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Abstract

Let f be a homogenous polynomial with complex coefficients. Let M(f) denotes
the corresponding Milnor algebra and V (f) the hypersurface defined by the equation
f = 0 in the complex projective space. The algebra M(f) is a graded C−algebra.
The aim of this Thesis is to determine the Hilbert-Poincaré series of the Milnor
algebra M(f) in terms of the geometry of the hypersurface V (f). The result is
classically known for the case when V (f) is smooth. The goal of this research is to
discuss the case when V (f) has only isolated singularities.
First we construct a free resolution for the Milnor (or Jacobian) algebra M(f).

In particular, this resolution implies that the dimensions of the graded components
M(f)k are constant for k ≥ 2d− 3.

Then we show that the Milnor algebra of a nodal plane curve C has such a be-
haviour if and only if all the irreducible components of C are rational.
For the Chebyshev curves, all of these components are in addition smooth, hence

they are lines or conics and explicit factorizations are given in this case.
We give sharp lower bounds for the degree of the syzygies involving the partial

derivatives of a homogeneous polynomial defining a nodal hypersurface. The result
gives information on the position of the singularities of a nodal hypersurface expressed
in terms of defects or superabundances.

The case of Chebyshev hypersurfaces is considered as a test for this result and leads
to a potentially infinite family of nodal hypersurfaces having nontrivial Alexander
polynomials.
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The aim of this thesis is to investigate some objects from Algebraic Geometry,
namely the singular projective hypersurfaces, using primarily the technique of graded
Milnor algebras and some related invariants. There is an important piece of data
associated to any graded Milnor algebra, called the Hilbert-Poincaré series. For these
series, we introduce new invariants to understand and quantify the difference between
such a series and the corresponding series associated to a smooth hypersurface, say
of Fermat type.

We compute and discuss Hilbert-Poincaré series associated to Milnor algebras
for a lot of homogeneous polynomials (defining curves, surfaces, higher dimensional
hypersurfaces, both the smooth and the singular cases).

It is natural to ask how these invariants depend on the different local singularity
types (nodal, cuspidal and so on). One notices that the geometry can be very different
in the smooth and the singular cases.

Let S = C[x0, ..., xn] be the graded ring of polynomials in x0, , ..., xn with complex
coefficients and denote by Sr the vector space of homogeneous polynomials in S of
degree r. For any polynomial f ∈ Sr we define the Jacobian ideal Jf ⊂ S as the ideal
spanned by the partial derivatives f0, ..., fn of f with respect to x0, ..., xn. For n = 2
we use x, y, z instead of x0, x1, x2 and fx, fy, fz instead of f0, f1, f2, in the same way
as in Eisenbud’s book [12].

The Hilbert-Poincaré series of a graded S-module M of finite type is defined by

HP (M)(t) =
∑

k≥0

dimMkt
k

.
and it is known, see for instance [13], to be a rational function of the form

HP (M)(t) =
P (M)(t)

(1− t)n+1
.

. For k sufficiently large, dimMk = H(M)(k) is polynomial in k and H(M) is called
the Hilbert polynomial of M.

For any polynomial f ∈ Sr we define the corresponding graded Milnor (or Jaco-
bian) algebra by

M = M(f) = S/Jf .

.
In fact, such a Milnor algebra can be seen (up to a twist in grading) as the first (or

the last) homology (or cohomology) of the Koszul complex of the partial derivatives
f0, ..., fn in S, see [5] or [6], Chapter 6, as well as our discussion at the beginning of
Chapter 4.

The study of such Milnor algebras is related to the singularities of the correspond-
ing projective hypersurface D : f = 0, see [5] and it is conveniently expressed by
using the Hilbert-Poincaré series.

In other words, to determine the series HP (M)(t) it is enough to determine the
polynomial P (M)(t). The most complete way to understand a Milnor algebra M(f)
is to construct a free resolution for M(f). However, these are very difficult to obtain
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in general, the only case treated completely is the case of Chebyshev curves, see
Chapter 3.

This thesis are based on join works [8], [9], [10] and derives mainly from the paper
[5]. One of our research aims will be to improve the bounds in Choudary-Dimca
Theorem from [5] to get sharp estimates in many cases.

Choudary-Dimca Theorem Let V (f) : f = 0 a hypersurface in P
n with only

isolated singularities. For any q ≥ T + 1, T = (n+ 1)(d− 2), one has

dimM(f)q = τ(V (f)) =
∑

j=1,p

τ(V (f), aj)

where τ(V (f)) is the global Tjurina number of the hypersurface V (f). In particular,
the Hilbert polynomial H(M(f)) is constant and this constant is τ(V (f)).

It gives the asymptotic behavious of the Hilbert Poincaré series HP (M(f)) for poly-
nomials f defining a hypersurface with isolated singularities in the projective space
P
n.
If the hypersurface is smooth (say of Fermat type), the constant is zero and the

Hilbert-Poincaré series is polynomial.

The behavior of Hilbert-Poincaré series for some singular hypersurfaces (see be-
low Chebyshev hypersurfaces) are compared with smooth case, and here Choudary-
Dimca Theorem is essential.
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These examples suggest that the stabilization of the dimensions dimM(f)q occurs
earlier than predicted by Choudary-Dimca Theorem.

In general, we consider the following simplified approach, which it is more likely
to work for large classes of singular hypersurfaces. For a hypersurface D : f = 0 in
P
n with isolated singularities we introduce four integers, as follows:

Definition

(i) The coincidence threshold ct(D) defined as

ct(D) = max{q : dimM(f)k = dimM(fs)k for all k ≤ q},

with fs a homogeneous polynomial in S of degree d = deg f such that Ds : fs = 0 is
a smooth hypersurface in P

n.
(ii) The stability threshold st(D) defined as

st(D) = min{q : dimM(f)k = τ(D) for all k ≥ q}

where τ(D) is the total Tjurina number of D, i.e. the sum of all the Tjurina numbers
of the singularities of D.
(iii) The minimal degree of a nontrivial syzygy mdr(D) defined as

mdr(D) = min{q : Hn(K∗(f))q+n 6= 0}

where K∗(f) is the Koszul complex of f0, ..., fn with the natural grading defined in
[9].
(iv) Let Dsmooth : fsmooth = 0 be a smooth hypersurface of the same degree d in P

n.
We define the integer def(D) =defect of D as

def(D) = the first not zero coefficient of the difference S(t)− F (t)

where S(t) (resp. F (t) are the corresponding Hilbert-Poincaré series of Milnor Alge-
bras M(f) (resp. M(fsmooth).
Recall also that, for a finite set of points N ⊂ P

n, we denote by

def Sm(N ) = |N | − codim{h ∈ Sm | h(a) = 0 for any a ∈ N},

the defect (or superabundance) of the linear system of polynomials in Sm vanishing
at the points in N , see [6], p. 207. This positive integer is called the failure of N to
impose independent conditions on homogeneous polynomials of degree m in [11].
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Moreover it is easy to see that one has

ct(D) = mdr(D) + d− 2 and S(t)− F (t) = def(D)tct(D)+1 + higher order terms

with

def(D) = def S(n+1)(d−2)−ct(D)−1(N ).

Note that computing the Hilbert-Poincaré series of the Milnor algebra M(f) us-
ing an appropriate software is much easier than computing the defects def Sk(N ),
because the Jacobian ideal comes with a given set of (n + 1) generators f0, ..., fn,
while the ideal I of polynomials vanishing on N has not such a given generating set.
However, it is the defects def Sk(N ), who describe the position of the singularities
of D in P

n and which occur in many geometric problems, giving information on the
syzygies among f0, ..., fn.

The first main result in Chapter 3 gives such a resolution for the Milnor (or
Jacobian) algebra M(f) of a complex projective Chebyshev plane curve C : f =
Td(x, y, z) = 0 of degree d. This resolution depends on the parity of d and implies
that the dimensions of the graded components M(f)k are constant for k ≥ 2d− 3.
Conversely, we show that the Milnor algebra of a nodal plane curve C has such a

behaviour if and only if all the irreducible components of C are rational.
For the Chebyshev curves, all of these components are in addition smooth, hence

they are lines or conics and explicit factorizations are given in this case.

When the hypersurface D : f = 0 is smooth, then the partial derivatives f0, ..., fn
in S form a regular sequence in S and hence the only syzygies among them are
the trivial ones, i.e. those in the module of Koszul relations KR(f) defined at the
beginning of Chapter 4. To study all such syzygies in general, it is convenient to
work with the Koszul complex of the partial derivatives and to concentrate on the
essential relations.

In Chapter 4, we discuss in detail the syzygies of nodal hypersurfaces. For
instance we show that for a nodal curve there are no nontrivial relations

Rm : afx + bfy + cfz = 0

with a, b, c homogeneous of degree m < d − 2 and we describe the number of in-
dependent relations of degree m = d − 2 in terms of the irreducible factors fj of
f .

We give sharp lower bounds for the degree of the syzygies involving the partial
derivatives of a homogeneous polynomial defining a nodal hypersurface. The result
gives information on the position of the singularities of a nodal hypersurface expressed
in terms of defects or superabundances.

When D is a degree d nodal hypersurface in P
n, with N as singular set, it follows

that one has

def Sk(N ) 6= 0 for k < T − ct(D) and def Sk(N ) = 0 for k ≥ T − ct(D)

and also

def Sk(N ) = |N | − dimSk for k ≤ T − st(D)
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where T = (n+ 1)(d− 2).

In Chapter 5 we consider the special case of Chebyshev hypersurfaces, which
are classical examples of nodal hypersurfaces with many singularities. They were
introduced by S. V. Chmutov to construct complex projective hypersurfaces with a
large number of nodes, i.e. A1-singularities, see [1], volume 2, p. 419 and [4].
For such hypersurfaces we compute the number of nodes and the stability thresh-

hold st(D), which is very hard to determine in general. We state as an open problem
here, giving an explicit value for the coincidence threshhold ct(D) of Chebyshev hy-
persurfaces. This conjecture is checked for a lot of cases in the Appendix B, but it
seems to be very hard to prove theoretically.

In Chapter 6, we show a surprising relation between some topological invariants
of singular projective hypersurfaces, namely the Alexander polynomials, and our
algebraic invariants coming from the graded Milnor algebra M(f).
The Alexander polynomials of singular hypersurfaces were introduced by A. Lib-

gober [19], [20] and are very subtle invariants of the topology of the complement U .
However the number of classes of hypersurfaces where these Alexander polynomials
are not trivial is rather limited, and this explains the interest of our new (potentially
infinite number of) examples.

The first result, was known since a long time. However, it is only due to our
recent work that the implication of this Theorem became clear. It shows that on one
hand the lower bounds on the syzygies degree obtained in the general case are best
possible for curves and 3-dimensional Chebyshev hypersurfaces of degree ≤ 20 (and
probably for all odd dimensional Chebyshev hypersurfaces, and on the other hand
it gives some topological applications, by computing the Alexander polynomials of
Chebyshev hypersurfaces of dimension 2 and 3 with degree d ≤ 20.

We list in Chapter 7 computations for some of the known hypersurfaces, with
many configurations of singularities, not only nodes A1. Many of our results were
suggested by these computations, build in a databases, useful to extract new infor-
mations. Here we discuss more or less classical exemples of singular plane curves,
surfaces in P

3 with many nodes, and a number of higher dimensional hypersurfaces.
The information collected here is likely to be very useful for future research in this
area.

To the best of our knowledge, the only general formulas about Hilbert-Poincaré
series of the Milnor algebra associated to smooth hypersurface is the following:

F (t) = HP (M(fs)) =
(1− td−1)n+1

(1− t)n+1
= (1 + t+ t2 + . . .+ td−2)n+1.

We can write F (t) in the form: F (t) =
∑k=T

k=0 akt
k, where T = (d− 2)(n+ 1).

In Appendix A, we show explicit formulas for the coefficients ak. We also discuss
recent work by Huh [17] and show that we get some log-concave sequences in our
setting as well.
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In Appendix B, we collect the computations for Chebyshev hypersurfaces in
P
n, n = 2, . . . , with degree d = 3, . . . , 10, which were used in relation with our

Conjectures from Chapter 5 and 6.

To compute easily and make large scale simulations, we build our procedures,
written in the Singular language and we present them in Appendix C.

In conclusion, our new main results are in three directions:

(A) The study of Hilbert-Poincaré series of the Milnor algebra M(f) for the Cheby-
shev hypersurfaces: completely done for curves in P

2 via the construction of a free
resolution, and some results for Pn in particular a formula for the stabilization thresh-
old st(D).

(B) The study of the syzygies involving the partial derivatives of a homogeneous
polynomial defining a nodal hypersurface: lower bounds for the essential syzygies
and the relation with the defects of linear systems vanishing at the nodes. These
lower bounds are sharp for odd dimensional nodal hypersurfaces, as shown by the
example of Chebyshev hypersurfaces.

(C) The study of the relations between Alexander polynomial of a nodal hypersurface
D and minimal degree of essential syzygies for D, in particular the relation with the
defect def(D) defined above.

Majority of these results has been allready published in the following articles: [8],
[9], [10]:

• A.Dimca and G.Sticlaru, Chebyshev curves, free resolutions and rational curve ar-
rangements, Math. Proc. Camb. Phil. Soc. (2012), doi:10.1017/S0305004112000138.

• A.Dimca and G.Sticlaru, Koszul complexes and pole order filtrations, (2011),
arXiv:1108.3976.

• A.Dimca and G.Sticlaru, On the syzygies and Alexander polynomials of nodal
hypersurfaces, Mathematische Nachrichten (2012), doi:10.1002/201100326.

The use of computer algebra systems is essential for the research done in relation
to the main results of this thesis. It will become clear that without computer algebra
systems like Singular, developed in Kaiserslautern University, [26] we could not have
obtain the main results of this thesis at all.

Numerical experiments with the CoCoA package [25] and the Singular

package [26] have played a key role in the completion of this work.
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[2] M. Bizzarri, Rational Parameterization of Algebraic Curves, Bachelor Thesis, Pilsen, 2008
[3] Bruce, J. W.; Wall, C. T. C. (1979), ”On the classification of cubic surfaces”, The Journal of

the London Mathematical Society, 19 (2), 245-256.
[4] S.V.Chmutov, Examples of projective surfaces with many singularities, J.Algebraic Geom. 1

(1992), 191–196. (document)
[5] A. D. R. Choudary, A. Dimca, Koszul complexes and hypersurface singularities, Proc. Amer.

Math. Soc. 121 (1994), 1009-1016. (document)
[6] A. Dimca, Singularities and Topology of Hypersurfaces, Universitext, Springer-Verlag, 1992.

(document)
[7] A. Dimca, Topics on Real and Complex Singularities, Vieweg Advanced Lecture in Mathemat-

ics, Friedr. Vieweg und Sohn, Braunschweig, 1987,242+xvii pp.
[8] A.Dimca and G.Sticlaru, Chebyshev curves, free resolutions and rational curve arrangements,

Math. Proc. Camb. Phil. Soc. (2012), doi:10.1017/S0305004112000138. (document)
[9] A.Dimca and G.Sticlaru, Koszul complexes and pole order filtrations, arXiv:1108.3976. (docu-

ment)
[10] A.Dimca and G.Sticlaru, On the syzygies and Alexander polynomials of nodal hypersurfaces,

arXiv:1111.1533, to appear in Mathematische Nachrichten. (document)
[11] D. Eisenbud, M. Green, and J. Harris, Cayley-Bacharach theorems and conjectures, Bull.

Amer. Math. Soc. 33 (1996), 295–324. (document)
[12] D. Eisenbud, The Geometry of Syzygies: A Second Course in Algebraic Geometry and Com-

mutative Algebra, Graduate Texts in Mathematics, Vol. 229, Springer 2005. (document)
[13] G.-M. Greuel, G. Pfister, A Singular Introduction to Commutative Algebra (with contributions

by O. Bachmann, C. Lossen, and H. Schnemann). Springer-Verlag, 2002 (second edition 2007).
(document)

[14] Ph. Griffith, J. Harris, Principles of Algebraic Geometry. Wiley, New York (1978)
[15] Ph. Griffiths, On the period of certain rational integrals I, II, Ann. Math. 90(1969), 460-541.
[16] R. Hartshorne, Algebraic Geometry, GTM 52, Springer 1977.
[17] J. Huh, Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs,

J. Amer. Math. Soc. 25 (2012), 907-927. (document)
[18] P.-V. Koseleff, D. Pecker, F. Rouillier, Computing Chebyshev knots diagrams,

arXiv:1001.5192v2.
[19] A. Libgober, Alexander invariants of plane algebraic curves. Proc. Symp. Pure Math., 40, Part

2, 135–144 (1983). (document)
[20] A. Libgober, Homotopy groups of the complements to singular hypersurfaces, II, Annals of

Math., 139(1994), 117–144. (document)
[21] Milnor J., Singular points of complex hypersurfaces, Priceton Univ. Press., 1968.
[22] Carlos Rito, On the computation of singular plane curves and quartic surfaces

arXiv:0906.3480v3, 31 May, 2010.
[23] R. Kloosterman, Cuspidal plane curves, syzygies and a bound on the MW-rank,

arXiv:1107.2043v2.
[24] Y. Xu, Lagrange interpolation on Chebyshev points of two variables, J. Approx. Theory, 87

(1996), p. 220–238.
[25] CoCoA: a system for doing Computations in Commutative Algebra. Available at

http://cocoa.dima.unige.it (document)
[26] Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H.: Singular 3-1-5 — A computer

algebra system for polynomial computations.http://www.singular.uni-kl.de (2012). (document)
[27] Wall, C.T.C., Notes on the classification of singularities, Proc. London Math. Soc. 48 (1984)

461-513.

7



[28] http://www.oliverlabs.net
[29] http://enriques.mathematik.uni-mainz.de/docs/Eflaechen.shtml
[30] http://mathworld.wolfram.com/topics/AlgebraicSurfaces.html
[31] http://www.singsurf.org/parade/Cubics.html

8


	References

