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Introducere

Fenomenul de transfer de masa, in multe procese din viata cotidiana si in-
ginerie, guverneaza adesea cinetica intregului proces. O modelare precisa a
transferului de masa este, prin urmare, necesara, oportuna, si in principal
posibila, in cazul sistemelor multicomponenta. Din aceste motive, difuzia mul-
ticomponenta a dobandit un interes crescut in ultimele decenii.

Pentru a descrie difuzia mutuala in sistemele multicomponenta se utilizeaza
cu precadere, In literatura de specialitate, doua abordari [4][19]: legea gener-
alizata a lui Fick si teoria Stefan-Maxwell [13][17]. Cele doua formulari sunt
echivalente. Mai multe detalii sunt prezentate in lucrarile [2], [10], [11], [15],
[20]. Trebuie precizat ca, intr-un amestec multicomponenta, difuzia unei specii
chimice nu este dictata doar de gradientul concentratiei sale ci si de gradientii
concentratiilor celorlalte specii.

In urma unei analize a cercetirilor din domeniu, in aceasta teza ne-am
propus:

-dezvoltarea unei strategii de investigare care sa evidentieze clar influenta
interactiunii prin difuzie si numarul de specii chimice implicate in proces,
asupra vitezei de convergenta a algoritmilor numerici;

-dezvoltarea unor tehnici de preconditionare specifice pentru sistemele alge-
brice obtinute in cazul problemelor de transfer de masa multicomponenta, care
vor fi folosite in cadrul metodelor iterative proiective pe un subspatiu Krylov
(cunoscute gi ca metode de tip gradient conjugat): BiICGSTAB si GMRES;

-folosirea metodelor multigrid (MG) (pentru cazul problemelor liniare/ne-
liniare) gi Picard modificata (pentru cazul problemelor neliniare) la rezolvarea
problemelor de difuzie multicomponenta;

-aplicarea metodei splitting la rezolvarea problemelor de difuzie multicom-
ponenta nestationare (probleme in care apare si timpul ca variabila).

Forma generala a sistemelor de ecuatii cu derivate partiale de ordinul II,
care modeleaza problemele de transfer de masa multicomponenta abordate in
teza, este data de urmatorul sistem

0Z;
or

0Z; Z” o . 0z 0 . 0Z —
+ €P€U<y) or = (62%(13”8_;) + a_y(DUa—yy)) + kZZZ, 1= 1,]),
=1

(z,y) € (0,1) x (0,1), 7 € (0, Ttinar)-

Necunoscutele Z; reprezinta concentratiile adimensionale ale speciilor chi-
mice. Primul termen din membrul drept modeleaza fenomenul de transfer de
masa prin difuzie. Functiile D;;(x,y) reprezinta coeficientii de difuzie multi-
componenta Fick si prin intermediul lor este exprimata interactiunea prin di-
fuzie dintre speciile chimice implicate in proces. Al doilea termen din membrul
stang modeleaza fenomenul de transfer de masa prin convectie, cand amestecu-
lui 1i este imprimata o viteza de curgere. Numarul Peclet Pe creaza un ba-



lans intre fenomenul de difuzie si cel de convectie. Daca Pe > 1 dominant
este fenomenul de convectie. In caz contrar, daca Pe < 1 dominant devine
fenomenul de difuzie. Termenul al doilea din membrul drept reprezinta ter-
menul de reactie. Acesta modeleaza reactiile chimice dintre specii. Termenul
%ZTi exprima dependenta de timp a transferului de masa.|[21]

Teza este structurata in patru capitole.

Capitolul 1 Preliminarii prezinta cateva notiuni si concepte de baza de
algebra liniara si analiza numerica folosite pe parcursul lucrarii.

In Capitolul 2 abordam rezolvarea, prin metode numerice, a unor prob-
leme de difuzie-reactie multicomponenta liniare si neliniare, stationare. Aceste
probleme sunt modelate prin sisteme de ecuatii cu derivate partiale de ordinul
II.

Contributia proprie consta in:

-selectarea metodelor numerice adecvate pentru rezolvarea unor astfel de
probleme;

-construirea unei matrice de preconditionare bazate pe un singur tip de
bloc diagonal, ce poate fi folosita in cadrul tehnicilor de preconditionare pentru
sistemele algebrice obtinute in urma discretizarii problemelor de difuzie-reactie
multicomponenta, pentru imbunatatirea performantelor algoritmilor iterativi
GMRES restartat si BICGSTAB; am analizat din punct de vedere teoretic
caracterul de bun preconditioner al matricei de preconditionare propuse;

-analiza influentei interactiunii prin difuzie, dintre speciile chimice, asupra
performantelor algoritmilor numerici folositi; in cadrul testelor numerice am
folosit mai multe seturi de valori pentru parametrii problemei.

In Capitolul 3 abordam rezolvarea, prin metode numerice, a unor prob-
leme de difuzie-convectie-reactie multicomponenta liniare si neliniare, stationa-
re. Aceste probleme sunt modelate prin sisteme de ecuatii cu derivate partiale
de ordinul II.

Contributia proprie consta in:

-selectarea metodelor numerice adecvate pentru rezolvarea unor astfel de
probleme;

-construirea unei matrice de preconditionare bazate pe un singur tip de
bloc diagonal, ce poate fi folosita in cadrul tehnicilor de preconditionare pen-
tru sistemele algebrice obtinute in urma discretizarii problemelor de difuzie-
convectie-reactie multicomponenta, pentru imbunatatirea performantelor al-
goritmului iterativ GMRES restartat; la construirea matricei am tinut cont si
de termenul convectiv al problemei;

-analiza influentei interactiunii prin difuzie, dintre speciile chimice cat si
influenta fenomenului de convectie, asupra performantelor algoritmilor nu-
merici folositi; in cadrul testelor numerice am folosit mai multe seturi de valori
pentru parametrii problemei.

In Capitolul 4 abordam rezolvarea, prin metode numerice, a unor prob-
leme de difuzie-convectie multicomponenta liniare, nestationare, adica carac-




terizarea unor procese de difuzie-convectie evolutive in timp. Aceste probleme
sunt modelate prin sisteme de ecuatii cu derivate partiale de ordinul II, in
care apare, pe langa derivatele variabilelor spatiale, si derivata de ordinul I in
raport cu timpul.

Contributia proprie consta in:

-propunerea unei descompuneri a operatorului spatial in cadrul metodei
splitting folosita la rezolvarea acestei clase de probleme;

-determinarea unor conditii suficiente ce trebuie indeplinite pentru a putea
fi asigurata stabilitatea metodei splitting.

Rezultatele originale prezentate in aceasta teza sunt cuprinse in urmatoarele
lucrari:

e Gh. Juncu, A. Nicola, C. Popa, E. Stroila, Preconditioned conjugate
gradient and multigrid methods for numerical solution of multicomponent
mass transfer equations I. Diffusion-reaction-equations, Numer. Heat
Transfer A 66 (11) pp. 1268-1296, 2014, Impact Factor - 1.80. [7]

e Gh. Juncu, A. Nicola, C. Popa, E. Stroila, Preconditioned conjugate
gradient and multigrid methods for numerical solution of multicomponent
mass transfer equations II. Convection-diffusion-reaction equations, Nu-
mer. Heat Transfer A 66 (11) pp. 1297-1319, 2014, Impact Factor - 1.80.

8]

o E. Stroila, Splitting method for multicomponent mass transfer equa-
tions, in Topics in Mathematical Modelling of Life Science Problems -
Proceedings of the ninth workshop, Editura Matrix Rom, Bucuresti, pp.
77-91, 2013. [18]
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1 Preliminarii
Capitolul 1 prezinta:

e cateva notiuni gi concepte de baza de algebra liniara si analiza matriceala
folosite pe parcursul lucrarii: definitiile produsului scalar canonic si a
normei euclidiene din R”, descompuneri matriceale, proprietati spectrale
ale matricelor patratice, produsul Kronecker (1.1 Notiuni introductive
de analiza matriceald);

e modalitati de aproximare a operatorilor diferentiali in cadrul metodei
schemelor cu diferente finite aplicate la discretizarea problemelor de di-
fuzie multicomponenta (1.2 Scheme cu diferente finite);

e metodele de rezolvare a problemelor neliniare discrete (1.3 Metoda multi-
grid neliniar, 1.4 Metoda Picard modificata);

e metodele iterative proiective folosite la rezolvarea sistemelor algebrice
liniare obtinute in cadrul unui pas al metodei Picard modificata, sau in
cazul problemelor liniare - GMRES i BICGSTAB (1.5 Metode iterative

proiective);

e metoda splitting folosita la rezolvarea problemelor de difuzie multicom-
ponenta nestationare si conditiile de stabilitate ale metodei (1.6 Metoda
splitting);

e conceptului de preconditionare si tehnici generale de preconditionare
a sistemelor algebrice liniare (1.7 Prezentare generala a tehnicilor de
preconditionare).

2 Probleme de difuzie-reactie multicomponenta,
stationare

Rezultatele prezentate in acest capitol au fost publicate in [7].



2.1 Formularea problemei

Consideram o reactie chimica complexa de ordinul I, izoterma, care are loc
intr-o particula catalizator de tip placa plana cu sectiune patrata.

; N
A8 A
%

Figura 1: Schema reactiei chimice

Rezistenta la transportul interfazic este considerata neglijabila (valorile
concentratiilor pe suprafata exterioara a particulei catalizator sunt la fel ca cele
din interior). Considerand particula un mediu poros gi omogen i concentratia
totala a amestecului constanta, profilul concentratiilor adimensionale ale speci-
ilor chimice implicate in reactie, in starea stationara, in interiorul particulei
catalizator, este dat de urmatorul sistem de ecuatii cu derivate partiale de
ordinul II

4
0 0zZ; 0 0Z; -
D.,.— 4 Z .= e = 1.4 1
E%x”m+@lwﬂ+& 0, i=14, (1)

J=1

(x,y) € Q=1(0,1) x (0,1)

unde

Ry = —k1Zy — ksZy + ks Zs, Ry = k1Zy — koZy + kuZs,
R = koZy — kyZs, Ry = ksZy — ksZy,

Z; = flib sunt concentratiile adimensionale, Ay, este concentratia molara to-

tala a speciei Aq, k; = ]z)f;j sunt vitezele de reactie adimensionale, L este
lungimea sectiunii patrate, D;;(z,y) sunt coeficientii Fick de difuzie multicom-
ponenta raportati la coeficientul de difuzie de referinta D,.;. Pentru sistemele
de difuzie-reactie poate fi folosit cadrul mediei molare. Conditiile pe frontiera
sunt:

lel, ZZZO,Z:2,3,4 (x,y)E@Q (2)

Modelul matematic prezentat reprezinta cazul neliniar al problemei de
difuzie-reactie abordate. Cazul problemei liniare se obtine din cazul neliniar
considerand coeficientii Fick, de difuzie multicomponenta, constant;i.



2.2 Metode numerice
2.2.1 Discretizarerea problemei

Derivatele spatiale ale ecuatiilor (1) au fost discretizate folosind scheme cu
diferente finite simetrice, de ordinul 2 de aproximare, pe o grila uniforma cu
N x N puncte

O=m << ..<zy_1 < xny =1, xk:(k’—l)fu

0:y1<y2<--'<yN—l<yN:1> yl:(l_l)hv kal:()?Na

unde h = ﬁ marimea pasului grilei. Aproximatia discreta obtinuta pentru
ecuatiile (1) este

4 k+3.0, k41, k.l k=30, Sk k—1,l
[Dz‘j Nz =27 - Dy (2 - 2 )+
j=1 W
k43, Sk it1 k.l kl—% ki k-1
D (2 =20 = Dy (2 - 2 _

k,l .
- |+ RN =0, i=T1 (3

Valorile coeficientilor de difuzie au fost calculate ca medie aritmetica a
valorilor din punctele grilei.

Modalitatea de calcul a valorilor coeficientilor Fick din punctele grilei este
prezentata in cadrul tezei in Sectiunea 2.1. Formula de derivare folosita in
cazul termenilor a%Dij (x, y)% si %Dij(a:,y)aa—ij este urmatoarea formula de
aproximare de ordinul 2 [16] pg. 50:

d d @yt (Wigr + ug) — a1 (u; + i)
%[a(x)a] ~ % ‘ (4)

Aproximarea discreta a problemei liniare este

4 k+1,1 k—1,1 k,l+1 k,l—1 k,l
ZRHL L ghm Ly gkl | ghkisl g gk,
> Dy~ J ;ﬂ ! I+ RM=0,i=1,2,3,4. (5)

J=1

Z;_c+1,l+Z;e—1,l+ZJI;,1+1+Z;€,1—1_4Z;c,l o ) ) _
unde : s : I reprezinta expresia operatorului laplace dis-

cret. In acest caz coeficientii Fick de difuzie multicomponenta D;; sunt constanti.

2.2.2 Algoritmi numerici iterativi

Doua metode numerice folosite pentru rezolvarea cazului neliniar au fost folosite:
metoda multigrid (MG) neliniar [1] [9] si metoda Picard modificat [12]. Algo-

ritmul MG neliniar folosit este algoritmul FAS (Full Approximation Storage)

[1][9] adecvat pentru ambele cazuri liniar si neliniar.



Structura unui ciclu MG este: 1) ciclu de tip V; 2) doi pasi de netezire
inainte de corectia de pe grila rara gi una dupa aceasta; 3) prelungirea prin
interpolare biliniara pentru corectii; 4) restrictia reziduurilor prin ponderare
completa. Doud metode de netezire au fost testate: PGS (point Gauss-Seidel)
si ALGS (alternating line Gauss-Seidel ).

Metoda Picard modificata, numita gi metoda punctului fix, pentru prob-
lema (3) este data de relatiile

A(Z™MSZmH = b(Z™) — A(Z™) 2™ (6)
Zm+1 — gm + 6zm+l

unde m este numarul iteratiei 2™ = [Z7", Z3*, ZY', Z'], iar Z; este estimarea
initiala. Matricea A(Z™) este definita de

ATy AT, ATy AT (ky + k3)h2I 0 0 —ksh2I
Azmy= | A5 A An o AR —kyh*1 koh?T  —kyh?I 0
T AR AR AT AT 0 —koh?I  kyh?I 0

ARy Ay Ay AL —ksh?I 0 0 ksh?I

(7)
unde I este matricea identitate de ordinul (N — 2)2. Blocurile A7} patratice
de ordinul (N — 2)? sunt matrice pentadiagonale corespunzand matritei de
discretizare

CN
CW CM CE (8)
s
CM =Dy *' + D ¥ ¢ Dt 4 e
CE=-D. =" cw=-D,* cs=-D}% CN=-D;"*

si ele variaza la fiecare pas iterativ.

Solverii liniari implicati intr-o iteratie Picard modificata sunt implementari
ale algoritmilor BICGSTAB si GMRES in Matlab R2010b, descrierea lor este
prezentata in Sectiunea 1.5. Acesti algoritmi sunt folositi si la rezolvarea
problemei liniare. Codurile pentru metoda Picard modificat si tehnicile de
preconditionare sunt implementari proprii in Matlab R2010b, respectiv pentru
metoda MG in FORTRAN 77.

2.2.3 Tehnici de preconditionare

Consideram sistemul de ecuatii liniar ce trebuie rezolvat intr-un pas al metodei
Picard sau in cazul problemei liniare

AZ =B (9)



unde

Al 1 AIQ A13 A14 Zl bl
A21 A22 A23 A24 ZZ b2
A31 A32 A33 A34 7 Z3 7 b3
A41 A42 A43 A44 Z4 b4

Blocurile A;; sunt matrice patratice de ordinul (N —2)? i blocurile 4;;, i = 1,4
sunt matrice simetrice i pozitiv definite. Metoda clasica de constructie a unei
matrice de preconditionare pentru sistemul (9) se bazeaza pe descompunerea
de tip Choleski, completa sau incompleta a blocurilor diagonale:

Ay =CCI+R;, i=1,4 (10)

(dacid R; = 0, ¢ = 1, 4 ne referim la descompunerea complet, altfel avem cazul
descompunerii incomplete [14] [16] ).

Tehnicile de preconditionare de tip bloc-diagonal Jacobi dau rezultate destul
de bune, dar necesita patru descompuneri, complete sau incomplete, de tip
Choleski ale blocurilor diagonale, lucru care devine costisitor din punct de
vedere computational in cazul aplicatiilor practice.

In continuare propunem o matrice de preconditionare care nu se mai bazeaza
pe blocurile diagonale A;; ci pe un singur bloc. Rezultatele prezentate in con-
tinuare au fost publicate in [7].

In urma discretizirii ecuatiilor (1) in cazul liniar, blocurile A;; au urmétoarea
structura

An = Dy Ao+ (ki+ks)hT; Ay = DipAg; Az = Di3lo; Ay = DigAo—ksh?I;

Ay = D21A0—/€1h2[; Agoy = D22A0+k’2h2[; Aoz = D23Ao—/€4h2[; Agy = D24A0;

Az1 = D31Ag; Agy = D3g\g — koh®I; Ass = D3zAg + kyh?I; Ay = D3y/;
(11)

Ay = DN — k3h®I; Ay = DysNg; Agz = DyzAo; Agy = DygNg + ksh 1.

unde [ este matricea unitate de ordinul (N — 2)? si Ay este matricea obtinuta
in urma discretizarii, folosind scheme cu diferente finite, a ecuatiei —Az = 0
cu aceeasi conditie pe frontiera 02 ca Zy, z = 1 (vezi (2)). Matricea Aq este
simetrica si pozitiv definita.
Definim
Ao = Ao+ h*1. (12)



Din costructie Ay este o matrice simetrici si pozitiv definitd ((Agz,z) =
(Ao, z) + h?||z]|* > 0, Vo # 0) si admite o descompunere de tip Choleski
(pentru R=0 este completa, altfel este incompleta)

Ay=CCT +R. (13)

Propunem ca matrice de preconditionare urmatoarea matrice

Ao 0 0 0
0 A 0 0
P pu— ~ pu—
0 0 Ay O
L 0 0 0 Ay
(C 0 0 0 ¢ 0 0 0
0 C 0 0 0o ¢t 0 o0 B T
~ oo cCco o o cr o |~ (14)
00 0 C o o0 o C*T
si folosim urmatoarele tipuri de preconditionare
- preconditionare la dreapta
AU =B & AU, =By, Ay =AP™', U, =PU, B,=B (15)

- preconditionare la stanga
AU =B & AUy =By, Ay=P7'A, U, =U, B,=P'B (16)
- preconditionare stanga-dreapta
AU =B & A3Us = By, Ay =T"'AT"T, U; =T"U, By=T"'B  (17)
Analiza spectrului matricei preconditionate

Din relatiile (11) matricea sistemului A se scrie ca suma de

DllAO DlgAO D13A0 D14A0 (kl + kg)hQI 0 0 —k’5h21
D21A0 DQQAO D23A0 D24A0 —klhzl k‘ghQI —k4h2l 0
DsAo DAy DssAy DayAg | T 0 ko2l kyh?l 0
D41A0 D42A0 D43A0 D44A0 7]'{}3}12[ 0 0 k5h2]
(1)

unde I este matricea unitate de ordinul (N — 2)?, iar

Dy Diy Dig Dy (k1 +ks3) O 0 —ks
Dy Dy Dis Doy 2 —k ke —ks O

D= R=h 19
Dy Dy Ds Du 0k ko |19
Dy Dy Dys Dy —ks3 0 0 ks

10



sunt matricea coeficientilor de difuzie, respectiv a coeficientilor de reactie.
Daca folosim produsul Kronecker (®) a doua matrice (vezi setiunea 1.1), relatia
(18) poate fi scrisa

A=(DA)+NR®IT), (20)
Mai mult, din relatia (14) rezulta
At 000
a0 At 0 0 | A1
P = 0 0 A7l 0 =1L ®A, (21)
0 0 0 Al

unde I, este matricea unitate de ordinul 4.
A = AP = [(D@A)+ (R (Li2A") = (DRAAG)+(RRASY). (22)

Daca cele doua matrice D ® AOA SiN® A ar fi simetrice, potrivit teo-
remei Weyl’s (vezi Sectiunea 1.1), am obtine 1nforma’gii despre valorile proprii
ale sumei, adica ale matricei A;. Dar, din pacate, acesta nu este cazul general
al problemelor si informatii legate de spectrul matricelor D®AOAa L N®Aa !
nu se pot obtine decat considerate separat.

In urma calculelor obtinem

o(D ® NoAg )—{

hQ, A€ o(Ay), i =1,2,3,4), (23)

c(R@ AN = {5 A€ a(Ay), i=1,2,3,4}, (24)

h2’
unde o(D), o(R) reprezinta spectrele matricelor D gi N,
(D) = {dy,da,ds,ds}, o(R) = {ay, a9, a3, 4} (25)
Valorile proprii ale matricei N se obtin usor prin calcul direct
o(R) = {0, h*(ky + ky), h*x1, W21y} (26)
unde 1, x9 sunt solutiile reale ale ecuatiei
2% — (ky + ko + ks)x + kiks = 0. (27)

Proprietati spectrale ale blocurilor matricei de preconditionare in
cazul preconditionarii stanga-dreapta

Definitia 1. Pentru o matrice nesingulara S de ordin n definim numarul de
conditionare spectral [6]

condy(S) = %, (28)

11



unde Amaz(STS) > Mnin(STS) > 0 sunt valorile proprii extreme ale matricei
simetrice si pozitiv definite STS. Dacd matricea S este simetricd si pozitiv
definita atunci numarul de condifionare are expresia

Amax(s)
Definitia 2. Doua matrice simetrice si pozitiv definite S, T de ordin n sunt
spectral echivalente daca [3] exista constantele cv, s independente de dimen-
stunea n astfel incat

condy(S) = (29)

a < é?iii < ay, Yz €R"z £ 0, (30)
unde (-,-), || - || reprezinta produsul scalar canonic, respectiv norma euclidiand.
Propozitia 1. [6/, [1}] Fie matricele S, T spectral echivalente ca in (30) si

T=QQ" (31)
o descompunere Choleski. Atunci
condy(Q1SQ™T) < %, (32)

aq
adica T este un bun preconditioner pentru S. Mai mult, acest rezultat este
independent de descompunerea (31).

~ Prezentam relatii de spectral echivalenta ca (30) pentru S = A 5i T =
Ay = CCT. Folosind Propozitia 1 demonstram ca numérul de conditionare
spectral al matricei C~1A4;,C~7 satisface

condg(CflAiinT) S %, (33)

g

unde
a; = min{mini<;<q4 Dy;, (k1 + k3), ko, ks, ks}, @ = max{maxi<j<4 Dj;, (k1 +
k3)7 k27 k47 k5}

Fie acum
B =dAg — kR’T = dAg — kR*T = dAy — (k + d)R*I, (34)

unde d € {D;;,i,7 =1,4,i # j}, k € {0,k;,i = 1,5} cu combinatiile potrivite
(vezi(11)), o notatie generica pentru blocurile care nu se afla pe diagonala
Ay, ij =T,4, i ]

Folosind din nou relatia (32) si considerand A:,(A¢) = ch? [5] cu ¢ inde-
pendent de h obtinem

condy(C1A;07T) < 4, (35)

cuy = % > 0 independent de N.

Am aratat ca numerele de conditionare spectrale obtinute atat pentru
blocurile de pe diagonala cat si cele din afara diagonalei nu depinand de des-
imea grilei.
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2.3 Rezultate numerice

Obiectivul principal al acestui studiu, este acela, de a analiza, influenta interac-
tiunii dintre speciile chimice prin difuzie, asupra performantelor algoritmilor
numerici. Pentru a realiza acest obiectiv am considerat, pentru fiecare set
de parametrii, urmatoarele patru structuri pentru matricea Fick de difuzie

multicomponenta:
D11 D12 Dss 0
D21 D2z Dag 0
? D3y Ds2  Dss 0 ?

[N en]

D11 0 0 0 D11 D2 0
0 Dao 0 0 D2y Do 0
0 0 )
0 0 0 0 Dyy

(a) (b) ()

D11 D12 D13 Digy
D31 D2z D2z Dag
D31 D32 D33z Dsg |’
D41 Daz Dyz Dy

(d)

In cazul (a) nu avem interactiune prin difuzie. Speciile interactioneazi
doar prin reactie chimica. Pentru cazurile (b) - (d) gradul de interactiune
prin difuzie cregte progresiv, de la interactiunea a doua specii (cazul (b)) la
interactiunea tuturor speciilor (cazul (d)). Pentru a ne referii la aceste cazuri
am facut urmatoarele notatii: cazul (a) CPL1; cazul (b) CPL2; cazul (c)
CPL3; cazul (d) CPLA4. In aceste cazuri, pentru problema liniara, constantele
de interactie sunt selectate din matricele coeficientilor Fick de difuzie multi-
componenta prezentate in Anexa A a tezei. Pentru problema neliniara, valorile
coeficientilor de difuzie Stefan-Maxwell folosite in calculul coeficientilor Fick
sunt date in Anexa B a tezei.

Performantele algoritmilor numerici sunt monitorizate prin factorul mediu
de reducere, p si eficienta, 7, care se calculeaza dupa formulele

(36)

_lresill |1
= 7 R 37
P~ sl 0
w
T=—. (38)
|inp
unde res; = [|b; — A;Z;|| este reziduul dupa 7 iteratii, || - || norma vectoriala

euclidiana gi W (the work) este numarul de operatjii aritmetice pentru un punct
al grilei la un pas iterativ.

In sectiunile 2.3.1 gi 2.3.2 sunt prezentate rezultatele experimentelor nu-
merice efectuate, insotite de o analiza a acestora.
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2.4 Concluzii

In aceastd sectiune prezentdm concluziile analizei performantelor numerice ale
metodelor MG neliniar si Picard modificata, cu solverii liniari GMRES(m) si
BiCGSTAB preconditionati, folosite la rezolvarea unor probleme de difuzie-
reactie multicomponenta, stationare, liniare/neliniare in doua coordonate spa-
tiale. Am folosit diferite seturi de coeficienti de difuzie Stefan-Maxwell/ Fick,
cat gi diferite seturi de viteze de reactie adimensionale.

Pe baza rezultatelor experimentelor numerice prezentate in acest capitol,
putem formula urmatoarele concluzii:

- in cazul problemei liniare influenta interactiunii prin difuzie, asupra vitezei
de convergenta si asupra eficientei algoritmilor numerici, depinde de: (1) algo-
ritmul de netezire/relaxare al metodei MG; (2) tehnica de preconditionare si
de metoda de tip proiectiv folosita; cresterea interactiunii prin difuzie a speci-
ilor chimice scade viteza de convergenta si eficienta algoritmilor; scaderea este
neglijabila pentru MG-ALGS si GMRES(m) preconditionat cu CC (cazul de-
scompunerii complete Choleski), este relativ semnificativa pentru BICGSTAB
preconditionat cu CC, GMRES(m) preconditionat cu IC (cazul descompunerii
incomplete Choleski) si MG-PGS, si este semnificativa pentru BiCGSTAB
preconditionat cu IC, GMRES(m), BiCGSTAB nepreconditionate;

- in cazul problemei neliniare influenta interactiunii prin difuzie, asupra
vitezei de convergenta si eficientei algoritmilor numerici, este mai putin e-
videnta; pentru o desime a grilei si un set de valori al parametrilor date,
interactiunea prin difuzie nu influenteaza semnificativ pe p si 7; parametrul
cheie pare a fi raportul de dilutie, Zs;; valorile ridicate ale raportului de dilutie
scade semnificativ valorile coeficientilor Fick de difuzie si implicit, influenta
lor asupra performantelor numerice ale algoritmilor.

3 Probleme de difuzie-convectie-reactie
multicomponenta, stationare

Rezultatele prezentate in acest capitol au fost publicate in [§].

3.1 Formularea problemei

Consideram cazul unei curgeri laminare, stationare a unui fluid incompresibil,
printr-un canal cu sectiune transversala de latime d, in care are loc urmatoarea
reactie chimica complexa, izoterma, de ordinul I.

Considerand densitatea amestecului constanta, profilul concentratiilor adi-
mensionale in starea stationara, printr-o sectiune transversala, este dat de

14
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Ey
A .,:14
lk;

Figura 2: Schema reactiei chimice

urmatorul sistem de ecuatii cu derivate partiale de ordinul II

ePeu(y

4
0 0Z;
Z € %DU (99(; + a ng a )+Rz7 1= 1747 (39)

J=1

(r,y) € 2 =1(0,1) x (0,1)
unde . p Und
u(y) = =5 —y), e= 7, Pe= Doy’

Ry = —kZy — ksZy + ksZy, Ry = k1 Zy — koZs + kyZs,
Ry = koZy — kuZs, Ry = k3Zy — ksZy,
Z; = i sunt concentratiile adimensionale de masa, Ay, este Concentrat;la
speciei A1 la intrarea in canal, adica x = 0, d este grosimea canalului, k; =

* J2

gif sunt vitezele de reactie adimensionale, L este latimea canalului, Pe este
numarul Peclet, Uj este constanta vitezei de curgere uniforma, D;;(z,y) sunt
coeficientii Fick de difuzie multicomponenta, raportati la coeficientul de difuzie
de referintd D,.y.

Conditiile pe frontiera sunt:

l’:O, 21:1, ZZ:O, i:2,3,4,

xr=1, J; =0, i=1,4, (40)
y=0, J; =0, i=14,
y=1, J; =0, i=1,4,
unde A
ZDUa , sau J; = ZDW ay i=T1,4 (41)

7j=1
este fluxul transportulul de masa al speciei 7 in raport cu viteza medie de masa.
Modelul matematic prezentat reprezinta cazul neliniar al problemei de
difuzie-convectie-reactie abordate. Cazul problemei liniare se obtine din cazul
neliniar considerand coeficientii Fick, de difuzie multicomponenta, constant;i.
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Figura 3: Reprezentarea schematica a domeniului problemei

3.2 Metode numerice
3.2.1 Discretizarea problemei

Derivatele spatiale ale ecuatiilor (39) au fost discretizate folosind scheme cu
diferente finite upwind de ordinul 2 de aproximare pe o grila uniforma cu N x N
puncte
O=m << ..<zy_1 <Ny =1, xk:(k’—l)h,
O=y1 <y <..<yn_1 <yn =1, yl:(l—l)h, k,l=0,N,
unde h = ﬁ marimea pasului grilei. Aproximarea discreta obtinuta pentru
ecuatiile (39) este

k+1,1 k,l k,l k—1,1
ePeu(y)—|ePeu(y)| 2 =2 ePeu(y)+ePeu(y)| Z;"' = Z;
2 h 2 h

+ =
k+%7l k41,1 k,l k*%vl ki o k—1,1
— 24 [62 Dy = (45 "% );Dij ) 4
Jj=1 R
Kl g k4l okl kl=% kil k-1
D/ 2(Zz7 T =z =D, 2(Z7 =777 kl - T
4 i J J — ij J J ]_{_Ri” 2:174 (42)

Valorile coeficientilor de difuzie au fost calculate ca medie aritmetica a
valorilor din punctele grilei.

Modalitatea de calcul a valorilor coeficientilor Fick din punctele grilei este
prezentata in cadrul tezei in sectiunea 3.1.

Pentru cazul problemei liniare, coeficientii Fick de difuzie multicomponenta
D;; sunt considerati constanti. Aproximarea discreta obtinuta in acest caz este:

k+1,1 k.l k,l k—1,1
cPeu(y))—|ePeu(y)| Zi ' -2} | cPeuly)HlePeuly)| 2 -7,
2 h 2 h

2z gy 2 7k 7 (24262) 2

= Z?:l Dij h2 . + Rf’l, 1= 1,_4 (43)
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Pentru ambele cazuri liniar si neliniar datorita conditiilor de pe frontiera
de tip Neumann, in punctele de pe frontiera s-au folosit formule de aproximare
simetrice de ordinul 2, extrapoland simetric solutia intr-un punct al grilei din
afara frontierei.

3.2.2 Algoritmi numerici iterativi

Am folosit aceeasi algoritmi pentru cazul neliniar: algoritmul multigrid neliniar
(MG) [1] [9] si algoritmul Picard modificat [12]. In cazul problemelor de
difuzie-convectie-reactie algoritmul de netezire PGS (point Gauss-Seidel) nu
functioneaza bine. Din acest motiv am folosit ca algoritm de netezire doar al-
goritmul ALGS (alternating line Gauss-Seidel). Algoritmul MG neliniar folosit
este algoritmul clasic FAS (Full Approximation Storage) [1] [9]. Structura ci-
clului MG este: 1) ciclu de tip V; 2) netezire prin ALGS; 3) doi pasi de
netezire sunt efectuati inainte de corectia pe grila rara si unul dupa; 4) pre-
lungirea prin interpolare biliniara pentru corectii; 5) restrictia rezidurilor prin
ponderare completa.

Metoda Picard modificata, numita si metoda punctului fix, pentru prob-
lema (39) este data de relatiile

A(Z™)6Z2M T =b(Z™) — A(Z™)Z™ (44)
Zm+1 — Zm 4 6Zm+1

unde m este numarul iteratiei 2™ = [Z7", Z3*, Z§', Z'], iar Z; este estimarea
initiala. Matricea A(Z™) este definita de

Al Am AT AT (k1 + k3)h?I 0 0 —ksh?I
A(Z™) = Am AT Am AT N —kih?1 koh?I  —k4h*I 0
Am Amo Amo AT 0 —koh?T  k4h?1 0

AT AT AT AT —ksh?I 0 0 ksh?I

(45)

unde I este matricea identitate de ordinul N(N — 1). Blocurile A7 patratice
de ordinul N(N — 1) sunt matrice pentadiagonale corespunzand matritei de
discretizare

CN
CW CM CE (46)
cs
1 _1 1 _1
CM =D + D+ DT 4 DT 4 hlePeu(y)|

CE = _GQDE"L%J + hEPQU(’yl) B ‘€P€U(yl)|
ij 2

CW = _€2DZ_%7Z _ hEP@U(yl) Z|€P6u(yl)|
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CcS=-D"

ij

1

: ON =D,

in timp ce, blocurile Af},i # j patratice de ordinul N(N — 1) sunt matrice
pentadiagonale corespunzand matritei de discretizare

1

CM = D}, 2’+62D +D’”+2+D 2

N )

CF = — ’“* L OW = —¢ D’““

CS=— L ON=-Df"
Aceste blocuri variaza la fiecare pas iterativ.

Solverii liniari implicati intr-o iteratie Picard modificata sunt implementari
ale algoritmilor BICGSTAB si GMRES in Matlab R2010b, descrierea lor este
prezentata in Sectiunea 1.5. Acesti algoritmi au fost folositi si la rezolvarea
problemei liniare. Codurile pentru metoda Picard modificat gi tehnicile de
preconditionare sunt implementari proprii in Matlab R2010b, respectiv pentru
metoda MG in FORTRAN 77.

3.2.3 Tehnici de preconditionare

Consideram sistemul de ecuatii liniar ce trebuie rezolvat intr-un pas al metodei
Picard sau in cazul problemei liniare

AZ =B (47)
unde
A A Az Ay A by
e il RS Il PR BN
Ap Ay Az Ay Zy by

Blocurile A;; sunt matrice patratice de ordinul N (N —1) si blocurile diagonale
A, i = 1,4 nu mai sunt simetrice si pozitiv definite. Metoda clasica de
constructie a unei matrice de preconditionare pentru sistemul (47) se bazeaza
pe descompunerea de tip LU, completa sau incompleta a blocurilor diagonale:

(dacd R; = 0, i = 1,4 ne referim la descompunerea completd, altfel avem cazul
descompunerii incomplete [14], [16] ).

Tehnicile de preconditionare de tip bloc Jacobi dau rezultate destul de
bune, dar sunt necesare patru descompuneri, complete sau incomplete, de tip
LU ale blocurilor diagonale, lucru care conduce la consum de timp si resurse
computationale.
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Propunem o alta metoda de preconditionare care foloseste in locul blocurilor
diagonale A;; un singur bloc. Fie Ay matricea care se obtine din discretizarea
problemei

Pz 0%z 0z
2 _
—(e 72+ (9_y2) + ePeu(y)a—x =0 (49)
cu aceleasi conditii la frontiera ca specia Z;. Definim ca matrice de preconditionare
Ay 0 0 0
0 Ay 0 0
P = X =
0 0 Ay O
L 0 0 0 Ay
[ L 0 0 0 Uu o 0 0
0 L 0 0 0O U 0 0
~ oo Lo 00 U 0 (50)
| 00 0 L 0 0 0 U

unde Ag = Ag + h21.

3.3 Rezultate numerice

Si in cazul problemelor de difuzie-convectie-reactie multicomponenta obiec-
tivul principal propus este acela de a analiza influenta interactiunii speciilor
chimice prin difuzie, asupra performantelor algoritmilor numerici. Pentru a
realiza acest obiectiv am considerat, pentru fiecare set de parametrii, aceleasi
patru structuri pentru matricea Fick de difuzie multicomponenta ca in cazul
problemei de difuzie-reactie.

Pentru a ne referii la aceste structuri am folosit aceleasi notatii: cazul
(a) CPL1; cazul (b) CPL2; cazul (¢) CPL3; cazul (d) CPL4. In aceste
cazuri, pentru problema liniara, constantele de interactiune sunt selectate din
matricele coeficientilor Fick de difuzie multicomponenta, prezentate in Anexa
A a tezei. Performantele algoritmilor numerici sunt monitorizate prin factorul
mediu de reducere, p §i eficienta, 7, care se calculeaza dupa formulele

_ lresill 1
p = A , 51
Iresol o
W
T=—". (52)
|inp
unde res; = ||b; — A;Z;|| este reziduul dupa i iteratii, || - || norma vectoriala

euclidiana gi W (the work) este numarul de operatii aritmetice pentru un punct
al grilei la un pas iterativ.

In sectiunile 3.3.1 si 3.3.2 sunt prezentate rezultatele experimentelor nu-
merice efectuate, insotite de o analiza a acestora.
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3.4 Concluzii

In acest capitol analizam influenta interactiunii prin difuzie dintre speciile
chimice gi fenomenul de convectie, asupra performantelor numerice ale algo-
ritmilor iterativi (MG neliniar, Picard modificat -cazul neliniar; MG liniar,
GMRES(m)- cazul liniar) in cazul problemelor de difuzie-convectie-reactie in
doua coordonate spatiale.

In urma experimentelor numerice efectuate prezentim urmitoarele con-
cluzii:

- in cazul problemei liniare, influenta interactiunii prin difuzie, asupra
vitezei de convergenta si asupra eficientei algoritmului GMRES (m) preconditio-
nat, depinde de valorile numarului Pe; pentru valori mari ale acestui numar,
Pe = 10%, influenta interactiunii prin difuzie asupra vitezei de convergents
si asupra eficientei nu este semnificativa; pentru valori moderate Pe = 100
interactiunea prin difuzie influenteaza viteza de convergenta si eficienta al-
goritmului GMRES(m) preconditionat; viteza de convergenta a algoritmului
MG-ALGS este mai putin sensibil la influenta interactiunii prin difuzie si a
numarului Pe fata de algoritmul GMRES(m) preconditionat;

-in cazul neliniar influenta interactiunii prin difuzie, asupra vitezei de con-
vergenta si asupra eficientei algoritmilor numerici folositi, este mai complexa;
interactiunea prin difuzie, practic, nu influenteaza viteza de convergenta a algo-
ritmului Picard modificat; totusi, eficienta algoritmului Picard scade odata cu
cresterea gradului de interactiune prin difuzie in cazul setului By de coeficienti
de difuzie Stefan-Maxwell; viteza de convergenta si eficienta algoritmului MG
depind de gradul de interactiune prin difuzie; cresterea raportului de dilutie
creste viteza de convergenta si eficienta ambelor metode; totusi, acest efect
este mai putin semnificativ decat in cazul problemei de difuzie-reactie.

- in ambele cazuri, liniar si neliniar cresterea numarului Pe scade efec-
tul interactiunii prin difuzie asupra performantelor numerice ale algoritmilor;
pentru valori mari si foarte mari ale numarului Pe, convectia este mecanismul
dominant din ambele puncte de vedere fizic gi numeric.

4 Probleme de difuzie-convectie
multicomponenta liniare, nestationare

4.1 Formularea problemei

In acest capitol abordam rezolvarea, prin metode numerice, a unor probleme de
difuzie-convectie multicomponenta liniare, nestationare, adica caracterizarea
unor procese de difuzie-convectie evolutive in timp. Aceste probleme sunt
modelate prin sisteme de ecuatii cu derivate partiale de ordinul II, in care
apare, pe langa derivatele variabilelor spatiale, si derivata de ordinul I in ra-
port cu timpul. Am considerat ca problema de test un sistem de ecuatii cu
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derivate partiale care modeleaza o problema de difuzie-convectie multicompo-
nenta liniara, dependenta de timp, cu p = 2, 3,4 specii chimice:

07; 202 PZy
8 ZD’LJ al’Q 8y2 )7 v = ]-)p7 (53)

(‘ray> € (07 1) X (07 1)7 TE (O>Tfinal>
unde

e 7, este concentratia de masa adimensionald a speciei chimice 7 ,

e D;; coeficientii Fick de difuzie multicomponents,

Conditiile pe frontiera ale problemei sunt

2=0, Z;=0,i=1,

]

r=1, J;=0,i=1,p
y=0, Z; = Aisin(Ciz) (1 + wisin(oy7)), o < X <1
Z;i=0 X<z<1 i=17p
y=1, Z=0,i=1p

Z.
unde J; = » i, Dij—52 este fluxul de difuzie al masei speciei ¢ in raport cu

viteza medie a masei.
Conditiile initiale sunt

7=0,y=0, Z; = Aisin(Ciz)(1 + w;sin(a,7)), t < X < 1

siinrest Z; =0, 1,p.

4.2 Metode numerice
4.2.1 Discretizarea problemei

Prima etapa in rezolvare reprezinta discretizarea problemei in raport cu vari-
abilele spatiale folosind scheme cu diferente finite. Derivatele spatiale au fost
aproximate folosind formule simetrice de ordinul 2, pe o grila uniforma cu
N x N puncte

0=z <my<..<ay1<azny=1, x=(k—1)h;

0:y1<y2<...<yN_1<yN:1, ylz(l—l)h, k,lZO,N,
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v

Figura 4: Discretizarea domeniului

unde h = D N ) marimea pasului grilei. Aproximarea discretd obtinuta este
8Zlcl Z(c+1,l _ k-1l
P K3 K3 _
oy + ePeu® 5
Zk+1l B 2Zkl n Zk 1,0 ZJIy,H—l _ 2ZJ1;,l I Zji;,l—l o
_ZDU h2 + 2 )=0,i=1,p

(54)
In cazul unei probleme cu 3 specii chimice ajungem astfel la urmatorul
sistem de ecuatii liniare

07

a—l + AnZy = DA Zy + DioAnZsy + D13ApZs

07

8_2 + AnZy = Dy AnZy + Do ApZy + Doz A Zs (55)

073

5 T AwZs = D31ApZy + D3 ApZs + D3z ApZs
unde A, este o matrice simetrica si pozitiv definitd si A, este o matrice
trans-simetricd (A, = —AJ) in cazul folosirii schemelor cu diferente finite

simetrice.[3] In teza sunt prezentate gi cazurile cu 2 sau 4 specii chimice.

4.2.2 Algoritmi numerici iterativi

Am aplicat metoda splitting problemei (53) prin descompunerea operatorului
spatial intr-o suma de doi operatori. Propunem o descompunere algebrica a
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matricei de discretizare in raport cu variabilele spatiale care ne conduce la
obtinerea a doua matrice superior, respectiv inferior triunghiulare

Dy Ay — Ay DAy, Di3Ay,
Doy Ay, Dy A, — Ay, Das Ay, =
D31 Ay, D3y A, Ds3Ap — Ay,
1(DuA, — Ap) Dy Ap IDEYAVE
0 $(Das Ay, — Ap) Days Ay, +
0 0 5 (D33 — Ay)
LD, — Ay) 0 0
Dyl L(DpAy — Ay) 0 , (56)
D31 Ay, D3y A, (D33, — Ap)

Avantajul folosirii unei astfel de descompuneri este acela ca, sistemele algebrice
ce trebuie rezolvate sunt bloc triunghiulare. Sistemul (55) se rezolva aplicand
metoda splitting prezentata in sectiunea 1.6. Pentru a asigura stabilitatea
schemelor de integrare in raport cu timpul si implicit stabilitatea metodei
splitting trebuie verificata conditia ca cele doua matrice bloc triunghiulare sa
fie pozitiv definite.

4.3 Analiza pozitiv definirii unor clase de

matrice bloc triunghiulare
Deoarece dorim sa rezolvam probleme de difuzie-convectie multicomponenta in
care apar 3 sau 4 specii chimice ne-am propus sa determinam pozitiv definirea

unor clase de matrice bloc triunghiulare de ordin 3n sau 4n pentru a ne asigura
stabilitatea metodei splitting. Rezultatele au fost publicate in [18]

4.3.1 Pozitiv definirea unor clase de matrice bloc
de ordin 3n reale

Propozitia 2. Daca presupunem cd, pentru o matrice reald patratica de ordin

3
11 Q12 A13
A= | 0 axn ax |, (57)
0 0 ass3

existd numerele reale pozitive a,b,c,d, e, f cu proprietdtile
]am\ < 2V ab, ]a13] < 2\/Cd, |a23] < 2v/ef, (58)

i
CL+CSCL11, b—l—e§a22, d+f§a33. (59)

atunci A din (57) este pozitiv definitd.
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Fie A o matrice reala de ordin 3n avand forma

aA* 7"A Yo A
0 0 Lo A + 5o A

unde A* gi A sunt blocuri n xn , A este o matrice simetrica si pozitiv definita,
si «, B1, B2, 01,02, Y1, V2, V3 sunt numere reale pozitive.

Propozitia 3. Dacd A* = A si A este o matrice simetrica $i pozitiv definitd
atunci matricea A din (60) este pozitiv definitd dacda exista numerele reale
pozitive a, b, c,d, e, f cu proprietatile

| < 2Vab, |ye| < 2Ved, |ys| < 2v/ef,

§t
a+c<a, b+€§51+51, d+f§ﬁ2+52. (61)

Propozitia 4. Dacd exista un numar real pozitiv C' astfel incat
A =C(A* + (AHT) (62)

atunci matricea A din (60) este pozitiv definita dacd exista numerele reale
pozitive a, b, c,d, e, f cu proprietdatile

m| < 2Vab, |ye| <2Ved, |ys| < 2v/ef,

St
e’ I3 I
“ C_QC’ b €_<20 0), d f_(ZC' 02) (63)

4.3.2 Pozitiv definirea unor clase de matrice bloc
de ordin 4n reale

Propozitia 5. Daca presupunem ca, pentru o matrice reald patraticd de ordin

4
11 12 Aaiz aiq

o 0 az a3 ay
A= 0 0 a3z Q34 (64)

0 0 0 Q44

existd numerele reale pozitive a,b,c,d,e, f,qg,h,1,7,k,l cu proprietdtile
la12| < 2Vab, |aisz| < 2Ved, |as| < 2+/ef, |ass| < 2+/gh,
|CL24| <2\/Z_, |a34| <2\/H, CL+C+6§CL11,

b+g+i<ag, d+h+k<ass, f+j+1<au, (65)

atunci matricea A din (64) este pozitiv definita.
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Fie A o matrice reala de ordin 4n avand forma

aA* 1A QYA QETAY
. 0 ﬁlA* + 51A ’74A ’}/5A
0 0 mattaa gn (90)
0 0 0 B3A* 4+ d3A

unde A* i A sunt blocuri n X n, A este o matrice simetrica si pozitiv definita
si a, B1, Ba, B3, 01, 02, 03,71, V2, V3, V4, V5, V6 Sunt numere reale pozitive.

Propozitia 6. Dacd A* = A si A este o matrice simetrica si pozitiv definitd
atunci matricea A din (66) este pozitiv definita dacd exista numerele reale
pozitive a, b, c,d, e, f,qg,h, 1,7, k, [ cu proprietatile

| <2Vab, || <2Ved, |yl <2vef, |ul <2/gh,

|75| <2\/Z_7 |76| <2\/H7 Cl—f-C—f-GSOé,

bt+g+i< B+, d+h+k< B+, f+j+1< b5+ ds. (67)
Propozitia 7. Dacad exista un numar real pozitiv C astfel incat
A = C(A* + (AN

atunci matricea A din (66) este pozitiv definita dacda exista numerele reale
pozitive a, b, c,d, e, f,qg,h, 1,7, k, [ cu proprietatile

m| < 2Vab, |ye| <2Ved, |ys| <2vef, |l <2v/gh,

sl < 217, el < 2VEL, a+cte< —

- 20"
b+g+i<ﬁ+51 d+h+k3<&+52 f+j+l<&+53. (68)
- 2C ’ - 2C ’ - 2C
Facem notatiile )
h= §(D11Ah —Ap)
a=p01=0y=ps
1 1 1
01 = §(D22 —Dy1) 62 = §(D33 —Dy1) 65 = §(D44 — D1)

Y =D12 2=Diz v3=Dia va=Daz 75 =D v =D
Matricea superior triunghiulara din relatia (60) capata forma matricei su-
perior triunghiulare din descompunerea (56). Propozitiile enuntate se verifica
si pentru matrice inferior triunghiulare. Astfel, am gasit o modalitate de veri-
ficare a pozitiv definirii pentru matricele obtinute cu metoda splitting in cazul
problemelor de difuzie -convectie liniare nestationare.
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4.4 Concluzii

Am prezentat metoda splitting, ca metoda de rezolvare a problemelor de
difuzie-convectie liniare, nestationare, propunand o descompunere a operatoru-
lui spatial pentru care matricele sistemelor algebrice rezolvate la fiecare pas de
integrare numerica in raport cu timpul sunt superior/inferior triunghiulare.

Am propus o strategie de verificare a pozitiv definirii unor clase de matrice
bloc triunghiulare reale de ordin 2n, 3n, 4n care asigura stabilitatea metodei
splitting.
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Concluzii finale si dezvoltari viitoare

In cadrul acestei teze am abordat rezolvarea unor probleme de transfer de masa
multicomponenta. Aceste probleme sunt modelate prin sisteme de ecuatii cu
derivate partiale de ordinul II.

Pentru selectarea metodelor numerice adecvate de rezolvare, am impartit
problemele de transfer de masa abordate in urmatoarele clase:

e probleme de difuzie-reactie multicomponenta liniare si neliniare, stationare;

e probleme de difuzie-convectie-reactie multicomponenta liniare si neliniare,
stationare;

e probleme de difuzie-convectie multicomponenta liniare, nestationare.

Metodele numerice selectate pentru cazul problemelor neliniare din primele
dous clase sunt algoritmii multigrid (MG) neliniar si Picard modificat. In
cazul problemelor liniare solverii folositi sunt metodele iterative GMRES(m)
cu restart gsi BICGSTAB. Am realizat o analiza a influentei interactiunii prin
difuzie, dintre speciile chimice, asupra performantelor algoritmilor numerici
folositi, cat i a influentei fenomenului de convectie in cazul problemelor de
difuzie-convectie-reactie. In cadrul testelor numerice am folosit mai multe
seturi de valori pentru parametrii problemei.

Am propus, pentru problemele de difuzie-reactie, respectiv pentru prob-
lemele de difuzie-convectie-reactie, cate o matrice de preconditionare, bazata
pe un singur tip de bloc diagonal, ce poate fi folosita in cadrul tehnicilor de
preconditionare, pentru a imbunatati performantele algoritmilor iterativi GM-
RES restartat si BICGSTAB. Am analizat din punct de vedere teoretic, ca-
racterul de bun preconditioner al matricei de preconditionare propuse in cazul
problemei de difuzie-reactie.

In cazul clasei problemelor de difuzie-convectie multicomponenta liniare,
nestationare, sunt caracterizate procese de difuzie-convectie evolutive in timp.

Pentru rezolvarea acestor probleme am selectat metoda splitting. In cadrul
acestei metode, am propus o descompunere a operatorului spatial asfel incat,
matricele sistemelelor algebrice obtinute sunt superior triunghiulare, respectiv
inferior triunghiulare. Am determinat conditii suficiente ce trebuie indeplinite
pentru a putea fi asigurata stabilitatea metodei splitting in cazul problemelor
cu 3 sau 4 specii chimice.

Ca preocupari viitoare dorim sa aplicam metoda splitting in cazul pro-
blemelor de difuzie-convectie multicomponenta liniare, nestationare, pentru
cazul cu 3 sau 4 specii chimice si analiza influentei interactiunii prin difuzie,
dintre speciile chimice, asupra performantelor metodei, cat si a influentei
fenomenului de convectie.
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