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Introduction

The mass transfer phenomenon in many real-life and engineering processes
often governs the kinetics of the overall process. An accurate modeling of
the mass transfer is therefore necessary, opportune and principally possible,
particularly in multicomponent systems. For these reasons, multicomponent
diffusion has gained a considerably increasing interest during the last decades.

For the description of mutual diffusion in multicomponent systems, two
approaches are prevalent in literature[4|[19]: generalized Ficks law and the
Maxwell-Stefan [13][17] theory. For more details we refer to [2], [10], [11], [15],
[20]. It should be noted that, in a multicomponent mixture of chemical species
the diffusion of a certain species depends by the concetration gradient of the
other species.

As a result of an analysis of the multicomponent mass transfer research, in
this thesis we propose:

-to develop a strategy of investigation that emphasizes very clearly the
influence of the cross-diffusion coupling and the number of chemical species
involved in the process on the convergence rate of the numerical algorithms;

-to develop specific preconditioners for multi-component mass transfer prob-
lems, which will be used in connection with the gradient-type and Krylov
subspace methods (BICGSTAB and restarted GMRES(m)); the nonlinear al-
gorithm employed in this case is the modified Picard iteration;

-to test multigrid methods for numerical solving of the multicomponent
mass transfer problems (both linear and non-linear cases) and modified Picard
method (non-linear case);

-to test splitting method for numerical solving of time-dependent multi-
component mass transfer problems.

The general form of partial differential equations of order II, which models
the multicomponent mass transfer problems presented in this thesis, is the
following

0Z;
or

0Z; =, 20, 0Z; 0, 0Z pe—
+ ePeu(y) or = 2(62%(13”8—;) + 8_y(D”8_y])) + k’lZl, 1= 1,p,
7j=1

(z,y) € (0,1) x (0,1), 7 € (0, Tfinar)-

The unknowns Z; are the dimensionless concentrations of chemical species.
The first term in the right, models the process of mass transfer by diffusion.
The functions D;;(x,y) are the multicomponent diffusion Fick coefficients and
they express the cross-diffusion coupling of the chemical species involved in the
process. The second term in the left sight express the convection process of
mass transfer, when the mixture is involved in a flow. Peclet number Pe create
a balance between the process of diffusion and of convection. If Pe > 1 the
dominant is the phenomenon of convection. Otherwise, if Pe < 1 the diffusion



phenomenon becomes dominant. The second term of the right sight represents
the reaction term. It express the chemical reactions between species. The term
% express the time dependence of mass transfer. [21]

This thesis is structured in four chapters.

Chapter 1 Preliminaries presents some basic concepts of linear algebra
and numerical analysis used throughout the paper.

In Chapter 2 we approach solving, through numerical methods, the steady
state multicomponent diffusion-reaction problems the linear and nonlinear
case. These problems are modeled by second-order partial differential equa-
tions.

The personal contribution consists of:

-the selection of numerical methods suitable for solving such problems;

-building a preconditioning matrix based on one type of diagonal block, that
can be used in the preconditioning techniques for the algebraic systems, ob-
tained from the discretization of the multicomponent diffusion-reaction equa-
tions,in order to improve the restarted GMRES and BICGSTAB methods per-
formances; we made a theoretical analysis of the character of good precondi-
tioner of the proposed matrix ;

-analysis of the influence of the cross-diffusion of chemical species, on the
performance of the numerical algorithms used; in the numerical tests we used
several sets of values for the parameters of the problem.

In Chapter 3 we approach solving, through numerical methods, the steady
state multicomponent convection-diffusion-reaction problems, the linear and
nonlinear case. These problems are modeled by second-order partial differen-
tial equations.

The personal contribution consists of:

-the selection of numerical methods suitable for solving such problems;

-building a preconditioning matrix based on one type of diagonal block,
that can be used in the preconditioning techniques for the algebraic systems,
obtained from the discretization of the multicomponent convection-diffusion-
reaction equations,in order to improve the restarted GMRES method perfor-
mances; in the preconditioning matrix building we considered the influence of
the convection term;

-analysis of the influence of the cross-diffusion of chemical species and the
convection phenomenon, on the performance of the numerical algorithms used;
in the numerical tests we used several sets of values for the parameters of the
problem.

In Chapter 4 we approach solving, through numerical methods, time-
dependent multicomponent convection-diffusion problems, the linear case. These
problems are modeled by second-order partial differential equations, in which,
in addition to the spatial variables derivatives appears the time derivative of
order I.

The personal contribution consists of:



-proposal of a spatial operator decomposition in the splitting method used

to solve this class of problems;

-determination of sufficient conditions that ensure the stability of the split-

ting method.

The original results presented in this thesis are contained in the following

articles:

1

e Gh. Juncu, A. Nicola, C. Popa, E. Stroila, Preconditioned conjugate

gradient and multigrid methods for numerical solution of multicomponent
mass transfer equations I. Diffusion-reaction-equations, Numer. Heat
Transfer A 66 (11) pp. 1268-1296, 2014, Impact Factor - 1.80. [7]

Gh. Juncu, A. Nicola, C. Popa, E. Stroila, Preconditioned conjugate
gradient and multigrid methods for numerical solution of multicomponent
mass transfer equations I1. Convection-diffusion-reaction equations, Nu-
mer. Heat Transfer A 66 (11) pp. 1297-1319, 2014, Impact Factor - 1.80.

8]

E. Stroila,  Splitting method for multicomponent mass transfer equa-
tions, in Topics in Mathematical Modelling of Life Science Problems -
Proceedings of the ninth workshop, Editura Matrix Rom, Bucuresti, pp.
77-91, 2013. [18]

Preliminaries

Chapter 1 presents:

e some basic notions and concepts of linear algebra and matrix analysis

used throughout this paper: definitions of the canonical scalar product
and euclidian norm in R", matrices decompositions, spectral proprieties
of square matrices, Kronecker product (1.1 Introductory Notions of Ma-
trix Analysis);

approximation methods of differential operators in the finite differences
schemes method that could be applied to multicomponent mass transfer
problems (1.2 Finite Differences Scheme) ;

methods of solving nonlinear discrete problems (1.3 Nonlinear Multigrid
Method, 1.4 Modified Picard Method);

projective iterative methods used for solving systems of linear algebraic
equations obtained in a modified Picard method step, or in the case
of linear problems: GMRES and BiCGSTAB (1.5 Projective Iterative
Methods);



e splitting method used for time-dependent multicomponent mass transfer
equtions and conditions of stability of the method (1.6 Splitting Method);

e the concept of preconditioning and general preconditioning techniques of
linear algebraic systems (1.7 Overview of Preconditioning Techniques).

2 Steady-State Multicomponent
Diffusion-Reaction Problems

The results presented in this chapter are published in [7].

2.1 Problem Formulation
Consider the following isothermal, first-order, complex chemical reaction, taking

- _'i:l_}
A A
Ey
A ’ A,
1 j:;

Figure 1: Chemical reaction scheme

place inside a finite slab catalyst pellet with square section. The inter-phase
transport resistances are assumed negligibly (the concentrations on the exter-
nal surface of the catalyst pellet are the same as the bulk values). Considering
a homogeneous porous pellet and the total mixture molar concentration con-
stant, the dimensionless steady-state concentrations profiles inside the pellet
are given by a second-order partial differential equations system.

4
o 0zZ; 0 _ 0Z; —
—_—D.—— 4 .27 e =1.4 1
:1(8.%' Uax—i_@y z]ay>+Rl 0>Z y ()

(x,y) € Q=1(0,1) x (0,1)

where
Ry = —k1Zy — ksZy + ks Z4, Ry = k1Zy — koZy + kyZs,

R3 = koZy — kaZs, Ry = k3Zy — k524,

Z; = i"b are the dimensionless concentrations, Ay, is the bulk molar concen-

krL?

tration of species A, ki = 5 - are the dimensionless reaction rate constants,
e




L is the length of the square section,D;;(x,y) are the multicomponent Fick
diffusion coefficients related to D,.;. Note that for diffusion-reaction systems
the molar average frame can be used. The boundary conditions are

Zi=1, Z; =0, i=2,34 (z,y) € 09 (2)

The mathematical model presented previously represents the nonlinear test
problem used in this work. The linear test problem employed in this work
is obtained from the non-linear one by considering the multicomponent Fick
diffusion coefficients constants.

2.2 Numerical Methods

2.2.1 Problem Discretization

The derivatives of equation (1) were discretized with the central second order
accurate finite difference scheme on uniform grids with N x N points,

0=z <my<.<zay1<zy=1, x, =(k—1)h;
0=y <yp<.<yva<yv=1, y=({—-1)h, kE,I=0,N,

where h = ﬁ is the grid step size. The discrete approximation obtained for

N
(1) is
1
4 k+ Z<Z]k+1l Zf’l)—ij Q,Z(Z]@,Z_Z]@fu)
S = +
7j=1
DZH (Zkl+1 Zf,l) ijl (Zkl Z]l‘c,lfl)

)l 1
B2 ]+Rz :07Z:174 (3)

The values of the diffusion coefficients were calculated as arithmetic aver-
ages of the grid point values.

The method of calculation of the Fick coefficients values of the grid is
presented m thls the31s in sectlon 2.1. The derivation formula for the terms
2 Dyj(x, y) oL 8l 5 DU (z, y) 92; is the following second order aproximation [16]
pg. 50:

d d az‘-{-%(ui—f—l + u;) — az‘—%<ui + ui-1)
—la(z)—] ~ 5 : (4)
dx dx h
The discrete approximation of the linear test problem is:
4 Zk;+1l_|_Zk 1l+Zkl+1+Zkl L_ ki g .
> Dy~ I 4 RM=0,i=1,234 (5
h? ‘
7j=1

Z].C+l’l+Z]-€71’l+Z’~C’l+1+Z].C’l7l74Z].€’l . .
where . Vi . I represent the expresion of discrete Laplace

operator.). In this case, the multicomponent Fick diffusion coefficients, D;; are
constant.




2.2.2 Numerical Algorithms

Two nonlinear algorithms are used in this work: nonlinear multigrid (MG) [1]
[9] and modified Picard iteration, [12]. The nonlinear MG algorithm used is
the classical Full Approximation Storage (FAS) algorithm [1] [9], suitable for
both linear and nonlinear problems.

The structure of the MG cycle is: 1) cycle of type V; 2) two smoothing
steps are performed before the coarse grid correction and one after; 3) prolon-
gation by bilinear interpolation for corrections; 4) restriction of residuals by
full weighting. Two smoothing algorithms were tested: point Gauss Seidel
(PGS) and alternating line Gauss - Seidel (ALGS).

The modified Picard iteration, also called a fixed point method, is given by

A(Z™)§Z2M T =b(Z™) — A(Z™)Z™ (6)
Zm+1 — Zm 4 5zm+1

where m is the iteration number Z™ = [Z", Z3*, Z§*, Z}*], iar Z, is the initial
estimate. Matrix A(Z™) is defined by

Aﬁ A% A% Aﬂ (k'1+k'3)h21 0 0 —k‘5h21
A(Zm)z Agll Ag% Agé Agfl n 7k1h21 k2h2f 7]434/12] 0

Am Am AT AT 0 “keh2 BRI 0O

AT AT, AT AT ksh?I 0 0 ks

(7)
where [ is the (N —2)? x (N — 2)* identity matrix. The blocks A7? are
(N —2)? x (N —2)? penta-diagonal matrices corresponding to the discretization

stencil
CN

CW CM CE (8)
CsS

k+3,1 k=21 ki+3 kl—3%
kil+3

1
kl—3
i i

CE=-D*' cw =-Dp ¥ s =-Df
and they vary at every iterative step.

The linear solvers employed in the modified Picard iteration are the Mat-
lab R2010b implementations of the preconditioned BICGSTAB and precondi-
tioned restarted GMRES (m), and they are presented in Section 1.5. These
algorithms were also used to solve the linear test problem. Codes for the
modified Picard method and techniques of preconditioning are our own imple-

mentations in Matlab R2010b respectively for MG in FORTRAN 77.

,ON=-D

2.2.3 The Preconditioning Techniques

The linear system that should be solved in a Picard step or for the linear test
problem can be written as
AZ =B (9)



where

All A12 Al3 A14 Zl bl
A21 A22 A23 A24 ZQ b2
A31 A32 A33 A34 ’ Z3 7 b3
A41 A42 A43 A44 Z4 b4

A;; blocks are (N —2)2 x (N — 2)? square matrices and A;; blocks, i = 1,4 are
symmetric and positive definite matrices. The classic construction method of a
preconditioning matrix for (9) is based on a Choleski decomposition, complete
or incomplete of the diagonal blocks:

Ay =CCI +R;, i =14 (10)

(if R; = 0, i = 1,4 we refer to a complete decomposition, otherwise we refer
to the incomplete case [14] [16] ).

Block-diagonal Jacobi preconditioning techniques are quite good, but needs
four Choleski decompositions, complete or incomplete, of diagonal blocks,
which gets high costs from the computational point of view in the practical
applications.

We proposed a block preconditioning method for the system (9), which
uses the same matrix for any diagonal block.

Thus, after the discretization of the equations (1) the blocks A;; have the
structure

Ay = D11A0+(/€1+/€3)h2[; A1g = D19Ag; A1z = D13Ag; Ay = Dy1sANo—ksh?I;

A21 = D21A0—/€1h2[; A22 = D22A0+k’2h2[; A23 = D23A0—/€4h2[; A24 = D24A0;

A31 = D31A0; A32 = D32A0 - k’zhzf; A33 = D33A0 + k4h2f; A34 = D34A0;
(11)

Ap = Dy — k3h2]; Ay = D42A0; Ayz = D43A0; Ays = DyyAo + k5h2f~

where I is the (N — 2)? x (N — 2)? unitary matrix and A correspond to the
5-point stencil nite difference discretization of the equation —Az = 0 with the
same condition on the boundary 02 with respect to Z;, z = 1 (see (2)). Matrix
Ay is symmetric and positive definite.
We define
Ay = Ag + BI. (12)



By construction Ay is a symmetric and positive definite matrix ((Agz,z) =
(Agz, z) +h?||z||* > 0, Vo # 0) and admits a Choleski decomposition (for R=0

the decomposition is complety, otherwise is incomplete)

AO — CCT "’ R

(13)

According to these considerations we propose as preconditioner the matrix

A, 0 0 0
0 Ay 0 0
P: ~ p—

0 0 Ay 0

0 0 0 A

[ C 0 0 0 cr 0 0 0
o Cc o o0 0o CcT o0 o0
“ 1o 0 C o0 0o 0 CT o

0 0 0 C o 0 o C7T

in the following three cases
- right preconditioning

AU =B & AU, =By, A, =AP™', U, = PU, B, =B

-left preconditioning

AU:B@AQUQZBQ, /IQZP_lA, 02:U, B2:P_1B

- split preconditioning

AU =B & AyUs = By, Ay =T'Ar"T, U;=T"U, B;=T"'B

Comments on spectra of the preconditioned matrices

From relations (11) the system’s matrix A could be written

Di1Ay Di2Ag Di3Ao D1yl (k1 + ks)h%I 0
Dy1Ag D2 DasAg Doyl —k1h*I kohI
D31Ag D32Ag  D3szAo  D3alo 0 —koh?I
Dy1Ag DyAg DysAog Dyl —ksh?I 0

where [ is the (N — 2)? x (N — 2)? unitary matrix and

Dy
Doy
D3y
Dyy

R =h?

(k)l + k?g) 0
—k1 ks

0 —ko
—ks 0

=r.rt (14)
(15)
(16)
(17)
0 —ksh?I
—k4h?I 0
kah2I 0
0 ksh?I
(18)
0 —ks
~ky O
ke 0 (19)
0 ks



are the diffusion, respectively reaction coefficients matrices. If (®) denotes the
Kronecker product of two matrices (see Section 1.1), relation (18) could be
written

A=(D®A)+NR®IT), (20)

From relation (14) we obtain

Aj' 0 0 0
0 A;' 0 0 .
Pl= 0 ) Al g |Th® Ayt (21)
0

where 1 is the 4 x 4 unitary matrix.
A = AP = (DoAY + (R (Li@A;") = (DRAAT)+(RRAFY). (22)

If the two matrices D ® AOAg Dand R ® Aa ! were symmetric, according
to Weyls theorem (see Section 1.1) we would get some information about the
eigenvalues of their sum, i.e. A;. But, unfortunately this is not the case for
general problems and the only information we can get are concerned with the
spectra of the matrices D ® AOAE Vand X ® Aa ! separately.

We obtain

. Ad; .
O'(D &® AoAal) = {)\ I h27 A€ U(Ao), t= 1727374}7 (23)
A1y g @i L
U(N & AO ) = {m’ A€ O'(Ao), L= 1727374}7 (24)

where (D), o(R) represents the D and N spectra,
o(D) ={dy,da,ds,ds}, o(R) = {ayq, ag, a3, 4} (25)
The eigenvalues of N can be calculated directly
o(N) = {0, h* (kg + ks), h®x1, h*zo} (26)
where x1, xy are the real solutions of the equation
2% — (ky + ko + ks)x + kiks = 0. (27)
Spectral properties for the blocks of the split preconditioning matrix

Definition 1. For a nonsingular nxn matriz S we define the spectral condition
number [6] by
Amaz(STS)

condy(S) = Ao (575 (28)

10



where Amaz(STS) > Apin(STS) > 0 are the extreme eigenvalues of the sym-
metric and positive definite matriz STS.. If S is itself symmetric and positive
definite then

Amax(S)
Definition 2. Two symmetric and positive definite matrices S, T are spec-

trally equivalent if ([3]) there exist positive constants «y, s independent on
the dimension n such that

condy(S) = (29)

(Sx,x)
(Tz,x)

o < <y, Vo € R,z £0, (30)

where (-,-), || - || will denote the scalar product and the Euclidean norm.

Proposition 1. [6], [1]] Let S,T be spectrally equivalent as in (30) and

T=QQ" (31)
a Cholesky decomposition of T. Then

condy(Q18QT) < 22, (32)
aq
1.e., T 18 a good preconditioner for S. Moreover this result is independent on
the decomposition (31).

We prove spectral equivalence relations as (30) for S = A;; and T' = Ay =
CCT. From Proposition 1 and (11), the spectral condition number of the
matrix C~1A;;C~7T satisfies

conds(C1 Az CT) < 22, (33)
631
where
oy = min{mini<;<q D, (k1 + k3), ko, ka, ks }, ap = max{max;<;<q Dy, (k1 +
k3)7 k?? k47 k5}
Let now

B =dAy — kR’T = dAg — kR’T = dAy — (k + d)R*I, (34)

where d € {D;;,i,7 = 1,4, # j}, k € {0,k;,i = 1,5} with appropriate
combinations (see (11)), be a generic notation for one of the off-diagonal blocks
Aij, 1,5 = 1,4, i # j. Using again the relation (32) and considering A, (Ag) =
ch? [5] with ¢ independent of h we obtain
condy(C~1A;07T) < 4, (35)

with v = % > ( independent of N.

The conclusion is that for both, diagonal and off-diagonal preconditioned
blocks, we obtain a mesh independent condition number.

11



2.3 Numerical Results

The main objective of the present work is to analyze the influence of cross-
diffusion coupling on the numerical performances of the numerical algorithms.
In order to achieve this objective, we considered, for each sets of parameters,
the following four structures for the multi-component Fick diffusion matrix:

Diy 0 0 0 D11 D12 0 0 D11 Di2 D3 0
0 Dog 0 0 D21 D22 0 0 D21 D22 Das 0
0 0 ) 0 0 D33 0 ’ D31 D32 Dsz 0 ’
0

0 0 Dys 0 0 0 Dys 0 0 0 Dys

(a) (b) (¢)

D11 D12 D13 D14
D31 D2z D2z Dag (36)
D31 D32 D3z Dzg |’

Dy1 Daz Daz  Daa
(d)

In case (a) there is no cross-diffusion coupling. The species interact only
through the chemical reactions. For cases (b) to (d) the cross-diffusion coupling
increases progressively, from two species interaction (case (b)) to all species
interaction (case (d)). In the next paragraphs of this section, for brevity, the
case (a) will be symbolized by CPL1, case (b) by CPL2, case (¢) by CPL3 and
case (d) by CPL4. In these cases, for the linear problem, cross-diffusion con-
stantes are selected from the Fick coefficients matrices presented in Appendix
A of the thesis. For the non-linear problem, the values of the Stefan-Maxwell
coeflicients used to calculate the Fick coefficients are presented in Appendix B
of the thesis.

The performances of the numerical algorithms are monitored by the average
reduction factor, p , and the efficiency, 7:

W
T=—, (37)
|inp
7 Mresoll”
where res; = ||b;— A; Z;|| is the residue after 7 iterations, |- || euclidean vectorial

norm, W (the work) is the number of arithmetic operations per grid point and
iteration step.

In Sections 2.3.1 si 2.3.2 we present the numerical results of the tests and
an analysis of them.

12



2.4 Conclusions

In this work we have analysed the numerical performances of the MG and mod-
ified Picard preconditioned conjugated gradient methods for solving steady
state, linear / non-linear multicomponent diffusion - reaction equations in two
space dimensions. Different sets of Stefan-Maxwell / Fick diffusion coefficient
matrices and dimensionless chemical reaction rate constants were used. In
this work we have analysed the numerical performances of the MG and mod-
ified Picard preconditioned conjugated gradient methods for solving steady
state, linear / non-linear multicomponent diffusion-reaction equations in two
space dimensions. Different sets of Stefan-Maxwell / Fick diffusion coefficient
matrices and dimensionless chemical reaction rate constants were used.

The numerical experiments presented in the previous section can be sum-
marized as follows:

-for the linear test problem, the influence of cross-diffusion coupling on
the convergence rate and efficiency of the numerical algorithms depend on:
(1) the smoothing algorithm for the MG method; (2) the preconditioner and
the algorithm for the preconditioned conjugated gradient methods; the in-
crease in the cross-diffusion coupling decreases the convergence rate and the
efficiency; the decrease is negligible for MG-ALGS and GMRES (m) precondi-
tioned with CC (complete Choleski decomposition case), relatively significant
for BICGSTAB preconditioned with CC, GMRES (m) preconditioned with IC
(incomplete Choleski decomposition case) and MG PGS and significant for
the BICGSTAB preconditioned with IC, non-preconditioned GMRES (m) and
BICGSTAB;

-for the non-linear test problem the influence of cross diffusion coupling
on the convergence rate and efficiency of the numerical algorithms is less evi-
dent; for a given mesh and parameters value, the cross-diffusion coupling does
not influence significantly p and 7; the key parameter seems to be the di-
lution ratio, Zsp; high values of the dilution ratio decreases significantly the
Fick cross-diffusion coefficients and implicitly their influence on the numerical
performances of the algorithms.

3 Steady-State Multicomponent
Convection-Diffusion-Reaction Problems

The results presented in this chapter are published in [§].

3.1 Problem Formulation

Consider the steady, 2D, laminar flow of an incompressible fluid inside a slot
of thickness d in which the following isothermal, first order, complex chemical

13



reaction, takes place. Considering the density of the mixture constant, the

» _'i:l_>
A8 A A
ks
A . A
1 j:;

Figure 2: Chemical reaction scheme

dimensionless steady state concentrations profiles are given by a second-order
partial differential equations system

0Z: <~ .0 _ 0Z, 0 _ 0Z o
8$ == Z(GZ%DM@—; + 8—yDUa—yj) + RZ‘, 1 = 1,4, (39)
=1

=

ePeu(y)

(5,9) €9 = (0,1) x (0,1)

where ) p Und
u(y) 2(3/ y), € P,

Ry = —k1Zy — ksZy + ks Zy, Ry = kiZy — koZy + kyZs,

Ry = koZy — kyZs, Ry = ksZy — ksZy,

Z; = jfl"b are the dimensionless mass concentrations, Ay, is the mass concen-
tration of species A; at the channel inlet, i.e. x = 0, d is the slot thickness,

ki = ijij are the non - dimensional reaction rate constants, L is the length of
the channel, Pe is the Peclet number, U, is the constant rate of the uniform
flow, D;j(x,y) are the multicomponent Fick diffusion coefficients in the mass
average frame related to D,.y.

The boundary conditions are:

=0, Zy =1, Z; =0, i =234,

x=1, J;=0, i=14, (40)
y=0,J;=0, i=14,
y:17 ']i:O?Z:m?
where . A
02, 07,
Jz:;Dlj%’ or Jz:;Dlja_y7 Z:1747 (41)



Figure 3: Schematic representation of the problem domain

is the mass diffusion flux of the ith species with respect to the mass average
velocity.

The mathematical model previously descriebed represents the non-linear
test problem. The liniar test problem is obtained from the non-linear one by
considering the multicomponent Fick diffusion coefficients constants.

3.2 Numerical Methods
3.2.1 Problem Discretization

The spatial derivatives of equation (39) were discretized with the upwind finite
difference scheme on uniform grids with N x N points,

O=m <zy<..<zyi1<ay=1, x,=(k—1)h;
O=y1 <y <..<yna1<yn=1, y=(U—-1)h, k,1=0,N,

where h = ﬁ is the grid step size. The discrete approximation obtained for

equations (39) is

k+1,0 okl
ePeu(y))—|ePeu(y)| Z; ~ " —Z;

kil k-1,
ePeu(y))tlePeu(y)| Z; —Z;
2 h

2 h + =
k-&-%,l k+1,1 k,l k—%yl k,l k—1,1
_ N4 2Dyt g2 Dy T2 2y )
= 2.=1l€ 72 +
kIt ka1 k,l k=% k. k,l—1
D2z =z =D, 2(Z7=Z7" ) Lkl . _—
4 =i J J = ij J J ]+Ri77 221’4 (42)

The values of the diffusion coefficients were calculated as arithmetic aver-
ages of the grid point values.
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The method of calculation of the Fick coefficients values of the grid is
presented in this thesis in section 3.1.

For the linear test problems, the multicomponent Fick diffusion coefficients,
D;;, are constant. The discrete approximation obtained in this case is:

k41,0 Skl kL k—1,1
ePeu(y))—|ePeu(y)| Z; ~ " —%; + ePeu(y)tlePeu(y)| Z;" —Z; _
2 h 2 h
o k1,0 | kIl |, o k1,0, kl—1 o okl
. 4 € Zj +Zj +e Zj +Z]. —(24+2¢ )Z]. kl . T
_ijl Dlj h2 +RZ y Z—174 (43)

For both nonlinear and linear problems, the flux boundary conditions were
discretized with the central second order accurate scheme considering that the
solution can be symmetrically extrapolated with one grid point outside the
boundary.

3.2.2 Numerical Algorithms

We used the same nonlinear algorithms nonlinear multigrid (MG)[1] [9] and
modified Picard iteration, [12]. The point Gauss Seidel is not a good smooth-
ing algorithm for convection diffusion equations,[1] [9]. For this reason, the
only smoothing algorithm employed in this work is the alternating line Gauss
Seidel (ALGS) method. The nonlinear MG algorithm used is the classical Full
Approximation Storage (FAS) algorithm,[1] [9].

The structure of the MG cycle is: 1) cycle of type V; 2) smoothing by
ALGS; 3) two smoothing steps are performed before the coarse grid correction
and one after; 4) prolongation by bilinear interpolation for corrections; 5)
restriction of residuals by full weighting.

The modified Picard iteration, also called a fixed point method, for the
problem (39) is given by

A(Z™)§ 2™ = b(Z™) — A(Z™)Z™ (44)
Zm+1 _ Zm + 6Zm+1

where m is the iteration number Z™ = [Z7*, Z3*, Z§*, Z}*], iar Z, is the initial
estimate. Matrix A(Z™) is defined by

A AT AT AT (ki +ks)h2I 0 0 —ksh?l
A(zmy— | AR AB AR AL | kR keh®T  —k4h2T 0
AR AT AT AT 0 —koh2  kh2I 0

AT AT AT AT —ksh?] 0 0 ksh?l

(45)

where [ is the N(N —1) x N(N —1) identity matrix. The blocks A are N (N —
1) x N(N — 1) penta-diagonal matrices corresponding to the discretization
stencil

CN
CW CM CE (46)
CS
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CM = Dl€+ Ty EQDZ-ﬁ’l + DZZ+§ + DZ-’FE + hlePeu(y;)]
CE = _62ij+%vl + hEP@U(yl) _2|6P6u(yl)|
1
oW — _EQDZ—@Z B hePeu(yl) z\ePeu(yl)|
kl+2
CS =— , ON = =D
while the blocks A}, i # j are N(N —1) x N(N — 1) penta-diagonal matrices

corresponding to the discretization stencil

CM = 62D by 62D by ij*ﬁ 4 ijrl‘i
CFE = —¢ ’“* Low = el
CS:— kl CN__Dkl+2

1]
and they vary at every iterative step.
The linear solvers employed in the modified Picard iteration are the Mat-
lab R2010b implementations of the preconditioned BICGSTAB and precondi-
tioned restarted GMRES (m), and they are presented in Section 1.5. These
algorithms were also used to solve the linear test problem. Codes for the
modified Picard method and techniques of preconditioning are our own imple-
mentations in Matlab R2010b, respectively for MG in FORTRAN 77.

3.2.3 The Preconditioning Techniques

The linear system that should be solved in a Picard step or for the linear test
problem can be written as

AZ =B (47)
where
A A Aig A Z by
Ay Agg Ay Aoy Zy by
Asp Asg Asg Agy | Zs |’ b3
Ay A Ags Ap Ly by

A;; blocks are N(N — 1) x N(N — 1) square matrices and A;; blocks, i = 1,4
are no more symmetric and positive definite matrices. The classic construction
method of a preconditioning matrix for (47) is based on a LU decomposition,
complete or incomplete of the diagonal blocks:
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(if R; = 0, i = 1,4 we refer to a complete decomposition, otherwise we refer
to the incomplete case [14] [16] ).

We proposed a block preconditioning method for the system (47) which
uses the same matrix for any diagonal block. We consider A, matrix that
correspond to the 5-point stencil finite difference discretization of the equation

02z 0%z 0z
2
—(e*—+ — Peu(y)— =0 49
(@55 + 5.0+ ePeuly) 5 (19)
with the same boundary conditions with respect to Z;. We define the following
preconditioning matrix

Ag 00 0
0 Ay 0 0
P: ~ p—
0 0 Ay 0
L0 0 0 A
L0 00 U 0 0 0
0L 0 0 0 U 0 0
~ o o0 Lo 00U 0 (50)
|00 0 L 00 0 U

where Ay = Ag + h2I.

3.3 Numerical Results

The main objective of the present work is to analyze the influence of cross-
diffusion coupling on the numerical performances of the numerical algorithms.
In order to achieve this objective, we considered, for each sets of parameters,
the same four structures for the multi-component Fick diffusion matrix as in
the case of diffusion-reaction problem. We symbolized these cases by CPL1
(case (a)), CPL2 (case (b)), CPL3 (case (c)) and by CPL4 (case (d)). In these
cases, for the linear problem, cross-diffusion constantes are selected from the
Fick coefficients matrices presented in Appendix A of the thesis. For the non-
linear problem, the values of the Stefan-Maxwell coefficients used to calculate
the Fick coefficients are presented in Appendix B of the thesis. The perfor-
mances of the numerical algorithms are monitored by the average reduction
factor, p , and the efficiency, 7:

= — 51
" ol o
-~ ”7“631” 1 (52)
P~ Nresoll”™
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where res; = ||b;— A; Z;|| is the residue after 7 iterations, ||-|| euclidean vectorial
norm, W (the work) is the number of arithmetic operations per grid point and
iteration step.

In Sections 3.3.1 si 3.3.2 we present the numerical results of the tests and
an analysis of them.

3.4 Conclusions

This work continues our previous study and analyses the numerical perfor-
mances of the MG and modified Picard preconditioned GMRES methods for
solving steady-state, linear / non-linear multicomponent convection-diffusion-
reaction equations in two space dimensions.

The numerical experiments presented in the previous section can be sum-
marized as follows:

-for the linear test problem, the influence of cross-diffusion coupling on the
convergence rate and efficiency of the preconditioned GMRES (m) depend on
the values of the Pe numbers; for high values of the Pe numbers, i.e. Pe =
104, the influence of the cross-diffusion coupling on the convergence rate and
efficiency is not very significant; for moderate Pe number values, i.e. Pe = 100,
the cross-diffusion coupling influences the convergence rate and the efficiency
of the preconditioned GMRES (m); the convergence rate of MG-ALGS is less
sensitive to the influence of cross-diffusion coupling and Pe number values
compared to the preconditioned GMRES (m);

-for the non-linear test problem the influence of cross-diffusion coupling on
the convergence rate and efficiency of the numerical algorithms is more com-
plex; the cross-diffusion coupling does not practically influence the convergence
rate of the modified Picard iteration; however, the efficiency of the modified
Picard iteration decreases with the increase in the cross-diffusion coupling only
for the set B2 of the Stefan-Maxwell diffusion coefficients; the convergence rate
and efficiency of the MG algorithm depend on the cross-diffusion coupling; the
increase in the dilution ratio increases the convergence rate and efficiency of
both numerical algorithms; however, its effect is less significant compared to
the diffusion-reaction equations;

-for both linear and non-linear test problems, the increase in Pe decreases
the effects of cross-diffusion coupling on the numerical performances of the
algorithms. For high and very high values of the Pe number, the convection is
the dominant mechanism from both physical and numerical points of view.
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4 Time-Dependent Multicomponent Linear
Convection-Diffusion Problems

4.1 Problem Formulation

In this chapter we approach solving, through numerical methods, time-dependent
multicomponent convection-diffusion problems, the linear case. These prob-
lems are modeled by second-order partial differential equations, in which, in
addition to the spatial variables derivatives appears the time derivative of order
I. We considered as test problem a partial differential equations system that
models a time-dependent linear multicomponent convection-diffusion problem
with cu p = 2, 3,4 chemical species:

0Z; 0Z; P 0*Z;  0*Z; _
v E D.. 2 J J =1
or (v )83: ile Ox? oy? ) i=1Lp, (53)

Jj=1

(z,y) € (0,1) x (0,1), 7 € (0, Ttinar)

unde
e Z; dimensionless mass concentration of the chemical species i ,

e D;; Fick diffusion coefficients,

_ Uopd tD11
, Pe = Do T =g

1

o u(y) = —5(v°

— ).

Boundary conditions of the problem are:

1
y =0, Z; = Aisin(Cix)(1 + wisin(oy7)), © < X < 1
Zi=0 X<zx<1l,i=1,p
y=1, Z;=0,i=1,p

where J; =3 " | D;; Ba mass diffusion flux of the ith chemical species respect

to the mass average velocity. Initial conditions are:
7=0,y=0, Z; = Aisin(Ciz)(1 + w;sin(,7)), < X <1

siinrest Z; =0, 1,p.
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4.2 Numerical Results
4.2.1 Problem Discretization

The spatial derivatives of equations (53) were discretized with the central sec-
ond order accurate finite scheme on uniform grids with N x N points

D=z << ..<zy_1<axny=1, $k:<k]—1)h,
O=y <y <..<yvna<yvn=1y=10-1)h, k,l=0,N,

where h = ( L__ is the grid step size. The discret approximation is

WD

v

Figure 4: Domain Discretization

p ZELL gkl | gheLl ghltl gkl kil o
—ZDZ‘J‘(EQ ! h; 2 + -2 h; I )=0,i=1,p

j=1
(54)
For the case of three chemical species we obtain the following algebrical system

oz
8_7'1 + A2y = D ArZy + DioApZy + DisApZs

oz

(9_7'2 + ApZy = Doy ApZy + Do Ay Zy + Doz Ay Zs (55)
073

o + Ay Zs = D31 ApZy + Dag Ay Zy + D33 Ay Zs
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where A}, is a symmetric and positive definite matrix and we may suppose that
Ay, is skew-symmetric (A, = —A}) for central finite differences discretizations.[3]

4.2.2 Numerical Algoritms

In order to apply the splitting method to the problem (53) we proposed a
algebraic decomposition of the discretization matrix of the spatial variables in
a sum of two upper/lower triangular matrices.

DAy — Ay DAy, Di3Ay,
Dy Ay, Dy A — Ay, Da3 Ay, =
D31 A, D3y Ap, D33 A — Ap,
1(DuA, — Ap) Dy Ap Dy3Ap
0 (D — Ay) Das Ay, +
0 0 5(D3sAp — Ay)
LDy Ay — Ay) 0 0
Doy (DA — Ay) 0 , (56)
D31 Ay, D3y Ay, $(Ds3Ap — Ayp)

To ensure the stability of time integration scheme and of the splitting method
also, the two block triangular matrices should be positive definite. The ad-
vantage of using this decomposition is that algebraic systems that shoud be
solved are block triangular.

4.3 Positive Definiteness Analysis of Block Triangular
Matrices Classes

Because we want to solve multicomponent convection-diffusion problems with
3 or 4 chemical species we tried to determine the positive definiteness of 3 x 3
or 4 x 4 block triangular matrices classes to ensure the stability of splitting
method.

The results prezented in this section are published in [18].

4.3.1 Positive Definiteness of a Class of 3 x 3 Block Real Matrices

Proposition 2. Let us suppose that for a 3 x 3 real matrix
aix G2 13

A= 0 agx a (57)
0 0 ass

there exist a,b,c,d, e, f positive real numbers with the properties

lajs| < 2\/%7 lai3] < 2\/@, lags| < 2v/ef, (58)
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and
at+c<apn, bte<axn, d+ f<ass. (59)

Then, A from (57) is positive definite.

Let A be a 3n x 3n real matrix of the form

aA* 7"A Yo A
0 0 B A* 4+ 95 A

where A* and A are n x n blocks, A is symmetric and positive definite and
a, B1, B2, 01, 02, 71, V2, V3 are positive real numbers.

Proposition 3. If A* = A and A a symmetric and positive definite matriz
then matriz A from (60) is positive definite if there exist a,b,c,d, e, f positive
real numbers with the properties

Inl <2vab, |y <2Ved, |ys| <2y/ef,

and
at+c<a, b+e<pi+061, d+ f < Pa+ 0. (61)
Proposition 4. If there exists a positive real number C such that
A =C(A* + (A" (62)

then the matriz A from (60) is positive definite if there exist a,b,c,d, e, f pos-
itive real numbers with the properties

Il < 2Vab, |ya| < 2Ved, |ys| < 2v/ef,

and

o b1 B2
< < (L < (= .
a+c_%yb+e_%0+&)d+f_%0+®) (63)

4.3.2 Positive Definiteness of a Class of 4 x 4 Block Real Matrices
Proposition 5. Let us suppose that for a real matriz

ail G2 a1z a4
0 axp a3 an
0 0 a3z a34
0 0 0 g4

A= (64)

there exist a,b,c,d,e, f, g, h,i,j,k, 1 positive real numbers with the properties
laro| < 2Vab, |ais| < 2Ved, |ais| < 2+/ef, |ass| < 2+/gh,
lagg| < 2\/T, lasq| < 2\/H, a+c+e<a,

b+g+i<ayp, d+h+k<as, [f+j+1<au. (65)
Then, the matriz A from (64) is positive definite.
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Let now A be a 4n X 4n real matrix of the form

alA* 1A QYA QRYAN
o 0 BIA* + (SlA ’74A ”}/5A
A=1 4 0 BA* + A A (66)
0 0 0 BsA* + 05A

where A* and A are n xn blocks, A is a symmetric and positive definite matrix

Proposition 6. If A* = A and A is a symmetric and pozitive definite matrix
then matriz A from (66) is positive definite if there exist a,b,c,d, e, f, g, h,i,j, k,1
positive real numbers with the properties

| < 2Vab, |yl <2Ved, |y <2vef, |ul<2V9gh,
sl < 24/ij, |v6] < 2VEl, a+c+e<a,

b+g+i<pfi+6, d+h+k<Bo+0, f+j+1<05+0s. (67)
Proposition 7. If there exists a positive real number C such that
A = C(A* + (AN

then the matriz A from (66) is positive definite if there exist a,b,c,d, e, f, g, h, i,
7, k.l positive real numbers with the properties

m| < 2Vab, |yl <2Ved, |yl <2vef, |l <2v/gh,

sl < 20/47, |6l < 2V, a—l—c+e§%,
b+g+z’<ﬁ+51 dth+k<2y f+j+l<&+53. (68)
- 20 ’ - 20 ’ - 2C
We make the notations
1
Ay = §(D11Ah —A\p)
a=p1=Pr=p0
1 1 1
0 = §(D22 —Dyy) 6 = §(D33 —Dyy) 93 = §(D44 — Dyy)

Y1 =Dia v2=D13 v3=Dis 4= Doz 5 = Doy V5 = Dsa.

The upper triangular matrix from the relation (60) becames the upper
matrix of the decomposition (56). These presented propositions remain valid
for lower triangular matrices. We found a way to verify the positive definiteness
of the matrix obtained in the splitting method for the linear time-dependent
multicomponent convection-diffusion problems.
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4.4 Conclusions

We present the splitting method as a method that could be used to solve
the linear time-dependent multicomponent convection-diffusion problems. We
propose a decomposition of the spatial operator thus the algebraic systems ma-
trices obtained in a numerical time integration step are upper/lower triangular
matrices.

We propose a strategy to verify the positive definiteness of 2n x 2n, 3n x 3n
or 4n x 4n real triangular matrices classes that ensure the stability of the
splitting method.
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Final conclusions and future developments

In this thesis we approached solving of multicomponent mass transfer prob-
lems. These problems are modeled by second-order partial differential equa-
tions.

For selecting the appropriate numerical methods to solve the problems, we
classified the problems in the following classes:

e steady-state multicomponent diffusion-reaction equations, non-linear and
linear cases;

e steady-state multicomponent convection-diffusion-reaction equations, non-
linear and linear cases;

e time-dependent multicomponent convection-diffusion equations, linear
case.

Numerical methods for nonlinear problems in case of the first two classes
are the algorithms nonlinear multigrid (MG) and modified Picard. In the case
of linear problems the solvers are the iterative methods restarted GMRES (m)
and BiCGSTAB. We made an analysis of the influence of cross-diffusion cou-
pling of the chemical species on the numerical performances of the algorithms
used. We also made an analysis of the influence of the convection process
in the case of convection-diffusion-reaction equations.The numerical tests we
used several sets of values for the parameters of the problem.

We proposed, for the diffusion-reaction problems and also for diffusion-
convection-reaction problems, a preconditioner, based on one type of diagonal
block , that can be used within the preconditioning techniques to improve per-
formance of the iterative algorithms: restarted GMRES and BiCGSTAB. We
analyzed, from the theoretical point of view the character of good precondi-
tioner of the proposed matrix in case of the diffusion-reaction problem.

In the class of time-dependent multicomponent convection-diffusion prob-
lems, linear case, are characterized the convection-diffusion processes evolving
in time.

To solve these problems we have selected the splitting method. Within this
method, we have proposed a spatial operator decomposition, thus the obtained
algebraic systems matrices are upper/ lower triangular. We determined suffi-
cient conditions that ensure the stability of the method in the case of problems
with 3 or 4 chemical species.

As future concerns we want to apply the splitting method to solve the time-
dependent multicomponent convection-diffusion problems, linear case, for the
case with 3 or 4 species and we want to analyze the influence of cross-diffusion
of chemical species and of the convection process on the performances of the
splitting method.
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