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3.2.3 Tehnici de precondiţionare . . . . . . . . . . . . . . . . . 18

3.3 Rezultate numerice . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Concluzii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Probleme de difuzie-convecţie
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Introducere

Fenomenul de transfer de masă, ı̂n multe procese din viaţa cotidiană şi in-
ginerie, guvernează adesea cinetica intregului proces. O modelare precisă a
transferului de masă este, prin urmare, necesară, oportună, şi ı̂n principal
posibilă, ı̂n cazul sistemelor multicomponentă. Din aceste motive, difuzia mul-
ticomponentă a dobândit un interes crescut ı̂n ultimele decenii.

Pentru a descrie difuzia mutuală ı̂n sistemele multicomponentă se utilizează
cu precădere, ı̂n literatura de specialitate, două abordări [4][19]: legea gener-
alizată a lui Fick şi teoria Stefan-Maxwell [13][17]. Cele două formulări sunt
echivalente. Mai multe detalii sunt prezentate ı̂n lucrările [2], [10], [11], [15],
[20]. Trebuie precizat că, ı̂ntr-un amestec multicomponentă, difuzia unei specii
chimice nu este dictată doar de gradientul concentraţiei sale ci şi de gradienţii
concentraţiilor celorlalte specii.

În urma unei analize a cercetărilor din domeniu, ı̂n această teză ne-am
propus:

-dezvoltarea unei strategii de investigare care să evidenţieze clar influenţa
interacţiunii prin difuzie şi numărul de specii chimice implicate ı̂n proces,
asupra vitezei de convergenţă a algoritmilor numerici;

-dezvoltarea unor tehnici de precondiţionare specifice pentru sistemele alge-
brice obţinute ı̂n cazul problemelor de transfer de masă multicomponentă, care
vor fi folosite ı̂n cadrul metodelor iterative proiective pe un subspaţiu Krylov
(cunoscute şi ca metode de tip gradient conjugat): BiCGSTAB şi GMRES;

-folosirea metodelor multigrid (MG) (pentru cazul problemelor liniare/ne-
liniare) şi Picard modificată (pentru cazul problemelor neliniare) la rezolvarea
problemelor de difuzie multicomponentă;

-aplicarea metodei splitting la rezolvarea problemelor de difuzie multicom-
ponentă nestaţionare (probleme ı̂n care apare şi timpul ca variabilă).

Forma generală a sistemelor de ecuaţii cu derivate partiale de ordinul II,
care modelează problemele de transfer de masă multicomponentă abordate ı̂n
teză, este dată de următorul sistem

∂Zi

∂τ
+ εPeu(y)

∂Zi

∂x
=

p
∑

j=1

(ε2
∂

∂x
(Dij

∂Zj

∂x
) +

∂

∂y
(Dij

∂Zj

∂y
)) + kiZi, i = 1, p,

(x, y) ∈ (0, 1)× (0, 1), τ ∈ (0, Tfinal).

Necunoscutele Zi reprezintă concentraţiile adimensionale ale speciilor chi-
mice. Primul termen din membrul drept modelează fenomenul de transfer de
masă prin difuzie. Funcţiile Dij(x, y) reprezintă coeficienţii de difuzie multi-
componentă Fick şi prin intermediul lor este exprimată interacţiunea prin di-
fuzie dintre speciile chimice implicate ı̂n proces. Al doilea termen din membrul
stâng modelează fenomenul de transfer de masă prin convecţie, când amestecu-
lui ı̂i este imprimată o viteză de curgere. Numărul Peclet Pe crează un ba-
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lans ı̂ntre fenomenul de difuzie şi cel de convecţie. Dacă Pe � 1 dominant
este fenomenul de convecţie. În caz contrar, dacă Pe � 1 dominant devine
fenomenul de difuzie. Termenul al doilea din membrul drept reprezintă ter-
menul de reacţie. Acesta modelează reacţiile chimice dintre specii. Termenul
∂Zi

∂τ
exprimă dependenţa de timp a transferului de masă.[21]
Teza este structurată ı̂n patru capitole.
Capitolul 1 Preliminarii prezintă câteva noţiuni şi concepte de bază de

algebră liniară şi analiză numerică folosite pe parcursul lucrării.
În Capitolul 2 abordăm rezolvarea, prin metode numerice, a unor prob-

leme de difuzie-reacţie multicomponentă liniare şi neliniare, staţionare. Aceste
probleme sunt modelate prin sisteme de ecuaţii cu derivate partiale de ordinul
II.

Contribuţia proprie constă ı̂n:
-selectarea metodelor numerice adecvate pentru rezolvarea unor astfel de

probleme;
-construirea unei matrice de precondiţionare bazate pe un singur tip de

bloc diagonal, ce poate fi folosită ı̂n cadrul tehnicilor de precondiţionare pentru
sistemele algebrice obţinute ı̂n urma discretizării problemelor de difuzie-reacţie
multicomponentă, pentru ı̂mbunătăţirea performanţelor algoritmilor iterativi
GMRES restartat şi BiCGSTAB; am analizat din punct de vedere teoretic
caracterul de bun precondiţioner al matricei de precondiţionare propuse;

-analiza influenţei interacţiunii prin difuzie, dintre speciile chimice, asupra
performanţelor algoritmilor numerici folosiţi; ı̂n cadrul testelor numerice am
folosit mai multe seturi de valori pentru parametrii problemei.

În Capitolul 3 abordăm rezolvarea, prin metode numerice, a unor prob-
leme de difuzie-convecţie-reacţie multicomponentă liniare şi neliniare, staţiona-
re. Aceste probleme sunt modelate prin sisteme de ecuaţii cu derivate partiale
de ordinul II.

Contribuţia proprie constă ı̂n:
-selectarea metodelor numerice adecvate pentru rezolvarea unor astfel de

probleme;
-construirea unei matrice de precondiţionare bazate pe un singur tip de

bloc diagonal, ce poate fi folosită ı̂n cadrul tehnicilor de precondiţionare pen-
tru sistemele algebrice obţinute ı̂n urma discretizării problemelor de difuzie-
convecţie-reacţie multicomponentă, pentru ı̂mbunătăţirea performanţelor al-
goritmului iterativ GMRES restartat; la construirea matricei am ţinut cont şi
de termenul convectiv al problemei;

-analiza influenţei interacţiunii prin difuzie, dintre speciile chimice cât şi
influenţa fenomenului de convecţie, asupra performanţelor algoritmilor nu-
merici folosiţi; ı̂n cadrul testelor numerice am folosit mai multe seturi de valori
pentru parametrii problemei.

În Capitolul 4 abordăm rezolvarea, prin metode numerice, a unor prob-
leme de difuzie-convecţie multicomponentă liniare, nestaţionare, adică carac-
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terizarea unor procese de difuzie-convecţie evolutive ı̂n timp. Aceste probleme
sunt modelate prin sisteme de ecuaţii cu derivate partiale de ordinul II, ı̂n
care apare, pe lângă derivatele variabilelor spaţiale, şi derivata de ordinul I ı̂n
raport cu timpul.

Contribuţia proprie constă ı̂n:
-propunerea unei descompuneri a operatorului spaţial ı̂n cadrul metodei

splitting folosită la rezolvarea acestei clase de probleme;
-determinarea unor condiţii suficiente ce trebuie indeplinite pentru a putea

fi asigurată stabilitatea metodei splitting.
Rezultatele originale prezentate ı̂n această teză sunt cuprinse ı̂n următoarele

lucrări:

• Gh. Juncu, A. Nicola, C. Popa, E. Stroilă, Preconditioned conjugate
gradient and multigrid methods for numerical solution of multicomponent
mass transfer equations I. Diffusion-reaction-equations, Numer. Heat
Transfer A 66 (11) pp. 1268-1296, 2014, Impact Factor - 1.80. [7]

• Gh. Juncu, A. Nicola, C. Popa, E. Stroilă, Preconditioned conjugate
gradient and multigrid methods for numerical solution of multicomponent
mass transfer equations II. Convection-diffusion-reaction equations, Nu-
mer. Heat Transfer A 66 (11) pp. 1297-1319, 2014, Impact Factor - 1.80.
[8]

• E. Stroilă, Splitting method for multicomponent mass transfer equa-
tions, in Topics in Mathematical Modelling of Life Science Problems -
Proceedings of the ninth workshop, Editura Matrix Rom, Bucuresti, pp.
77-91, 2013. [18]

Mulţumiri

Doresc să mulţumesc domnului prof. univ. dr. Constantin Popa, con-
ducătorul ştiinţific al tezei mele de doctorat, pentru permanenta ı̂ndrumare
ştiinţifică şi sprijinul acordat pe tot parcursul studiilor doctorale, cât şi ı̂n
elaborarea acestei teze.

Mulţumesc de asemenea domnului prof. univ. dr. Gheorghe Juncu din
cadrul Universităţii Politehnica din Bucureşti pentru sprijinul acordat pe par-
cursul stagiului de cercetare.
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De asemenea, doresc să mulţumesc domnilor profesori cu care am colabo-
rat din cadrul Facultăţii de Matematică şi Informatică a Universităţii Ovidius
din Constanţa, cât şi conducerii şi colegilor din cadrul Centrului de Cercetare
Ştiinţifică pentru Forţele Navale, Constanţa pentru susţinerea şi sprijinul acor-
dat.

Mulţumesc Comisiei de Îndrumare pentru sfaturi şi timpul acordat.

1 Preliminarii

Capitolul 1 prezintă:

• câteva noţiuni şi concepte de bază de algebră liniară şi analiză matriceală
folosite pe parcursul lucrării: definiţiile produsului scalar canonic şi a
normei euclidiene din R

n, descompuneri matriceale, proprietăţi spectrale
ale matricelor pătratice, produsul Kronecker (1.1 Noţiuni introductive
de analiză matriceală);

• modalităţi de aproximare a operatorilor diferenţiali ı̂n cadrul metodei
schemelor cu diferenţe finite aplicate la discretizarea problemelor de di-
fuzie multicomponentă (1.2 Scheme cu diferenţe finite);

• metodele de rezolvare a problemelor neliniare discrete (1.3 Metoda multi-
grid neliniar, 1.4 Metoda Picard modificată);

• metodele iterative proiective folosite la rezolvarea sistemelor algebrice
liniare obţinute ı̂n cadrul unui pas al metodei Picard modificată, sau ı̂n
cazul problemelor liniare - GMRES şi BiCGSTAB (1.5 Metode iterative
proiective);

• metoda splitting folosită la rezolvarea problemelor de difuzie multicom-
ponentă nestaţionare şi condiţiile de stabilitate ale metodei (1.6 Metoda
splitting);

• conceptului de precondiţionare şi tehnici generale de precondiţionare
a sistemelor algebrice liniare (1.7 Prezentare generală a tehnicilor de
precondiţionare).

2 Probleme de difuzie-reacţie multicomponentă,

staţionare

Rezultatele prezentate ı̂n acest capitol au fost publicate ı̂n [7].
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2.1 Formularea problemei

Considerăm o reacţie chimică complexă de ordinul I, izotermă, care are loc
ı̂ntr-o particulă catalizator de tip placă plană cu sectiune pătrată.

Figura 1: Schema reacţiei chimice

Rezistenţa la transportul interfazic este considerată neglijabilă (valorile
concentraţiilor pe suprafaţa exterioară a particulei catalizator sunt la fel ca cele
din interior). Considerând particula un mediu poros şi omogen şi concentraţia
totală a amestecului constantă, profilul concentraţiilor adimensionale ale speci-
ilor chimice implicate ı̂n reacţie, ı̂n starea staţionară, ı̂n interiorul particulei
catalizator, este dat de următorul sistem de ecuaţii cu derivate parţiale de
ordinul II

4
∑

j=1

(
∂

∂x
Dij

∂Zj

∂x
+

∂

∂y
Dij

∂Zj

∂y
) +Ri = 0, i = 1, 4, (1)

(x, y) ∈ Ω = (0, 1)× (0, 1)

unde
R1 = −k1Z1 − k3Z1 + k5Z4, R2 = k1Z1 − k2Z2 + k4Z3,

R3 = k2Z2 − k4Z3, R4 = k3Z1 − k5Z4,

Zi =
Ai

A1b
sunt concentraţiile adimensionale, A1b este concentraţia molară to-

tală a speciei A1, ki =
k∗i L

2

Dref
sunt vitezele de reacţie adimensionale, L este

lungimea secţiunii pătrate, Dij(x, y) sunt coeficienţii Fick de difuzie multicom-
ponentă raportaţi la coeficientul de difuzie de referinţă Dref . Pentru sistemele
de difuzie-reacţie poate fi folosit cadrul mediei molare. Condiţiile pe frontieră
sunt:

Z1 = 1, Zi = 0, i = 2, 3, 4 (x, y) ∈ ∂Ω (2)

Modelul matematic prezentat reprezintă cazul neliniar al problemei de
difuzie-reacţie abordate. Cazul problemei liniare se obţine din cazul neliniar
considerând coeficienţii Fick, de difuzie multicomponentă, constanţi.
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2.2 Metode numerice

2.2.1 Discretizarerea problemei

Derivatele spaţiale ale ecuaţiilor (1) au fost discretizate folosind scheme cu
diferenţe finite simetrice, de ordinul 2 de aproximare, pe o grilă uniformă cu
N ×N puncte

0 = x1 < x2 < ... < xN−1 < xN = 1, xk = (k − 1)h;

0 = y1 < y2 < ... < yN−1 < yN = 1, yl = (l − 1)h, k, l = 0, N,

unde h = 1
(N−1)

mărimea pasului grilei. Aproximaţia discretă obţinută pentru

ecuaţiile (1) este

4
∑

j=1

[
D

k+ 1

2
,l

ij (Zk+1,l
j − Z

k,l
j )−D

k− 1

2
,l

ij (Zk,l
j − Z

k−1,l
j )

h2
+

D
k,l+ 1

2

ij (Zk,l+1
j − Z

k,l
j )−D

k,l− 1

2

ij (Zk,l
j − Z

k,l−1
j )

h2
] +R

k,l
i = 0, i = 1, 4 (3)

Valorile coeficienţilor de difuzie au fost calculate ca medie aritmetică a
valorilor din punctele grilei.

Modalitatea de calcul a valorilor coeficienţilor Fick din punctele grilei este
prezentată ı̂n cadrul tezei ı̂n Secţiunea 2.1. Formula de derivare folosită ı̂n
cazul termenilor ∂

∂x
Dij(x, y)

∂Zj

∂x
şi ∂

∂y
Dij(x, y)

∂Zj

∂y
este următoarea formulă de

aproximare de ordinul 2 [16] pg. 50:

d

dx
[a(x)

d

dx
] ≈

ai+ 1

2

(ui+1 + ui)− ai− 1

2

(ui + ui−1)

h2
. (4)

Aproximarea discretă a problemei liniare este

4
∑

j=1

Dij

Z
k+1,l
j + Z

k−1,l
j + Z

k,l+1
j + Z

k,l−1
j − 4Zk,l

j

h2
+R

k,l
i = 0, i = 1, 2, 3, 4. (5)

unde
Z

k+1,l
j +Z

k−1,l
j +Z

k,l+1

j +Z
k,l−1

j −4Zk,l
j

h2 reprezintă expresia operatorului laplace dis-

cret. În acest caz coeficienţii Fick de difuzie multicomponentăDij sunt constanţi.

2.2.2 Algoritmi numerici iterativi

Două metode numerice folosite pentru rezolvarea cazului neliniar au fost folosite:
metoda multigrid (MG) neliniar [1] [9] şi metoda Picard modificat [12]. Algo-
ritmul MG neliniar folosit este algoritmul FAS (Full Approximation Storage)
[1][9] adecvat pentru ambele cazuri liniar şi neliniar.
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Structura unui ciclu MG este: 1) ciclu de tip V; 2) doi paşi de netezire
ı̂nainte de corecţia de pe grila rară şi una după aceasta; 3) prelungirea prin
interpolare biliniară pentru corecţii; 4) restricţia reziduurilor prin ponderare
completă. Două metode de netezire au fost testate: PGS (point Gauss-Seidel)
şi ALGS (alternating line Gauss-Seidel ).

Metoda Picard modificată, numită şi metoda punctului fix, pentru prob-
lema (3) este dată de relaţiile

A(Zm)δZm+1 = b(Zm)− A(Zm)Zm (6)

Zm+1 = Zm + δZm+1

unde m este numărul iteraţiei Zm = [Zm
1 , Zm

2 , Zm
3 , Zm

4 ], iar Z0 este estimarea
iniţială. Matricea A(Zm) este definită de

A(Zm) =









Am

11
Am

12
Am

13
Am

14

Am

21
Am

22
Am

23
Am

24

Am

31
Am

32
Am

33
Am

34

Am

41
Am

42
Am

43
Am

44









+









(k1 + k3)h
2I 0 0 −k5h

2I

−k1h
2I k2h

2I −k4h
2I 0

0 −k2h
2I k4h

2I 0
−k3h

2I 0 0 k5h
2I









(7)

unde I este matricea identitate de ordinul (N − 2)2. Blocurile Am
ij pătratice

de ordinul (N − 2)2 sunt matrice pentadiagonale corespunzând matriţei de
discretizare





CN

CW CM CE

CS



 (8)

CM = D
k+ 1

2
,l

ij +D
k− 1

2
,l

ij +D
k,l+ 1

2

ij +D
k,l− 1

2

ij

CE = −D
k+ 1

2
,l

ij , CW = −D
k− 1

2
,l

ij , CS = −D
k,l− 1

2

ij , CN = −D
k,l+ 1

2

ij

şi ele variază la fiecare pas iterativ.
Solverii liniari implicaţi ı̂ntr-o iteraţie Picard modificată sunt implementări

ale algoritmilor BiCGSTAB şi GMRES ı̂n Matlab R2010b, descrierea lor este
prezentată ı̂n Sectiunea 1.5. Aceşti algoritmi sunt folosiţi şi la rezolvarea
problemei liniare. Codurile pentru metoda Picard modificat şi tehnicile de
precondiţionare sunt implementări proprii ı̂n Matlab R2010b, respectiv pentru
metoda MG ı̂n FORTRAN 77.

2.2.3 Tehnici de precondiţionare

Considerăm sistemul de ecuaţii liniar ce trebuie rezolvat ı̂ntr-un pas al metodei
Picard sau ı̂n cazul problemei liniare

AZ = B (9)
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unde

A =









A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44









, Z =









Z1

Z2

Z3

Z4









, B =









b1
b2
b3
b4









.

Blocurile Aij sunt matrice pătratice de ordinul (N−2)2 şi blocurile Aii, i = 1, 4
sunt matrice simetrice şi pozitiv definite. Metoda clasică de construcţie a unei
matrice de precondiţionare pentru sistemul (9) se bazează pe descompunerea
de tip Choleski, completă sau incompletă a blocurilor diagonale:

Aii = CiC
T
i +Ri, i = 1, 4 (10)

(dacă Ri = 0, i = 1, 4 ne referim la descompunerea completă, altfel avem cazul
descompunerii incomplete [14] [16] ).

Tehnicile de precondiţionare de tip bloc-diagonal Jacobi dau rezultate destul
de bune, dar necesită patru descompuneri, complete sau incomplete, de tip
Choleski ale blocurilor diagonale, lucru care devine costisitor din punct de
vedere computaţional ı̂n cazul aplicaţiilor practice.

În continuare propunem o matrice de precondiţionare care nu se mai bazează
pe blocurile diagonale Aii ci pe un singur bloc. Rezultatele prezentate ı̂n con-
tinuare au fost publicate ı̂n [7].

În urma discretizării ecuaţiilor (1) ı̂n cazul liniar, blocurileAij au următoarea
structură

A11 = D11∆0+(k1+k3)h
2I; A12 = D12∆0; A13 = D13∆0; A14 = D14∆0−k5h

2I;

A21 = D21∆0−k1h
2I; A22 = D22∆0+k2h

2I; A23 = D23∆0−k4h
2I; A24 = D24∆0;

A31 = D31∆0; A32 = D32∆0 − k2h
2I; A33 = D33∆0 + k4h

2I; A34 = D34∆0;
(11)

A41 = D41∆0 − k3h
2I; A42 = D42∆0; A43 = D43∆0; A44 = D44∆0 + k5h

2I.

unde I este matricea unitate de ordinul (N − 2)2 şi ∆0 este matricea obţinută
ı̂n urma discretizării, folosind scheme cu diferenţe finite, a ecuaţiei −∆z = 0
cu aceeaşi condiţie pe frontiera ∂Ω ca Z1, z = 1 (vezi (2)). Matricea ∆0 este
simetrică şi pozitiv definită.

Definim
∆̃0 = ∆0 + h2I. (12)
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Din costrucţie ∆̃0 este o matrice simetrică şi pozitiv definită (〈∆̃0x, x〉 =
〈∆0x, x〉 + h2‖x‖2 > 0, ∀x 6= 0) şi admite o descompunere de tip Choleski
(pentru R=0 este completă, altfel este incompletă)

∆̃0 = CCT +R. (13)

Propunem ca matrice de precondiţionare următoarea matrice

P =









∆̃0 0 0 0

0 ∆̃0 0 0

0 0 ∆̃0 0

0 0 0 ∆̃0









=

=









C 0 0 0
0 C 0 0
0 0 C 0
0 0 0 C

















CT 0 0 0
0 CT 0 0
0 0 CT 0
0 0 0 CT









= Γ · ΓT (14)

şi folosim următoarele tipuri de precondiţionare
- precondiţionare la dreapta

AU = B ⇔ Ã1Ũ1 = B̃1, Ã1 = AP−1, Ũ1 = PU, B̃1 = B (15)

- precondiţionare la stânga

AU = B ⇔ Ã2Ũ2 = B̃2, Ã2 = P−1A, Ũ2 = U, B̃2 = P−1B (16)

- precondiţionare stânga-dreapta

AU = B ⇔ Ã3Ũ3 = B̃3, Ã3 = Γ−1AΓ−T , Ũ3 = ΓTU, B̃3 = Γ−1B (17)

Analiza spectrului matricei precondiţionate

Din relaţiile (11) matricea sistemului A se scrie ca sumă de








D11∆0 D12∆0 D13∆0 D14∆0

D21∆0 D22∆0 D23∆0 D24∆0

D31∆0 D32∆0 D33∆0 D34∆0

D41∆0 D42∆0 D43∆0 D44∆0









+









(k1 + k3)h
2I 0 0 −k5h

2I

−k1h
2I k2h

2I −k4h
2I 0

0 −k2h
2I k4h

2I 0
−k3h

2I 0 0 k5h
2I









(18)

unde I este matricea unitate de ordinul (N − 2)2, iar

D =









D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44









, ℵ = h2









(k1 + k3) 0 0 −k5
−k1 k2 −k4 0
0 −k2 k4 0

−k3 0 0 k5









(19)
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sunt matricea coeficienţilor de difuzie, respectiv a coeficienţilor de reacţie.
Dacă folosim produsul Kronecker (⊗) a două matrice (vezi seţiunea 1.1), relaţia
(18) poate fi scrisă

A = (D ⊗∆0) + (ℵ ⊗ I). (20)

Mai mult, din relaţia (14) rezultă

P−1 =









∆̃−1
0 0 0 0

0 ∆̃−1
0 0 0

0 0 ∆̃−1
0 0

0 0 0 ∆̃−1
0









= I4 ⊗ ∆̃−1
0 (21)

unde I4 este matricea unitate de ordinul 4.

Ã1 = AP−1 = [(D⊗∆0)+(ℵ⊗I)](I4⊗∆̃−1
0 ) = (D⊗∆0∆̃

−1
0 )+(ℵ⊗∆̃−1

0 ). (22)

Dacă cele două matrice D⊗∆0∆̃
−1
0 şi ℵ⊗ ∆̃−1

0 ar fi simetrice, potrivit teo-
remei Weyl’s (vezi Secţiunea 1.1), am obţine informaţii despre valorile proprii
ale sumei, adică ale matricei Ã1. Dar, din păcate, acesta nu este cazul general
al problemelor şi informaţii legate de spectrul matricelor D⊗∆0∆̃

−1
0 şi ℵ⊗∆̃−1

0

nu se pot obţine decât considerate separat.
În urma calculelor obţinem

σ(D ⊗∆0∆̃
−1
0 ) = { λdi

λ+ h2
, λ ∈ σ(∆0), i = 1, 2, 3, 4}, (23)

σ(ℵ ⊗ ∆̃−1
0 ) = { αi

λ+ h2
, λ ∈ σ(∆0), i = 1, 2, 3, 4}, (24)

unde σ(D), σ(ℵ) reprezintă spectrele matricelor D şi ℵ,

σ(D) = {d1, d2, d3, d4}, σ(ℵ) = {α1, α2, α3, α4}. (25)

Valorile proprii ale matricei ℵ se obţin uşor prin calcul direct

σ(ℵ) = {0, h2(k2 + k4), h
2x1, h

2x2} (26)

unde x1, x2 sunt soluţiile reale ale ecuaţiei

x2 − (k1 + k2 + k5)x+ k1k5 = 0. (27)

Proprietăţi spectrale ale blocurilor matricei de precondiţionare ı̂n

cazul precondiţionării stânga-dreapta

Definiţia 1. Pentru o matrice nesingulară S de ordin n definim numărul de
condiţionare spectral [6]

cond2(S) =

√

λmax(STS)

λmin(STS)
, (28)
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unde λmax(S
TS) ≥ λmin(S

TS) > 0 sunt valorile proprii extreme ale matricei
simetrice şi pozitiv definite STS. Dacă matricea S este simetrică şi pozitiv
definită atunci numărul de condiţionare are expresia

cond2(S) =
λmax(S)

λmin(S)
. (29)

Definiţia 2. Două matrice simetrice şi pozitiv definite S, T de ordin n sunt
spectral echivalente dacă [3] există constantele α1, α2 independente de dimen-
siunea n astfel ı̂ncât

α1 ≤
〈Sx, x〉
〈Tx, x〉 ≤ α2, ∀x ∈ R

n, x 6= 0, (30)

unde 〈·, ·〉, ‖ · ‖ reprezintă produsul scalar canonic, respectiv norma euclidiană.

Propoziţia 1. [6], [14] Fie matricele S, T spectral echivalente ca ı̂n (30) şi

T = QQT (31)

o descompunere Choleski. Atunci

cond2(Q
−1SQ−T ) ≤ α2

α1

, (32)

adică T este un bun precondiţioner pentru S. Mai mult, acest rezultat este
independent de descompunerea (31).

Prezentăm relaţii de spectral echivalenţa ca (30) pentru S = Aij şi T =
∆̃0 = CCT . Folosind Propoziţia 1 demonstrăm că numărul de condiţionare
spectral al matricei C−1AiiC

−T satisface

cond2(C
−1AiiC

−T ) ≤ α2

α1

, (33)

unde
α1 = min{min1≤i≤4 Dii, (k1 + k3), k2, k4, k5}, α2 = max{max1≤i≤4 Dii, (k1 +
k3), k2, k4, k5}.

Fie acum

B = d∆0 − kh2I = d∆0 − kh2I = d∆̃0 − (k + d)h2I, (34)

unde d ∈ {Dij, i, j = 1, 4, i 6= j}, k ∈ {0, ki, i = 1, 5} cu combinaţiile potrivite
(vezi(11)), o notaţie generică pentru blocurile care nu se află pe diagonală
Aij, i, j = 1, 4, i 6= j.

Folosind din nou relaţia (32) şi considerând λmin(∆0) = ch2 [5] cu c inde-
pendent de h obţinem

cond2(C
−1AijC

−T ) ≤ γ, (35)

cu γ = max{d,k}(c+1)
dc−k

> 0 independent de N .
Am arătat că numerele de condiţionare spectrale obţinute atât pentru

blocurile de pe diagonală cât şi cele din afara diagonalei nu depinând de des-
imea grilei.
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2.3 Rezultate numerice

Obiectivul principal al acestui studiu, este acela, de a analiza, influenţa interac-
ţiunii dintre speciile chimice prin difuzie, asupra performanţelor algoritmilor
numerici. Pentru a realiza acest obiectiv am considerat, pentru fiecare set
de parametrii, următoarele patru structuri pentru matricea Fick de difuzie
multicomponentă:

[

D11 0 0 0
0 D22 0 0
0 0 D33 0
0 0 0 D44

]

,

[

D11 D12 0 0
D21 D22 0 0
0 0 D33 0
0 0 0 D44

]

,

[

D11 D12 D13 0
D21 D22 D23 0
D31 D32 D33 0
0 0 0 D44

]

,

(a) (b) (c)









D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44









, (36)

(d)

În cazul (a) nu avem interacţiune prin difuzie. Speciile interacţionează
doar prin reacţie chimică. Pentru cazurile (b) - (d) gradul de interacţiune
prin difuzie creşte progresiv, de la interacţiunea a două specii (cazul (b)) la
interacţiunea tuturor speciilor (cazul (d)). Pentru a ne referii la aceste cazuri
am făcut următoarele notaţii: cazul (a) CPL1; cazul (b) CPL2; cazul (c)
CPL3; cazul (d) CPL4. În aceste cazuri, pentru problema liniară, constantele
de interacţie sunt selectate din matricele coeficienţilor Fick de difuzie multi-
componentă prezentate ı̂n Anexa A a tezei. Pentru problema neliniară, valorile
coeficienţilor de difuzie Stefan-Maxwell folosite ı̂n calculul coeficienţilor Fick
sunt date ı̂n Anexa B a tezei.

Performanţele algoritmilor numerici sunt monitorizate prin factorul mediu
de reducere, ρ̄ şi eficienţa, τ , care se calculează după formulele

ρ̄ = (
‖resi‖
‖res0‖

)
1

i , (37)

τ =
W

|lnρ̄| . (38)

unde resi = ‖bi − AiZi‖ este reziduul după i iteraţii, ‖ · ‖ norma vectorială
euclidiană şiW (the work) este numărul de operaţii aritmetice pentru un punct
al grilei la un pas iterativ.

În secţiunile 2.3.1 şi 2.3.2 sunt prezentate rezultatele experimentelor nu-
merice efectuate, ı̂nsoţite de o analiză a acestora.
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2.4 Concluzii

În această secţiune prezentăm concluziile analizei performanţelor numerice ale
metodelor MG neliniar şi Picard modificată, cu solverii liniari GMRES(m) şi
BiCGSTAB precondiţionaţi, folosite la rezolvarea unor probleme de difuzie-
reacţie multicomponentă, staţionare, liniare/neliniare ı̂n două coordonate spa-
ţiale. Am folosit diferite seturi de coeficienţi de difuzie Stefan-Maxwell/ Fick,
cât şi diferite seturi de viteze de reacţie adimensionale.

Pe baza rezultatelor experimentelor numerice prezentate ı̂n acest capitol,
putem formula următoarele concluzii:

- ı̂n cazul problemei liniare influenţa interacţiunii prin difuzie, asupra vitezei
de convergenţă şi asupra eficienţei algoritmilor numerici, depinde de: (1) algo-
ritmul de netezire/relaxare al metodei MG; (2) tehnica de precondiţionare şi
de metoda de tip proiectiv folosită; creşterea interacţiunii prin difuzie a speci-
ilor chimice scade viteza de convergenţă şi eficienţa algoritmilor; scăderea este
neglijabilă pentru MG-ALGS şi GMRES(m) precondiţionat cu CC (cazul de-
scompunerii complete Choleski), este relativ semnificativă pentru BiCGSTAB
precondiţionat cu CC, GMRES(m) precondiţionat cu IC (cazul descompunerii
incomplete Choleski) şi MG-PGS, şi este semnificativă pentru BiCGSTAB
precondiţionat cu IC, GMRES(m), BiCGSTAB neprecondiţionate;

- ı̂n cazul problemei neliniare influenţa interacţiunii prin difuzie, asupra
vitezei de convergenţă şi eficienţei algoritmilor numerici, este mai puţin e-
videntă; pentru o desime a grilei şi un set de valori al parametrilor date,
interacţiunea prin difuzie nu influenţează semnificativ pe ρ̄ şi τ ; parametrul
cheie pare a fi raportul de diluţie, Z5b; valorile ridicate ale raportului de diluţie
scade semnificativ valorile coeficienţilor Fick de difuzie şi implicit, influenţa
lor asupra performanţelor numerice ale algoritmilor.

3 Probleme de difuzie-convecţie-reacţie

multicomponentă, staţionare

Rezultatele prezentate ı̂n acest capitol au fost publicate ı̂n [8].

3.1 Formularea problemei

Considerăm cazul unei curgeri laminare, staţionare a unui fluid incompresibil,
printr-un canal cu secţiune transversală de lăţime d, ı̂n care are loc următoarea
reacţie chimică complexă, izotermă, de ordinul I.

Considerând densitatea amestecului constantă, profilul concentraţiilor adi-
mensionale ı̂n starea staţionară, printr-o secţiune transversală, este dat de
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Figura 2: Schema reacţiei chimice

următorul sistem de ecuaţii cu derivate partiale de ordinul II

εPeu(y)
∂Zi

∂x
=

4
∑

j=1

(ε2
∂

∂x
Dij

∂Zj

∂x
+

∂

∂y
Dij

∂Zj

∂y
) +Ri, i = 1, 4, (39)

(x, y) ∈ Ω = (0, 1)× (0, 1)

unde

u(y) = −1

2
(y2 − y), ε =

d

L
, Pe =

U0d

Dref

,

R1 = −k1Z1 − k3Z1 + k5Z4, R2 = k1Z1 − k2Z2 + k4Z3,

R3 = k2Z2 − k4Z3, R4 = k3Z1 − k5Z4,

Zi = Ai

A1b
sunt concentraţiile adimensionale de masă, A1b este concentraţia

speciei A1 la intrarea ı̂n canal, adică x = 0, d este grosimea canalului, ki =
k∗i d

2

Dref
sunt vitezele de reacţie adimensionale, L este lăţimea canalului, Pe este

numărul Peclet, U0 este constanta vitezei de curgere uniformă, Dij(x, y) sunt
coeficienţii Fick de difuzie multicomponentă, raportaţi la coeficientul de difuzie
de referinţă Dref .
Condiţiile pe frontieră sunt:

x = 0, Z1 = 1, Zi = 0, i = 2, 3, 4,

x = 1, Ji = 0, i = 1, 4, (40)

y = 0, Ji = 0, i = 1, 4,

y = 1, Ji = 0, i = 1, 4,

unde

Ji =
4

∑

j=1

Dij

∂Zj

∂x
, sau Ji =

4
∑

j=1

Dij

∂Zj

∂y
, i = 1, 4 (41)

este fluxul transportului de masă al speciei i ı̂n raport cu viteza medie de masă.
Modelul matematic prezentat reprezintă cazul neliniar al problemei de

difuzie-convecţie-reacţie abordate. Cazul problemei liniare se obţine din cazul
neliniar considerând coeficienţii Fick, de difuzie multicomponentă, constanţi.
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Figura 3: Reprezentarea schematică a domeniului problemei

3.2 Metode numerice

3.2.1 Discretizarea problemei

Derivatele spaţiale ale ecuaţiilor (39) au fost discretizate folosind scheme cu
diferenţe finite upwind de ordinul 2 de aproximare pe o grilă uniformă cu N×N

puncte
0 = x1 < x2 < ... < xN−1 < xN = 1, xk = (k − 1)h;

0 = y1 < y2 < ... < yN−1 < yN = 1, yl = (l − 1)h, k, l = 0, N,

unde h = 1
(N−1)

mărimea pasului grilei. Aproximarea discretă obţinută pentru

ecuaţiile (39) este

εPeu(yl)−|εPeu(yl)|
2

Z
k+1,l
i −Z

k,l
i

h
+ εPeu(yl)+|εPeu(yl)|

2

Z
k,l
i −Z

k−1,l
i

h
=

=
∑4

j=1[ε
2D

k+1
2
,l

ij (Zk+1,l
j −Z

k,l
j )−D

k− 1
2
,l

ij (Zk,l
j −Z

k−1,l
j )

h2 +

+
D

k,l+1
2

ij (Zk,l+1

j −Z
k,l
j )−D

k,l− 1
2

ij (Zk,l
j −Z

k,l−1

j )

h2 ] +R
k,l
i , i = 1, 4 (42)

Valorile coeficienţilor de difuzie au fost calculate ca medie aritmetică a
valorilor din punctele grilei.

Modalitatea de calcul a valorilor coeficienţilor Fick din punctele grilei este
prezentată ı̂n cadrul tezei ı̂n secţiunea 3.1.

Pentru cazul problemei liniare, coeficienţii Fick de difuzie multicomponentă
Dij sunt consideraţi constanţi. Aproximarea discretă obţinută ı̂n acest caz este:

εPeu(yl)−|εPeu(yl)|
2

Z
k+1,l
i −Z

k,l
i

h
+ εPeu(yl)+|εPeu(yl)|

2

Z
k,l
i −Z

k−1,l
i

h
=

=
∑4

j=1 Dij

ε2Z
k+1,l
j +Z

k,l+1

j +ε2Z
k−1,l
j +Z

k,l−1

j −(2+2ε2)Zk,l
j

h2 +R
k,l
i , i = 1, 4 (43)
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Pentru ambele cazuri liniar şi neliniar datorită condiţiilor de pe frontieră
de tip Neumann, ı̂n punctele de pe frontieră s-au folosit formule de aproximare
simetrice de ordinul 2, extrapolând simetric soluţia ı̂ntr-un punct al grilei din
afara frontierei.

3.2.2 Algoritmi numerici iterativi

Am folosit aceeaşi algoritmi pentru cazul neliniar: algoritmul multigrid neliniar
(MG) [1] [9] şi algoritmul Picard modificat [12]. În cazul problemelor de
difuzie-convecţie-reacţie algoritmul de netezire PGS (point Gauss-Seidel) nu
funcţionează bine. Din acest motiv am folosit ca algoritm de netezire doar al-
goritmul ALGS (alternating line Gauss-Seidel). Algoritmul MG neliniar folosit
este algoritmul clasic FAS (Full Approximation Storage) [1] [9]. Structura ci-
clului MG este: 1) ciclu de tip V; 2) netezire prin ALGS; 3) doi paşi de
netezire sunt efectuaţi ı̂nainte de corecţia pe grila rară şi unul după; 4) pre-
lungirea prin interpolare biliniară pentru corecţii; 5) restricţia rezidurilor prin
ponderare completă.

Metoda Picard modificată, numită şi metoda punctului fix, pentru prob-
lema (39) este dată de relaţiile

A(Zm)δZm+1 = b(Zm)− A(Zm)Zm (44)

Zm+1 = Zm + δZm+1

unde m este numărul iteraţiei Zm = [Zm
1 , Zm

2 , Zm
3 , Zm

4 ], iar Z0 este estimarea
iniţială. Matricea A(Zm) este definită de

A(Zm) =









Am
11 Am

12 Am
13 Am

14

Am
21 Am

22 Am
23 Am

24

Am
31 Am

32 Am
33 Am

34

Am
41 Am

42 Am
43 Am

44









+









(k1 + k3)h
2I 0 0 −k5h

2I

−k1h
2I k2h

2I −k4h
2I 0

0 −k2h
2I k4h

2I 0
−k3h

2I 0 0 k5h
2I









(45)
unde I este matricea identitate de ordinul N(N − 1). Blocurile Am

ii pătratice
de ordinul N(N − 1) sunt matrice pentadiagonale corespunzând matriţei de
discretizare





CN

CW CM CE

CS



 (46)

CM = ε2D
k+ 1

2
,l

ij + ε2D
k− 1

2
,l

ij +D
k,l+ 1

2

ij +D
k,l− 1

2

ij + h|εPeu(yl)|

CE = −ε2D
k+ 1

2
,l

ij + h
εPeu(yl)− |εPeu(yl)|

2

CW = −ε2D
k− 1

2
,l

ij − h
εPeu(yl) + |εPeu(yl)|

2
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CS = −D
k,l− 1

2

ij , CN = −D
k,l+ 1

2

ij ,

ı̂n timp ce, blocurile Am
ij , i 6= j pătratice de ordinul N(N − 1) sunt matrice

pentadiagonale corespunzând matriţei de discretizare

CM = ε2D
k+ 1

2
,l

ij + ε2D
k− 1

2
,l

ij +D
k,l+ 1

2

ij +D
k,l− 1

2

ij

CE = −ε2D
k+ 1

2
,l

ij , CW = −ε2D
k− 1

2
,l

ij

CS = −D
k,l− 1

2

ij , CN = −D
k,l+ 1

2

ij

Aceste blocuri variază la fiecare pas iterativ.
Solverii liniari implicaţi ı̂ntr-o iteraţie Picard modificată sunt implementări

ale algoritmilor BiCGSTAB şi GMRES ı̂n Matlab R2010b, descrierea lor este
prezentată ı̂n Sectiunea 1.5. Aceşti algoritmi au fost folosiţi şi la rezolvarea
problemei liniare. Codurile pentru metoda Picard modificat şi tehnicile de
precondiţionare sunt implementări proprii ı̂n Matlab R2010b, respectiv pentru
metoda MG ı̂n FORTRAN 77.

3.2.3 Tehnici de precondiţionare

Considerăm sistemul de ecuaţii liniar ce trebuie rezolvat ı̂ntr-un pas al metodei
Picard sau ı̂n cazul problemei liniare

AZ = B (47)

unde

A =









A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44









, Z =









Z1

Z2

Z3

Z4









, B =









b1
b2
b3
b4









.

Blocurile Aij sunt matrice pătratice de ordinul N(N−1) şi blocurile diagonale
Aii, i = 1, 4 nu mai sunt simetrice şi pozitiv definite. Metoda clasică de
construcţie a unei matrice de precondiţionare pentru sistemul (47) se bazează
pe descompunerea de tip LU, completă sau incompletă a blocurilor diagonale:

Aii = LiUi +Ri, i = 1, 4 (48)

(dacă Ri = 0, i = 1, 4 ne referim la descompunerea completă, altfel avem cazul
descompunerii incomplete [14], [16] ).

Tehnicile de precondiţionare de tip bloc Jacobi dau rezultate destul de
bune, dar sunt necesare patru descompuneri, complete sau incomplete, de tip
LU ale blocurilor diagonale, lucru care conduce la consum de timp şi resurse
computaţionale.
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Propunem o altă metodă de precondiţionare care foloseşte ı̂n locul blocurilor
diagonale Aii un singur bloc. Fie ∆0 matricea care se obţine din discretizarea
problemei

−(ε2
∂2z

∂x2
+

∂2z

∂y2
) + εPeu(y)

∂z

∂x
= 0 (49)

cu aceleaşi condiţii la frontieră ca specia Z1. Definim ca matrice de precondiţionare

P =









∆̃0 0 0 0

0 ∆̃0 0 0

0 0 ∆̃0 0

0 0 0 ∆̃0









=

=









L 0 0 0
0 L 0 0
0 0 L 0
0 0 0 L

















U 0 0 0
0 U 0 0
0 0 U 0
0 0 0 U









(50)

unde ∆̃0 = ∆0 + h2I.

3.3 Rezultate numerice

Şi ı̂n cazul problemelor de difuzie-convecţie-reacţie multicomponentă obiec-
tivul principal propus este acela de a analiza influenţa interacţiunii speciilor
chimice prin difuzie, asupra performanţelor algoritmilor numerici. Pentru a
realiza acest obiectiv am considerat, pentru fiecare set de parametrii, aceleaşi
patru structuri pentru matricea Fick de difuzie multicomponentă ca ı̂n cazul
problemei de difuzie-reacţie.

Pentru a ne referii la aceste structuri am folosit aceleaşi notaţii: cazul
(a) CPL1; cazul (b) CPL2; cazul (c) CPL3; cazul (d) CPL4. În aceste
cazuri, pentru problema liniară, constantele de interacţiune sunt selectate din
matricele coeficienţilor Fick de difuzie multicomponentă, prezentate ı̂n Anexa
A a tezei. Performanţele algoritmilor numerici sunt monitorizate prin factorul
mediu de reducere, ρ̄ şi eficienţa, τ , care se calculează după formulele

ρ̄ = (
‖resi‖
‖res0‖

)
1

i , (51)

τ =
W

|lnρ̄| . (52)

unde resi = ‖bi − AiZi‖ este reziduul după i iteraţii, ‖ · ‖ norma vectorială
euclidiană şiW (the work) este numărul de operaţii aritmetice pentru un punct
al grilei la un pas iterativ.

În secţiunile 3.3.1 şi 3.3.2 sunt prezentate rezultatele experimentelor nu-
merice efectuate, ı̂nsoţite de o analiză a acestora.
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3.4 Concluzii

În acest capitol analizăm influenţa interacţiunii prin difuzie dintre speciile
chimice şi fenomenul de convecţie, asupra performanţelor numerice ale algo-
ritmilor iterativi (MG neliniar, Picard modificat -cazul neliniar; MG liniar,
GMRES(m)- cazul liniar) ı̂n cazul problemelor de difuzie-convecţie-reacţie ı̂n
două coordonate spaţiale.

În urma experimentelor numerice efectuate prezentăm următoarele con-
cluzii:

- ı̂n cazul problemei liniare, influenţa interacţiunii prin difuzie, asupra
vitezei de convergenţă şi asupra eficienţei algoritmului GMRES(m) precondiţio-
nat, depinde de valorile numărului Pe; pentru valori mari ale acestui număr,
Pe = 104, influenţa interacţiunii prin difuzie asupra vitezei de convergenţă
şi asupra eficienţei nu este semnificativă; pentru valori moderate Pe = 100
interacţiunea prin difuzie influenţează viteza de convergenţă şi eficienţa al-
goritmului GMRES(m) precondiţionat; viteza de convergenţă a algoritmului
MG-ALGS este mai puţin sensibil la influenţa interacţiunii prin difuzie şi a
numărului Pe faţă de algoritmul GMRES(m) precondiţionat;

-̂ın cazul neliniar influenţa interacţiunii prin difuzie, asupra vitezei de con-
vergenţă şi asupra eficienţei algoritmilor numerici folosiţi, este mai complexă;
interacţiunea prin difuzie, practic, nu influenţează viteza de convergenţă a algo-
ritmului Picard modificat; totuşi, eficienţa algoritmului Picard scade odată cu
creşterea gradului de interacţiune prin difuzie ı̂n cazul setului B2 de coeficienţi
de difuzie Stefan-Maxwell; viteza de convergenţă şi eficienţa algoritmului MG
depind de gradul de interacţiune prin difuzie; creşterea raportului de diluţie
creşte viteza de convergenţă şi eficienţa ambelor metode; totuşi, acest efect
este mai puţin semnificativ decât ı̂n cazul problemei de difuzie-reacţie.

- ı̂n ambele cazuri, liniar şi neliniar creşterea numărului Pe scade efec-
tul interacţiunii prin difuzie asupra performanţelor numerice ale algoritmilor;
pentru valori mari şi foarte mari ale numărului Pe, convecţia este mecanismul
dominant din ambele puncte de vedere fizic şi numeric.

4 Probleme de difuzie-convecţie

multicomponentă liniare, nestaţionare

4.1 Formularea problemei

În acest capitol abordăm rezolvarea, prin metode numerice, a unor probleme de
difuzie-convecţie multicomponentă liniare, nestaţionare, adică caracterizarea
unor procese de difuzie-convecţie evolutive ı̂n timp. Aceste probleme sunt
modelate prin sisteme de ecuaţii cu derivate partiale de ordinul II, ı̂n care
apare, pe lângă derivatele variabilelor spaţiale, şi derivata de ordinul I ı̂n ra-
port cu timpul. Am considerat ca problemǎ de test un sistem de ecuaţii cu
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derivate parţiale care modeleazǎ o problemă de difuzie-convecţie multicompo-
nentǎ liniară, dependentǎ de timp, cu p = 2, 3, 4 specii chimice:

∂Zi

∂τ
+ εPeu(y)

∂Zi

∂x
=

p
∑

j=1

Dij(ε
2∂

2Zj

∂x2
+

∂2Zj

∂y2
), i = 1, p, (53)

(x, y) ∈ (0, 1)× (0, 1), τ ∈ (0, Tfinal)

unde

• Zi este concentraţia de masǎ adimensionalǎ a speciei chimice i ,

• Dij coeficienţii Fick de difuzie multicomponentǎ,

• ε = d
L
, Pe = U0d

D11
, τ = tD11

d2

• u(y) = −1
2
(y2 − y).

Condiţiile pe frontierǎ ale problemei sunt

x = 0, Zi = 0, i = 1, p

x = 1, Ji = 0, i = 1, p

y = 0, Zi = Aisin(Cix)(1 + ωisin(αiτ)), x ≤ X < 1

Zi = 0 X ≤ x ≤ 1, i = 1, p

y = 1, Zi = 0, i = 1, p

unde Ji =
∑p

i=1 Dij
∂Zj

∂x
este fluxul de difuzie al masei speciei i ı̂n raport cu

viteza medie a masei.
Condiţiile iniţiale sunt

τ = 0, y = 0, Zi = Aisin(Cix)(1 + ωisin(αiτ)), x ≤ X < 1

şi ı̂n rest Zi = 0, 1, p.

4.2 Metode numerice

4.2.1 Discretizarea problemei

Prima etapǎ ı̂n rezolvare reprezintǎ discretizarea problemei ı̂n raport cu vari-
abilele spaţiale folosind scheme cu diferenţe finite. Derivatele spaţiale au fost
aproximate folosind formule simetrice de ordinul 2, pe o grilă uniformă cu
N ×N puncte

0 = x1 < x2 < ... < xN−1 < xN = 1, xk = (k − 1)h;

0 = y1 < y2 < ... < yN−1 < yN = 1, yl = (l − 1)h, k, l = 0, N,
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Figura 4: Discretizarea domeniului

unde h = 1
(N−1)

mărimea pasului grilei. Aproximarea discretǎ obţinutǎ este

∂Z
k,l
i

∂τ
+ εPeuk,lZ

k+1,l
i − Z

k−1,l
i

2h
−

−
p

∑

j=1

Dij(ε
2
Z

k+1,l
j − 2Zk,l

j + Z
k−1,l
j

h2
+

Z
k,l+1
j − 2Zk,l

j + Z
k,l−1
j

h2
) = 0, i = 1, p

(54)
În cazul unei probleme cu 3 specii chimice ajungem astfel la urmǎtorul

sistem de ecuaţii liniare

∂Z1

∂τ
+ ΛhZ1 = D11∆hZ1 +D12∆hZ2 +D13∆hZ3

∂Z2

∂τ
+ ΛhZ2 = D21∆hZ1 +D22∆hZ2 +D23∆hZ3 (55)

∂Z3

∂τ
+ ΛhZ3 = D31∆hZ1 +D32∆hZ2 +D33∆hZ3

unde ∆h este o matrice simetricǎ şi pozitiv definitǎ şi Λh este o matrice
trans-simetricǎ (Λh = −ΛT

h ) ı̂n cazul folosirii schemelor cu diferenţe finite
simetrice.[3] În teză sunt prezentate şi cazurile cu 2 sau 4 specii chimice.

4.2.2 Algoritmi numerici iterativi

Am aplicat metoda splitting problemei (53) prin descompunerea operatorului
spaţial ı̂ntr-o sumă de doi operatori. Propunem o descompunere algebricǎ a
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matricei de discretizare ı̂n raport cu variabilele spaţiale care ne conduce la
obţinerea a douǎ matrice superior, respectiv inferior triunghiulare





D11∆h − Λh D12∆h D13∆h

D21∆h D22∆h − Λh D23∆h

D31∆h D32∆h D33∆h − Λh



 =





1
2
(D11∆h − Λh) D12∆h D13∆h

0 1
2
(D22∆h − Λh) D23∆h

0 0 1
2
(D33∆h − Λh)



+





1
2
(D11∆h − Λh) 0 0

D21∆h
1
2
(D22∆h − Λh) 0

D31∆h D32∆h
1
2
(D33∆h − Λh)



 , (56)

Avantajul folosirii unei astfel de descompuneri este acela cǎ, sistemele algebrice
ce trebuie rezolvate sunt bloc triunghiulare. Sistemul (55) se rezolvǎ aplicând
metoda splitting prezentatǎ ı̂n secţiunea 1.6. Pentru a asigura stabilitatea
schemelor de integrare ı̂n raport cu timpul şi implicit stabilitatea metodei
splitting trebuie verificatǎ condiţia ca cele douǎ matrice bloc triunghiulare sǎ
fie pozitiv definite.

4.3 Analiza pozitiv definirii unor clase de

matrice bloc triunghiulare

Deoarece dorim sǎ rezolvǎm probleme de difuzie-convecţie multicomponentǎ ı̂n
care apar 3 sau 4 specii chimice ne-am propus sǎ determinǎm pozitiv definirea
unor clase de matrice bloc triunghiulare de ordin 3n sau 4n pentru a ne asigura
stabilitatea metodei splitting. Rezultatele au fost publicate ı̂n [18]

4.3.1 Pozitiv definirea unor clase de matrice bloc

de ordin 3n reale

Propoziţia 2. Dacǎ presupunem cǎ, pentru o matrice realǎ pǎtraticǎ de ordin
3

A =





a11 a12 a13
0 a22 a23
0 0 a33



 , (57)

existǎ numerele reale pozitive a, b, c, d, e, f cu proprietǎţile

|a12| < 2
√
ab, |a13| < 2

√
cd, |a23| < 2

√

ef, (58)

şi
a+ c ≤ a11, b+ e ≤ a22, d+ f ≤ a33. (59)

atunci A din (57) este pozitiv definitǎ.
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Fie A o matrice realǎ de ordin 3n având forma

A =





α∆∗ γ1∆ γ2∆
0 β1∆

∗ + δ1∆ γ3∆
0 0 β2∆

∗ + δ2∆



 (60)

unde ∆∗ şi ∆ sunt blocuri n×n , ∆ este o matrice simetricǎ şi pozitiv definitǎ,
şi α, β1, β2, δ1, δ2, γ1, γ2, γ3 sunt numere reale pozitive.

Propoziţia 3. Dacǎ ∆∗ = ∆ şi ∆ este o matrice simetricǎ şi pozitiv definitǎ
atunci matricea A din (60) este pozitiv definitǎ dacǎ existǎ numerele reale
pozitive a, b, c, d, e, f cu proprietǎţile

|γ1| < 2
√
ab, |γ2| < 2

√
cd, |γ3| < 2

√

ef,

şi
a+ c ≤ α, b+ e ≤ β1 + δ1, d+ f ≤ β2 + δ2. (61)

Propoziţia 4. Dacǎ existǎ un numǎr real pozitiv C astfel ı̂ncât

∆ = C(∆∗ + (∆∗)T ) (62)

atunci matricea A din (60) este pozitiv definitǎ dacǎ existǎ numerele reale
pozitive a, b, c, d, e, f cu proprietǎţile

|γ1| < 2
√
ab, |γ2| < 2

√
cd, |γ3| < 2

√

ef,

şi

a+ c ≤ α

2C
, b+ e ≤ (

β1

2C
+ δ1), d+ f ≤ (

β2

2C
+ δ2). (63)

4.3.2 Pozitiv definirea unor clase de matrice bloc

de ordin 4n reale

Propoziţia 5. Dacǎ presupunem cǎ, pentru o matrice realǎ pǎtraticǎ de ordin
4

A =









a11 a12 a13 a14
0 a22 a23 a24
0 0 a33 a34
0 0 0 a44









(64)

existǎ numerele reale pozitive a, b, c, d, e, f, g, h, i, j, k, l cu proprietǎţile

|a12| < 2
√
ab, |a13| < 2

√
cd, |a14| < 2

√

ef, |a23| < 2
√

gh,

|a24| < 2
√

ij, |a34| < 2
√
kl, a+ c+ e ≤ a11,

b+ g + i ≤ a22, d+ h+ k ≤ a33, f + j + l ≤ a44, (65)

atunci matricea A din (64) este pozitiv definitǎ.
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Fie A o matrice realǎ de ordin 4n având forma

A =









α∆∗ γ1∆ γ2∆ γ3∆
0 β1∆

∗ + δ1∆ γ4∆ γ5∆
0 0 β2∆

∗ + δ2∆ γ6∆
0 0 0 β3∆

∗ + δ3∆









(66)

unde ∆∗ şi ∆ sunt blocuri n× n, ∆ este o matrice simetricǎ şi pozitiv definitǎ
şi α, β1, β2, β3, δ1, δ2, δ3, γ1, γ2, γ3, γ4, γ5, γ6 sunt numere reale pozitive.

Propoziţia 6. Dacǎ ∆∗ = ∆ şi ∆ este o matrice simetricǎ şi pozitiv definitǎ
atunci matricea A din (66) este pozitiv definitǎ dacǎ existǎ numerele reale
pozitive a, b, c, d, e, f, g, h, i, j, k, l cu proprietǎţile

|γ1| < 2
√
ab, |γ2| < 2

√
cd, |γ3| < 2

√

ef, |γ4| < 2
√

gh,

|γ5| < 2
√

ij, |γ6| < 2
√
kl, a+ c+ e ≤ α,

b+ g + i ≤ β1 + δ1, d+ h+ k ≤ β2 + δ2, f + j + l ≤ β3 + δ3. (67)

Propoziţia 7. Dacǎ existǎ un numǎr real pozitiv C astfel ı̂ncât

∆ = C(∆∗ + (∆∗)T )

atunci matricea A din (66) este pozitiv definitǎ dacǎ existǎ numerele reale
pozitive a, b, c, d, e, f, g, h, i, j, k, l cu proprietǎţile

|γ1| < 2
√
ab, |γ2| < 2

√
cd, |γ3| < 2

√

ef, |γ4| < 2
√

gh,

|γ5| < 2
√

ij, |γ6| < 2
√
kl, a+ c+ e ≤ α

2C
,

b+ g + i ≤ β1

2C
+ δ1, d+ h+ k ≤ β2

2C
+ δ2, f + j + l ≤ β3

2C
+ δ3. (68)

Facem notaţiile

∆∗
h =

1

2
(D11∆h − Λh)

α = β1 = β2 = β3

δ1 =
1

2
(D22 −D11) δ2 =

1

2
(D33 −D11) δ3 =

1

2
(D44 −D11)

γ1 = D12 γ2 = D13 γ3 = D14 γ4 = D23 γ5 = D24 γ6 = D34

Matricea superior triunghiulară din relaţia (60) capǎtǎ forma matricei su-
perior triunghiulare din descompunerea (56). Propoziţiile enunţate se verifică
şi pentru matrice inferior triunghiulare. Astfel, am gǎsit o modalitate de veri-
ficare a pozitiv definirii pentru matricele obţinute cu metoda splitting ı̂n cazul
problemelor de difuzie -convecţie liniare nestaţionare.
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4.4 Concluzii

Am prezentat metoda splitting, ca metodă de rezolvare a problemelor de
difuzie-convecţie liniare, nestaţionare, propunând o descompunere a operatoru-
lui spaţial pentru care matricele sistemelor algebrice rezolvate la fiecare pas de
integrare numericǎ ı̂n raport cu timpul sunt superior/inferior triunghiulare.

Am propus o strategie de verificare a pozitiv definirii unor clase de matrice
bloc triunghiulare reale de ordin 2n, 3n, 4n care asigură stabilitatea metodei
splitting.
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Concluzii finale şi dezvoltări viitoare

În cadrul acestei teze am abordat rezolvarea unor probleme de transfer de masă
multicomponentă. Aceste probleme sunt modelate prin sisteme de ecuaţii cu
derivate partiale de ordinul II.

Pentru selectarea metodelor numerice adecvate de rezolvare, am impărţit
problemele de transfer de masă abordate ı̂n următoarele clase:

• probleme de difuzie-reacţie multicomponentă liniare şi neliniare, staţionare;

• probleme de difuzie-convecţie-reacţie multicomponentă liniare şi neliniare,
staţionare;

• probleme de difuzie-convecţie multicomponentă liniare, nestaţionare.

Metodele numerice selectate pentru cazul problemelor neliniare din primele
două clase sunt algoritmii multigrid (MG) neliniar şi Picard modificat. În
cazul problemelor liniare solverii folosiţi sunt metodele iterative GMRES(m)
cu restart şi BiCGSTAB. Am realizat o analiză a influenţei interacţiunii prin
difuzie, dintre speciile chimice, asupra performanţelor algoritmilor numerici
folosiţi, cât şi a influenţei fenomenului de convecţie ı̂n cazul problemelor de
difuzie-convecţie-reacţie. În cadrul testelor numerice am folosit mai multe
seturi de valori pentru parametrii problemei.

Am propus, pentru problemele de difuzie-reacţie, respectiv pentru prob-
lemele de difuzie-convecţie-reacţie, câte o matrice de precondiţionare, bazată
pe un singur tip de bloc diagonal, ce poate fi folosită ı̂n cadrul tehnicilor de
precondiţionare, pentru a ı̂mbunătăţi performanţele algoritmilor iterativi GM-
RES restartat şi BiCGSTAB. Am analizat din punct de vedere teoretic, ca-
racterul de bun precondiţioner al matricei de precondiţionare propuse ı̂n cazul
problemei de difuzie-reacţie.

În cazul clasei problemelor de difuzie-convecţie multicomponentă liniare,
nestaţionare, sunt caracterizate procese de difuzie-convecţie evolutive ı̂n timp.

Pentru rezolvarea acestor probleme am selectat metoda splitting. În cadrul
acestei metode, am propus o descompunere a operatorului spaţial asfel ı̂ncât,
matricele sistemelelor algebrice obţinute sunt superior triunghiulare, respectiv
inferior triunghiulare. Am determinat condiţii suficiente ce trebuie indeplinite
pentru a putea fi asigurată stabilitatea metodei splitting ı̂n cazul problemelor
cu 3 sau 4 specii chimice.

Ca preocupări viitoare dorim să aplicăm metoda splitting ı̂n cazul pro-
blemelor de difuzie-convecţie multicomponentă liniare, nestaţionare, pentru
cazul cu 3 sau 4 specii chimice şi analiza influenţei interacţiunii prin difuzie,
dintre speciile chimice, asupra performanţelor metodei, cât şi a influenţei
fenomenului de convecţie.
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