; 16:585-591.

26. Geordiadis AN, Papavasiliou EC, Lourida ES, Alamanos Y, Kostara C, Tselepis AD, Drosos AA. Atherogenic lipid profile is a feature characteristic of patients with early rheumatoid arthritis: effect of early treatment – a prospective controlled study. *Arthritis Res Ther* 2006;8:R82.

27. Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. *Arthritis Rheum*. 1987;30:1205-1213.

28. Hanzu-Pazara L, Martinescu A, Suta M. HLA-DRB1 Frequency in Romanian patients with early rheumatoid arthritis. *ARS Medica Tomitana* 2013 Volume 18, Issue 4, Pages 204-208, ISSN (Online) 1841-4036, Doi: 10.2478/v10307-012-0034-6.

29. Harkness EF, MacFarlane GJ, Silman AJ, McBeth J: Is musculoskeletal pain more common now than 40 years ago? Two population-based cross-sectional studies. *Rheumatology (Oxford)* 2005; 44: 890-895.

30. HLA Nomenclature Changes Effective April 1, 2010. www.ashi-hla.org

31. HLA Nomenclature. IMGT/HLA database. www.ebi.ac.uk/imgt/hla/nomenclature/index.html

32. Hodgson RJ, O'Connor P, Moots R. MRI of rheumatoid arthritis image quantitation for the assessment of disease activity, progression and response to therapy. *Rheumatology (Oxford)*. 2008 Jan;47(1):13-21

33. Huizinga TW, Amos CI, van der Helm-van Mil AH, Chen W, van Gaalen FA, Jawaheer D, Schreuder GM, Wener M, Breedveld FC, Ahmad N, Lum RF, de Vries RR, Gregersen PK, Toes RE, Criswell LA. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. *Arthritis Rheum* 2005;52:3433-3438.

34. Jansen LM, van Schaardenburg D, van der Horst-Bruinsma I, van der Stadt RJ, de Koning MH, Dijkmans BA. The predictive value of anti-cyclic citrullinated peptide antibodies in early arthritis. *J Rheumatol* 2003; 30:1691-1695.

35. Jawaheer D, Lum RF, Gregersen PK, Criswell LA. Influence of male sex on disease phenotype in familial rheumatoid arthritis. *Arthritis Rheum* 2006; 54:3087-3094.

36. Kaneko Y, Kuwana M, Kameda H, Takeuchi T. Sensitivity and specificity of 2010 rheumatoid arthritis classification criteria. *Rheumatology (Oxford)*. 2011 Jul;50(7):1268-1274. doi: 10.1093/rheumatology/keq442.

37. Kapitany A, Zilahi E, Szanto S, Szucs G, Szabo Z, Vegvari A, Rass P, Sipka S, Szegedi G, Szekanecz Z. Association of rheumatoid arthritis with HLA-DR1 and HLA-DR4 in Hungary. *Ann N Y Acad Sci*. 2005 1051:263-70

38. Kochi Y, Yamada R, Kobayashi K, Takahashi A, Suzuki A, Sekiene A, Mabuchi A, Akiyama F, Tsunoda T, Nakamura Y, Yamamoto K. Analysis of a single-nucleotide polymorphisms in Japanese rheumatoid arthritis patients shows additional susceptibility markers besides the classic shared epitope susceptibility sequences. *Arthritis Rheum*. 2004, 50:63-71.

39. Laivoranta-Nyman T, Möttönen T, Hermann R, Tuokko J, Luukkainen R, Hakala M, Hannonen P, Korpela M, Yli-Kerttula U, Toivanen A, Ilonen J; FIN-RACo Trial Group. HLA-DR-DQ haplotypes and genotypes in Finnish patients with rheumatoid arthritis, *Ann Rheum Dis* 2004;63:1406-1412. doi: 10.1136/ard.2003.009969

40. Lassere M, McQueen F, Ostergaard M, Conaghan P, Shnier R, Peterfy C, Klarlund M, Bird P, O'Connor P, Stewart N, Emery P, Genant H, Edmonds J. OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies. Exercise 3: an international multicenter reliability study using the RA-MRI Score. *J Rheumatol* 2003;30:1366-1375

41. Lazurova I, Benhatchi K, Rovensky J, Kozakova D, Wagnerova H, Tajtakova M, Shoenfeld Y, Macejova Z. Autoimmune thyroid disease and autoimmune rheumatic disorders: a two-sided analysis. *Ann N Y Acad Sci* 2009; 1173:211-216.

42. Ligeiro D, Fonseca JE, Abade O, Abreu I, Cruz M, Nero P, Cavaleiro J, JTeles J, Trindade H, Caetano JM, Branco J. Influence of human leucocyte antigen-DRB1 on the susceptibility to rheumatoid arthritis and on the production of anti-cyclic citrullinated peptide antibodies in a Portuguese population *Ann Rheum Dis*. 2007 February; 66: 246-248.

43. Lindqvist E, Saxne T, Geborek P, Eberhardt K. Ten year outcome in a cohort of patients with early rheumatoid arthritis: health status, disease process, and damage. *Ann Rheum Dis* 2002; 61: 1055-1059,

44. Lindqvist, E, Eberhardt, K, Bendtzen, K, Heinegård D, Saxne T. Prognostic laboratory markers of joint damage in rheumatoid arthritis. *Ann Rheum Dis* 2005; 64:196-201.

45. Linn-Rasker SP, van der Helm-van Mil AH, van Gaalen FA, Kloppenburg M, de Vries RR, le Cessie S, Breedveld FC, Toes RE, Huizinga TW. Smoking is a risk factor for anti-CCP antibodies only in rheumatoid arthritis patients who carry HLA-DRB1 shared epitope alleles. *Ann Rheum Dis* 2006;65:366-371.

46. Lundström E, Källberg H, Smolnikova M, Ding B, Rönnelid J, Alfredsson L, Klareskog L, Padyukov L. Opposing effects of HLA-DRB1*13 alleles on the risk of developing anti-citrullinated protein antibody positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. *Arthritis Rheum* 2009;60:924-930. Doi:10.1002/art.24410.

47. Naredo E, Rodriguez M, Campos C, Rodriguez-Heredia JM, Medina J, Giner E, Martinez O, Toyos J, Ruiz T, Ros I, Tuneu R, Corominas H, Moragues C, Minguez D, Willisch

A, Gonzalez-Cruz I, Aragon A, Iglesias G, Salvador G, Puigdollers A, Galinez E, Garrido N, Salaberri J, Raya E, Salles M, Diaz C, Cuadra JL, Garrido J: Validity, Reproducibility and Responsiveness of a Twelve-Joint Simplified Power Doppler Ultrasonographic Assessment of Joint Inflammation in Rheumatoid Arthritis. *Arthritis Rheum* 2008, 59:515–522

48. Neogi t, Aletaha D, Silman AJ, Naden RL, Felson DT, Aggarwal R, Bingham CO 3rd, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Khanna D, Kvien TK, Laing T, Liao K, Mease P, Ménard HA, Moreland LW, Nair R, Pincus T, Ringold S, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS, Vencovský J, Wolfe F, Hawker G. The 2010 American College of Rheumatology/European League Against Rheumatism classification criteria for rheumatoid arthritis: phase 2 methodological report. *Arthritis Rheum* 2010;62:2582–2591.

49. Nishimura K, Sugiyama D, Kogata Y, Tsuji G, Nakazawa T, Kawano S, Saigo K, Morinobu A, Koshiba M, Kuntz KM, Kamae I, Kumagai S. Meta-analysis: Diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. *Ann Intern Med* 2007; 146:797-808.

50. Ostergaard M, Peterfy C, Conaghan P, McQueen F, Bird P, Ejbjerg B, Shnier R, O'Connor P, Klarlund M, Emery P, Genant H, Lassere M, Edmonds J. OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies. Core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system. *J Rheumatol* 2003;30: 1385-1386

51. Padyukov L, Silva C, Stolt P, Alfredsson L, Klareskog L. A gene-environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. *Arthritis Rheum* 2004; 50:3085-3092.

52. Palm O, Purinszky E. Women with early rheumatoid arthritis are referred later than men. *Ann Rheum Dis* 2005; 64:1227-1228

53. Pincus T, Yazici Y, Yazici Y, Sokka T, Aletaha D, Smolen JS. Methotrexate as the anchor drug for the treatment of early rheumatoid arthritis. *Clin Exp Rheumatol* 2003, 21(5 Suppl 31):S179-185.

54. Reed E, Ho E, Lupu F, McManus P, Vasilescu R, Foca-Rodi A, Suciu-Foca N. Polymorphism of HLA in the Romanian population. *Tissue Antigens*. 1992 Jan;39:8-13.

55. Robert J. Winchester. The Major Histocompatibility Complex. In Clinical Immunology. Principles and Practice, Mosby, Elsevier, Ediția a IIIa, 2008, 79-89

56. Ronningen KA, Spurkland A, Egeland T, Iwe T, Munthe E, Varddal F, Thorsby E. Rheumatoid arthritis may be primarily associated with HLA-DR4 molecules sharing a particular sequence at residues 67-74. *Tissue Antigens* 1990; 36:235-240.

57. Rothschild BM, Turner KR, DeLuca MA. Symmetrical erosive peripheral polyarthritis in the late Archaic period of Alabama. *Science* 1988; 241:1498-1501.

58. Sahatçiu-Meka V, Rexhepi S, Manxhuka-Kerliu S, Rexhepi M. et al. Extra-articular manifestations of seronegative and seropositive rheumatoid arthritis. *Bosnian Journal of Basic Medical Sciences*.2010;10:26-31

59. Scott IC, Seegobin SD, Steer S, Tan R, Forabosco P, Hinks A, Eyre S, Morgan AW, Wilson AG, Hocking LJ, Wordsworth P, Barton A, Worthington J, Cope AP, Lewis CM. Predicting the Risk of Rheumatoid Arthritis and Its Age of Onset through Modelling Genetic Risk Variants with Smoking, *PLoS Genet*. 2013 September; 9(9). doi: 10.1371/journal.pgen.1003808

60. Seidl C, Koch U, Buhleier T, Frank R, Moler B, Markert E, Koller-Wagner G, Seifried E, Kaltwasser JP. HLA-DRB1*04 subtypes are associated with increased inflammatory activity in early rheumatoid arthritis, *British Journal of Rheumatology* 1997; 36: 941-944.

61. Shoenfeld Y, Isenberg DA. The mosaic of autoimmunity. *Immunol Today* 1989; 10(4):123-126.

62. Smolen JS, Han C, Bala M, Maini RN, Kalden JR, van der Heijde D, Breedveld FC, Furst DE, Lipsky PE; ATTRACT Study Group. Evidence of radiographic benefit of treatment with infliximab plus methotrexate in rheumatoid arthritis patients who had no clinical

improvement: a detailed subanalysis of data from the anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study. *Arthritis Rheum* 2005; 52:1020-1030.

63. Terslev L, Torp-Pedersen S, Savnik A, von der Recke P, Qvistgaard E, Danneskiold-Samsøe B, Bliddal H. Doppler ultrasound and magnetic resonance imaging of synovial inflammation of the hand in rheumatoid arthritis: a comparative study. *Arthritis Rheum*. 2003 Sep; 48(9):2434-2441.

64. Turesson C, O'Fallon W, Crowson C, Gabriel SE, Matteson EL. Extra-articular disease manifestations in rheumatoid arthritis: incidence trends and risk factors over 46 years. *Ann Rheum Dis*. 2003;62:722-727.

65. Uçar F, Çapkin E, Karkucak M, Yücel B, Sönmez M, Alver A, Kaklikkaya N, Tosun M, Alemdaroğlu E, Solak M. Associations of HLA-DRB1 alleles with anti-citrullinated protein antibody positive and anti-citrullinated protein negative rheumatoid arthritis in northern east part of Turkey. *Int J Rheum Dis*. 2012 Dec;15(6):538-545.

66. van der Heijde DM. Joint erosions and patients with early rheumatoid arthritis. *Br J Rheumatol*. 1995;34 Suppl 2:74-78.

67. Van der Helm-van Mil AH, Detert J, le Cessie S, Filer A, Bastain H, Burmester GR, Huizinga TW, Raza K. Validation of a prediction rule for disease outcome in patients with recent-onset undifferentiated arthritis: moving toward individualized treatment decision-making. *Arthritis Rheum* 2008;58:2241-2247.

68. van der Helm-van Mil AH, Huizinga TW, Schreuder GM, Breedveld FC, de Vries RR, Toes RE. An independent role of protective HLA class II alleles in rheumatoid arthritis severity and susceptibility. *Arthritis Rheum* 2005; 52:2637-2644.

69. van der Woude D, Benedicte AL, Lundstrom E, Balsa A, Feitsma AL, Houwing-Duistermaat JJ, Verdujin W, Nordang GBN, Alfredson L, Klareskog L, Pascual-Salcedo D, Gonzales-Gay MA, Lopez-Nevot MA, Valero F, Roep BO, Huizinga TW, Kvien TK, Martin J, Padyukov L, de Vries RP, Toes RE. A meta-analysis of HLA-DRB1 associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in four European populations, *Arthritis Rheum* vol.62, No.5, 2010, 1236-1245.

70. Van Zeben D, Hazes JMW, Zwijnerman AHD, Cats A, van der Voort EA, Breedveld FC. Clinical significance of rheumatoid factors in early rheumatoid arthritis: results of a follow-up study. *Ann Rheum Dis* 1992; 51:1029-1035.

71. Vesperini V, Lukas C, Fautrel B, Le Loet X, Rincheval N, Combe B. Association of tobacco exposure and reduction of radiographic progression in early rheumatoid arthritis: results from a French multicenter cohort. *Arthritis Care Res (Hoboken)*. 2013 Dec;65(12):1899-1906. doi: 10.1002/acr.22057

72. Vlad V, Berghea F, Libianu S, Balanescu A, Bojinca V, Constantinescu C, Abobului M, Predeteanu D, Ionescu R. Ultrasound in rheumatoid arthritis volar versus dorsal synovitis evaluation and scoring. *BMC Musculoskelet Disord*. 2011;12:124. doi: 10.1186/1471-2474-12-124.

73. Wakefield RJ, Balint PV, Szkudlarek M, Filippucci E, Backhaus M, D'Agostino MA, Sanchez EN, Iagnocco A, Schmidt WA, Bruyn GA, Kane D, O'Connor PJ, Manger B, Joshua F, Koski J, Grassi W, Lassere MN, Swen N, Kainberger F, Klauser A, Ostergaard M, Brown AK, Machold KP, Conaghan PG OMERACT 7 Special Interest Group: musculoskeletal ultrasound including definitions for ultrasonographic pathology. *J Rheumatol* 2005;32:2485-2487