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Prefaţă

În domeniul algebrei liniare numerice, diverse aplicaţii, precum reconstrucţia
şi procesarea de imagini, conduc la rezolvarea unor sisteme de ecuaţii liniare
rare, rău condiţionate, având dimensiuni mari. Din cauza măsurătorilor
inexacte sau a aproximărilor maşină, aceste probleme nu sunt ı̂ntotdeauna
consistente, i.e., termenul liber nu aparţine imaginii matricei sistemului. În
astfel de cazuri ne interesează să rezolvăm o problemă corespunzătoare, ı̂n
sensul celor mai mici pătrate. Algoritmii iterativi, deşi au o complexitate
de calcul mai mare, oferă, ı̂n general, rezultate mai bune atunci când datele
sunt incomplete sau perturbate.

În lucrarea [31], o metodă iterativă generală, care include algoritmii Kacz-
marz (vezi, e.g., [49]), Cimmino (vezi, e.g., [31]), Diagonal Weighting (vezi,
e.g., [42]) sau Landweber (vezi, e.g., [30, 43]), a fost propusă pentru a rezolva
problema ı̂n sensul celor mai mici pătrate. Autorii au demonstrat faptul că
o versiune extinsă a metodei generale converge chiar şi ı̂n cazul inconsistent
la o soluţie a problemei menţionate anterior.

Pentru rezolvarea unei probleme de reconstrucţie de imagini, atunci când
există informaţii a priori despre imaginea scanată, precum netezime sau
apartenenţă la o mulţime ı̂nchisă şi convexă, se pot aplica strategii de con-
strângere care ı̂mbunătăţesc calitatea reconstrucţiei. Constrângerea proce-
selor iterative se realizează prin ı̂nmulţirea la stânga a operatorului algoritmic
cu un operator de constrângere la fiecare pas iterativ. Procedura descrisă
are ca scop nu doar rezolvarea problemei, dar şi găsirea unei soluţii care
ı̂nglobează cunoştinţe iniţiale. Această abordare a fost aplicată cu succes ı̂n
reconstrucţia şi procesarea de imagini prin utilizarea unui singur operator de
constrângere [7, 11, 14, 24, 25, 26, 28, 47, 50].

Un alt subiect de interes este reprezentat de creşterea performanţei al-
goritmilor iterativi. În [45], autorii au propus o procedură prin care clasicul
algoritm Kaczmarz este transformat ı̂ntr-o metodă directă.

Considerând aceste aspecte, teza este organizată după cum urmează.
În primul capitol prezentăm câteva rezultate preliminare precum şi me-

toda generala introdusă ı̂n [31].
În Capitolul 2 ı̂ncercăm să folosim o familie de funcţii de constrângere, ı̂n

locul unui singur operator. În Secţiunea 2.1 prezentăm pe scurt metoda
iterativă generală constrânsă din [31] şi rezultatele de convergenţă core-
spunzătoare. În continuare, propunem o procedură nouă de constrângere
adaptivă, care utilizează o familie de funcţii strict neexpansive şi idempo-
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tente şi demonstrăm convergenţa noului algoritm, sub ipoteze suplimentare.
De asemenea, dăm un exemplu de familie de proiecţii pe “cutii”, i.e., pro-
duse de intervale ı̂nchise, care satisfac condiţiile impuse. În Secţiunea 2.2,
adaptăm câteva rezultate din [13] ı̂ntr-un cadru generalizat, pentru o familie
de operatori strict neexpansivi având puncte fixe comune şi o presupunere
adiţională, adecvată ı̂n contextul problemelor de reconstrucţie de imagini, şi
demonstrăm convergenţa procesului iterativ corespunzător. Prezentăm al-
goritmul constrâns folosind o familie de operatori (FCA) şi demonstrăm că
metodele de dezvoltare ı̂n serie şi matricele de netezire din [13] verifică toate
ipotezele date. Mai mult, arătăm că metoda iterativă generală [31] este de
asemenea un operator de forma necesară convergenţei algoritmului FCA şi că
exemplul de familie neliniară de operatori de constrângere menţionat anterior
satisface condiţiile noastre.

În Capitolul 3 ı̂ncercăm să demonstrăm convergenţa unor variante extinse,
pe blocuri, ale metodelor proiective Kaczmarz şi Jacobi. Scopul nostru este să
confirmăm că aceşti algoritmi sunt cazuri particulare are procesului iterativ
general extins dat ı̂n [31]. Înlocuind operatorul de inversare al unei matrice
cu pseudoinversa Moore-Penrose, generalizăm rezultate precedente din [41].

Cel de-al patrulea capitol este dedicat studiului unei metode de accelerare
care se bazează pe ideea de a adăuga sistemului liniar iniţial direcţii pe linii,
respectiv coloane, pentru proiecţie. În lucrarea [45] s-a demonstrat faptul că o
versiune a algoritmului Kaczmarz construieşte ı̂ntr-o singură iteraţie soluţia
problemei noastre ı̂n sensul celor mai mici pătrate. Din păcate, ca orice
metodă directă aplicată unei matrice rară şi de mari dimensiuni, acest algo-
ritm determină o creştere considerabilă a procentului de umplere al datelor
noastre. Pentru a depăşi această dificultate, propunem o versiune modificată
a metodei directe Kaczmarz, ı̂n care transformările aplicate matricei sistemu-
lui sunt menite să conserve structura de raritate iniţială. Aceste transformări
sunt realizate printr-un algoritm de clustering folosind distanţele Jaccard şi
Hamming. Metoda rezultată va fi iterativă, ı̂nsă se obţine o accelerare a
convergenţei faţă de algoritmul Kaczmarz clasic.

În ultimul capitol construim un algoritm adaptiv care utilizează o familie
de funcţii de constrângere pentru a rezolva o problemă de reconstrucţie de
imagini de tip “Tomographic Particle Image Velocimetry” (vezi, e.g., [35] şi
[34]). Rezultatele numerice sunt ilustrate pentru diferite niveluri de pertur-
bare. Prezentăm de asemenea şi experimente numerice referitoare la metoda
de accelerare a schemei iterative Kaczmarz descrisă ı̂n capitolul anterior.
Investigăm ı̂n continuare metode de a calcula numărul minim de clustere
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necesare pentru a conserva gradul de umplere al datelor noastre sub un prag
dat.

Contribuţiile originale prezentate ı̂n această teză sunt conţinute ı̂n urmă-
toarele lucrări.
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1 Cadru teoretic

1.1 Noţiuni preliminare

Multe probleme reale conduc, după anumiţi paşi de discretizare, la rezolvarea
unor sisteme de ecuaţii liniare de forma Ax = b, pentru o matrice A de
dimensiuni m× n şi un vector b ∈ Rm. Dacă apar erori de modelare sau de
măsurătoare, atunci este posibil ca sistemul să fie inconsistent. În acest caz
se ajunge la a rezolva următoarea problemă ı̂n sensul celor mai mici pătrate:
găsiţi x ∈ Rn astfel ı̂ncât

‖Ax− b‖ = min{‖Az − b‖ , z ∈ Rn}. (1)

Vom folosi ı̂n continuare notaţiile AT , A†, Ai, A
j ,R(A),N (A), PV , xLS şi

LSS(A; b) pentru transpusa, pseudoinversa (unică) Moore-Penrose, cea de-a
i-a linie, cea de-a j-a coloană, imaginea şi spaţiul nul al lui A, proiecţia pe un
spaţiu vectorial V , soluţia (unică) de normă minimă şi mulţimea de soluţii a
problemei (1); de asemenea, 〈·, ·〉, ‖ z ‖ şi ‖ M ‖ au sensul de produs scalar
Euclidian, norma Euclidiană a vectorului z şi norma spectrală a matricei M .
Toţi vectorii care apar ı̂n această lucrare vor fi consideraţi vectori coloană.
Vom presupune ı̂n restul lucrării că

Ai 6= 0, Aj 6= 0, oricare ar fi i ∈ {1, 2, . . .m} şi j ∈ {1, 2, . . . n}.

1.2 O metodă iterativă generală de tip proiectiv

Pentru a rezolva problema ı̂n sensul celor mai mici pătrate (1), următorul
algoritm iterativ general, bazat pe proiecţii, a fost propus ı̂n [31].
Algoritm Iterativ General(GEN)

Iniţializare. x0 ∈ Rn;
Pas iterativ.

xk+1 = Qxk + Rb, (2)

cu Q şi R matrice de dimensiuni n× n şi respectiv n×m, care satisfac
următoarele proprietăţi:

Q + RA = I, (3)

∀y ∈ Rm, Ry ∈ R(AT ), (4)

dacă Q̃ = QPR(AT ) atunci ‖ Q̃ ‖ < 1. (5)
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Observaţia 1 Formularea generală descrisă mai sus include aproape toţi al-
goritmii de tip proiectiv folosiţi ı̂n tomografia computerizată, cum ar fi Kacz-
marz, Cimmino, Jacobi Proiectiv, Diagonal Weighting (vezi, e.g., [49], [31],
[15] şi respectiv [42]). Pentru detalii şi demonstraţii ale acestei afirmaţii vezi
lucrarea [43].

Teorema 1 ([31, Teorema 2.2]) Dacă (3)-(5) au loc, pentru orice x0 ∈ Rn,
şirul (xk)k≥0 generat cu (2) converge şi

lim
k→∞

xk = PN (A)(x
0) + xLS + ∆, cu ∆ = (I − Q̃)−1RPN (AT )(b). (6)

Observaţia 2 Dacă problema (1) este consistentă, avem că ∆ = 0 şi limita
din (6) este un element al mulţimii de soluţii S(A; b) = {x ∈ Rn| Ax = b},
pentru oricare ar fi x0 ∈ Rn. În cazul inconsistent, ‖∆‖ reprezintă distanţa
de la punctul limită din (6) şi mulţimea LSS(A; b) (pentru detalii vezi, e.g.,
[44]).

Pentru matricele Q, R şi U de dimensiuni n×n, n×m şi respectiv m×m,
autorii au definit ı̂n [31] următoarea metodă iterativă generală extinsă.
Algoritm General Extins (EGEN)

Iniţializări. x0 ∈ Rn este arbitrar ales şi y0 = b.
Pas iterativ. Oricare ar fi k ≥ 0,

yk+1 = Uyk, (7)

bk+1 = b− yk+1, (8)

xk+1 = Qxk + Rbk+1. (9)

Dacă Q şi R satisfac (3)-(5) şi U verifică următoarele presupuneri generale

dacă x ∈ N (AT ) atunci Ux = x, (10)

dacă x ∈ R(A) atunci Ux ∈ R(A), (11)

dacă Ũ = UPR(A) atunci ‖ Ũ ‖ < 1, (12)

următorul rezultat de convergenţă a fost demonstrat.

Teorema 2 [31, Teorema 2.6] Presupunem că matricele Q şi R satisfac
ecuaţiile (3)-(5) şi că pentru U proprietăţile (10)-(12) sunt ı̂ndeplinite. Atunci,
oricare ar fi x0 ∈ Rn, şirul (xk)k≥0 generat cu algoritmul EGEN converge şi

lim
k→∞

xk = PN (A)(x
0) + xLS . (13)
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2 Utilizarea unor familii de funcţii

de constrângere ı̂n algoritmi iterativi

În acest capitol ne concentrăm pe studiul tehnicilor de constrângere a pro-
ceselor iterative. Atunci când ne ocupăm de probleme reale, există situaţii
ı̂n care cunoaştem a priori proprietăţi ale soluţiei pe care o căutăm. Dacă
este posibil, aceste cunoştinţe pot fi formulate sub forma unor constrângeri
suplimentare adăugate problemei. Însă, ı̂n anumite cazuri este mai avanta-
jos să modificăm algoritmul şi nu problema, astfel ı̂ncât să ia ı̂n considerare
condiţiile impuse de constrângeri şi ı̂n acelaşi timp să aproximeze o soluţie a
problemei iniţiale. Numim acest procedeu, constrângere a algoritmului iter-
ativ. Fiind dat un operator (algoritmic) Γ : Rn → Rn ı̂ntre spaţii Euclidiene,
procesul iterativ original poate fi scris sub forma

xk+1 = Γ(xk), oricare ar fi k ≥ 0, (14)

sub diferite ipoteze asupra lui Γ.
Prin a constrânge un astfel de algoritm folosind o familie de operatori

ı̂nţelegem să ı̂nlocuim (14) cu următorul proces iterativ

xk+1 = CkΓ(xk), oricare ar fi k ≥ 0, (15)

unde {Ck}∞k=0 este o familie de operatori Ck : Rn → Rn, pe care ı̂i vom numi
ı̂n restul acestei lucrări operatori de constrângere.

Ne interesează să studiem posibilitatea de a constrânge un algoritm fo-
losind o familie de operatori şi să analizăm comportamentul asimptotic al
acestuia. Extindem rezultate anterioare, limitate la un singur operator de
constrângere i.e., Ck = C, oricare ar fi k ≥ 0, vezi, e.g., [7, 11, 14, 24, 25, 26,
28, 47, 50].

2.1 O metodă de constrângere a algoritmului GEN

folosind o familie de functii strict neexpansive şi
idempotente

În general, matricea A din (1) are dimensiuni mari, este rară, rău condiţionată
şi nu are rang plin. Prin urmare, problema ı̂n sensul celor mai mici pătrate
are o infinitate de soluţii. O serie de algoritmi clasici folosiţi pentru a rezolva
(1) generează o aproximare a soluţiei (unice) de normă minimă. Însă, xLS
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nu este ı̂ntotdeauna apropiată ca valoare de soluţia pe care o căutăm (e.g.,
imaginea scanată ı̂n probleme de reconstrucţie de imagini) şi pe care o vom
nota cu xex. Următoarea relaţie este cunoscută, vezi, e.g., [43],

xex = PN (A)(x
ex) + xLS. (16)

În consecinţă, pentru a găsi o aproximare a soluţiei exacte mai bună decât
cea furnizată de xLS, se ı̂ncearcă ı̂nglobarea informaţiilor cunoscute a priori
sub forma unor constrângeri suplimentare.

Un exemplu frecvent ı̂ntâlnit este acela ı̂n care soluţia exactă are com-
ponentele incluse ı̂n intervale cunoscute, i.e., xex

i ∈ [ai, bi], cu [ai, bi] ⊂ R,
oricare ar fi i ∈ {1, 2, . . . , n} (vezi, e.g., [20]). În acest caz, la fiecare pas al
metodei iterative se va proiecta a i-a componentă a aproximaţiei curente pe
intervalul [ai, bi]. În lucrarea [28], autorii au implementat această idee algo-
ritmului Kaczmarz. Aceştia au considerat o funcţie de constrângere generală
C : Rn −→ Rn cu o imagine ı̂nchisă Im(C) = {y = Cx, x ∈ Rn} ⊂ Rn, având
următoarele proprietăţi

‖Cx− Cy‖ ≤ ‖x− y‖ , (17)

dacă ‖Cx− Cy‖ = ‖x− y‖ atunci Cx− Cy = x− y, (18)

dacă y ∈ Im(C) atunci y = Cy. (19)

Spunem că un operator C : Rn −→ Rn este strict neexpansiv (SNE) dacă
ı̂ndeplineşte condiţiile (17) şi (18).

Observaţia 3 Un exemplu de funcţie pentru care (17)-(19) au loc este pro-
iecţia ortogonală pe “cutia” [a, b] = [a1, b1] × · · · × [an, bn] ⊂ Rn, definită
astfel

(Cx)i =





xi, dacă xi ∈ [ai, bi]
ai, dacă xi < ai
bi, dacă xi > bi.

(20)

În lucrarea [31], pentru o funcţie C : Rn −→ Rn cu o imagine ı̂nchisă
Im(C) ⊂ Rn şi care satisface proprietăţile (17)-(19), autorii au propus un
algoritm GEN constrâns. Însă aplicaţii practice indică faptul că o procedură
“uniformă” de constrângere (se foloseşte un singur operator de constrângere)
nu este ı̂ntotdeauna eficientă. Câteodată este necesar să se ia ı̂n considerare
un proces adaptiv de constrângere, actualizat de la o iteraţie la următoarea.
În această secţiune, intenţia noastră este să construim un asemenea procedeu,
utilizând, la fiecare pas k ≥ 0, o altă funcţie Ck : Rn −→ Rn cu o imagine
ı̂nchisă Im(Ck) ⊂ Rn şi care satisface (17)-(19).
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2.1.1 O familie de funcţii de constrângere

Fie (Ck)k≥0 o familie de funcţii de constrângere pentru care (17)-(19) şi
următoarea proprietate au loc

(A1) V =
⋂

k≥0 Im(Ck) 6= ∅.

Dacă presupunem că V∗
∞ = {y ∈ V, y − ∆ ∈ LSS(A; b)} 6= ∅ şi definim,

pentru orice k ≥ 0, V∗
k = {z ∈ Im(Ck), z − ∆ ∈ LSS(A; b)}, obţinem

V∗
∞ =

⋂
k≥0 V

∗
k .

Propunem următorul algoritm.
Algoritm General cu Familie de Constrângeri (CGENk)

Iniţializare. x0 ∈ Im(C0);
Pas iterativ. Oricare ar fi k ≥ 0,

xk+1 = Ck+1[Qxk + Rb]. (21)

Considerăm ı̂n continuare două ipoteze suplimentare asupra familiei de
funcţii de constrângere (Ck)k≥0 .

(A2) Mulţimile Vk = Im(Ck) sunt ı̂nchise;

(A3) Pentru fiecare ` ∈ N∗, există k(`) ≥ ` astfel ı̂ncât oricare ar fi y ∈ V∗
∞

şi k ≥ k(`) avem inegalitatea

‖Ck+1[Qxk + Rb] − y‖ ≤ ‖C`[Qxk + Rb] − y‖.

Teorema 3 În ipotezele de mai sus, şirul (xk)k≥0 generat cu (21) converge
şi

lim
k→∞

xk ∈ V∗
∞. (22)

2.1.2 O familie particulară de funcţii de constrângere care
satisface ipotezele suplimentare

Reamintim exemplul prezentat ı̂n Observaţia 3. Oricare ar fi k ≥ 0, con-
siderăm “cutia” [ak, bk] = [ak1, b

k
1] × · · · × [akn, b

k
n] ⊂ Rn şi proiecţia metrică

pe cea de-a k-a “cutie” [ak, bk]. Este cunoscut faptul că un operator definit
prin (20) verifică propietăţile (17)-(19) şi (A2). Vom ı̂ncerca să construim o
condiţie suficientă pentru ca un astfel de operator să ı̂ndeplinească (A1) şi
(A3).
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Propoziţia 1 Fiind dată o familie (Ck)k≥0 de proiecţii metrice pe cea de-a
k-a “cutie” [ak, bk] definite de (20) şi două matrice Q şi R având dimensiunile
n×n, respectiv n×m, pentru care (3)-(5) au loc, presupunem că, oricare ar
fi ` ≥ 0, există k(`) ≥ ` astfel ı̂ncât:

Im(Ck+1) ⊂ Im(C`), ∀ k ≥ k(`). (23)

Atunci propietăţile (A1) şi (A3) sunt ı̂ndeplinite.

2.2 Constrângerea proceselor iterative ı̂ntr-un cadru
general

În această secţiune vom introduce o familie de operatori strict neexpansivi
{Ck}

∞
k=0 şi vom demonstra convergenţa unui algoritm căruia i se asociază o

familie de funcţii de constrângere ı̂ntr-un cadru general. Această abordare
este aplicată cu succes unor probleme de reconstrucţie de imagini, de netezire
(vezi şi [20, Subsecţiunea 12.3]), dar şi constrângerii unor procese iterative
liniare oarecare.

În ipoteza că o familie de operatori strict neexpansivi {Tk}∞k=0 are puncte
fixe comune şi o condiţie suplimentară, rezonabilă ı̂n domeniul reconstrucţiei
de imagini, demonstrăm că şirul generat de schema iterativă

x0 ∈ Rn şi xk+1 = Tk+1(x
k), ∀ k ≥ 0,

converge la un punct fix comun al operatorilor {Tk}∞k=0.

2.2.1 Convergenţa unei familii de operatori strict neexpansivi

Pentru o familie {Tk}∞k=0 de operatori strict neexpanisvi definim mai jos
mulţimea punctelor fixe comune şi intersecţia acestora

Fix(Tk) = Fk := {x ∈ Rn | Tk(x) = x} şi F := ∩∞
k=0Fk. (24)

Presupunem că
F 6= ∅. (25)

Considerăm algoritmul

x0 ∈ Rn şi xk+1 = Tk+1(x
k), ∀ k ≥ 0, (26)
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Condiţa 1 Fie {Tk}∞k=0 o familie de operatori strict neexpansivi pentru care
(25) are loc. Dacă {xk}∞k=0 este un şir generat de (26), atunci, oricare ar fi
` ≥ 0, există un index k(`) ≥ 0 astfel ı̂ncât

∥∥Tk+1(x
k) − z

∥∥ ≤
∥∥T`(x

k) − z
∥∥ , (27)

pentru orice z ∈ F şi k ≥ k(`).

Teorema 4 Fie {Tk}∞k=0 o familie de operatori strict neexpansivi pentru care
(25) şi Condiţia 1 au loc. Orice şir {xk}∞k=0, construit conform (26), converge
la un element din F .

Observaţia 4 Înlocuind strict neexpansivitatea operatorilor {Tk}∞k=0 cu ipo-
teza mai slabă că aparţin clasei de operatori “paracontracting” (vezi [18,
Definiţia 1]), rezultatele enunţate ı̂n Teorema 4 rămân adevărate.

2.2.2 Algoritmul FCA

Dacă Γ : Rn → Rn şi Ck : Rn → Rn, cu k ≥ 0, sunt strict neexpansive,
definim mai jos operatorii Tk : Rn → Rn sub forma

Tk(x) := CkΓ(x), oricare ar fi k ≥ 0, (28)

şi demonstrăm ca sunt de asemenea strict neexpansivi.

Propoziţia 2 Oricare ar fi k ≥ 0, un operator Tk definit prin (28), pentru
care Γ şi Ck sunt strict neexpansivi, are următoarele proprietăţi:

‖Tk(x) − Tk(y)‖ ≤ ‖x− y‖ , oricare ar fi x, y ∈ Rn, (29)

şi

dacă ‖Tk(x) − Tk(y)‖ = ‖x− y‖ , atunci Tk(x)−Tk(y) = Γ(x)−Γ(y) = x−y.

(30)

Pentru {Tk}∞k=0 definiţi conform (28), cu {Ck}∞k=0 şi Γ strict neexpansivi,
procesul iterativ (26) poate fi scris ca un algoritm cu constrângeri.
Algoritm FCA

Iniţializare. x0 ∈ Rn este ales arbitrar.
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Pas iterativ. Oricare ar fi k ≥ 0, fiind dată aproximaţia curentă xk

calculaţi xk+1 astfel
xk+1 = Ck+1Γ(xk). (31)

Dacă ipotezele (25) şi Condiţia 1 sunt ı̂ndeplinite, atunci Propoziţia 2 şi
Teorema 4 determină faptul că orice şir generat cu algoritmul FCA converge
la un element din F .

Definiţia 1 [13, Definiţia 1] Fie F1 mulţimea de funcţii continue Γ : Rn →
Rn care satisfac

‖Γ(x) − Γ(y)‖ ≤ ‖x− y‖ , oricare ar fi x, y ∈ Rn. (32)

şi

dacă ‖Γ(x) − Γ(y)‖ = ‖x− y‖ , atunci

Γ(x) − Γ(y) = x− y şi 〈x− y,Γ(y) − y〉 = 0. (33)

Definiţia 2 [13, Definiţia 2] Fie F2 mulţimea de operatori Γ ∈ F1 cu pro-
prietatea că pentru orice S ∈ Rn×n, funcţia g : Rn → R definită prin
g(x) := ‖x− SΓ(x)‖2 ı̂şi atinge minimul global.

Propoziţia 3 Dacă S este o matrice simetrică, stocastică, având diagonala
strict pozitivă, atunci familia {Ck}∞k=0 cu Ck = S, pentru oricare ar fi k ≥ 0,
este strict neexpansivă.

2.2.3 Rezolvarea unei probleme ı̂n sensul celor mai mici pătrate

Vom demonstra ı̂n continuare că metoda iterativă GEN [31], prezentată ı̂n
Secţiunea 1.2, este strict neexpansivă şi, ı̂n plus, că aparţine mulţimii F2.

Propoziţia 4 Dacă A şi b sunt conform cu (1) şi matricele Q, R şi A

satisfac proprietăţile (3)–(5), atunci, operatorul afin Γ : Rn → Rn definit
prin

Γ(·) := Q(·) + Rb (34)

aparţine mulţimii F2.
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Observaţia 5 Algoritmul FCA, cu Tk definit conform (28), Ck = I, Γ din
(34), cu Q,R ı̂ndeplinind (3)-(5), include algoritmii Kaczmarz (vezi, e.g.,
[49]), Cimmino (vezi, e.g., [31]) şi Diagonal Weighting (vezi, e.g., [42])
(pentru detalii şi demonstraţii ale acestei afirmaţii vezi [43]). În următorul
rezultat demonstrăm că un alt astfel de exemplu este reprezentat de metoda
Landweber (vezi, e.g., [30, 43]).

Propoziţia 5 Fie {ωk}∞k=0 ⊂ Rn astfel ı̂ncât există un număr real ε cu 0 <

ε ≤ ωk ≤ 2
ρ(A)2

− ε, unde prin ρ(A) am notat norma spectrală a matricei A.

Oricare ar fi x0 ∈ Rn şi k ≥ 0, procesul iterativ Landweber este definit prin

xk+1 = (I − ωkA
TA)xk + ωkA

T b. (35)

Dacă notam I − ωkA
TA cu Tk şi ωkA

T cu Rk, atunci, oricare ar fi k ≥ 0,
proprietăţile (3)-(5) sunt verificate.

Lema 1 Fie Fix(Γ) mulţimea punctelor fixe ale operatorului Γ definit con-
form (34), cu Q şi R matrice de dimensiuni n× n, respectiv n×m, şi pro-
prietăţile (3)–(5). În aceste ipoteze, următoarea proprietate este adevărată

Fix(Γ) = {x + ∆ | x ∈ LSS(A; b)}, cu ∆ = (I − Q̃)−1RPN (AT )(b). (36)

Lema 2 Fie {Ck}
∞
k=0 familie de proiecţii metrice pe a k-a “cutie” [ak, bk] ⊂

Rn, conform definiţiei (20) şi să presupunem că V∗
k 6= ∅, oricare ar fi k ≥

0. Dacă pentru orice ` ≥ 0 există k(`) ≥ ` astfel ı̂ncât condiţia (23) este
verificată, i.e.,

Im(Ck+1) ⊆ Im(C`), oricare ar fi k ≥ k(`),

atunci mulţimea
V∗
∞ := ∩∞

k=0V
∗
k , (37)

este nevidă.

Proiecţiile metrice definite conform (20) sunt frecvent folosite cu rol de
constrângeri ı̂n probleme de reconstrucţie de imagini exprimate sub forma (1).
Scopul nostru este de a studia o procedură prin care funcţia de constrângere
să fie aleasă adaptiv la fiecare iteraţie a algoritmului aplicat, pentru a obţine o
aproximare mai bună a imaginii scanate. Semnificaţia relaţiei (23) ı̂n practică
este dată de faptul că imaginea fiecărei funcţii de constrângere ar trebui
să fie construită pe baza unor cunoştinţe anterioare. Aceasta trebuie să
conţină soluţia exactă, iar {Im(Ck)}∞k=0 nu trebuie să fie obligatoriu un şir
descrescător.
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Propoziţia 6 Pentru o familie {Ck}∞k=0 de proiecţii metrice definite prin
(20), având proprietăţile V∗

k 6= ∅ şi (23), şi un operator Γ definit conform
(34), cu Q şi R matrice care satisfac (3)–(5), ipoteza (25) şi Condiţia 1 sunt
ı̂ndeplinite.

În concluzie, conform Propoziţiei 4, Lemei 1, Propoziţiei 6 şi Teoremei 4,
putem rezolva problema (1) ı̂n sensul celor mai mici pătrate folosind Algo-
ritmul 2.2.2 cu Γ definit ca ı̂n (34), Q şi R matrice pentru care au loc (3)–(5)
şi o familie {Ck}

∞
k=0 de proiecţii metrice din (20) satisfăcând proprietăţile

V∗
k 6= ∅ şi (23).

3 Ipoteze mai slabe pentru convergenţa

metodelor proiective extinse şi pe blocuri

Kaczmarz şi Jacobi

În acest capitol ne interesează să aproximăm o soluţie a problemei (1) ı̂n cazul
inconsistent, folosind algoritmii proiectivi pe blocuri Kaczmarz şi Jacobi.

Versiuni extinse ale acestor două metode au fost introduse ı̂n [41] şi rezul-
tate de convergenţă au fost demonstrate ı̂n ipoteze de nesingularitate asupra
matricelor rezultate din descompuneri pe blocuri de linii şi coloane.

Vom arăta că, ı̂nlocuind operatorul de inversare al unei matrice cu pseu-
doinversa Moore-Penrose, rezultatele menţionate anterior, vezi [41, Teorema
3.4 şi Teorema 6.7] rămân adevărate ı̂n lipsa ipotezelor de nesingularitate.

3.1 Rezultate preliminare

Vom considera ı̂n continuare o descompunere pe blocuri de linii ale matricei
A şi ale vectorului corespunzător b. În acest sens, fie p ≥ 2, 1 ≤ mi ≤ m, cu
i ∈ {1, 2, . . . , p}, astfel ı̂ncât m1 + m2 + · · · + mp = m,

A =




A1

A2
...
Ap


 şi b =




b1
b2
...
bp


 , (38)

unde Ai sunt matrice reale de dimensiune mi × n şi bi ∈ Rmi.
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Similar, pentru q ≥ 2 şi n = n1 + n2 + · · · + nq, cu 1 ≤ nj < n, oricare
ar fi j ∈ {1, 2, . . . , q}, descompunerea ı̂n blocuri de coloane a matricei A este
dată de

AT =




B1

B2
...
Bq


 , (39)

unde Bj sunt matrice reale de dimensiune nj ×m.

În lucrarea [41], autorii au introdus versiuni extinse, pe blocuri, ale al-
goritmilor Kazmarz şi Jacobi proiectiv cu parametri de relaxare. Aceştia au
demonstrat că ı̂n ipotezele

det (AiA
T
i ) 6= 0, ∀ i ∈ {1, 2, . . . , p} (40)

şi
det (BjB

T
j ) 6= 0, ∀ j ∈ {1, 2, . . . , q} (41)

cele două metode converg la un element al mulţimii de soluţii ı̂n sensul celor
mai mici pătrate ale problemei (1).

Fie aplicaţiile liniare f i
0(b; ·), F0(b; ·) : Rn → Rn definite mai jos

f i
0(b; x) = x + AT

i (AiA
T
i )−1(bi − Aix), ∀ i ∈ {1, 2, . . . , p}, (42)

F0(b; x) =
(
f 1
0 ◦ f 2

0 ◦ · · · ◦ f p
0

)
(b; x) (43)

şi

Φ0 =

q∏

j=1

(
I −AT

i (AiA
T
i )−1Ai

)
. (44)

Următorul algoritm a fost introdus ı̂n [41].
Algoritmul pe Blocuri Kaczmarz Extins(EBK)

Iniţializări. x0 ∈ Rn este ales arbitrar şi y0 = b.
Pas iterativ. Oricare ar fi k ≥ 0,

yk+1 = Φ0y
k; bk+1 = b− yk+1; xk+1 = F0(b

k+1; xk). (45)

Pentru parametrii reali ω, α 6= 0, vom considera

Qω
0 = I − ω

p∑

i=1

AT
i (AiA

T
i )−1Ai, (46)
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Rω
0 = ωcol

[
AT

1 (A1A
T
1 )−1 | AT

2 (A2A
T
2 )−1 | . . . | AT

p (ApA
T
p )−1

]
(47)

şi

Φα
0 = I − α

q∑

j=1

BT
j (BjB

T
j )−1Bj . (48)

O versiune extinsă, pe blocuri, a metodei Jacobi a fost introdusă ı̂n [41].
Algoritmul pe Blocuri Jacobi Extins cu Parametri de Relaxare
(EBJRP)

Iniţializări. x0 ∈ Rn este ales arbitrar şi y0 = b.
Pas iterativ. Oricare ar fi k ≥ 0,

yk+1 = Φα
0 y

k; bk+1 = b− yk+1; xk+1 = Qω
0x

k + Rω
0 b

k+1. (49)

Din nefericire, ı̂n aplicaţii reale, condiţii de tipul (40)-(41) sunt ı̂n gen-
eral greu de verificat. Urmărind argumentele din [41], vom demonstra că
ı̂nlocuind operatorul de inversare al unei matrice cu pseudoinversa Moore-
Penrose, rezultatele de convergenţă rămân adevărate ı̂n absenţa presupuner-
ilor (40)-(41). Realizăm acest lucru arătând că cei doi algoritmi sunt cazuri
particulare ale metodei extinse generale EGEN [45], descrisă ı̂n Secţiunea
1.2.

3.2 Algoritmii EBK şi EBJRP, cazuri particulare ale
metodei EGEN

Vom nota ı̂n continuare cu f i, F , Φ, Qω, Rω şi Φα, operatorii liniari f i
0, F0,

Φ0, Q
ω
0 , Rω

0 şi Φα
0 definiţi conform (42)-(44) şi respectiv (46)-(48), ı̂nlocuind

operatorul de inversare al unei matrice cu pseusoinversa Moore-Penrose.
Oricare ar fi i ∈ {1, 2, . . . , p} şi j ∈ {1, 2, . . . , q}, definim matricele

Pi = I − AT
i (AiA

T
i )†Ai, φj = I −BT

j (BjB
T
j )†Bj, (50)

P̄i = AT
i (AiA

T
i )†Ai, φ̄j = BT

j (BjB
T
j )†Bj . (51)

Considerăm aplicaţiile liniare corespunzătoare

∆i = AT
i (AiA

T
i )†, Qi = P1P2 . . . Pi, ∀ i ∈ {1, 2, . . . , p}, (52)

Q = P1P2 . . . Pp, (53)
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R = col [ ∆1 | Q1∆2 | . . . | Qp−1∆p ] , (54)

Φj = φ1φ2 . . . φj, ∀ j ∈ {1, 2, . . . , q}, (55)

Q̃ω = QωPR(AT ) and Φ̃α = ΦαPR(A). (56)

Prin urmare, avem

Φ = φ1φ2 . . . φq, Qω = I − ω

p∑

i=1

P̄i, (57)

şi

Rω = ωcol [ ∆1 | ∆2 | . . . | ∆p ] , Φα = I − α

q∑

j=1

φ̄j . (58)

Următoarea teoremă garantează convergenţa algoritmului Kaczmarz ex-
tins pe blocuri definit utilizând pseudoinversa Moore-Penrose şi eliminând
ipotezele (40)-(41).

Teorema 5 Dacă Q, R şi Φ sunt definite conform (53), (54) şi respectiv
(57), atunci

(i) avem egalitatea
F (b; x) = Qx + Rb, (59)

(ii) Q şi R satisfac (3)-(5),
(iii) matricea Φ satisface proprietăţile (10)-(12).

În cazul algoritmului EBJRP vom confirma rezultate analoage. Afirma-
ţiile (5) şi (12) vor fi demonstrate folosind rezultate din lucrările [15, 41].

Teorema 6 Următoarele proprietăţi sunt ı̂ndeplinite
(i) Qω şi Rω verifică (3)-(4),
(ii) pentru matricea Φα, presupunerile (10)-(11) sunt adevărate.

Corolarul 1 [41] Dacă 0 < ω < 2
ρ(E)

şi 0 < α < 2
ρ(D)

, unde D = 1
α

(I − Φα)

şi E = 1
ω
RωA, atunci, pentru Q̃ω şi Φ̃α, relaţiile (5) şi respectiv (12) au loc.

Din Teorema 6 şi Corolarul 1 rezultă că algoritmul EBJRP este un caz
particular al metodei EGEN.
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4 Proiecţii suplimentare pentru accelerarea

algoritmului Kaczmarz

În lucrarea [45], autorii au observat faptul că algoritmul Kaczmarz Extins
calculează o soluţie a problemei (1) ı̂ntr-o singură iteraţie, cu condiţia ca ma-
tricea A să ı̂ndeplinească anumite condiţii. Prin urmare, aceştia au studiat o
procedură de a transforma problema originală adăugând o mulţime conven-
abilă de direcţii pentru proiecţie, construite sub forma unor combinaţii liniare
de linii şi coloane ale matricei sistemului. Deşi matricele obţinute astfel vor
verifica ipotezele necesare, un dezavantaj este acela că vor avea ı̂n general un
procent de umplere ridicat comparativ cu cel al matricei originale.

Obiectivul nostru este de a studia posibilitatea adăugării unei submulţimi
de direcţii suplimentare pentru proiecţie astfel ı̂ncât procentul de umplere al
matricelor extinse să fie menţinut aproape de cel al lui A. Deoarece ı̂n urma
acestui procedeu se va obţine o metodă iterativă, vom ı̂ncerca să obţinem o
viteză de convergenţă mai bună faţă de algoritmul Kaczmarz clasic.

4.1 Algoritmul Kaczmarz Direct Extins

În [45], autorii au introdus algoritmul Kaczmarz Direct Extins (DEK) şi
au demonstrat convergenţa acestuia ı̂n cazul inconsistent al problemei (1).
Ideea este de a se transforma problema originală prin construcţia de direcţii
noi pe linii şi coloane, după cum urmează. Oricare ar fi i ∈ {1, 2, . . .m} şi
j ∈ {1, 2, . . . n}, fie aplicaţiile Pi : Rn → Rn, φj,R

m → Rm, definite prin

Pi(x) = x − xTAi

‖Ai‖
2Ai, φj(x) = x − xTAj

‖Aj‖2
Aj . Considerăm mulţimile de vectori

direcţie d1, d2, . . . dm−1 ∈ Rn şi δ1, δ2, . . . , δn−1 ∈ Rm definite ([45]) mai jos

dm−1 = Pm(Am−1),

dm−2 = Pm−1P
dm−1Pm(Am−2),

. . . . . .

d1 = P2P
d2P3 . . . Pm−1P

dm−1Pm(A1), (60)

δn−1 = φn(An−1),

δn−2 = φn−1φ
δn−1φn(An−2),

. . . . . .

δ1 = φ2φ
δ2φ3 . . . φn−1φ

δn−1φn(A1), (61)
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unde operatorii P di : Rn → Rn şi φδj : Rm → Rm sunt daţi de P di(x) =

x− xT di
‖di‖

2di, φδj (x) = x− xT δj

‖δj‖
2 δj . Definim ı̂n continuare matricele Â şi Â de

dimensiuni (2m− 1) × n, respectiv m× (2n− 1)

Â = col
[
A1 | d1 | A2 | d2 | . . . | dm−1 | Am

]T
, (62)

Ā = col
[
A1 | δ1 | δ2 | δ2 | . . . | δn−1 | An

]
. (63)

Oricare ar fi i ∈ {1, 2, . . .m− 1}, fiecare direcţie di este (prin construcţie) o
combinaţie liniară a liniilor Ai, Ai+1, . . . Am (pentru mai multe detalii vezi,
e.g., [45]). Prin urmare, există scalarii βi

i , β
i
i+1, . . . β

i
m ∈ R astfel ı̂ncât di =∑m

k=i β
i
kAk. Fixăm b(di) =

∑m

k=i β
i
kbk şi

b̂ = (b1, b(d1), b2, b(d2), b3, . . . b(dm−1), bm)T . (64)

Metoda DEK, deşi este directă, are dezavantajul că determină un procent
ridicat de umplere al matricelor Â şi Ā, chiar şi atunci când A este rară.

4.2 Accelerarea algoritmului Kaczmarz ı̂n cazul
consistent

În această secţiune ı̂ncercăm să determinăm o procedură de a adăuga direcţii
pentru proiecţie problemei (1) astfel ı̂ncât atât performanţa metodei Kacz-
marz ([49, 40]) să fie sporită, cât şi procentul de umplere al matricei rezultate
să fie menţinute la un nivel scăzut. Soluţia noastră este de a efectua un clus-
tering aglomerativ al liniilor şi al coloanelor din punct de vedere al tiparului
de raritate. Distanţele folosite vor fi Jaccard sau Hamming (pentru mai multe
detalii vezi, e.g., [46]). Propunem următorul algoritm.
Algoritmul Kaczmarz Modificat cu Clustering (MKC)

Clustering. Folosind una dintre distantele Jaccard sau Hamming, se
calculează un clustering al liniilor matricei A cu maximum nc clustere; notăm
numărul de linii din cel de-al k-lea cluster cu mk şi fie {Ak

1, A
k
2, . . . A

k
mk

}
mulţimea de linii din care este format. Fie matricele Bk şi Anc

c de dimensiune
mk × n, respectiv m× n, definite astfel

Bk =




(Ak
1)T

(Ak
2)T

...
(Ak

m1
)T


 şi Anc

c =




B1

B2
...

Bnc


 . (65)
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Matricea Anc
c se obţine printr-o permutare a liniilor matricei originale. Se

aplică aceeaşi permutare lui b şi se obţine bncc . Avem că S(A; b) = S(Anc
c ; bncc ).

Transformări ale matricei. Oricare ar fi k ∈ {1, 2, . . . nc}, se cal-
culează pentru Bk setul ı̂ntreg de direcţii dk1, d

k
2, . . . d

k
mk−1 ∈ Rn conform (60)

şi se obţine matricea B̂k potrivit relaţiei (62). Noua matrice este definită mai
jos.

Ânc
c =




B̂1

B̂2

...

B̂nc


 . (66)

Vectorul corespunzător b̂ncc se calculează din bncc conform (64).
Iteraţii Kaczmarz. Se aplică algoritmul Kaczmarz pentru a rezolva

problema (echivalentă cu (1)): să se găsească x ∈ Rn astfel ı̂ncât

∥∥∥Ânc
c x− b̂ncc

∥∥∥ = min{
∥∥∥Ânc

c z − b̂ncc

∥∥∥ , z ∈ Rn}.

Observaţia 6 Când nc = m, algoritmul MKC reprezintă metoda Kacz-
marz iterativ aplicată problemei (1). În cazul unui singur cluster se adaugă
matricei A ı̂ntregul set de direcţii şi algoritmul MKC devine Kaczmarz Di-
rect. Acesta din urmă aproximează ı̂ntr-o singură iteraţie o soluţie pentru
(1)(pentru detalii şi demonstraţie vezi [45, Teorema 3]).

4.3 Un algoritm extins pentru cazul inconsistent

În cazul inconsistent vom utiliza raţionamentul din secţiunea anterioară.
Vom obţine ı̂n mod independent două transformări diferite ale matricelor
A şi AT , notate prin Â0 şi Ā0, şi vom introduce o versiune modificată a algo-
ritmului Kaczmarz Extins (EK). Menţionăm că ÂT

0 6= Ā0, iar noul algoritm
nu este echivalent cu metoda EK.

Fiind daţi scalarii β1, β2, . . . , βn ∈ R, α1, α2, . . . , αn ∈ R şi indicii i0 ∈
{2, 3, . . . , m}, j0 ∈ {2, 3, . . . , n} fixaţi arbitrar, definim vectorii d, δ astfel

d =

m∑

i=1

βiAi, δ =

n∑

i=1

αiA
i (67)
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şi matricele de dimensiuni (m + 1) × n, respectiv m× (n + 1),

ÂT
0 = col [A1, . . . , Ai0−1, d, Ai0, . . . , Am], (68)

Ā0 = col
[
(A1), . . . , (Aj0−1), δ, (Aj0), . . . , (An)

]
. (69)

Oricărui vector z = (z1, z2, . . . , zm)T ∈ Rm ı̂i asociem vectorul ẑ ∈ Rm+1 dat
de relaţia

ẑ = (z1, z2, . . . , zi0−1,

m∑

i=1

βizi, zi0, . . . , zm)T . (70)

Considerăm aplicaţiile P d : Rn → Rn, φδ : Rm → Rm, Q̂0 : Rn → Rn,
Φ̄o : Rm → Rm definite prin P d(x) = x− xT d

‖d‖2
d, φδ(x) = x− xT δ

‖δ‖2
δ,

Q̂0 = (P1 ◦ · · · ◦ Pi0 ◦ P
d ◦ Pi0+1 ◦ · · · ◦ Pm), (71)

Φ̄o = (φ1 ◦ · · · ◦ φj0 ◦ φ
δ ◦ φj0+1 ◦ · · · ◦ φn), (72)

şi matricea de dimensiune n× (m+ 1), R̂0 = col
[
R̂1

0, R̂
2
0, . . . , R̂

m+1
0

]
dată de

(vezi [45])

R̂k
0 =

1

‖Ak‖
2P1P2 . . . Pk−1(Ak), ∀ k ∈ {1, 2, . . . , i0 − 1},

R̂i0
0 =

1

‖d‖2
P1P2 . . . Pi0−1(d),

R̂k
0 =

1

‖Ak−1‖
2P1P2 . . . Pi0−1P

d . . . Pk−2(Ak−1), ∀ k ∈ {i0 + 1, . . . , m}. (73)

Algoritmul Kaczmarz Extins Modificat(EKM)
Iniţializări. x0 ∈ Rn este ales arbitrar şi y0 = b.
Pas iterativ. Oricare ar fi k ≥ 0, fie

yk+1 = Φ̄0(y
k); xk+1 = Q̂0x

k + R̂0( ̂b− yk+1). (74)

Teorema 7 Şirurile (xk)k≥0 şi (yk)k≥0, generate folosind algoritmul EKM,
converg şi

lim
k→∞

yk = PN (AT )(b), lim
x→∞

xk = PN (A)(x
0) + xLS. (75)
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Teorema 8 Oricare ar fi matricea A de dimensiune m × n şi vectorul b ∈
Rm, se vor defini matricea Â0 de dimensiune (m + 1) × n conform (68),

vectorul b̂ ∈ R(m+1) din (70) şi aplicaţiile Q̂0 : Rn → Rn, R̂0 : R(m+1) → Rn,
Φ̄0 : Rm → Rm date de (71), (73), şi respectiv (72). Dacă

Q̂0(Ai) = 0, ∀ i ∈ {1, 2, . . . , m}, Q̂0(d) = 0,

Φ̄0(A
j) = 0, ∀ j ∈ {1, 2, . . . , n}, Φ̄0(δ) = 0, (76)

atunci algoritmul Kaczmarz Extins Modificat converge ı̂ntr-o singură iteraţie
la o soluţie a problemei (1).

Pentru cazul inconsistent propunem următorul algoritm
Algoritmul Kaczmarz Extins Modificat cu Clustering (MEKC)

Clustering. Se execută clustering al coloanelor matricei A cu maximum
ncc clustere folosind una dintre distanţele Jaccard sau Hamming. Pentru
orice cluster k cu k ∈ {1, 2, . . . ncc}, fie A1

k, A
2
k, . . . A

nk

k mulţimea de coloane
din care este format, unde nk reprezintă dimensiunea clusterului. Matricele
Bk şi Ac

ncc de dimensiuni nk ×m, respectiv n×m, sunt definite astfel

Bk = col
[
A1

k, A
2
k, . . . , A

nk

k

]
, (77)

Ac
ncc = col

[
B1, B2, . . . , Bnc

]
. (78)

Matricea Ac
ncc se obţine ı̂n urma unei permutări de coloane ale lui A. Se

realizează un clustering al liniilor matricei A cu maximum ncr clustere pentru
a obţine matricea Ancr

c conform (65) şi se aplică aceeaşi permutare termenului
liber b, rezultând bncrc .

Transformări ale matricelor. Oricare ar fi k ∈ {1, 2, . . . ncc}, se
construiesc directiile δ1k, δ

2
k, . . . , δ

nk

k ∈ Rn (61) pentru blocul de coloane Bk şi
se calculează B̄k conform (63). Noua matrice este astfel definită

Āc
ncc = col

[
B̄1, B̄2, . . . , ¯Bncc

]
. (79)

Se calculează pentru ncr clustere matricea Âncr
c dată de (66) şi vectorul core-

spunzător b̂ncrc .
Iteraţii Kaczmarz Extins Modificat. Se aproximează o soluţie a

problemei (1) folosind algoritmul EKM cu noile matrice Āc
ncc şi Ânc

c .
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5 Experimente numerice

5.1 Tehnici de constrângere

În această secţiune ı̂ncercăm să dezvoltăm şi să analizăm un algoritm pen-
tru problema (1) bazat pe informaţii a priori despre soluţia exactă. Scopul
experimentelor noastre este de a arăta că folosind o familie de funcţii de
constrângere construită adaptiv se obţin rezultate mai bune decât aplicând
o constrângere constantă. Vom studia o versiune simplificată a unei prob-
leme reale. Aceasta se referă la reconstrucţia unui vector binar. Ne con-
centrăm asupra determinării numărului şi locaţiei aproximative a componen-
telor nenule.

5.1.1 O versiune adaptivă a algoritmului general CGENk

Propunem următorul algoritm cu o familie de funcţii de constrângere, unde
prin operatorul K : Rn −→ Rn am notat o iteraţie a metodei Kaczmarz.
Algoritmul Kaczmarz Constrâns cu o Familie (FCK)

Iniţializări. Fie x0 = 0, n0 un număr ı̂ntreg pozitiv fixat, ε0 şi δ două
numere reale pozitive şi Ck proiecţia metrică pe “cutia” [ak, bk] = [ak1, b

k
1] ×

· · · × [akn, b
k
n] ⊂ Rn (vezi (20)).

Pasul I. Oricare ar fi k ∈ {0, 1, . . . , n0 − 1}, fie [ak, bk] = [0, 1]n şi

xk+1 = Ck+1(Kxk). (80)

Pasul II. Fie x0 = xn0 şi pentru orice k > n0 se calculează x̃k ca

x̃k = Kxk−1. (81)

Oricare ar fi i ∈ {1, 2, . . . , n}, dacă x̃k
i ≤ εk, atunci [aki , b

k
i ] = [0, 10−4];

altfel [aki , b
k
i ] = [ak−1

i , bk−1
i ].

Se calculează xk conform

xk = Ck(x̃
k), (82)

şi se actualizează εk+1 cu εk+1 = εk + δ.

Valorile parametrilor n0, ε0 şi δ sunt alese conform problemei de recon-
strucţie, ı̂n urma unor teste sistematice. Construim familia de funcţii de
constrângere astfel ı̂ncât să satisfacă (23). Algoritmul este format din doi paşi
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şi porneşte cu vectorul nul ca aproximaţie iniţială. Pe parcursul primei etape,
pentru un număr fixat de iteraţii, folosim aceeaşi funcţie de constrângere,
proiecţia metrică pe “cutia” [a, b] = [0, 1]n. Raţionamentul este de a păstra
aproximaţia ı̂n intervalul preconizat şi ı̂n acelaşi timp de a permite valorilor
nenule să “crească”.

În cea de-a doua etapă vom presupune că, dacă după un număr sufi-
cient de iteraţii valoarea unei componente este ı̂n continuare apropiată de
zero, atunci ı̂n soluţia exactă valoarea acesteia este nulă. La fiecare iteraţie
aplicăm Kaczmarz şi “măsurăm” valoarea fiecărui pixel. Dacă este sub un
prag dat, εk, atunci intervalul corespunzător din “cutie” va fi micşorat la
[0, 10−4]. Am ales intervalul [0, 10−4] ı̂n favoarea lui [0, 0] deorece am obser-
vat experimental faptul că se obţin rezultate mai bune atunci când interiorul
intervalelor de constrângere este nenul. Pentru a accelera convergenţa algo-
ritmului, la fiecare iteraţie, se creşte pragul cu δ.

În următoarele două secţiuni studiem o problemă particulară de recon-
strucţie de imagini (vezi [35] şi [34]). Această problemă apare ı̂n 3D To-
mographic Particle Image Velocimetry (TomoPIV), o metodă optică de a
măsura viteză fluidelor.

5.1.2 Rezolvarea unei probleme de reconstrucţie de imagini
5.1.3 Rezultate numerice

5.2 Adăugarea unor direcţii pentru proiecţie

În următoarea secţiune examinăm experimente numerice referitoare la algo-
ritmii MKC şi MEKC pentru două matrice rare.

5.2.1 Studii de caz

5.2.2 Conservarea procentului de umplere sub un prag dat

Atunci când ne ocupăm de o problemă (1) inconsistentă cu o matrice A rară,
rău condiţionată si de dimensiuni mari, metodele iterative au o performanţă
de timp scăzută, ı̂n timp ce algoritmii direcţii conduc la pierderea proprietăţii
de raritate a datelor. Atunci când aplicăm algoritmul MEKC, pe măsură
ce numărul de clustere pe linii sau coloane creşte, procentul de umplere al
matricelor noi obţinute dar şi rata de convergenţă a procesului iterativ se
diminuează. Prin urmare, problema este de a găsi valori mici ale lui ncr şi
ncc astfel ı̂ncât numărul de elemente nenule ale matricelor Âncr

c şi Āc
ncc să

rămână sub un prag (threshold) dat.
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Vom considera cazul consistent al problemei (1). Pentru o distanţă şi un
threshold fixate, ne interesează să găsim o valoare ncr∗ minimă astfel ı̂ncât

nz(Âncr∗) < threshold

Soluţie. Soluţia noastră este de a executa o căutare binară a lui ncr∗ ı̂n

şirul ordonat nz(Â) ≥ nz(Â2) ≥ · · · ≥ nz(Âm−1) ≥ nz(A), unde prin nz(M)
am notat numărul de elemente nenule ale unei matrice M :

– iniţial ncr = m+1
2

şi se calculează nz(Âncr);

– dacă nz(Âncr) > threshold, se continuă căutarea binară ı̂n subşirul

drept nz(Âncr+1) ≥ · · · ≥ nz(Âm−1) ≥ nz(A);
– altfel, ncr este o valoare posibilă a lui ncr∗ şi se continuă căutarea unei

valori mai mici ı̂n nz(Â) ≥ nz(Â2) ≥ · · · ≥ nz(Âncr−1);
– stop atunci când se obţine un subşir vid; ncr∗ este ultima valoare găsită

pentru care are loc nz(Âncr) < threshold.

Observaţia 7 La fiecare pas al căutării binare calculăm şirul de direcţii doar
atâta timp cât nu se depăşeşte pragul dat.

După calcularea valorii ncr∗ comparăm algoritmul Kaczmarz clasic cu
MKC(dist, ncr∗).

Soluţie. Determinăm numărul de flops (operaţii aritmetice ı̂n virgulă
mobilă) efectuate de fiecare din aceşti algoritmi.

Metodă Număr de flops

Kaczmarz Direct 3 ∗ nz(Â) + 2 ∗ (2 ∗m− 1)

MKC(dist, ncr∗)
(

3 ∗ nz(Âncr∗) + 2 ∗ (2 ∗m− ncr∗)
)
∗ niterncr∗

Kaczmarz (3 ∗ nz(A) + 2 ∗m) ∗ niterK

Rezultatele ilustrate mai sus arată că atunci când nu se poate aplica
Kaczmarz Direct, algoritmul MKC furnizează o alternativă mai eficientă
decât metoda Kaczmarz. Aceleaşi raţionamente pot fi aplicate şi ı̂n cazul
inconsistent.
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