

**University "Ovidius" Constanța
Faculty of Medicine**

**PhD THESIS
ABSTRACT**

**Comparative evolution of patients
operated on for obesity according to
the technique used**

**Scientific Coordinator:
PROF. UNIV. DR. SÂRBU Vasile**

PhD: DR. ADRIANA RAICU

CONSTANȚA 2013

Content

I. Current status of the problem

1. Introduction and thanks	6
2. Ontogenesis of the stomach and small intestine	7
2.1 Stomach ontogenesis.....	7
2.2 Intestine ontogenesis.....	8
3. Anatomy of the stomach and small intestine	12
3.1 Anatomy of the stomach	12
3.1.1 Cardia	12
3.1.2 Pyloric orifice	13
3.1.3 Gastric curves	13
3.1.4 Gastric walls	14
3.1.5 The interior of the stomach	15
3.1.6 Gastric microstructure	15
3.1.7 Gastric glands	15
3.1.8 Stomach layers	18
3.1.9 Vascularisation of the stomach.....	19
3.1.9 Innervation of the stomach vasculature	21
3.2 Anatomy of the small intestine	22
3.2.1 Anatomy of the duodenum	22
3.2.2 Anatomy of jejunum and ileon.....	24
4. Physiology of gastric and intestinal digestion	25
4.1 Secretion.....	25
4.1.1 Exocrine function of the stomach.....	25
4.1.2 Endocrine function of the stomach.....	27
4.2 Physiology of the small intestine	28
4.2.1 Digestion in the small intestine	29
4.2.2 Absorption in the small intestine	34
4.3 Digestion and absorption of food	35
4.3.1 Digestion and absorption of carbohydrates	35
4.3.2 Digestion and absorption of proteins	36
4.3.3 Digestion and absorption of lipids	37
4.3.4 Digestion and absorption of vitamins	38
4.3.5 Absorption of water and electrolytes	39
4.3.6 Mineral Absorption	40
4.3.7 Absorption of bile acids	42
5. Obesity.....	43
5.1 Definition and methods of measurement.....	43
5.2 Physiologic regulation of energy balance	44
5.3 The adipocyte and adipose tissue	45
5.4 Obesity etiology.....	46
5.5 Obesity pathogenesis.....	50

5.6 Pathological consequences of obesity.....	50
5.6.1 Insulin resistance and type II diabetes	50
5.6.2 Effect on reproductive system	50
5.6.3 Effect on cardiovascular system	51
5.6.4 Pulmonary effect	51
5.6.5 Gallstone formation.....	51
5.6.6 Cancer	51
5.6.7 Effect on bones, joints, skin tissue	51
6 . Obesity treatment	53
6.1 Nonpharmacological treatment	53
6.1.1 Nutrition and diet	53
6.1.2 Physical activity	54
6.1.3 Changing in behavior	54
6.1.4 Pharmacotherapy	55
6.2 Surgical treatment	56
6.2.1 Criteria for selection of the surgical patients.....	56
6.2.2 Indications for bariatric surgery	57
6.2.3 Malabsorbive methods.....	59
I. Jejunoileal bypass	59
II . Biliopancreatic diversion	60
III . Biliopancreatic diversion and " duodenal switch"	61
6.2.4 Restrictive methods	63
I. Adjustable gastric banding.....	63
II. Vertical gastric banding	65
III. Gastric bypass with gastrojejunral anastomosis (Roux-en-Y loop).....	66
6.2.5 Postoperative management.....	70
II. Personal Research	72
1. Introduction	73
2. Material and methode.....	74
3. Patient information.....	102
4. Resoult.....	116
5.Discutions.....	164
6. Conclusions.....	173
III. References.....	176
IV. Appendix (list of patients).....	182

Special thanks

To Professor Dr. Vasile Sârbu for all his support over the years of the study, Prof. Dr. Fabrice Corbisier, Chief of Surgical Clinic 'Grand Hospital of Charleroi' for letting us to include in this paper patients operated in his clinic, and to Professor Univ. Dr. Nicolae Angelescu Professor Univ. Dr. Mircea Beuran, Professor Univ. Dr. Petru Bordei, Professor Univ. Dr Octavian Unc, for all the help and all the interesting discussions held with them. Thanks also to the staff of the Faculty of Medicine, Constanta and Administration, which proved very helpful.

Keywords:

Obesity, morbid obesity, bariatric surgery, gastric band, adjustable gastric banding, gastric sleeve, longitudinal gastrectomy, gastric bypass, co-morbidities, hypertension, type II diabetes, dyslipidemia, metabolic syndrome, IMC, BMI, laparoscopic gastric

bypass, laparoscopic band, gastric fistula, stenosis, slippage, erosion, weight loss, depression, quality of life.

PhD thesis entitled '**Comparative evolution of the patients operated on for obesity according to the technique used**' shows an interesting and actual topics, morbid obesity becoming more and more common in the population, reaching worldwide epidemic character (1).

The thesis is divided into a general part, '**the current state of the problem**', which deals with issues of *ontogeny, anatomy and physiology of the stomach and small intestine*, being helpful in understanding the mechanisms of obesity later on, and also contain a whole chapter for *etiology, pathogenesis and co-morbidities* due to obesity.

The last chapter of the first part presents aspects such '**treatment of obesity**', including *nonpharmacologic, pharmacological and surgical treatment*, the latter being described thoroughly, each surgical technique being presented with advantages and disadvantages.

The personal part of this thesis includes a *retrospective study* of a group of **184 patients**, operated in **two University Clinics** using the most worldwide known three bariatric surgeries. Patient characteristics were recorded prospectively, as they came to control pre and post-surgery.

The **main objective** of this paper is to analyze the *weight loss for each lot*, to make a *comparison between the groups in terms of weight loss curve* and analyze the impact of bariatric surgery on *diabetes, hypertension, hyperlipemia, sleep apnea, and not at least of the quality of life*.

I. Current status of the problem (the general part) :

1. Introduction - shows the importance of understanding that unfortunately, obesity becomes an worldwide epidemic disease (1) , humanity increasingly spending more and more to treat patients presenting various co-morbidities due to weight excess (100 billion USD / year) (1).

2. Ontogenesis of the stomach and small intestine - shows classical information about the forming the stomach and small intestine from the primitive gut tube (*arhenteron*), a better understanding of this stage of fetal development leading to a better understanding of the anatomy and physiology of each intestinal part. (4,5,9) .

3. Anatomy of the stomach and small intestine - a very important chapter , which deals extensively with basic anatomical concepts, the vases and the nerves of the stomach and small intestine (5,7,8,9,11,13,14) .

4. Physiology of gastric and intestinal digestion - a chapter in which are widely presented classical notions of physiology of the gastric and intestinal digestion, the understanding of which is of a great help in the correct understanding of the surgical

treatment of morbid obesity. So, are treated in detail exocrine and endocrine functions of the stomach and digestion in the small intestine, digestion and absorption of the carbohydrates, lipids, proteins, vitamins, minerals, water and electrolytes. This chapter is of great help to a better understanding of the basic principles of bariatric surgery (2,10,12,16,19).

5. Obesity - a separate chapter in which are presented: *definition of obesity, methods of measurement (BMI body mass index), physiological regulation of energy balance, the role of genetic factors and the environment in the etiology of obesity and concepts of the pathogenesis of obesity*. Because lately bariatric surgery becomes important mainly because of the *associated co-morbidities*, we've described co-morbidities such as insulin resistance and DZ, the effects of obesity over the reproductive system, cardiovascular system, bones, joints, and the association between obesity and some cancers (3,10,15,20,27,32,33,34).

6. Treatment of obesity - this chapter is an overview of all methods of treatment of obesity, from the *nonpharmacological* one (*nutrition and diet, and the role of an active life, behavioral changes* that are required in maintaining a low weight, even after bariatric surgery) to the *pharmacological*, where are presented the FDA approved drugs to treat obesity. An exhaustive presentation is made for the surgical treatment of obesity, where are described the most important surgical procedures that have been used over the time. So, *malabsorptive and restrictive* procedures are described and presented in detail, and also, we presented the criteria for selecting obese patients for surgery (55,57,73,74,88,92,100).

II. The Personal Research:

This work was done in collaboration with *Professor Dr. Vasile Sârbu, General Surgery, Emergency Hospital, Constanta, Romania and Dr. Fabrice Corbisier, General Surgery, "Grand Hospital of Charleroi", Belgium*. By the courtesy of this two professors, I was able to include in the paper cases that were seen and operated in these two clinics between **2006 and 2008**.

We have included in the paper, a number of **184 obese patients** seen in this period and operated by the three surgical methods that were used in this two clinics constantly - **gastric band (82 patients), vertical gastrectomy (54 patients) and gastric bypass (48 patients)**.

1. Among them the percentage of **women was 78.82% (134 women)** and of **men - 21.18% (50 men)**. All data were *prospectively entered into a database* and *analyzed retrospectively*. The database included: *age, sex, height and weight in kg.*, based on which we've calculated *BMI before surgery, after surgery at 1 month, 1 year, 2 years*

and 4 years after surgery, comorbidities that patients had before surgery , and after surgery at **2 and 4 years** , complications of bariatric surgery procedures , both intraoperative and postoperative, the number of gastric band adjustments, surgical re-interventions, changes in lifestyle and quality of life.

2. Our patients had to meet the following **selection criteria** : age bigger than 18 years, $BMI \geq 35 \text{ kg} / \text{m}^2$ with one or more co-morbidities due to obesity, or $BMI \geq 40 \text{ kg} / \text{m}^2$ without other co-morbidities , all of them being carefully checked before by an endocrinologist to rule out other endocrine related obesity disease (such as hypothyroidism), patients should not have any mental related problems and to have realistic expectations, to not have a history of substance abuse / alcohol / drugs , to prove that they've tried before various other non-surgical weight loss methods without having a positive and lasting effect.

3. **Sex distribution of our patients did not show a statistically significant difference**- comparing the data of our study with those already in the literature, there was a slight balancing of the relationship between women and men, while keeping balance tilted towards women. This can be explained by the fact that obesity is seen primarily in terms of aesthetics, women being still the most affected by this issue. Currently, we can notice that we begin to finally understand that obesity affects the population in terms of health , being directly involved in the development of multiple co-morbidities, and, in many existing studies we can see recently a slight trend toward standardization of report women / men turning to this treatment method.

4. Analyzing our groups in terms of **age, the youngest patient was 18 and the oldest, 65 years , averaging between 30 and 40 years**. There is no statistically significant difference between age groups, the standard deviation for the three groups being between 9.33 for those who have turned to gastric bypass and 11.30 for those with gastric sleeve . The mean age of patients in our groups is consistent with the mean age found in literature.

5. In our groups, the patients with the **highest weight were operated by gastric bypass** . **The average weight** of all patients is around 113 kg., with a minimum of those operated by sleeve (average 108 kg with a standard deviation of 23 kg.) and a maximum in patients with gastric bypass surgery (average 113.43 kg. with a standard deviation of 29 kg.) . The initial weight was between: 94 kg. and 140 kg . for those with gastric band, 77 kg. and 166 kg . for those with gastric sleeve, 70 kg. and 202 kg. for those with gastric bypass . Usually, the **decision** regarding the type of surgery was taken with the patient after a **proper information, being discussed about the risk and complication of every one of the procedure in a multidisciplinary team consisting of a surgeon, endocrinologist , psychologist, nutritionist** . There was no statistically significant difference when the mean initial weight. **We can notice that in general , patients with the highest weight turned to gastric bypass or gastric sleeve .**

6. Analyzing the **BMI variation by age, we found that unfortunately, patients with the highest BMI that underwent a bariatric procedure, were mainly those under 20 years**. Therefore, their distribution by age groups was as follows: under 20 years , we had 11 patients with an average baseline BMI of $44.26 \text{ kg} / \text{m}^2$, 21 - 30 years old, 49 patients

with a BMI of 42.02 kg./ m², 31-40 years, 77 patients with a BMI of 40.99 kg./ m², 41-50 years , 30 patients with a BMI of 42.92 kg./ m², 51-60 years, 13 patients with a BMI of 41.04 kg./m² and over 60 years old, 4 patients with a BMI of 40.23 kg./ m². **Unfortunately, the only conclusion we can draw from this is that there is a growing number of young people suffering from obesity.**

7. Next, it's described the surgical techniques of **gastric band, gastric sleeve and gastric by-pass**. In the case of our patients that underwent a gastric band procedure, to avoid **lateral slippage**, we've closed the space between the great curvature and the left diaphragmatic pillar with two sutures between the greater curvature gastric and left diaphragmatic pillar. To avoid '**anterior slippage**', the gastric band was secured by two sutures between the small gastric curvature and right diaphragmatic pillar above the gastric band and bellow. To avoid "**posterior slippage**" was used the already standardized method of "**pars flaccida**". Before leaving the hospital, all the patients received a visit from a nutritionist, being taught how to deal with this new situation. They were taught how to introduce foods slowly, how to eat, and what to expect next. Each of them received written instructions regarding the new diet and the gradual introduction of food.

8. Before surgery, each patient is usually seen between **4-6 months in advance**, and at this point is discussed exactly what type of surgery more suitable, including risks and complications, and benefits. The patient must understand very well that **bariatric surgery is only a tool, the most important part being the compliance and capacity of the patient to keep an appropriate lifestyle** to ensure a lasting and satisfactory results. Usually, 2 weeks prior to surgery, the patient is asked to keep a '**shrinking liver diet**', in order to facilitate surgery. It is a good exercise for keeping the post-operative diet. Each patient before discharge, receives a visit of a nutritionist, received a leaflet with the diet that he/she must follow. After week 4, he/she can increase slightly the consistency of the food. After week 7 post-operative, the patient should be able to gradually introduce solid food. From the beginning, the patient is informed that should take **dietary supplements, vitamins, for the rest of his/her life**.

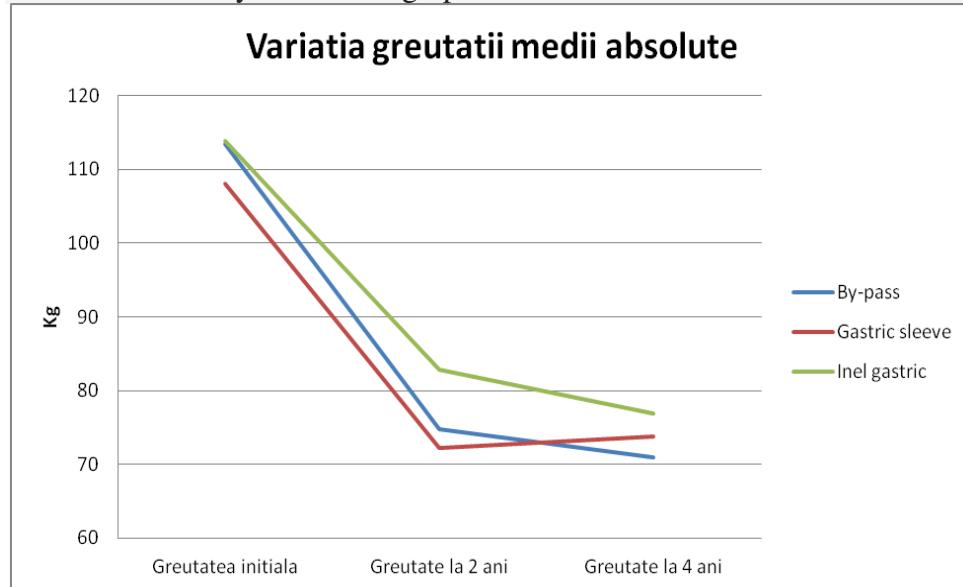
9. As it is pointed out in this paper many times, **postoperative results are based in part on the patient's ability to follow a diet and a lifestyle that is usually quite different from what he is used with, throughout life**. Effects of bariatric surgery, are very much influenced by **behavioral changes** of the patients. So, usually, the patient receive the following recommendations: to eat three small meals/day, to eat from smaller plates, may have some healthy snacks between meals, such as fruits or a small yogurt, to avoid so called ' small eatings' throughout the day, this usually leading to an increased intake of calories, to call whenever he feel that he needs help from the support groups or dietician.

10. Analyzing **BMI at 2 years after surgery**, the group of patients who had **the most important weight loss, was the group with gastric bypass**, with a decrease of approximately 14 kg/m² on average. This was due probably to the combination of both mechanism, malabsorptive and restrictive. After surgery, patients were usually monitored at 1 month, 3 months and 1 year, and yearly after that, and in between seen whenever he

needs. All the patients are advised to participated to the **regular meetings of the group**, where they met with the surgeon, nutritionist and psychologist. For the patients with gastric band, the first adjustment was made at 1 month, and depending on patient need after. Only one patient was dissatisfied with the postoperative outcome, and it was the patient who usually didn't participate to the group meetings. The difference between BMI at baseline and 2 years, was: 14.23 kg /m² in patients with gastric bypass, 13.62 kg /m² in patients with gastric sleeve and 11.11 kg /m² patients with gastric band. Our data are also supported by the literature, **the best results being obtained in the case of the patients with gastric bypass**, but we have to mention that this is the surgery with the highest risks and complications, **followed by the gastric sleeve and gastric band**.

11. Analyzing the **difference in BMI by gender, at 2 years, the BMI of men was initially slightly higher than that of women**, this small difference preserving at 2 years postoperatively, with **no statistical significant value**. The BMI decreased by 12.76 kg /m² in women and 12.44 kg /m² in men, with no statistically significant difference.

12. Analyzing the **evolution of BMI by age**, the following results were obtained: for those under 20 years, BMI = 30.42 kg /m², 21-30 years, BMI = 29.07 kg /m², 31-40 years, BMI = 28.76 kg /m², 41-50 years, BMI = 28.99 kg /m², 51-60 years, BMI = 30.25 kg /m² and over 60 years, BMI = 29.61 kg /m². Thus, the patients group who had a **better evolution of weight loss curve** in the first 2 years after surgery, regardless of type, was the group **51-60 years**, followed by those **under 20 years**, those **between 21 to 30 years**.


13. At **4 years after surgery**, weight loss curve between 2 and 4 years was similar among all groups of patients, recording about the same weight loss regardless of the technique used. **A difference in the rhythm of loosing weight was recorded in the first 2 years after surgery, remaining similar in between year2 and 4, with a small exception in the case of the patients with gastric sleeve surgery that towards the end year 4 of observation, they've recorded a slight increase in weight**. Thus, 4 years after surgery, BMI according to the technique used was of 26.64 kg / m² in patients with gastric bypass, 28.64 kg / m² in patients with gastric sleeve and 28.18 kg / m² in the gastric band. There has been such a difference of 15.7 kg / m² in those with gastric bypass, 13.02 kg / m² in those with gastric sleeve and 13.31 kg / m² in case of gastric band. We notice so that the **best results that have been preserved over time were in the case of gastric bypass patients, follow by at about the same place by the gastric band and gastric sleeve patients**. In our groups, we've noticed a slightly increase in weight for the gastric sleeve patients, towards the end of four years .

14. Evolution of **BMI by sex , 4 years after bariatric surgery** , reported the following results: in women, the difference baseline BMI- BMI at 4 years was 13.92 kg /m², while in men, the difference in baseline BMI - BMI at 4 years was 13.64 kg /m². Note that there is **no statistically significant difference**, although the women in our group had a slightly more favorable trend than the men, although they had a slightly higher baseline BMI than women.

15. **Evolution of BMI according to the type of the bariatric procedure used**, recorded the following results: patients with gastric bypass surgery, had an initial BMI of 42.34

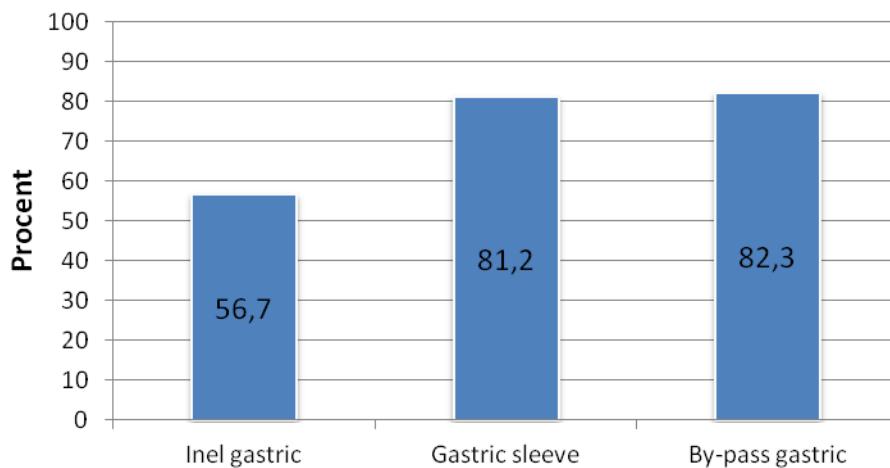
kg/m², a BMI at 2 years post-operatively of 28.11 kg/m² and 26.64 kg/m² at 4 years after, the gastric sleeve surgery patients had a mean baseline BMI of 41.66 kg/m², 28.64 kg/m² at 2 years, 28.04 kg/m² 4 years and those with gastric band surgery , an initial BMI of 41.76kg/m² , at 2 years of 29.10 kg/m² and at 4 years of 27.91 kg/m² . Unlike weight loss recorded in the first 2 years after surgery, the decreasing in the BMI between year 2 and 4 was recorded much slower. *After a first rapid weight loss recorded in the first 2 years, patients continued to lose weight, but more slowly.* A small difference is observed in our group of patients operated with gastric sleeve. *Towards the end of the 4 years after surgery, there was unfortunately a slight increase in weight. Patients with gastric bypass achieved the best results in time, followed by those with gastric band and gastric sleeve, achieving a statistically significant difference between our groups of patients, between 2 and 4 years after surgical intervention .*

This is shown very well in the graphic below :

16. We've also analyzed the *percentage of the weight loss at 2 years after surgery, being calculated as the difference between initial weight and weight after two years, transforming the kg. in percentage considering the ideal weight of each patient*. Ideal weight was considered using the *Metropolitan Life Insurance table* presented in the paper in the beginning of the thesis. We've achieved a *statistically significant difference between the group with gastric bypass and the other 2 groups*. Gastric bypass patients had a more pronounced decrease in weight in the first two years than those with gastric sleeve or gastric band, the difference that persist at 4 years postoperatively , although the pace of losing weight was slow than in the first 2 years .

17. In absolute weight, the weight loss, recorded the following variables: the group of patients with gastric bypass: 2 years achieved an average decrease of 38.62kg . with a standard deviation of 19.26 kg., showing a slow but steady weight loss absolute during the 4 years ;in the group of patients with gastric sleeve, in two years, the average absolute

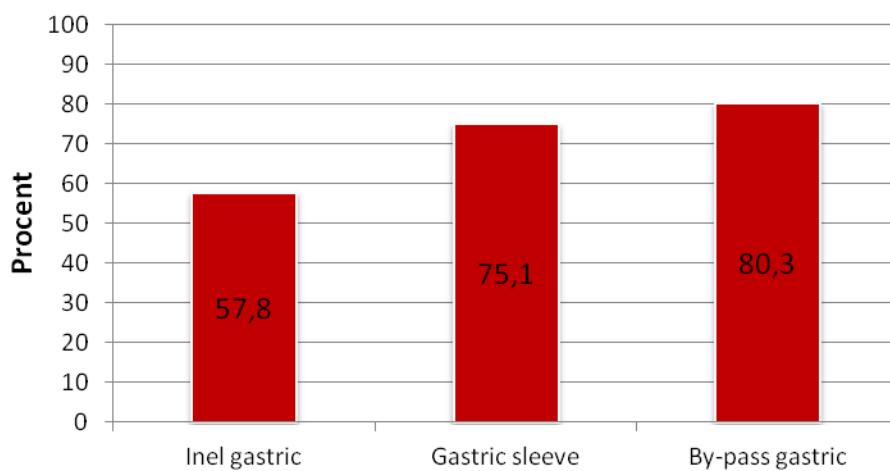
weight loss was 35.76kg with standard deviation of 14.77 kg. and in the group of patients with gastric band, 2 years after surgical intervention recorded the smallest decrease in absolute weight - 31.12 kg , with a standard deviation of 10.54 kg. Towards the end of four years of study, the decreasing in absolute weight remained slightly higher in patients with gastric bypass, followed by those with the gastric band and gastric sleeve surgery. ***We have a statistically significant difference between the groups of patients, the best results being of patients with gastric bypass, followed by those with gastric sleeve and the gastric band .***


18. A very important aspect of this type of surgery, is the ***pre -/and post-operative care*** . The patient must be well informed and ***highly motivated***, understanding that bariatric surgery is primarily a surgery whose outcome is largely influenced by the change in the patient's life, and the changing patterns must be of a long-term. Also, the patient must understand at the same time the risks and complications specific to this type of surgery, and to be prepared for a ***lifetime battle*** against the extra weight, bariatric surgery helping him, but the most important part in the battle belonging to the patient. After surgery, all patients were enrolled in a ***supportive group*** who had monthly meetings, attended by the surgeon, together with a nutritionist, a psychologist. These meetings have been attended by family members also, being well known the importance of the existence of a family supportive help. After the body weight stabilized, was taken into account the possibility of ***having reconstructive surgery***.

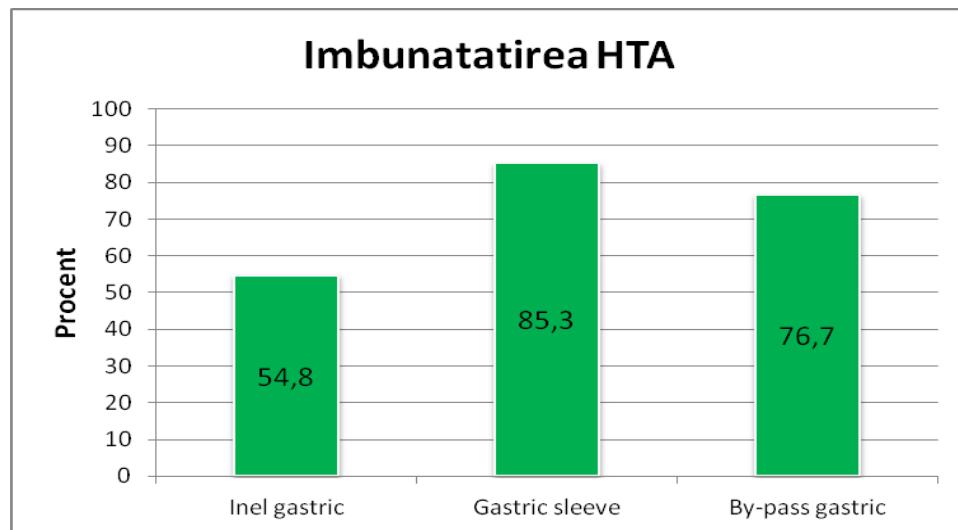
19. ***Follow -up*** after surgery was achieved in the first year usually 3 times, at ***1 month postoperatively, between 2-3 months post-operatively and at 1 year***. Subsequently, follow-up was done ***yearly***, and at the patient's request . Every time the patient was seen, the data were entered into a standardized database, aiming at weight loss, the result of blood tests including blood sugar , blood pressure, dietary habits, changing the quality of life .

20. A very important aspect of bariatric surgery, is ***the impact it has on associated comorbidities***. We've analyzed our groups in terms of the evolution of these co-morbidities as well. ***It is well known that the relative risk of suffering a premature death increases by almost 100% when BMI increases from 19kg / m² to 32 kg / m². Has been shown that being overweight or obese is responsible for 80% of cases of type II diabetes, 35% of cases of cardiac ischemia and 55% of cases of hypertension, in Europe, causing more than 1 million deaths year.***

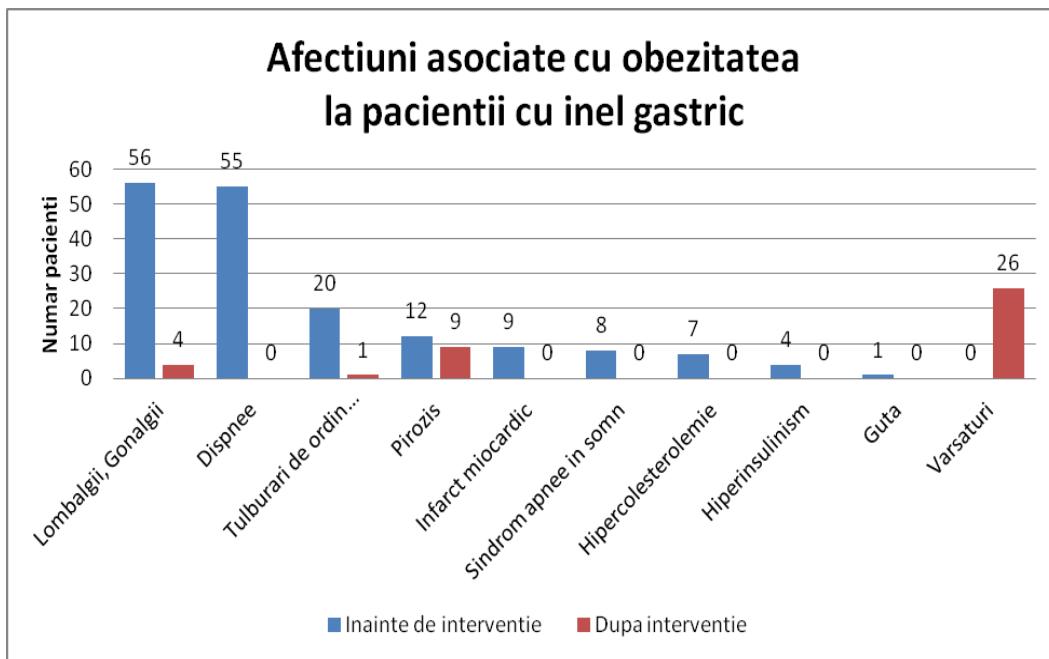
21. Bariatric surgery is an effective and sustained therapy of ***type 2 diabetes***. In our groups, the best remission rates are achieved by, in descending order, as follows: ***gastric bypass, gastric sleeve and gastric band***.


Rata de remisie a diabetului

Thus, the II diabetes remission rate was for the patients with gastric band of 56.7%, for the patients with gastric sleeve of 81.2%, and 82.3% in the case of patients with gastric bypass (the best rate remission).


22. Another particularly positive results is seen in **modifying blood lipid levels**. The exact mechanism by which bariatric surgery influence the level of the lipids in the blood is still unclear. However, the sharp decrease in TG observed primarily after restrictive procedures is mainly due to weight loss, reducing insulin resistance, thereby decreasing triglyceride production in the liver. So, bariatric surgery improves the levels of the lipids, decreasing the need of medication and reducing the risk of developing atherosclerosis.

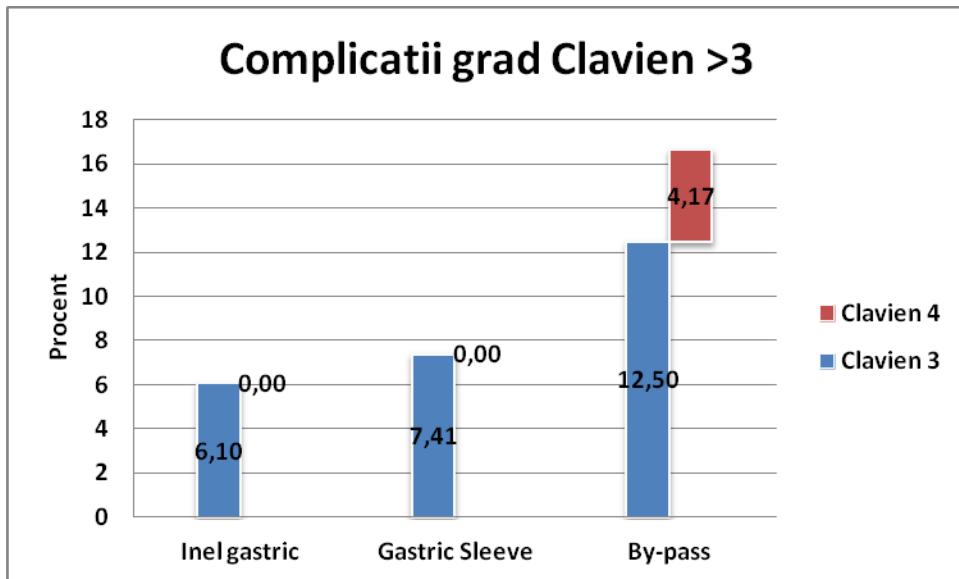
Imbunatatirea dislipidemiei



For our patients, we've obtained the following results: 57.8% of patients with gastric band, 75.1% of patients with gastric sleeve and 80.3% of patients with gastric bypass had a significant improvement. Our data are also supported by data by the literature.


23. **Hypertension** is often present in obese patients. Losing in weight leads to a decrease in blood pressure, reducing the amount of antihypertensive medication necessary to maintain a normal blood pressure. In our study, higher resolution rate of 85% was met in the cases treated by gastric sleeve, 76.6% with gastric bypass and only 54.8% with gastric bands.

24 . We've also analyzed the evolution of co-morbidities 4 years after the surgery. Thus, in patients with gastric band, they obtained the following results; our patients had 100% associated co-morbidities . Of gastric band patients, 56 were suffering from back pain, 82 from joint pain caused by excess weight, of these, 4 years after the procedure, only 4 patients (7.14 %) still suffering of the pain, but much improved, 55 patients suffered from dyspnea before surgery, reported at the end of four years its complete disappearance (0 %), 20 patients suffering from psychological disorders due to increased weight and social interaction, mostly depression, only one single patient (5%) at the end of four years still complaining of this symptom. All the problems were closely monitored and counseled by a psychiatrist; 9 of the 82 patients underwent a myocardial infarction. At the end of 4 years of follow -up, no patient has had no other cardiac event; 8 of the 82 patients suffering from sleep apnea, none exceeding greatness with this problem postoperatively; 7 patients with hypercholesterolemia, 4 with insulinism and one with gout, none after 4 years never blamed these problems. There were some side effects : although none of the patients accused vomiting preoperatively, they occurred in 26 of them, at the end of 4 years of follow -up . Despite the troubles largely controlled by drug therapy, said they were pleased with the weight loss and the improving in quality of life.



25. **Surgical reintervention** in patients with gastric band represented a percentage of 11%, a percentage that falls in the results of the literature.

In our case, surgical reintervention were due to the following reasons: 1 patient underwent the phenomenon of 'slippage' gastric (1.21 %), 1 patient had a change to bypass after 1 year because of the lack of effective weight loss (1.21 %), 6 patients had reinterventions due to displacement of the port access (7.31 %) and 1 patient presented a tubing problem(1.21 %).

26. In our groups of patients, the overall number of patients who required reoperation surgery, were represented by: for patients *with gastric band*, 5 cases (slip, fracture of the tubing, erosion or migration, dilation of the esophagus, stoma obstruction); for patients *with gastric sleeve*, 4 cases (fistula, fistula chronic gastro-oesophageal reflux, gastric pouch dilatation) and for *gastric bypass* patients, 6 cases (fistula, anastomotic strictures, internal hernias, ulcers at the anastomotic site, dumping syndrome, gallstones kidney). Only 2 patients required *postoperative dialysis* due to the development of acute renal failure. In our groups, *postoperative mortality was 0 %*.

27. Nutritional deficiencies that occurred during the 4 years of postoperative follow-up, although patients were advised to use vitamin and mineral supplements were usually easily correctable, and were in patients with gastric ring (6 cases) (representing a rate of 7.3 %): mild deficits of iron, vitamin B12, folate, in patients with gastric sleeve (6 cases) (representing a rate of 11.1 %) moderate deficiencies of vitamin B12, folate, Ca, Vit. D, Zn, Cu, Fe, and in patients with bypass (10 cases) (representing a rate of 20.8 %) moderate deficits Vit. B1, B12, folate, vitamin D, Ca, Fe, Zn, Cu.

Conclusions:

1. Obesity has an increasing prevalence unfortunately reaching epidemic proportions. With the increasing number of obese people grows the material resources that we allocate to prevent complications associated with obesity, which, as we have seen in the present work can be from psychological problems, mental and physical fatigue, to cardiovascular problems, orthopedic, respiratory.

2. Amongst the causes that are incriminated today in increasingly raised number of obese people ,are involved lifestyle changes, daily stress, increasingly higher occurrence of fast-foods , all of which influence negatively the health of population.

3 . Obesity and associated co-morbidities respond very well to bariatric surgery . the presence of the co-morbidities is becoming today the main reason for having this type of surgery. As I noted in this paper, according to data from the literature, co-morbidities such as diabetes mellitus,

hypertension, metabolic syndrome , and various related joint pain or psychological disorders are much improved , if not cured by this treatment .

4 Bariatric surgery is the most effective treatment in the long term. Along with understanding the association between obesity and health problems such as diabetes, cardiovascular disease , metabolic syndrome , the number of patients who benefit from bariatric surgery is increasingly higher.

5. Unlike other types of surgery, bariatric surgery involves the patient in getting positive results, being considered largely a behavioral surgery, as it stands in our work. Depending on the will and determination of the patient, weight loss achieved in the first phase, can maintain or even improve, or conversely, the patient may relapse, gaining weight.

6. Patient information is very important. In order to achieve long-term positive results, patients should be well informed and fully understand the changes that have occurred in their body, to strictly comply with the new rules of nutrition and the physical activity program . Their lifestyle must change completely with no deviations, the entire success of this surgery depending on the lifetime chances .

7. The team working and preoperative decision, as we have seen in this paper, should be taken by a group consisting of the surgeon, a nurse specialized in this type of surgery, a dietitian, a psychologist and an endocrinologist .

8. At the beginnings, preoperatively, all patients were seen by a multidisciplinary team, between 4 and 6 months in advance. They were given all the necessary information detailed knowledge of each surgical procedure, of the risks and complications, explaining to them that in the first place bariatric surgery is a tool in their hands , long-term outcomes depending on how they use it.

9. Postoperative follow-up our patients was usually done at 1 month, between 2 and 3 months and 1 year after surgery, then yearly, or whenever needed, recording each time the evolution, of weight variation, the associated co-morbidities and biophysical parameters (blood pressure , blood sugar , lipididemie).

10. Comparing the three used methods, according to the results obtained, by recording the differences in terms of weight loss at 2 years after surgical intervention, 4 years after surgical intervention (baseline BMI at 2 years and 4 years postoperatively , the variation of absolute weight loss , weight average), we've found a better evolution of patients who were operated on by- gastric bypass in terms of associated co-morbidities resolution.

11 . In general, in our groups, patients with high BMI were operated by gastric bypass, usually, the decision to opt for a particular surgical procedure, belonged equally to both the patient and the multidisciplinary team, being a patient centered decision.

12 . The best results in terms of weight loss, at 4 years postoperatively, were obtained in the case of the patients with gastric bypass, gastric sleeve, followed by those with gastric band.

13 . There is a more pronounced decrease in weight in the first 2 years after surgery, than in the next two years, remaining still different between the three bariatric procedures. For patients with gastric sleeve, though we've noticed a slight increase in weight in the curve range between 2 and 4 years postoperatively, the mechanisms are not fully known . We can not say 100 % that regaining in weight is exclusively due to the surgical procedure, however there is always a behavioral component that influences the results of this type of surgery .

14. The risks associated with each type of surgery was exemplified in the present work, first place being held by those with gastric by-pass, followed by those with gastric sleeve, the last place belonging to those with gastric band. When the surgeon and the patient take the decision to opt for surgical treatment of obesity, we must be sure that the patient understands exactly the risks associated with, and he has to know exactly that is a lifetime chance in behaviour.

15. Co- morbidities such as diabetes mellitus, hypertension, metabolic syndrome, psychological disorders due to obesity, joint pain, are much improved by weight loss achieved with bariatric surgery, increasing the life expectancy of the patient, and lowering costs of treating these health problems over time.

16. The co-morbidities associated with obesity has become the principal reason to recommend this type of surgery, patients becoming increasingly aware of the danger that obesity means, and understanding the role of bariatric surgery as the starting point in their lifelong struggle with extra weight, the most important aspect of a positive result being the motivational intensity of the patient.

Bariatric surgery is a surgery that earn the place among the other types of surgeries, being mostly a behavioral surgery. With the increasing number of patients suffering from obesity, increasingly more patients addresses to this type of treatment, weight loss obtained being associated with a marked reduction of co- morbidities due to obesity , thus lowering long -term costs of treating such patients.

Bibliography:

1. Clegg1, J Colquitt1, M Sidhu1, P Royle1 and A Walker, Clinical and cost effectiveness of surgery for morbid obesity: a systematic review and economic evaluation, International Journal of Obesity (2003) 27, 1167–1177
- 2 . Yamada, Gastroenterology , vol I and II , McGraw-Hill , 2005
4. Langman's Medical Embriology; Sadler, T W (Thomas W); Langman, Jan. Medical embryology.11th ed. / T.W. Sadler ;Philadelphia : Wolters Kluwer Lippincott Williams & Wilkins, c2010.
5. V. Ranga, Anatomia Omului, Vol. II., Viscere, Institutul de Medicina si Farmacie, Bucuresti, Catedra de Anatomie, 1980
6. Cecil, Textbook of Medicine , L Goldman, J Claude Bennett, 23rd Edition.
7. Frank H Netter, Atlas of Human Anatomy, 3rd Edition
8. Gray's Anatomy of the Human Body, 20th Edition
9. I. Albu , Anatomia Omului Angiologie , Nervii Spinali , UMF Iuliu Hatieganu , Cluj-Napoca 2001
10. I. Haulica , Fiziologie Umana , Editia a doua , Editura Medicala , Bucuresti , 2002
11. V. Papilian , Anatomia Omului , Vol 2 , Editia a V-a , EDP Bucuresti , 1974
12. M. Grigorescu , Tratat de Gastroenterologie , vol. 1 , Editura Medicala Nationala , Bucuresti , 2001.
13. Nicolae Angelescu, Tratat de Patologie Chirurgicala vol I si II , Editura Medicala, Bucuresti, 2003
14. Vasile Sarbu, Patologie chirurgicala abdominala, Ovidius University Press, 2002.
15. Kumar, Abbas , Fausto , Robbins Pathology 7-th Edition , Elsevier ,2005
16. C. Bunicardi , Schwartz's Principles of Surgery 8-th edition , Mc Graw-Hill , 2005
19. R. Paun , Tratat de Medicina Interna , Boli de Metabolism si Nutritie , Editura Medicala , Bucuresti , 1986.
20. Henry Buchwald, Bariatric Surgery for Morbid Obesity: Health Implications for Patients, Health Professionals, and Third-Party Payers , jamcollsurg.2004.10.039 , p. 593
21. Eckel RH et al., Lancet 2010; 375:181-83; , Assessment and management of the obese patient, Crit Care Med 2004 Vol. 32, No. 4 (Suppl.)
23. Paule O'Brien, John B.,
38. K. Elfhag and S. Rössner , Who succeeds in maintaining weight loss? A conceptual review of factors associated with weight loss maintenance and weight regain , The International Association for the Study of Obesity. Obesity reviews 6 , 67–85
39. Kral JG Surgery for obesity. Curr Opin Gastroenterol 2001;17:154-61
40. Flatt PR et al., Br J Diabetes Vasc Dis 2009;9:103-107
41. Michael Korenko, Stefan Sauerlandb and Theodor Jungingera , Surgery for obesity , Current Opinion in Gastroenterology 2005, 21:679—683
- 42.Jane Carb et al., Bariatric Surgery for the Treatment of Morbid Obesity: A Meta-analysis of Weight Loss Outcomes for Laparoscopic Adjustable Gastric Banding and Laparoscopic Adjustable Gastric Banding and Laparoscopic Gastric By-pass, Obes Surg (2009) 19:1447-1455
43. Blankenship JD et al., Dietary Management of Obesity. In Buchwald H et al. editors. Surgical Management of obesity. Philadelphia: Saunders Elsevier;2007
44. Buddeberg-Fischer B et al., Physical and psychosocial outcome in morbidly obese patients with and without bariatric surgery: a 4 ½-year follow-up. Obes Surg. 2006;16 (3):321-30
55. K. Dolan, G. Fielding , Biliopancreatic diversion following failure of laparoscopic adjustable gastric banding , Surg Endosc (2004) 18:60–63

56. Arnaud Basdevant ; A Nationwide Survey on Bariatric Surgery in France : Two Years Prospective Follow-up ; *Obesity Surgery*, 17, 39-44
57. Maggard MA et al., Metanalysis: Surgical Treatment of Obesity. *Ann Intern Med* 2005; 142:547-59
58. Marco Bueter et all; Short and Long-term Results of Laparoscopic Gastric Banding for Morbid Obesity; *Langenbecks Arch Surg* (2008) 393:199-205

59. Christine Stroh et all; Forteen- Year Long- Term Results after Gastric Banding ; *Journal of Obesity*, Volume 2011, art. ID 128451
60. Chantel Mary Thornton et all, Reducing Band Slippage in Laparoscopic Adjustable Gastric Banding: The Mesh Plication Pars Flaccida Technique; *Obesity Surgery* 2009, 19: 1702-1706
61. P. Gentileschi , S. Kini , M. Catarci , M. Gagner , Evidence based surgery : open and laparoscopic bariatric surgery , *Surg Endosc* (2002) , 16 : 736-744
62. Leena Khaitan , Michael D. Holzman , Laparoscopic advances in general surgery , *JAMA* , Martie , 27 ,2002 , vol 287 , No 12
63. Daniel , Cottam , Samuel ,Mattar , Philip , Schauer , Laparoscopic Era of Operations for Morbid Obesity , *Arch Surg/vol* 138 , apr 2003
64. Manish S Parikh et all;Laparoscopic Bariatric Surgery in Super-obese Patients :a review of 332 Patients ; *Obesity Surgery*, 15, 858-863
65. Christine Stroh et al., Fourteen- Year Long Term Results after Gastric Banding, *Journal of Obesity*, Vol 2011, Art ID128451, 6 pages
66. A. E. Chapman et al., Laparoscopic adjustable gastric banding in the treatment of obesity : a systematic literature review, *surgery*, vol. 135, no.3, pp. 326-351, 2004
67. Gustavsson S. et al., Laparoscopic adjustable gastric banding: complications and side effects responsible for the poor long-term outcome, *Seminars in Laparoscopic Surgery*, vol 9, no 2, pp 115-124, 2002
68. Zehetner J et al., A 6-year experience with the Swedish adjustable gastric band: prospective long-term audit of laparoscopic gastric banding, *Surgical Endoscopy and Other Interventional Technique*, vol 19, no 1, pp 21-28, 2005
69. Chousleb E et al., Laparoscopic removal of gastric band after early gastric erosion: case report and review of literature, *Surgical Laparoscopy, Endoscopy and Percutaneous Technique*, vol 15, no 1, pp 24-27, 2005
70. Favreti F et al., Laparoscopic adjustable banding in 1,791 consecutive obese patients: 12 year results, *Obesity Surgery*, vol 17, no 2, pp 168-175, 2007
71. Chevallier J-M et al, Complications after laparoscopic adjustable banding for morbid obesity: experience with 1,000 patients over 7 years, *Obesity Surgery*, vol 14, no 3, pp 407-414, 2004
72. Keidar A et al., Port complications following laparoscopic adjustable gastric banding for morbid obesity, *Obesity Surgery*, vol 15, no 3, pp 361-365, 2005
73. Fried M et al., Literature review of comparative studies of complications with Swedish Band and Lpp-Band, *Obesity Surgery*, vol 14, no 2, pp256-260,2004
74. Belachew M. et al., Long-term results of laparoscopic adjustable gastric band for the treatment of morbid obesity, *Obesity Surgery*, vol 12, no 4, pp 564-568, 2002
75. Martikainen T et al., Long -term results, late complications and quality of life in a series of adjustable gastric banding, *Obesity Surgery*, vol 14, no 5, pp 648-654, 2004
76. Biagini J. et al., Ten years experience with laparoscopic adjustable gastric banding, *Obesity Surgery*, vol 18, no 5, pp 573-577, 2008
77. Archana Ramaswamy, Edward Lin, Bruce J. Ramshaw, C. Daniel Smith, Early Effects of Helicobacter pylori Infection in Patients Undergoing Bariatric Surgery , *ARCH SURG/VOL* 139, pp 1094, OCT 2004

78. G. A. Fielding, Laparoscopic adjustable gastric banding for massive superobesity; *Surg. Endosc.* , vol 17, 1541, 2003

79. T. Lerut, W. Coosemans, P. De Leyn, D. Van Raemdonck , Gastroplasty: yes or no to gastric drainage procedure , *Diseases of the Esophagus* (2001) 14, 173±177

80. Raul J. Rosenthal et all., International Sleeve Gastrectomy Expert Panel Consensus Statement: best practice guidelines based on experience of more 12,000 cases ; *Surgery for Obesity and Relared Disease*, 8, 2012 8-19

81. Bellanger DE et al., Laparoscopic sleeve gastrectomy, 529 cases without a leak: short term results and technical considerations, *Obes Surg* 2011, 21, 146-50

82. Surg O Clinical Issues Committee of the American Society for Metabolic and Bariatric Surgery: updated position statement on sleeve gastrectomy as a bariatric procedure. *Surg Obes Relat Dis* 2010, 6,1-5

83. Dapri G et al., Reinforcing the staple line during laparoscopic sleeve gastrectomy: prospective randomized clinical study comparing three different techniques, *Obes Surg* 2010, 20, 462-467

84. Fuks D et al., Results of laparoscopic sleeve gastrectomy: a prospective study in 135 patients with morbid obesity, *Surg* 2009, 145, 106-13

85. Himpens J et al., Laparoscopic conversion of adjustable gastric banding to sleeve gastrectomy: a feasibility study, *Surg Laprosc Endosc Percut Tech* 2010,20,162-5

86. Hakeam HA et al., Inhibition of C-reactive protein in morbidly obese patients after laparoscopic sleeve gastrectomy, *Obes Surg* 2009, 19, 456-60

87. Jossart GH et al., Complications of sleeve gastrectomy: bleeding and prevention. *Surg Laprosc Endosc Percut Tech* 2010, 20, 146-7

88. Karamanakos SN et al., Weight loss, appetite suppression and changes in fasting and post-prandial ghrelin and peptide -YY levels after Roux-en Y by-pass and sleeve gastrectomy: a prospective, double blind study, *Ann Surg* , 2008, 247, 401-7

89. Todkar JS et al., Long-term effects of laparoscopic sleeve gastrectomy in morbidly obese subjects with type 2 diabetes mellitus, *Surg Obes Relat Dis*, 2010, 6, 142-5

90. Tagaya N et al., Experience with laparoscopic sleeve gastrectomy for morbid versus super morbid obesity, *Obes Surg* 2009, 19, 1371-6

91. DAVID E. CUMMINGS, JOOST OVERDUIN, AND KAREN E. FOSTER-SCHUBERT , Gastric Bypass for Obesity: Mechanisms of Weight Loss and Diabetes Resolution, *The Journal of Clinical Endocrinology & Metabolism* 89(6):2608–2615

92. Higa , Keith , Boone , Teinchin , Orland , Davies , Laparoscopic Roux en Y Gastric Bypass for Morbid Obesity , *Arch Surg* 2000 , 135:1029-1034

93. Robert E. Brolin, MD, Laparoscopic Versus Open Gastric Bypass to Treat Morbid Obesity , *Annals of Surgery • Volume 239, Number 4, April 2004*

94. Madan , Constantine , Franzides , Triple Stapling Technique for jejunojejunostomy in laparoscopic gastric bypass , *Arch Surg* vol 138 , sep 2003

95. Todd A Ponsky, Fredrick Brody, Edward Pucci, Alterations in Gastrointestinal Physiology after Roux-En-Y Gastric Bypass , *J American College of Surgeons* , Vol. 201, No. 1, July 2005

96. J. Pinkney , D. Kerrigan , Current status of bariatric surgery in the treatment of type 2 diabetes , *The International Association for the Study of Obesity. Obesity reviews* 5, 69–78

97. M. R. Go, P. Muscarella II, B. J. Needleman, C. H. Cook, W. S. Melvin , Endoscopic management of stomal stenosis after Roux-en-Y gastric bypass , *Surg Endosc* (2004) 18: 56–59

98. Dominick Artuso, Michael Wayne, Sebastiano Cassaro, Thomas Cerabona, Julio Teixeira, Robert Grossi, Hemodynamic Changes During Laparoscopic Gastric Bypass Procedures , *ARCH SURG/VOL 140, MAR 2005*

99. Catherine J. Mohr, MSME; Geoffrey S. Nadzam, MD; Myriam J. Curet, MD, Totally Robotic Roux-en-Y Gastric Bypass , *Arch Surg.* 2005;140:779-786

100. Francesco Rubino, MD,* and Michel Gagner, MD, FACS, FRCSC† , Potential of Surgery for Curing Type 2 Diabetes Mellitus , *ANNALS OF SURGERY* Vol. 236, No. 5, 554–559

101. Ninh T. Nguyen, MD, FACS,* and Bruce M. Wolfe, MD, FACS† , The Physiologic Effects of Pneumoperitoneum in the Morbidly Obese , Ann Surg 2005;241: 219–226)
102. KEN FUJIOKA, Follow-up of Nutritional and Metabolic Problems After Bariatric Surgery , Diabetes Care 28:481–484, 2005
103. Andrew Ukleja, Ronald L. Stone, Medical and Gastroenterologic Management of the Post– bariatric Surgery Patient , J Clin Gastroenterol 2004;38:312–321
104. Melanie Horbal Shuster, Jorge A. Vázquez, Nutritional Concerns Related to Roux-en-Y Gastric Bypass What Every Clinician Needs to Know , Crit Care Nurs Q Vol. 28, No. 3, pp. 227–260