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Abstract

Let f be a homogenous polynomial with complex coefficients. Let M(f) denotes
the corresponding Milnor algebra and V( f) the hypersurface defined by the equation
f = 0 in the complex projective space. The algebra M(f) is a graded C—algebra.
The aim of this Thesis is to determine the Hilbert-Poincaré series of the Milnor
algebra M (f) in terms of the geometry of the hypersurface V(f). The result is
classically known for the case when V'(f) is smooth. The goal of this research is to
discuss the case when V(f) has only isolated singularities.

First we construct a free resolution for the Milnor (or Jacobian) algebra M(f).
In particular, this resolution implies that the dimensions of the graded components
M (f)i, are constant for k > 2d — 3.

Then we show that the Milnor algebra of a nodal plane curve C' has such a be-
haviour if and only if all the irreducible components of C' are rational.

For the Chebyshev curves, all of these components are in addition smooth, hence
they are lines or conics and explicit factorizations are given in this case.

We give sharp lower bounds for the degree of the syzygies involving the partial
derivatives of a homogeneous polynomial defining a nodal hypersurface. The result
gives information on the position of the singularities of a nodal hypersurface expressed
in terms of defects or superabundances.

The case of Chebyshev hypersurfaces is considered as a test for this result and leads
to a potentially infinite family of nodal hypersurfaces having nontrivial Alexander
polynomials.
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The aim of this thesis is to investigate some objects from Algebraic Geometry,
namely the singular projective hypersurfaces, using primarily the technique of graded
Milnor algebras and some related invariants. There is an important piece of data
associated to any graded Milnor algebra, called the Hilbert-Poincaré series. For these
series, we introduce new invariants to understand and quantify the difference between
such a series and the corresponding series associated to a smooth hypersurface, say
of Fermat type.

We compute and discuss Hilbert-Poincaré series associated to Milnor algebras
for a lot of homogeneous polynomials (defining curves, surfaces, higher dimensional
hypersurfaces, both the smooth and the singular cases).

It is natural to ask how these invariants depend on the different local singularity
types (nodal, cuspidal and so on). One notices that the geometry can be very different
in the smooth and the singular cases.

Let S = Clxo, ..., z,,] be the graded ring of polynomials in zq, , ..., z,, with complex
coefficients and denote by S, the vector space of homogeneous polynomials in S of
degree r. For any polynomial f € S, we define the Jacobian ideal Jy C S as the ideal
spanned by the partial derivatives fy, ..., f, of f with respect to xy, ..., x,. Forn =2
we use z,y, z instead of xg, 1,z and f,, fy, f. instead of fy, fi, f2, in the same way
as in Eisenbud’s book [12].

The Hilbert-Poincaré series of a graded S-module M of finite type is defined by

HP(M)(t) =Y _ dim M;t*

k>0

and it is known, see for instance [13], to be a rational function of the form
P(M)(t)

(1 =ttt

. For k sufficiently large, dim M} = H(M)(k) is polynomial in k& and H (M) is called
the Hilbert polynomial of M.

For any polynomial f € S, we define the corresponding graded Milnor (or Jaco-
bian) algebra by

HP(M)(t) =

M = M(f) = S/J;.

In fact, such a Milnor algebra can be seen (up to a twist in grading) as the first (or
the last) homology (or cohomology) of the Koszul complex of the partial derivatives
foy - fn in S, see [5] or [6], Chapter 6, as well as our discussion at the beginning of
Chapter 4.

The study of such Milnor algebras is related to the singularities of the correspond-
ing projective hypersurface D : f = 0, see [5] and it is conveniently expressed by
using the Hilbert-Poincaré series.

In other words, to determine the series HP(M)(t) it is enough to determine the
polynomial P(M)(t). The most complete way to understand a Milnor algebra M ( f)

is to construct a free resolution for M (f). However, these are very difficult to obtain
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in general, the only case treated completely is the case of Chebyshev curves, see

Chapter 3.
This thesis are based on join works [§], [9], [10] and derives mainly from the paper

[5]. One of our research aims will be to improve the bounds in Choudary-Dimca

Theorem from [5] to get sharp estimates in many cases.
Choudary-Dimca Theorem Let V(f): f = 0 a hypersurface in P" with only
isolated singularities. For any ¢ > T 4+ 1,7 = (n + 1)(d — 2), one has

dimM(f), =7(V(f)) = > 7(V(f),a;)

Jj=lp

where 7(V(f)) is the global Tjurina number of the hypersurface V(f). In particular,
the Hilbert polynomial H (M (f)) is constant and this constant is 7(V(f)).

Singular hypersurface series

dimMif)q

0 2 4 8 T+1 7 10
It gives the asymptotic behavious of the Hilbert Poincaré series HP(M(f)) for poly-
nomials f defining a hypersurface with isolated singularities in the projective space
P,

If the hypersurface is smooth (say of Fermat type), the constant is zero and the
Hilbert-Poincaré series is polynomial.

Fermat series (n=2, d=4)
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The behavior of Hilbert-Poincaré series for some singular hypersurfaces (see be-
low Chebyshev hypersurfaces) are compared with smooth case, and here Choudary-

Dimca Theorem is essential.
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Fermat and Chebyshev series (n=2, d=4)
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These examples suggest that the stabilization of the dimensions dim M ( f), occurs
earlier than predicted by Choudary-Dimca Theorem.

In general, we consider the following simplified approach, which it is more likely
to work for large classes of singular hypersurfaces. For a hypersurface D : f = 0 in
P" with isolated singularities we introduce four integers, as follows:

Definition
(i) The coincidence threshold ct(D) defined as

ct(D) = max{q : dim M (f), = dim M(fs); for all & < ¢},

with f, a homogeneous polynomial in S of degree d = deg f such that D, : f, =0 is
a smooth hypersurface in P".
(ii) The stability threshold st(D) defined as

st(D) = min{q : dim M(f), = 7(D) for all k > ¢}

where 7(D) is the total Tjurina number of D, i.e. the sum of all the Tjurina numbers
of the singularities of D.
(iii) The minimal degree of a nontrivial syzygy mdr(D) defined as

mdr(D) = minfg = H'(K*())gin # 0}
where K*(f) is the Koszul complex of fo, ..., f, with the natural grading defined in

[9].
(iv) Let Dgmooth © fsmooth = 0 be a smooth hypersurface of the same degree d in P™.
We define the integer def(D) =defect of D as

def(D) = the first not zero coefficient of the difference S(t) — F'(¢)

where S(t) (resp. F'(t) are the corresponding Hilbert-Poincaré series of Milnor Alge-

bras M(f) (resp. M (fsmooth)-
Recall also that, for a finite set of points N' C P", we denote by

def S,,(N) = |N| — codim{h € S,, | h(a) = 0 for any a € N'},

the defect (or superabundance) of the linear system of polynomials in S, vanishing
at the points in N, see [0], p. 207. This positive integer is called the failure of N to

impose independent conditions on homogeneous polynomials of degree m in [11].
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Moreover it is easy to see that one has
ct(D) = mdr(D) +d — 2 and S(t) — F(t) = def(D)t*®*! & higher order terms
with
def(D) = def S(n+1)(d—2)—ct(D)—1<N)-

Note that computing the Hilbert-Poincaré series of the Milnor algebra M (f) us-
ing an appropriate software is much easier than computing the defects def Si(N),
because the Jacobian ideal comes with a given set of (n + 1) generators fo, ..., fn,
while the ideal I of polynomials vanishing on A has not such a given generating set.
However, it is the defects def S,(N'), who describe the position of the singularities
of D in P and which occur in many geometric problems, giving information on the

syzygies among fo, ..., fn-

The first main result in Chapter 3 gives such a resolution for the Milnor (or
Jacobian) algebra M(f) of a complex projective Chebyshev plane curve C' : f =
Tu(x,y,z) = 0 of degree d. This resolution depends on the parity of d and implies
that the dimensions of the graded components M (f)x are constant for k > 2d — 3.

Conversely, we show that the Milnor algebra of a nodal plane curve C' has such a
behaviour if and only if all the irreducible components of C' are rational.

For the Chebyshev curves, all of these components are in addition smooth, hence
they are lines or conics and explicit factorizations are given in this case.

When the hypersurface D : f = 0 is smooth, then the partial derivatives fy, ..., f,
in S form a regular sequence in S and hence the only syzygies among them are
the trivial ones, i.e. those in the module of Koszul relations K R(f) defined at the
beginning of Chapter 4. To study all such syzygies in general, it is convenient to
work with the Koszul complex of the partial derivatives and to concentrate on the
essential relations.

In Chapter 4, we discuss in detail the syzygies of nodal hypersurfaces. For
instance we show that for a nodal curve there are no nontrivial relations

Ry : afy +bfy+cf.=0

with a,b, ¢ homogeneous of degree m < d — 2 and we describe the number of in-
dependent relations of degree m = d — 2 in terms of the irreducible factors f; of
f.
We give sharp lower bounds for the degree of the syzygies involving the partial
derivatives of a homogeneous polynomial defining a nodal hypersurface. The result
gives information on the position of the singularities of a nodal hypersurface expressed
in terms of defects or superabundances.

When D is a degree d nodal hypersurface in P, with N as singular set, it follows
that one has

def S, (N) # 0 for k < T — ct(D) and def Sy(N) =0 for k > T — ct(D)
and also
def Sy(N) = |N| — dim Sy, for k < T — st(D)
4



where T'= (n + 1)(d — 2).

In Chapter 5 we consider the special case of Chebyshev hypersurfaces, which
are classical examples of nodal hypersurfaces with many singularities. They were
introduced by S. V. Chmutov to construct complex projective hypersurfaces with a
large number of nodes, i.e. Aj-singularities, see [I], volume 2, p. 419 and [4].

For such hypersurfaces we compute the number of nodes and the stability thresh-
hold st(D), which is very hard to determine in general. We state as an open problem
here, giving an explicit value for the coincidence threshhold ct(D) of Chebyshev hy-
persurfaces. This conjecture is checked for a lot of cases in the Appendix B, but it
seems to be very hard to prove theoretically.

In Chapter 6, we show a surprising relation between some topological invariants
of singular projective hypersurfaces, namely the Alexander polynomials, and our
algebraic invariants coming from the graded Milnor algebra M (f).

The Alexander polynomials of singular hypersurfaces were introduced by A. Lib-
gober [19], [20] and are very subtle invariants of the topology of the complement U.
However the number of classes of hypersurfaces where these Alexander polynomials
are not trivial is rather limited, and this explains the interest of our new (potentially
infinite number of ) examples.

The first result, was known since a long time. However, it is only due to our
recent work that the implication of this Theorem became clear. It shows that on one
hand the lower bounds on the syzygies degree obtained in the general case are best
possible for curves and 3-dimensional Chebyshev hypersurfaces of degree < 20 (and
probably for all odd dimensional Chebyshev hypersurfaces, and on the other hand
it gives some topological applications, by computing the Alexander polynomials of
Chebyshev hypersurfaces of dimension 2 and 3 with degree d < 20.

We list in Chapter 7 computations for some of the known hypersurfaces, with
many configurations of singularities, not only nodes A;. Many of our results were
suggested by these computations, build in a databases, useful to extract new infor-
mations. Here we discuss more or less classical exemples of singular plane curves,
surfaces in P? with many nodes, and a number of higher dimensional hypersurfaces.
The information collected here is likely to be very useful for future research in this
area.

To the best of our knowledge, the only general formulas about Hilbert-Poincaré
series of the Milnor algebra associated to smooth hypersurface is the following:

(1— td71)n+1

=(1+t+t2+... +tH)Hh

We can write F(t) in the form: F(t) = YS.i=¢ at*, where T = (d — 2)(n + 1).
In Appendix A, we show explicit formulas for the coefficients a;. We also discuss
recent work by Huh [I7] and show that we get some log-concave sequences in our

setting as well.
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In Appendix B, we collect the computations for Chebyshev hypersurfaces in
P* n = 2,..., with degree d = 3,...,10, which were used in relation with our
Conjectures from Chapter 5 and 6.

To compute easily and make large scale simulations, we build our procedures,
written in the Singular language and we present them in Appendix C.

In conclusion, our new main results are in three directions:

(A) The study of Hilbert-Poincaré series of the Milnor algebra M (f) for the Cheby-
shev hypersurfaces: completely done for curves in P? via the construction of a free
resolution, and some results for P" in particular a formula for the stabilization thresh-
old st(D).

(B) The study of the syzygies involving the partial derivatives of a homogeneous
polynomial defining a nodal hypersurface: lower bounds for the essential syzygies
and the relation with the defects of linear systems vanishing at the nodes. These
lower bounds are sharp for odd dimensional nodal hypersurfaces, as shown by the
example of Chebyshev hypersurfaces.

(C) The study of the relations between Alexander polynomial of a nodal hypersurface

D and minimal degree of essential syzygies for D, in particular the relation with the
defect def(D) defined above.

Majority of these results has been allready published in the following articles: [8],
(91, [10J:

e A.Dimca and G.Sticlaru, Chebyshev curves, free resolutions and rational curve ar-
rangements, Math. Proc. Camb. Phil. Soc. (2012), doi:10.1017/50305004112000138.

e A.Dimca and G.Sticlaru, Koszul complexes and pole order filtrations, (2011),
arXiv:1108.3976.

e A.Dimca and G.Sticlaru, On the syzygies and Alexander polynomials of nodal
hypersurfaces, Mathematische Nachrichten (2012), doi:10.1002/201100326.

The use of computer algebra systems is essential for the research done in relation
to the main results of this thesis. It will become clear that without computer algebra
systems like Singular, developed in Kaiserslautern University, [26] we could not have
obtain the main results of this thesis at all.

Numerical experiments with the CoCoA package [25] and the Singular
package [26] have played a key role in the completion of this work.
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