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Prefata

In domeniul algebrei liniare numerice, diverse aplicatii, precum reconstructia
si procesarea de imagini, conduc la rezolvarea unor sisteme de ecuatii liniare
rare, rau conditionate, avand dimensiuni mari. Din cauza masuratorilor
inexacte sau a aproximarilor masina, aceste probleme nu sunt intotdeauna
consistente, i.e., termenul liber nu apartine imaginii matricei sistemului. In
astfel de cazuri ne intereseaza sa rezolvam o problema corespunzatoare, in
sensul celor mai mici patrate. Algoritmii iterativi, desi au o complexitate
de calcul mai mare, ofera, in general, rezultate mai bune atunci cand datele
sunt incomplete sau perturbate.

In lucrarea [31], o metodi iterativd generali, care include algoritmii Kacz-
marz (vezi, e.g., [49]), Cimmino (vezi, e.g., [31]), Diagonal Weighting (vezi,
e.g., [42]) sau Landweber (vezi, e.g., [30, 43]), a fost propusa pentru a rezolva
problema 1n sensul celor mai mici patrate. Autorii au demonstrat faptul ca
o versiune extinsa a metodei generale converge chiar si in cazul inconsistent
la o solutie a problemei mentionate anterior.

Pentru rezolvarea unei probleme de reconstructie de imagini, atunci cand
exista informatii a priori despre imaginea scanata, precum netezime sau
apartenenta la o multime inchisa si convexa, se pot aplica strategii de con-
strangere care imbunatatesc calitatea reconstructiei. Constrangerea proce-
selor iterative se realizeaza prin inmultirea la stanga a operatorului algoritmic
cu un operator de constrangere la fiecare pas iterativ. Procedura descrisa
are ca scop nu doar rezolvarea problemei, dar gi gasirea unei solutii care
inglobeaza cunostinte initiale. Aceasta abordare a fost aplicata cu succes in
reconstructia si procesarea de imagini prin utilizarea unui singur operator de
constrangere [7, 11, 14, 24, 25, 26, 28, 47, 50].

Un alt subiect de interes este reprezentat de cresterea performantei al-
goritmilor iterativi. In [45], autorii au propus o procedura prin care clasicul
algoritm Kaczmarz este transformat intr-o metoda directa.

Considerand aceste aspecte, teza este organizata dupa cum urmeaza.

In primul capitol prezentam cateva rezultate preliminare precum si me-
toda generala introdusa in [31].

In Capitolul 2 incercam sa folosim o familie de functii de constrangere, in
locul unui singur operator. In Sectiunea 2.1 prezentam pe scurt metoda
iterativa generala constransa din [31] i rezultatele de convergenta core-
spunzatoare. In continuare, propunem o procedura noua de constrangere
adaptiva, care utilizeaza o familie de functii strict neexpansive i idempo-



tente si demonstram convergenta noului algoritm, sub ipoteze suplimentare.
De asemenea, dam un exemplu de familie de proiectii pe “cutii”, i.e., pro-
duse de intervale inchise, care satisfac conditiile impuse. In Sectiunea 2.2,
adaptam cateva rezultate din [13] intr-un cadru generalizat, pentru o familie
de operatori strict neexpansivi avand puncte fixe comune si o presupunere
aditionala, adecvata in contextul problemelor de reconstructie de imagini, si
demonstram convergenta procesului iterativ corespunzator. Prezentam al-
goritmul constrans folosind o familie de operatori (FCA) si demonstram ca
metodele de dezvoltare in serie si matricele de netezire din [13] verifica toate
ipotezele date. Mai mult, aratam ca metoda iterativa generala [31] este de
asemenea un operator de forma necesara convergentei algoritmului FCA si ca
exemplul de familie neliniara de operatori de constrangere mentionat anterior
satisface conditiile noastre.

In Capitolul 3 incercam sa demonstram convergenta unor variante extinse,
pe blocuri, ale metodelor proiective Kaczmarz si Jacobi. Scopul nostru este sa
confirmam ca acesti algoritmi sunt cazuri particulare are procesului iterativ
general extins dat in [31]. Inlocuind operatorul de inversare al unei matrice
cu pseudoinversa Moore-Penrose, generalizam rezultate precedente din [41].

Cel de-al patrulea capitol este dedicat studiului unei metode de accelerare
care se bazeaza pe ideea de a adauga sistemului liniar initial directii pe linii,
respectiv coloane, pentru proiectie. In lucrarea [45] s-a demonstrat faptul ca o
versiune a algoritmului Kaczmarz construieste intr-o singura iteratie solutia
problemei noastre in sensul celor mai mici patrate. Din pacate, ca orice
metoda directa aplicata unei matrice rara si de mari dimensiuni, acest algo-
ritm determina o crestere considerabila a procentului de umplere al datelor
noastre. Pentru a depasi aceasta dificultate, propunem o versiune modificata
a metodei directe Kaczmarz, in care transformarile aplicate matricei sistemu-
lui sunt menite sa conserve structura de raritate initiala. Aceste transformari
sunt realizate printr-un algoritm de clustering folosind distantele Jaccard si
Hamming. Metoda rezultata va fi iterativa, insa se obtine o accelerare a
convergentei fata de algoritmul Kaczmarz clasic.

In ultimul capitol construim un algoritm adaptiv care utilizeaza o familie
de functii de constrangere pentru a rezolva o problema de reconstructie de
imagini de tip “Tomographic Particle Image Velocimetry” (vezi, e.g., [35] si
[34]). Rezultatele numerice sunt ilustrate pentru diferite niveluri de pertur-
bare. Prezentam de asemenea si experimente numerice referitoare la metoda
de accelerare a schemei iterative Kaczmarz descrisa in capitolul anterior.
Investigam in continuare metode de a calcula numarul minim de clustere
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necesare pentru a conserva gradul de umplere al datelor noastre sub un prag
dat.

Contributiile originale prezentate in aceasta teza sunt continute in urma-
toarele lucrari.
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1 Cadru teoretic

1.1 Notiuni preliminare

Multe probleme reale conduc, dupa anumiti pasi de discretizare, la rezolvarea
unor sisteme de ecuatii liniare de forma Az = b, pentru o matrice A de
dimensiuni m X n si un vector b € R™. Daca apar erori de modelare sau de
masuratoare, atunci este posibil ca sistemul sa fie inconsistent. In acest caz
se ajunge la a rezolva urmatoarea problema in sensul celor mai mici patrate:
gasiti € R™ astfel incat

|Ax — b|| = min{||Az — 0|,z € R"}. (1)

Vom folosi in continuare notatiile A7, AT, A;, A7, R(A),N'(A), Py, xs si
LSS(A;b) pentru transpusa, pseudoinversa (unica) Moore-Penrose, cea de-a
i-a linie, cea de-a j-a coloana, imaginea si spatiul nul al lui A, proiectia pe un
spatiu vectorial V', solutia (unica) de norma minima si multimea de solutii a
problemei (1); de asemenea, (-,-), || z || si || M || au sensul de produs scalar
Euclidian, norma Euclidiana a vectorului z si norma spectrala a matricei M.
Toti vectorii care apar in aceasta lucrare vor fi considerati vectori coloana.
Vom presupune in restul lucrarii ca

A # 0,47 £0, oricare ar fii € {1,2,...m} si j € {1,2,...n}.

1.2 O metoda iterativa generala de tip proiectiv

Pentru a rezolva problema in sensul celor mai mici patrate (1), urmatorul
algoritm iterativ general, bazat pe proiectii, a fost propus in [31].
Algoritm Iterativ General(GEN)
Initializare. 2° € R™;
Pas iterativ.
2" = Qa* + Rb, (2)

cu @ si R matrice de dimensiuni n X n si respectiv n x m, care satisfac
urmatoarele proprietati:

O+ RA=1, (3)
Vy € R™, Ry € R(AT), (4)
dacd Q = QPr(ary atunci || Ql < 1L (5)



Observatia 1 Formularea generala descrisa mai sus include aproape toti al-
goritmat de tip proiectiv folositi in tomografia computerizata, cum ar fi Kacz-
marz, Cimmino, Jacobi Proiectiv, Diagonal Weighting (vezi, e.qg., [49], [31],
[15] si respectiv [42]). Pentru detalii si demonstratii ale acestei afirmatii vezi
lucrarea [43].

Teorema 1 ([31, Teorema 2.2]) Dacd (3)-(5) au loc, pentru orice 2° € R™,
sirul (z%)>0 generat cu (2) converge si

]}Lm o = PN(A)(ZBO) +xps+A, cu A=(I— Q)flRPN(AT)(b). (6)

Observatia 2 Daca problema (1) este consistentd, avem ca A =0 gi limita
din (6) este un element al mulfimii de solutii S(A;b) = {x € R"| Az = b},
pentru oricare ar fi 2° € R™. In cazul inconsistent, |A|| reprezintd distanta
de la punctul limita din (6) si multimea LSS(A;b) (pentru detalii vezi, e.q.,

[44))-

Pentru matricele @), R si U de dimensiuni n X n, n X m §i respectiv. m xm,
autorii au definit in [31] urmatoarea metoda iterativa generala extinsa.
Algoritm General Extins (EGEN)

Initializiri. 2° € R" este arbitrar ales si y° = b.

Pas iterativ. Oricare ar fi kK > 0,

y=Uyt, (7)
bk—‘rl =b— yk—‘rl? (8)
karl _ ka + Rbk+1. (9)

Daca @ si R satisfac (3)-(5) si U verifica urmatoarele presupuneri generale

daca » € N(A") atunci Ur = z, (10)
daca x € R(A) atunci Uz € R(A), (11)
daci U = UPgay atunci | U || < 1, (12)

urmatorul rezultat de convergenta a fost demonstrat.

Teorema 2 [31, Teorema 2.6/ Presupunem ca matricele Q) si R satisfac
ecuatiile (3)-(5) si ca pentru U proprietatile (10)-(12) sunt indeplinite. Atunci,
oricare ar fi 2° € R, sirul (z*)i>0 generat cu algoritmul EGEN converge si

Jim 2" = Py(ay(2°) + zps. (13)
— 00



2 Utilizarea unor familii de functii
de constrangere in algoritmi iterativi

In acest capitol ne concentram pe studiul tehnicilor de constrangere a pro-
ceselor iterative. Atunci cand ne ocupam de probleme reale, exista situatii
in care cunoastem a priori proprietati ale solutiei pe care o cautam. Daca
este posibil, aceste cunostinte pot fi formulate sub forma unor constrangeri
suplimentare adaugate problemei. insé, in anumite cazuri este mai avanta-
jos sa modificam algoritmul gi nu problema, astfel incat sa ia in considerare
conditiile impuse de constrangeri gi in acelasi timp sa aproximeze o solutie a
problemei initiale. Numim acest procedeu, constrangere a algoritmului iter-
ativ. Fiind dat un operator (algoritmic) I' : R — R™ intre spatii Euclidiene,
procesul iterativ original poate fi scris sub forma

2" = T'(2%), oricare ar fi k > 0, (14)

sub diferite ipoteze asupra lui I'.
Prin a constrange un astfel de algoritm folosind o familie de operatori
intelegem sa inlocuim (14) cu urmatorul proces iterativ

" = C.T(2%), oricare ar fi k > 0, (15)

unde {C}}2, este o familie de operatori Cy : R* — R™, pe care ii vom numi
in restul acestei lucrari operatori de constrangere.

Ne intereseaza sa studiem posibilitatea de a constrange un algoritm fo-
losind o familie de operatori i sa analizam comportamentul asimptotic al
acestuia. Extindem rezultate anterioare, limitate la un singur operator de
constrangere i.e., C, = C, oricare ar fi k > 0, vezi, e.g., [7, 11, 14, 24, 25, 26,
28, 47, 50].

2.1 O metoda de constrangere a algoritmului GEN
folosind o familie de functii strict neexpansive si
idempotente

In general, matricea A din (1) are dimensiuni mari, este rara, rau conditionata

si nu are rang plin. Prin urmare, problema in sensul celor mai mici patrate

are o infinitate de solutii. O serie de algoritmi clasici folositi pentru a rezolva
(1) genereaza o aproximare a solutiei (unice) de norma minima. Insa, xpg
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nu este intotdeauna apropiata ca valoare de solutia pe care o cautam (e.g.,
imaginea scanata in probleme de reconstructie de imagini) si pe care o vom
nota cu z. Urmatoarea relatie este cunoscuta, vezi, e.g., [43],

¥ = P/\/(A) (%ex) +xrs. (16)

In consecinta, pentru a gasi o aproximare a solutiei exacte mai buna decat
cea furnizata de xpg, se incearca inglobarea informatiilor cunoscute a priori
sub forma unor constrangeri suplimentare.

Un exemplu frecvent intalnit este acela in care solutia exacta are com-
ponentele incluse In intervale cunoscute, i.e., % € [a;,b;], cu [a;, b)) C R,
oricare ar fi i € {1,2,...,n} (vez, e.g., [20]). In acest caz, la fiecare pas al
metodei iterative se va proiecta a i-a componenta a aproximatiei curente pe
intervalul [a;, b;]. In lucrarea [28], autorii au implementat aceasts idee algo-
ritmului Kaczmarz. Acestia au considerat o functie de constrangere generala
C :R" — R" cu o imagine inchisa Im(C') = {y = Cz,z € R"} C R", avand
urmatoarele proprietati

|Cx = Cyll < llz =yl (17)

daca ||Cx —Cy| = ||z —y| atunci Cx —Cy =z —vy, (18)

daca y € Im(C) atunci y = Cy. (19)

Spunem ca un operator C' : R” — R" este strict neexpansiv (SNE) daca

indeplineste conditiile (17) si (18).
Observatia 3 Un exemplu de functie pentru care (17)-(19) au loc este pro-

iectia ortogonala pe “cutia” |a,b] = [a1,b1] X -+ X [a,,b,] C R™, definita
astfel
X, daca X; € [ai,bi]
(Cx); =< a, daca z; < q; (20)
bi, daca €T > bl

In lucrarea [31], pentru o functie C' : R® — R™ cu o imagine inchisd
Im(C) C R™ si care satisface proprietatile (17)-(19), autorii au propus un
algoritm GEN constrans. Insi aplicatii practice indica faptul ca o procedura
“uniforma” de constrangere (se foloseste un singur operator de constrangere)
nu este intotdeauna eficienta. Cateodata este necesar sa se ia in considerare
un proces adaptiv de constrangere, actualizat de la o iteratie la urmatoarea.
In aceasti sectiune, intentia noastra este sa construim un asemenea procedeu,
utilizand, la fiecare pas k£ > 0, o alta functie Cj : R® — R"™ cu o imagine
inchisa Im(Cy) C R™ si care satisface (17)-(19).
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2.1.1 O familie de functii de constrangere

Fie (Cy)k>0 o familie de functii de constrangere pentru care (17)-(19) si
urmatoarea proprietate au loc

(A) V= ﬂkzo Im(Cy) # 0.

Daca presupunem ca Vi = {y € V, y — A € LSS(A;b)} # 0 si definim,
pentru orice k > 0, V; = {z € Im(Cy), = — A € LSS(A;b)}, obtinem
Ve = ﬂkzo Vi
Propunem urmatorul algoritm.
Algoritm General cu Familie de Constrangeri (CGENKk)
Initializare. z° € Im(Cp);
Pas iterativ. Oricare ar fi kK > 0,

" = Cry [Q2 + RD). (21)

Consideram in continuare doua ipoteze suplimentare asupra familiei de
functii de constrangere (Ck)r>0 -

(A2) Multimile Vi, = Im(C%) sunt inchise;

(A3) Pentru fiecare ¢ € N*, exista k(¢) > ¢ astfel incat oricare ar fi y € VX
si k > k(¢) avem inegalitatea

ICki1[Q2" + RO] —yl| < [|Ce[Qa" + Rb] —y.

Teorema 3 In ipotezele de mai sus, sirul () >0 generat cu (21) converge

§i
lim 2% € V7. (22)

k—o0

2.1.2 O familie particulara de functii de constrangere care
satisface ipotezele suplimentare

Reamintim exemplul prezentat in Observatia 3. Oricare ar fi & > 0, con-
sideram “cutia” [a® 0] = [a},b}] x -+ x [aF,bF] C R" si proiectia metrica
pe cea de-a k-a “cutie” [a*, b*]. Este cunoscut faptul ci un operator definit
prin (20) verifica propietatile (17)-(19) si (Az). Vom incerca sa construim o
conditie suficienta pentru ca un astfel de operator sa indeplineasca (A;) si

(As). ’



Propozitia 1 Fiind data o familie (Cy)r>o de proiectii metrice pe cea de-a
k-a “cutie” [a*, b¥] definite de (20) si doud matrice Q si R avind dimensiunile
n X n, respectivn X m, pentru care (3)-(5) au loc, presupunem cd, oricare ar
fil >0, exista k({) > { astfel incat:

Im(Chyt) C Im(Cy), ¥ k > k(6). (23)

Atunci propietatile (A1) si (As) sunt indeplinite.

2.2 Constrangerea proceselor iterative intr-un cadru
general

In aceastd sectiune vom introduce o familie de operatori strict neexpansivi
{Cx}2 si vom demonstra convergenta unui algoritm caruia i se asociaza o
familie de functii de constrangere intr-un cadru general. Aceasta abordare
este aplicata cu succes unor probleme de reconstructie de imagini, de netezire
(vezi si [20, Subsectiunea 12.3]), dar si constrangerii unor procese iterative
liniare oarecare.

In ipoteza ci o familie de operatori strict neexpansivi {T:}32, are puncte
fixe comune si o conditie suplimentara, rezonabila in domeniul reconstructiei
de imagini, demonstram ca sirul generat de schema iterativa

2% € R" si " = Ty (2F), V k>0,
converge la un punct fix comun al operatorilor {7} }32,.

2.2.1 Convergenta unei familii de operatori strict neexpansivi

Pentru o familie {7}};°, de operatori strict neexpanisvi definim mai jos
multimea punctelor fixe comune §i intersectia acestora

Fix(Ty) = Fy :=={z € R" | Ti(z) = x} si F 1= Ny Fy. (24)
Presupunem ca
F #0. (25)
Consideram algoritmul
2% € R" si o = Ty (2F), V k>0, (26)



Condita 1 Fie {T};2, o familie de operatori strict neexpansivi pentru care
(25) are loc. Daca {x*}3, este un sir generat de (26), atunci, oricare ar fi
0 >0, exista un index k(€) > 0 astfel incat

|Tiesr (%) = 2| < || Te(=") = =], (27)
pentru orice z € F gi k > k({).

Teorema 4 Fie {T}}2, o familie de operatori strict neexpansivi pentru care
(25) si Conditia 1 au loc. Orice sir {z*}22, construit conform (26), converge
la un element din F'.

Observatia 4 Inlocuind strict neexpansivitatea operatorilor {1y}, cu ipo-
teza mai slaba ca apartin clasei de operatori “paracontracting” (vezi [18,
Definitia 1)), rezultatele enuntate in Teorema 4 raman adevarate.

2.2.2 Algoritmul FCA

Daca I' : R* — R" i C} : R® — R"™, cu k > 0, sunt strict neexpansive,
definim mai jos operatorii T : ™ — R" sub forma

Ty(x) := CyI'(x), oricare ar i k >0, (28)
si demonstram ca sunt de asemenea strict neexpansivi.

Propozitia 2 Oricare ar fi k > 0, un operator Ty, definit prin (28), pentru
care I' si Cy sunt strict neexpansivi, are urmatoarele proprietati:

1 Tx(z) = Th ()| < |z —yll, oricare ar fiz,y € R", (29)
§t

daca ||Ty(x) — Te(y)|| = ||z — v, atunci Tp(x)—Tk(y) = ['(x)-T(y) = z—y.
(30)

Pentru {7} }7°, definiti conform (28), cu {Cy}72, si I' strict neexpansivi,
procesul iterativ (26) poate fi scris ca un algoritm cu constrangeri.
Algoritm FCA

Initializare. z° € R" este ales arbitrar.



Pas iterativ. Oricare ar fi & > 0, fiind datd aproximatia curenta z*
calculati z*! astfel
" = Cp T (2F). (31)

Daca ipotezele (25) si Conditia 1 sunt indeplinite, atunci Propozitia 2 si
Teorema 4 determina faptul ca orice sir generat cu algoritmul FCA converge
la un element din F'

Definitia 1 [13, Definitia 1] Fie F, multimea de functii continue I' : R™ —
R™ care satisfac

IT(x) =TIl < [lo —yll, oricare ar fix,y € R". (32)
51
daca ||T'(x) =T (y)|| = |z —yll, atunci
N(z)-Ty)=x—ysi(z—y(y) —y) =0. (33)

Definitia 2 [13, Definitia 2] Fie Fo multimea de operatori I' € Fy cu pro-

prietatea ca pentru orice S € R™", functia g : R" — R definita prin
2 . .

g(x) == ||z — ST(z)||” 2si atinge minimul global.

Propozitia 3 Daca S este o matrice simetrica, stocastica, avand diagonala
strict pozitiva, atunci familia {Cy}32, cu Cy = S, pentru oricare ar fi k > 0,
este strict neexpansiva.

2.2.3 Rezolvarea unei probleme in sensul celor mai mici patrate

Vom demonstra in continuare ca metoda iterativa GEN [31], prezentata in
Sectiunea 1.2, este strict neexpansiva si, in plus, ca apartine multimii /.

Propozitia 4 Daca A gi b sunt conform cu (1) si matricele Q, R si A
satisfac proprietatile (3)—(5), atunci, operatorul afin T' : R™ — R™ definit
prin

I() = Q() + Rb (34)

apartine mulfimit Fo.



Observatia 5 Algoritmul FCA, cu Ty definit conform (28), Cy = I, T din
(84), cu Q, R indeplinind (3)-(5), include algoritmii Kaczmarz (vezi, e.g.,
[49]), Cimmino (vezi, e.g., [31]) si Diagonal Weighting (vezi, e.q., [42])
(pentru detalii i demonstratii ale acestei afirmatii vezi [43]). In urmdtorul

rezultat demonstram ca un alt astfel de exemplu este reprezentat de metoda
Landweber (vezi, e.g., [30, 43]).

Propozitia 5 Fie {wi}2, C R" astfel incat exista un numar real € cu 0 <
e <wp < ﬁ — ¢, unde prin p(A) am notat norma spectrala a matricei A.

Oricare ar fi 2° € R"™ si k > 0, procesul iterativ Landweber este definit prin
o* = (I — wp AT A)z® + w0, ATD. (35)

Dacd notam I — wp,ATA cu Ty, si wi AT cu Ry, atunci, oricare ar fi k > 0,
proprietatile (3)-(5) sunt verificate.

Lema 1 Fie Fix(T') mulfimea punctelor fixe ale operatorului T definit con-
form (34), cu Q si R matrice de dimensiuni n X n, respectiv n X m, gi pro-
prietatile (3)-(5). In aceste ipoteze, urmatoarea proprietate este adevaratd

Fix(I') = {z + A | z € LSS(A;b)}, cu A= (I — Q) 'RPyary(b). (36)

Lema 2 Fie {Cy}2, familie de proiectii metrice pe a k-a “cutie” |ag, by] C
R™, conform definitiei (20) si sa presupunem ca V;i # 0, oricare ar fi k >
0. Daca pentru orice ¢ > 0 ezista k(¢) > ( astfel incdt condifia (23) este
verificata, i.e.,

Im(Cri1) € Im(Cy), oricare ar fi k > k({),

atunct multimea
Voo = MizoVis (37)

este nevidd.

Proiectiile metrice definite conform (20) sunt frecvent folosite cu rol de
constrangeri in probleme de reconstructie de imagini exprimate sub forma (1).
Scopul nostru este de a studia o procedura prin care functia de constrangere
sa fie aleasa adaptiv la fiecare iteratie a algoritmului aplicat, pentru a obtine o
aproximare mai buna a imaginii scanate. Semnificatia relatiei (23) in practica
este data de faptul ca imaginea fiecarei functii de constrangere ar trebui
sa fie construita pe baza unor cunostinte anterioare. Aceasta trebuie sa
contina solutia exacta, iar {Im(C})}?2, nu trebuie sa fie obligatoriu un sir
descrescator.



Propozitia 6 Pentru o familie {Cy}32, de proiectii metrice definite prin
(20), avand proprietatile Vi # 0 si (23), si un operator T definit conform
(34), cu Q si R matrice care satisfac (3)-(5), ipoteza (25) si Conditia 1 sunt
indeplinite.

In concluzie, conform Propozitiei 4, Lemei 1, Propozitiei 6 si Teoremei 4,
putem rezolva problema (1) in sensul celor mai mici patrate folosind Algo-
ritmul 2.2.2 cu I" definit ca in (34), @ si R matrice pentru care au loc (3)—(5)
si o familie {Cy}32, de proiectii metrice din (20) satisfacand proprietatile

Vi # 0 st (23).

3 Ipoteze mai slabe pentru convergenta
metodelor proiective extinse si pe blocuri
Kaczmarz si Jacobi

In acest capitol ne intereseaza sa aproximam o solutie a problemei (1) in cazul
inconsistent, folosind algoritmii proiectivi pe blocuri Kaczmarz si Jacobi.

Versiuni extinse ale acestor doua metode au fost introduse in [41] si rezul-
tate de convergenta au fost demonstrate in ipoteze de nesingularitate asupra
matricelor rezultate din descompuneri pe blocuri de linii si coloane.

Vom arata ca, inlocuind operatorul de inversare al unei matrice cu pseu-
doinversa Moore-Penrose, rezultatele mentionate anterior, vezi [41, Teorema
3.4 gi Teorema 6.7] raman adevarate in lipsa ipotezelor de nesingularitate.

3.1 Rezultate preliminare

Vom considera in continuare o descompunere pe blocuri de linii ale matricei
A si ale vectorului corespunzator b. In acest sens, fie p > 2, 1 < m; <m, cu
ie{1,2,...,p}, astfel Incat my +mo +--- +m, = m,

Al bl
A b

A=| P sio=1| |, (38)
Ap bp

unde A; sunt matrice reale de dimensiune m; x n i b; € R™.
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Similar, pentru ¢ > 2 sin = ny +ng + -+ +ny, cu 1 < n; < n, oricare

arfi j € {1,2,...,q}, descompunerea in blocuri de coloane a matricei A este
data de
B,
B
AT = | TP, (39)
B,

q
unde B; sunt matrice reale de dimensiune n; x m.

In lucrarea [41], autorii au introdus versiuni extinse, pe blocuri, ale al-
goritmilor Kazmarz si Jacobi proiectiv cu parametri de relaxare. Acestia au
demonstrat ca in ipotezele

det (A4;AT) #0, Vie {1,2,...,p} (40)

det (B;B]) #0, Vje{l,2,....q} (41)

cele doua metode converg la un element al multimii de solutii in sensul celor
mai mici patrate ale problemei (1).
Fie aplicatiile liniare fi(b;-), Fo(b;-) : R® — R™ definite mai jos

fib;2) = 2+ AT (AAD) N b — Ax), Vie {1,2,...,p}, (42)
Fo(byz) = (fy o fg o0 f7) (bs) (43)

f[ I — AT (AAT)TTA). (44)

Urmatorul algoritm a fost 1ntrodus in [41].

Algoritmul pe Blocuri Kaczmarz Extins(EBK)
Initializari. 2° € R" este ales arbitrar si y° = b.
Pas iterativ. Oricare ar fi kK > 0,

yk-l—l — (I)oyk; bk;-l—l —ph— yks-l—l; :Ek+1 — Fo(bk+1;xk). (45)

Pentru parametrii reali w, a # 0, vom considera

P
Qi =T-w)d AT(AA])A;, (46)

=1
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Rg = weol [ AT(AAT)™ | AT(AAD) ™| | AT(4,AT) Y] (a)

q
oy =I-a) BJ(B;B])"'B, (48)
j=1
O versiune extinsa, pe blocuri, a metodei Jacobi a fost introdusa in [41].
Algoritmul pe Blocuri Jacobi Extins cu Parametri de Relaxare
(EBJRP)
Initializiri. 2° € R" este ales arbitrar si y° = b.
Pas iterativ. Oricare ar fi £k > 0,

yk-l—l — @(?yk, bk-l—l —p— yk—i—l; .fL"k+1 — thxk + R‘S}bk—i_l. (49)

Din nefericire, in aplicatii reale, conditii de tipul (40)-(41) sunt in gen-
eral greu de verificat. Urmarind argumentele din [41], vom demonstra ca
inlocuind operatorul de inversare al unei matrice cu pseudoinversa Moore-
Penrose, rezultatele de convergenta raman adevarate in absenta presupuner-
ilor (40)-(41). Realizam acest lucru aratand ca cei doi algoritmi sunt cazuri
particulare ale metodei extinse generale EGEN [45], descrisa in Sectiunea
1.2.

3.2 Algoritmii EBK si EBJRP, cazuri particulare ale
metodei EGEN
Vom nota in continuare cu f*, F, ®, Q¥, R si ®*, operatorii liniari f, Fp,
Dy, Qf, Ry si P definiti conform (42)-(44) si respectiv (46)-(48), inlocuind
operatorul de inversare al unei matrice cu pseusoinversa Moore-Penrose.
Oricare ar fii € {1,2,...,p} s1 j € {1,2,...,¢}, definim matricele

P, =1~ AT (AAT)' Ay, ¢; =1 - B](B;B])' B, (50)
P, = AT (AAD)A;, ¢, = B! (B;B])'B;. (51)

Consideram aplicatiile liniare corespunzatoare
Ay = AT (AADY, Qi=PPy... P, YVic{l1,2,... p}, (52)
Q=PP. . P, (53)
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R:COI[Al‘QlAQ‘ |Qp—1Ap]7 (54)
q)j:gblqbg...d)j,Vj€{1,2,...,q}, (55)
Q“ = Q“Pr(A”) and &* = &*Pr(A). (56)

Prin urmare, avem

p
=iy 0 @ =T—-w)d P, (57)
=1
si
q —_
R =weol [Ay [ Ay | ... [A, ], @ =T—a) ¢ (58)
7j=1

Urmatoarea teorema garanteaza convergenta algoritmului Kaczmarz ex-
tins pe blocuri definit utilizand pseudoinversa Moore-Penrose si eliminand
ipotezele (40)-(41).

Teorema 5 Daca Q, R si © sunt definite conform (53), (54) si respectiv
(57), atunci
(i) avem egalitatea

F(b;x) = Qz + Rb, (59)
(i1) Q si R satisfac (3)-(5),
(#i1) matricea © satisface proprietatile (10)-(12).

In cazul algoritmului EBJRP vom confirma rezultate analoage. Afirma-
tiile (5) si (12) vor fi demonstrate folosind rezultate din lucrarile [15, 41].

Teorema 6 Urmatoarele proprietati sunt indeplinite
(i) Q“ si R* verifica (3)-(4),

(i) pentru matricea P, presupunerile (10)-(11) sunt adevarate.

Corolarul 1 [{1] Daci 0 < w < 74 510 < a < 7, unde D = (I — @)

si B = iR“’A, atunci, pentru Q¥ si ®*, relatiile (5) si respectiv (12) au loc.

Din Teorema 6 si Corolarul 1 rezulta ca algoritmul EBJRP este un caz
particular al metodei EGEN.
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4 Proiectii suplimentare pentru accelerarea
algoritmului Kaczmarz

In lucrarea [45], autorii au observat faptul cii algoritmul Kaczmarz Extins
calculeaza o solutie a problemei (1) intr-o singura iteratie, cu conditia ca ma-
tricea A sa indeplineasca anumite conditii. Prin urmare, acestia au studiat o
procedura de a transforma problema originala adaugand o multime conven-
abila de directii pentru proiectie, construite sub forma unor combinatii liniare
de linii si coloane ale matricei sistemului. Desi matricele obtinute astfel vor
verifica ipotezele necesare, un dezavantaj este acela ca vor avea in general un
procent de umplere ridicat comparativ cu cel al matricei originale.

Obiectivul nostru este de a studia posibilitatea adaugarii unei submultimi
de directii suplimentare pentru proiectie astfel incat procentul de umplere al
matricelor extinse sa fie mentinut aproape de cel al lui A. Deoarece in urma
acestui procedeu se va obtine o metoda iterativa, vom incerca sa obtinem o
viteza de convergenta mai buna fata de algoritmul Kaczmarz clasic.

4.1 Algoritmul Kaczmarz Direct Extins

In [45], autorii au introdus algoritmul Kaczmarz Direct Extins (DEK) si
au demonstrat convergenta acestuia in cazul inconsistent al problemei (1).
Ideea este de a se transforma problema originala prin constructia de directii
noi pe linii gi coloane, dupa cum urmeaza. Oricare ar fi i € {1,2,...m} si
Jj € {1,2,...n}, fie aplicatiile P, : R* — R", ¢;, R™ — R™, definite prin
P(z) =z — ﬁjﬁfli, ¢j(z) =2 — ﬁ”;“lll; AJ. Consideram multimile de vectori
directie dy, ds, ... dy 1 € R g1 81,09, ...,0,_1 € R™ definite ([45]) mai jos

dmfl = Pm(Amfl%
dm—2 - Pm—lpdmilpm(Am—QL

dy = P,P®2P;... P, P™ P, (A), (60)

6n—1 - d)n(Anil)a
Opg = On_10"" P (A"72),

61 = 20" h3 ... hu1 P (AL), (61)
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unde operatorii P% : R® — R" si ¢% : R™ — R™ sunt dati de Pd'( ) =

— ﬁiﬁg di, ¢%(x) = x — |T = (ISI] d;. Definim in continuare matricele AsgiAde

dimensiuni (2m — 1) x n, respectiv m x (2n — 1)

A=col[ Ay | dy | Ay | da| oo | dms | An ], (62)
A=col[ AV |4 | 6262 | ... |s" 1| A" ]. (63)

Oricare ar fi i € {1,2,...m — 1}, fiecare directie d; este (prin constructie) o
combinatie liniara a liniilor A;, A;41,... A, (pentru mai multe detalii vezi,
e.g., [45]). Prin urmare, exista scalarii 3¢, 6!,,, ..., € R astfel incat d; =

Zk zﬂkAk Fixam b( ) Zk zﬂkbk §1
b= (by,b(dy), ba, b(ds), bs, . .. b(dy1), b)) (64)

Metoda DEK, desi este directa, are dezavantajul cd determina un procent
ridicat de umplere al matricelor A si A, chiar si atunci cand A este rara.

4.2 Accelerarea algoritmului Kaczmarz in cazul
consistent

In aceasti sectiune incercam sa determinam o procedura de a adauga directii
pentru proiectie problemei (1) astfel incat atat performanta metodei Kacz-
marz ([49, 40]) sa fie sporita, cat gi procentul de umplere al matricei rezultate
sa fie mentinute la un nivel scazut. Solutia noastra este de a efectua un clus-
tering aglomerativ al liniilor si al coloanelor din punct de vedere al tiparului
de raritate. Distantele folosite vor fi Jaccard sau Hamming (pentru mai multe
detalii vezi, e.g., [46]). Propunem urmatorul algoritm.
Algoritmul Kaczmarz Modificat cu Clustering (MKC)
Clustering. Folosind una dintre distantele Jaccard sau Hamming, se
calculeaza un clustering al liniilor matricei A cu maximum nc clustere; notam
numarul de linii din cel de-al k-lea cluster cu my si fie {Af, A5, .. AL }
multimea de linii din care este format. Fie matricele By, si A?¢ de dimensiune
my X n, respectiv. m x n, definite astfel

(Ap)" B,
AB)T B

By = ( f) sar=| " | (65)
(Af‘nq)T Bnc

15



Matricea Al¢ se obtine printr-o permutare a liniilor matricei originale. Se
aplica aceeasi permutare lui b i se obtine b2¢. Avem ca S(A;b) = S(AZ; br°).
Transformart ale matricei. Oricare ar fi k € {1,2,...nc}, se cal-

culeaza pentru By, setul intreg de directii df, d5,...d, _, € R" conform (60)

si se obtine matricea BF potrivit relatiei (62). Noua matrice este definita mai
jos.

Bl
Ane = . . (66)
§nc

Vectorul corespunzator I;C\”C se calculeaza din b conform (64).
Iteratit Kaczmarz. Se aplica algoritmul Kaczmarz pentru a rezolva
problema (echivalenta cu (1)): sa se gaseasca x € R™ astfel incat

H@x - gg\c = mm{”@z — I;C”\C ,z € R"}.
Observatia 6 Cand nc = m, algoritmul MKC' reprezinta metoda Kacz-

marz iterativ aplicatd problemei (1). In cazul unui singur cluster se adauga
matricer A intrequl set de directii si algoritmul MKC' devine Kaczmarz Di-
rect. Acesta din urmad aproximeazda intr-o singurd iterafie o solufie pentru
(1)(pentru detalii si demonstratie vezi [45, Teorema 3]).

4.3 Un algoritm extins pentru cazul inconsistent

In cazul inconsistent vom utiliza rationamentul din sectiunea anterioara.
Vom obtine in mod independent doud transformari diferite ale matricelor
A si AT, notate prin Ag si Ay, si vom introduce o versiune modificata a algo-
ritmului Kaczmarz Extins (EK). Mentionam ca //l\g # Ay, iar noul algoritm
nu este echivalent cu metoda EK.

Fiind dati scalarii 1, 52,...,0, € R, aj,as,...,a, € R si indicii ig €
{2,3,...,m}, jo € {2,3,...,n} fixati arbitrar, definim vectorii d, ¢ astfel

1=1 i=1
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si matricele de dimensiuni (m + 1) X n, respectiv m x (n + 1),

AT = col[Ay, ..., Ayy_1,d, Ay, ..., Al (68)
Ag =col [(A"), ..., (A1), 6, (A°), ... (AM)]. (69)
Oricdrui vector z = (21, 22, ..., 2,)T € R™ i asociem vectorul z € R™*! dat
de relatia -
z= (Zl,ZQ,...,Zio_l,zﬁizz‘,zz‘o,...,Zm)T. (70)
i=1

~ Considerdm aplicatiile P? : R — R", ¢° : R — R™, @ : R* — R",
®, : R™ — R™ definite prin P¥(z) =z — £.4d, ¢*(z) =z — £94,

dII? l1611°
Q\O:(Plo...o_PZ-OOPdOPZ‘(H_lO---OPm), (7]-)
éoz(¢1O-~'O¢joO¢60¢j0+10'”o¢n)’ (72)

si matricea de dimensiune n x (m + 1), fio = col ffé, ﬁf?), cees Egﬁl] data de

(vezi [45])

~ 1
R = ——PP... Py (Ay), Vke{1,2,... i5—1},

O pr—
1A
1
W= PPy...Py 1 (d)
0 142 i9—1 )
Il i
~ 1 .
= i HQP1P2 Py Pt P o(Ar), V€ {ig+1,...,m}. (73)
k—1

Algoritmul Kaczmarz Extins Modificat(EKM)
Initializiri. 2° € R" este ales arbitrar si y° = b.
Pas iterativ. Oricare ar i k£ > 0, fie

P = By (yh); 2 = @Oxk 4 ﬁo(b — ykt), (74)

Teorema 7 Sirurile (z%);>0 si (y*)r>0, generate folosind algoritmul EKM,
converg si

lim y* = Pyar)(b), Tim #* = Pyay(a”) +aps. (75)

k—o0
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Teorema 8 Oricare ar fi matricea A de dimensiune m X n s vectorul b €
R™, se vor defini matricea Ay de dimensiune (m + 1) x n conform (68),
vectorul b € R+ din (70) si aplicatiile @0 : R™ — R™, Ry : R0+ R",
g : R™ — R™ date de (71), (73), si respectiv (72). Dacd

Qo(A) =0, Vie{l,2,....,m}, Qo(d) =0,
Do(A) =0, ¥V j€{1,2,...,n}, $(6) =0, (76)

atunci algoritmul Kaczmarz Extins Modificat converge intr-o singurad iteratie
la o solutie a problemei (1).

Pentru cazul inconsistent propunem urmatorul algoritm
Algoritmul Kaczmarz Extins Modificat cu Clustering (MEKC)
Clustering. Se executa clustering al coloanelor matricei A cu maximum
nce clustere folosind una dintre distantele Jaccard sau Hamming. Pentru
orice cluster k cu k € {1,2,...ncc}, fie A}, A7, ... A7* mul{imea de coloane
din care este format, unde ny reprezinta dimensiunea clusterului. Matricele

BF i A¢.. de dimensiuni ny x m, respectiv n x m, sunt definite astfel

B* =col [A;, AL, ..., A, (77)

AS =col[B', B? ... B"™]. (78)

ncc

Matricea A{_. se obtine in urma unei permutari de coloane ale lui A. Se
realizeaza un clustering al liniilor matricei A cu maximum ncr clustere pentru
a obtine matricea A" conform (65) si se aplica aceeasi permutare termenului
liber b, rezultand b]".

Transformari ale matricelor. Oricare ar fi k € {1,2,...ncc}, se
construiesc directiile 6}, 07, ..., d,* € R (61) pentru blocul de coloane B* si
se calculeaza B¥ conform (63). Noua matrice este astfel definita

A = col [Bl, B2,..., BECC]. (79)

ncc

Se calculeaza pentru ner clustere matricea @" data de (66) si vectorul core-

spunzator b7,
Iteratit Kaczmarz FExtins Modificat. Se aproximeaza o solutie a

problemei (1) folosind algoritmul EKM cu noile matrice A¢_. si Ane.
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5 Experimente numerice

5.1 Tehnici de constrangere

In aceasti sectiune incercam sa dezvoltam si sa analizam un algoritm pen-
tru problema (1) bazat pe informatii a priori despre solutia exacta. Scopul
experimentelor noastre este de a arata ca folosind o familie de functii de
constrangere construita adaptiv se obtin rezultate mai bune decat aplicand
o constrangere constanta. Vom studia o versiune simplificata a unei prob-
leme reale. Aceasta se refera la reconstructia unui vector binar. Ne con-
centram asupra determinarii numarului gi locatiei aproximative a componen-
telor nenule.

5.1.1 O versiune adaptiva a algoritmului general CGENk

Propunem urmatorul algoritm cu o familie de functii de constrangere, unde
prin operatorul K : R® — R™ am notat o iteratie a metodei Kaczmarz.
Algoritmul Kaczmarz Constrans cu o Familie (FCK)

Initializari. Fie 2 = 0, ng un numaér intreg pozitiv fixat, € si § doua

numere reale pozitive si Cj, proiectia metrica pe “cutia” [a*, b¥] = [a, 0¥] x
X [ap, by] C R™ (vezi (20)).

Pasul I. Oricare ar fi k € {0,1,...,n9 — 1}, fie [a*,0*] = [0,1]" §

= Ch1(K2"). (80)
Pasul II. Fie 2° = 2™ si pentru orice k > ng se calculeazi 1% ca
F—= KoMt (81)
Oricare ar i 1 € {1,2,...,n}, dacd ¥ < ¢, atunci [af, %] = [0,107];
altfel [a, %] = [}~ b5 1],
Se calculeazd ¥ conform
o = Oy (), (82)

si se actualizeaza e, cu €xy 1 = € + 0.

Valorile parametrilor ng, €y si § sunt alese conform problemei de recon-
structie, in urma unor teste sistematice. Construim familia de functii de
constrangere astfel incat sa satisfaca (23). Algoritmul este format din doi pasi
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si porneste cu vectorul nul ca aproximatie initiala. Pe parcursul primei etape,
pentru un numar fixat de iteratii, folosim aceeasi functie de constrangere,
proiectia metrica pe “cutia” [a,b] = [0, 1]". Rationamentul este de a pastra
aproximatia in intervalul preconizat si in acelasi timp de a permite valorilor
nenule sa “creasca’”.

In cea de-a doua etapa vom presupune ca, daca dupa un numar sufi-
cient de iteratii valoarea unei componente este in continuare apropiata de
zero, atunci in solutia exacta valoarea acesteia este nula. La fiecare iteratie
aplicam Kaczmarz gi “masuram” valoarea fiecarui pixel. Daca este sub un
prag dat, €, atunci intervalul corespunzator din “cutie” va fi micgorat la
[0,107Y. Am ales intervalul [0,107*] in favoarea lui [0, 0] deorece am obser-
vat experimental faptul ca se obtin rezultate mai bune atunci cand interiorul
intervalelor de constrangere este nenul. Pentru a accelera convergenta algo-
ritmului, la fiecare iteratie, se creste pragul cu 9.

In urmitoarele dous sectiuni studiem o problema particulara de recon-
structie de imagini (vezi [35] si [34]). Aceasta problema apare in 3D To-
mographic Particle ITmage Velocimetry (TomoPIV), o metoda optica de a
masura viteza fluidelor.

5.1.2  Rezolvarea unei probleme de reconstructie de imagini

5.1.3 Rezultate numerice

5.2 Adaugarea unor directii pentru proiectie

In urmitoarea sectiune examinam experimente numerice referitoare la algo-
ritmii MKC si MEKC pentru doua matrice rare.
5.2.1 Studii de caz

5.2.2 Conservarea procentului de umplere sub un prag dat

Atunci cand ne ocupam de o problema (1) inconsistenta cu o matrice A rara,
rau conditionata si de dimensiuni mari, metodele iterative au o performanta
de timp scazuta, in timp ce algoritmii directii conduc la pierderea proprietatii
de raritate a datelor. Atunci cand aplicam algoritmul MEKC, pe masura
ce numarul de clustere pe linii sau coloane creste, procentul de umplere al
matricelor noi obtinute dar si rata de convergenta a procesului iterativ se
diminueaza. Prin urmare, problema este de a gasi valori mici ale lui ner si
nce astfel incat numarul de elemente nenule ale matricelor Aner gi AS_ . sa
ramana sub un prag (threshold) dat.
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Vom considera cazul consistent al problemei (1). Pentru o distanta si un
threshold fixate, ne intereseaza sa gasim o valoare ncr* minima astfel incat

nz(@) < threshold

Solutie. Solutia noastra este de a executa o cautare binara a lui ner* in
sirul ordonat nz(A) > nz(z/él\?) > - > nz(A™ 1) > nz(A), unde prin nz(M)
am notat numdrul de elemente nenule ale unei matrice M:
— initial ner = ™5 i se calculeaza nz(Amer);

— daca nz(Z”\‘”’ ) > threshold, se continua cautarea binara in subsirul
drept nz(A/”Cm) > > nz(@) > nz(A);

— altfel, ner este o valoare posibila a lui ner* si se continua cautarea unei
valori mai mici in nz(A) > nz(;lz) > > nz(zﬁ”\—l);

— stop atunci cand se obtine un subsir vid; ner® este ultima valoare gasita
pentru care are loc nz(A™") < threshold.

Observatia 7 La fiecare pas al cautarii binare calculam sirul de directii doar
atata timp cat nu se depaseste pragul dat.

Dupa calcularea valorii ner* comparam algoritmul Kaczmarz clasic cu
MKC(dist, ner®).

Solutie. Determinam numarul de flops (operatii aritmetice in virgula
mobila) efectuate de fiecare din acesti algoritmi.

Metoda Numar de flops
Kaczmarz Direct 3xnz(A)+ 2% (2xm —1)
MKC(dist, ner*) <3 * DZ(W) +2x%(2xm— ncr*)) * NILer e

Kaczmarz (3xnz(A) + 2% m) x niterg

Rezultatele ilustrate mai sus arata ca atunci cand nu se poate aplica
Kaczmarz Direct, algoritmul MKC furnizeaza o alternativa mai eficienta
decat metoda Kaczmarz. Aceleagi rationamente pot fi aplicate si in cazul
inconsistent.
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