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Preface

In the field of numerical linear algebra, various applications such as image
reconstruction and processing give rise to large, sparse and ill-conditioned
linear systems of equations. Due to inexact measurements or unit roundoff,
these problems are not always consistent, i.e., the right hand side is not
contained in the range of the system matrix. When this is the case, one may
solve a corresponding linear least squares problem. Iterative algorithms,
although computationally expensive, usually provide better results in the
presence of noise or incomplete data.

A general iterative method which encompasses Kaczmarz (see, e.g., [49]),
Cimmino (see, e.g., [31]), Diagonal Weighting (see, e.g., [42]) or Landweber
(see, e.g., [30, 43]) algorithms was proposed in [31] to solve the linear least
squares problem. The authors proved that an extended version of the general
method converges even in the inconsistent case to the solution set of the
aforementioned linear least squares problem.

When solving an image reconstruction problem, previous knowledge con-
cerning the original image may lead to various constraining strategies. If
available, a priori information about the original image, such as smoothness
or that it belongs to a certain closed convex set, may be used to improve the
reconstruction quality. In constraining iterative processes, the algorithmic
operator of the iterative process is pre-multiplied by a constraining operator
at each iterative step. This enables the constrained algorithm, besides solving
the original problem, also to find an approximation that incorporates some
prior knowledge about the exact solution. This approach has been useful
in image reconstruction and other image processing situations when a single
constraining operator was used [7, 11, 14, 24, 25, 26, 28, 47, 50].

Another topic of interest is the performance improvement of iterative
algorithms. For example, in [45] the authors proposed a procedure of trans-
forming the classical Kaczmarz algorithm into a direct method.

According to these aspects, the thesis is organised as follows.
In the first chapter we present some preliminary results and the general

method proposed in [31].
In Chapter 2 we study constraining of iterative processes by a family of

operators rather than by a single operator. In Section 2.1 we start with a
brief presentation of the constrained general iterative algorithm from [31]
and the corresponding main results. We propose a new adaptive iteration-
dependent constraining procedure which employs a family of strictly nonex-
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pansive idempotent functions. Under some supplementary assumptions we
prove the convergence of the family constrained general algorithm. We also
give an example of a family of box projection functions which satisfy our
additional hypotheses. In Section 2.2, in a more general setting, for a family
of strictly nonexpansive operators with nonempty common fixed points set
and a supplementary condition, appropriate in the context of image recon-
struction problems, we adapt some results from [13] for our purpose. We
prove the convergence of an iterative process determined by this family of
strictly nonexpansive operators. We present the family-constrained algorithm
(FCA) and prove that the series expansion methods and the smoothing ma-
trices used in [13] obey all our hypotheses. Furthermore, we show that the
general iterative method [31] is itself an algorithmic operator of the form
required for the convergence of the FCA Algorithm and that the earlier men-
tioned example of a family of nonlinear constraining operators satisfies our
assumptions.

In Chapter 3 we try to establish convergence for extended block versions
of Kaczmarz and Jacobi projection methods. Our purpose is to show that
these algorithms are special cases of the extended general iterative process,
which was given in [31]. Replacing the inverse operator with the Moore-
Penrose pseudoinverse, we generalize previous results from [41].

The fourth chapter is dedicated to the study of an acceleration technique
based on the idea of adding row and column directions for projection to the
linear system. In the paper [45], an extended version of the classical Kacz-
marz algorithm was shown to yield in only one iteration a solution of our
linear least squares problem. Unfortunately, as any direct method applied
to large sparse matrices, this algorithm usually determines a considerable in-
crease of the fill-in percentage in our data. In order to overcome this difficulty,
in the present paper we propose a modified version of this direct Kaczmarz
algorithm in which the transformations applied to the system matrix try to
conserve the initial sparsity structure. These transformations are done via
clustering using Jaccard and Hamming distances. The modified Kaczmarz
algorithm is no more a direct method, but we obtain an acceleration of con-
vergence with respect to the classical Kaczmarz algorithm.

In the last chapter we design an adaptive algorithm that uses an iteration-
dependent family of constraining functions for some numerical experiments
of image reconstruction on Tomographic Particle Image Velocimetry (see,
e.g., [35] and [34]). The results are illustrated for different levels of perturba-
tion. We also present numerical results concerning the method of accelerating
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the Kaczmarz iterative scheme using supplementary directions for projection
while preserving the sparsity pattern of the original problem via clustering.
We further investigate methods of calculating the minimum number of clus-
ters needed to keep the sparsity of our data under a given threshold.

The original contributions which are presented in this thesis are contained
in the following papers.
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1 Background

1.1 Preliminaries

Many real world problems lead after certain discretization steps to solving
systems of linear equations of the form Ax = b, for an m × n matrix A

and the vector b ∈ Rm. If modelling or measurement errors occur, then
the system may become inconsistent and we arrive at solving a linear least
squares problem: find x ∈ Rn such that

‖Ax− b‖ = min{‖Az − b‖ , z ∈ Rn}. (1)

We will further use the notations AT , A†, Ai, A
j ,R(A),N (A), PV , xLS

and LSS(A; b) for the transpose, the (unique) Moore-Penrose pseudoinvese,
i-th row, j-th column, range and null space of A, the projection onto a vector
subspace V , the (unique) minimal norm solution of problem (1) and the set
of all solutions of (1); also 〈·, ·〉, ‖ z ‖ and ‖ M ‖ will denote the Euclidean
scalar product, the Euclidean norm of the vector z and the spectral norm of
the matrix M . All the vectors appearing in the paper will be considered as
column vectors. We will assume in the rest of the paper that

Ai 6= 0, Aj 6= 0, for all i ∈ {1, 2, . . .m}, and j ∈ {1, 2, . . . n}.

1.2 A general iterative projection method

The following general projection-based iterative solver for the linear least
squares problem (1) was proposed in [31].
General Iterative Algorithm (GEN)

Initialization. x0 ∈ Rn;
Iterative step.

xk+1 = Qxk + Rb, (2)

with Q and R matrices of dimensions n× n and n×m, respectively, which
satisfy the following properties:

Q + RA = I, (3)

∀y ∈ Rm, Ry ∈ R(AT ), (4)

if Q̃ = QPR(AT ) then ‖ Q̃ ‖ < 1. (5)
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Remark 1 The above described general formulation includes almost all pro-
jection based algorithms in computer tomography, like Kaczmarz, Cimmino,
Jacobi Projective, Diagonal Weighting (see, e.g., [49], [31], [15] and [42],
respectively). For details and proofs of this statement see [43].

Theorem 1 ([31, Theorem 2.2]) If (3)-(5) hold, for any x0 ∈ Rn, the se-
quence (xk)k≥0 generated by (2) converges and

lim
k→∞

xk = PN (A)(x
0) + xLS + ∆, with ∆ = (I − Q̃)−1RPN (AT )(b). (6)

Remark 2 If the problem (1) is consistent, we have ∆ = 0 and the limit in
(6) is an element of S(A; b) = {x ∈ Rn| Ax = b}, for all x0 ∈ Rn. In the
inconsistent case, ‖∆‖ represents the distance between the limit point in (6)
and the set LSS(A; b) (for details see, e.g., [44]).

For the matrices Q, R and U of dimensions n × n, n × m and m ×
m, respectively, the authors defined in [31] the following extended general
iterative method.
Extended General Algorithm (EGEN)

Initialization. x0 ∈ Rn is arbitrary and y0 = b.
Iterative step. For every k ≥ 0,

yk+1 = Uyk, (7)

bk+1 = b− yk+1, (8)

xk+1 = Qxk + Rbk+1. (9)

When Q and R satisfy (3)-(5) and U verifies the following general as-
sumptions

if x ∈ N (AT ) then Ux = x, (10)

if x ∈ R(A) then Ux ∈ R(A), (11)

if Ũ = UPR(A) then ‖ Ũ ‖ < 1, (12)

the next convergence result was proved.

Theorem 2 [31, Theorem 2.6] Let us suppose that the matrices Q and R

satisfy equations (3)-(5) and for U the properties (10)-(12) hold. Then, for
any x0 ∈ Rn, the sequence (xk)k≥0 generated with the algorithm EGEN con-
verges and

lim
k→∞

xk = PN (A)(x
0) + xLS . (13)
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2 Family constraining of iterative algorithms

This chapter is about constraining of iterative processes which has the fol-
lowing meaning. When dealing with a real-world problem it is sometimes the
case that we have some prior knowledge about features of the solution that
is being sought after. If possible, such prior knowledge may be formulated
as an additional constraint and added to the original problem formulation.
But sometimes, when we have already at our disposal a “good” algorithm
for solving the original problem without such an additional constraint, it
is beneficial to modify the algorithm, rather than the problem, so that it
will, in some way, “take care” of the additional constraint (or constraints)
without loosing its ability to generate (finitely or asymptotically) a solution
to the original problem. This is called constraining of the original iterative
algorithm. Given an (algorithmic) operator Γ : Rn → Rn between Euclidean
spaces, the original iterative process may have the form

xk+1 = Γ(xk), for all k ≥ 0, (14)

under various assumptions on Γ. Constraining such an algorithm with a fam-
ily of operators means that we desire to use instead of (14) the iterative
process

xk+1 = CkΓ(xk), for all k ≥ 0, (15)

where {Ck}∞k=0 is a family of operators Ck : Rn → Rn, henceforth called the
constraining operators.

Our purpose is to study the possibility to constrain an algorithm with a
family of operators and to analyze the asymptotic behavior of such family-
constrained algorithms. We extend earlier results on this topic that were
limited to a single constraining operator, i.e., Ck = C for all k ≥ 0, see, e.g.,
[7, 11, 14, 24, 25, 26, 28, 47, 50].

2.1 Constraining the GEN method using a family of

strictly nonexpansive idempotent functions

In the linear least squares problem (1), the matrix A is in general large,
sparse, ill-conditioned and rank deficient, leading to the existence of an infi-
nite solution set. The minimal norm solution is usually provided by classical
iterative solvers for (1). Unfortunately, xLS is not always close to the solution
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that we are looking for, say xex. The well known connection between them
is (see, e.g., [43])

xex = PN (A)(x
ex) + xLS. (16)

Therefore, one may require to find a better approximation of the exact solu-
tion than the one provided by xLS . For this reason apriori information about
the xex solution may be used, if possible, in the form of additional constraints
to the problem (1).

In general, for actual applications, one can consider (see, e.g., [20]) that
the original image has the components included in some previous known
intervals, i.e., xex

i ∈ [ai, bi], with [ai, bi] ⊂ R for all i ∈ {1, 2, . . . , n}. If this
is the case one may force the i-th component of the approximation to be
in the interval [ai, bi] at each step of an iterative method. In the paper [28]
the authors applied this idea to the classical Kaczmarz iterative algorithm
by considering a general constraining function C : Rn −→ Rn with a closed
image Im(C) = {y = Cx, x ∈ Rn} ⊂ Rn and the properties

‖Cx− Cy‖ ≤ ‖x− y‖ , (17)

if ‖Cx− Cy‖ = ‖x− y‖ then Cx− Cy = x− y, (18)

if y ∈ Im(C) then y = Cy. (19)

We say that an operator C : Rn −→ Rn is strictly nonexpansive (SNE) if it
obeys conditions (17) and (18).

Remark 3 An example of a function for which (17)-(19) hold is the orthog-
onal projection operator onto the box [a, b] = [a1, b1] × · · · × [an, bn] ⊂ Rn,
defined by

(Cx)i =





xi, if xi ∈ [ai, bi]
ai, if xi < ai
bi, if xi > bi.

(20)

In [31], for a function C : Rn −→ Rn with a closed image Im(C) ⊂ Rn and
the properties (17)-(19), the authors proposed a constrained GEN algorithm.
But practical applications show that a “uniform” constraining procedure
(with the same constraining function in any iteration) is not always efficient;
sometimes it is necessary to use an adaptive iteration-dependent constraining
procedure. For example, in the box constraining case we have to change the
interval [ai, bi] (“acting” on i-th pixel’s value of the approximate image) in
each iteration, in order to better “catch” the appropriate value for that pixel.
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In this section we try to accomplish this task by using a family of constraining
functions. We consider for any iteration k ≥ 0 a function Ck : Rn −→ Rn

with a closed image Im(Ck) ⊂ Rn and the properties (17)-(19).

2.1.1 Using a family of constraining functions

Let (Ck)k≥0 be a family of constraining functions for which the properties
(17)-(19) and the following assumption hold

(A1) V =
⋂

k≥0 Im(Ck) 6= ∅.

If we suppose that V∗
∞ = {y ∈ V, y−∆ ∈ LSS(A; b)} 6= ∅ and define for each

k ≥ 0, V∗
k = {z ∈ Im(Ck), z−∆ ∈ LSS(A; b)}, we have that V∗

∞ =
⋂

k≥0 V
∗
k .

We propose the following algorithm.
Family Constrained General Algorithm (CGENk)

Initialization. x0 ∈ Im(C0);
Iterative step. for any k ≥ 0

xk+1 = Ck+1[Qxk + Rb]. (21)

We further consider two additional hypotheses on the family (Ck)k≥0 of
constraining functions.

(A2) The sets Vk = Im(Ck) are closed;

(A3) For any ` ∈ N∗ there exists k(`) ≥ ` such that for any y ∈ V∗
∞ and any

k ≥ k(`) we have the inequality

‖Ck+1[Qxk + Rb] − y‖ ≤ ‖C`[Qxk + Rb] − y‖.

Theorem 3 In the above stated hypotheses, the sequence (xk)k≥0 generated
by (21) converges and

lim
k→∞

xk ∈ V∗
∞. (22)

2.1.2 A special family of constraining functions which satisfies the
supplementary hypotheses

Recall the example shown in Remark 3. For every k ≥ 0, consider the box
[ak, bk] = [ak1, b

k
1] × · · · × [akn, b

k
n] ⊂ Rn and the metric projection operator
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onto the k-th box [ak, bk]. It is known that for an operator defined as in (20)
the properties (17)-(19) and (A2) hold and we will now develop a sufficient
condition for a family of such operators to satisfy assumptions (A1) and (A3).

Proposition 1 For a family (Ck)k≥0 of metric projection operators onto the
k-th box [ak, bk] as defined in (20) and two matrices Q and R of dimensions
n× n and n×m, respectively, for which the properties (3)-(5) hold with the
additional property that for all ` ≥ 0, there exists k(`) ≥ ` such that:

Im(Ck+1) ⊂ Im(C`), ∀k ≥ k(`), (23)

the assumptions (A1) and (A3) are true.

The metric projection operators, like those in (20), are frequently used for
constraining purposes in image reconstruction problems that are formulated
according to (1). As mentioned at the beginning of this section, the idea of
using iteration independent constraints was previously examined. Our pur-
pose is to explore a procedure of adapting the constraining function at each
step of the algorithm to obtain a better approximation of the scanned im-
age. The meaning of (23) in practice is that the image of every constraining
function should be built from a priori knowledge to contain the exact solu-
tion (the original image), however, {Im(Ck)}∞k=0 should not necessarily be a
decreasing nested sequence.

2.2 A more general setting for constraining iterative

processes

In this section we introduce a family of strictly nonexpansive operators
{Ck}∞k=0 and prove the convergence of the family-constrained algorithms in
a more general setting. The algorithm constraining approach is successfully
applied to problems of image restoration, to smoothing in image reconstruc-
tion from projections (see also [20, Subsection 12.3]), and to constraining of
linear iterative processes in general.

2.2.1 Convergence for a Family of Strictly Nonexpansive
Operators

We will prove in this subsection that, under two special hypotheses, an it-
erative scheme which employs a family of strictly nonexpansive operators
converges to a common fixed point.
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For a family {Tk}∞k=0 of strictly nonexpansive operators we define the fixed
points sets and their intersection by

Fix(Tk) = Fk := {x ∈ Rn | Tk(x) = x} and F := ∩∞
k=0Fk, (24)

respectively, and assume that
F 6= ∅. (25)

Consider the algorithm

x0 ∈ Rn and xk+1 = Tk+1(x
k), ∀ k ≥ 0, (26)

Condition 1 Let {Tk}∞k=0 be a family of strictly nonexpansive operators for
which (25) holds. If {xk}∞k=0 is any sequence, given by (26), then for every
` ≥ 0, there exists an index k(`) ≥ 0 such that

∥∥Tk+1(x
k) − z

∥∥ ≤
∥∥T`(x

k) − z
∥∥ , (27)

for all z ∈ F and all k ≥ k(`).

Theorem 4 Let {Tk}∞k=0 be a family of strictly nonexpansive operators for
which (25) and Condition 1 holds. Any sequence {xk}∞k=0, generated by (26),
converges to an element of F .

Remark 4 Replacing the strict nonexpansivity of the operators {Tk}∞k=0 with
the assumption that they belong to the wider class of paracontracting operators
(see [18, Definition 1]), the results stated in Theorem 4 still hold.

2.2.2 The Family-Constrained Algorithm (FCA)

Many iterative algorithms are of, or can be cast into, the form of one-step
stationary iterations (see, e.g., [32, Chapter 10]). If Γ : Rn → Rn and
Ck : Rn → Rn, with k ≥ 0, are strictly nonexpansive, we define the operators
Tk : Rn → Rn by

Tk(x) := CkΓ(x), for all k ≥ 0, (28)

and prove that they are also strictly nonexpansive.

Proposition 2 For any k ≥ 0, an operator Tk as in (28), in which Γ and
Ck are strictly nonexpansive, has the following properties:

‖Tk(x) − Tk(y)‖ ≤ ‖x− y‖ , for all x, y ∈ Rn, (29)
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and

if ‖Tk(x) − Tk(y)‖ = ‖x− y‖ , then Tk(x) − Tk(y) = Γ(x) − Γ(y) = x− y.

(30)

For {Tk}
∞
k=0 defined according to (28), with {Ck}

∞
k=0 and Γ strictly nonex-

pansive, the iterative process (26) may be written as a constrained algorithm.
The Family-Constrained Algorithm (FCA)

Initialization. x0 ∈ Rn is arbitrary.
Iterative step. For every k ≥ 0, given the current iterate xk calculate

the next iterate xk+1 by
xk+1 = Ck+1Γ(xk). (31)

Proposition 2 and Theorem 4 yield that if assumptions (25) and Condition
1 hold, then any sequence generated by the FCA algorithm converges to an
element of F .

Definition 1 [13, Definition 1] Let F1 be the set of continuous operators
Γ : Rn → Rn that satisfy

‖Γ(x) − Γ(y)‖ ≤ ‖x− y‖ , for all x, y ∈ Rn. (32)

and

If ‖Γ(x) − Γ(y)‖ = ‖x− y‖ , then

Γ(x) − Γ(y) = x− y and 〈x− y,Γ(y) − y〉 = 0. (33)

Definition 2 [13, Definition 2] Let F2 be the set of operators Γ ∈ F1 with
the property that for all S ∈ Rn×n the function g : Rn → R defined by
g(x) := ‖x− SΓ(x)‖2 attains its unconstrained global minimum.

Proposition 3 The family {Ck}∞k=0 with Ck = S, for all k ≥ 0, where S is
a symmetric, stochastic, with positive diagonal, matrix, is strictly nonexpan-
sive.
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2.2.3 Solving The Linear Least Squares Problem

We will prove in the sequel that the general iterative method GEN [31],
presented in Section 1.2, is strictly nonexpansive and, moreover, belongs to
F2.

Proposition 4 When A and b are as in (1) and the matrices Q, R and A

have the properties (3)–(5), then the affine operator Γ : Rn → Rn defined by

Γ(·) := Q(·) + Rb (34)

belongs to F2.

Remark 5 The FCA algorithm, with Tk as in (28), Ck = I, Γ as in (34)
with Q,R as in (3)-(5) includes the Kaczmarz (see, e.g., [49]), Cimmino (see,
e.g., [31]) and Diagonal Weighting (see, e.g., [42]) algorithms (for details
and proofs of this statement see [43]). We prove in the following result that
another such example is the Landweber method (see, e.g., [30, 43]).

Proposition 5 Let {ωk}∞k=0 ⊂ Rn have the property that there exists a real
ε such that 0 < ε ≤ ωk ≤ 2

ρ(A)2
− ε, where ρ(A) denotes the spectral norm of

A. For any x0 ∈ Rn and k ≥ 0 the Landweber iteration is defined by

xk+1 = (I − ωkA
TA)xk + ωkA

T b. (35)

If we denote I − ωkA
TA by Tk and ωkA

T by Rk, then, for every k ≥ 0, the
properties (3)-(5) hold.

Lemma 1 Let Fix(Γ) be the fixed points set of the operator Γ defined by
(34), with Q and R matrices of dimensions n × n and n × m, respectively,
having the properties (3)–(5). The following property then holds

Fix(Γ) = {x + ∆ | x ∈ LSS(A; b)}, with ∆ = (I − Q̃)−1RPN (AT )(b). (36)

Lemma 2 Let {Ck}∞k=0 be a family of metric projection operators onto the
k-th box [ak, bk] ⊂ Rn, as defined in (20) and assume that V∗

k 6= ∅ for all
k ≥ 0. If for every ` ≥ 0 there exists a k(`) ≥ ` such that it obeys (23), i.e.,

Im(Ck+1) ⊆ Im(C`), for all k ≥ k(`),

then the infinite intersection set

V∗
∞ := ∩∞

k=0V
∗
k , (37)

is not empty.
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Proposition 6 For a family {Ck}∞k=0 of box constraining operators like those
in (20) with the properties V∗

k 6= ∅ and (23), and an operator Γ defined by
(34), with Q and R matrices having the properties (3)–(5), the assumption
(25) and Condition 1 are satisfied.

In conclusion, according to Proposition 4, Lemma 1, Proposition 6 and
Theorem 4, we may solve the linear least squares problem (1) using Algorithm
2.2.2 with Γ defined by (34), when Q and R matrices have the properties
(3)–(5) and a family {Ck}∞k=0 of box constraining operators like those in (20)
satisfying the properties V∗

k 6= ∅ and (23).

3 Weaker assumptions for convergence of

extended block Kaczmarz and Jacobi

projection algorithms

In this chapter we are interested to approximate a solution of the linear least
squares problem (1), in the inconsistent case, using block-type Kaczmarz and
Jacobi projection methods.

Extended block versions of these two algorithms were introduced in [41]
and convergence was proved under nonsingularity assumptions on matrices
resulted from row and column block decompositions.

In this chapter we show that, after replacing the inverse operator with the
Moore-Penrose pseudoinverse, the earlier results on this topic, see [41, Theo-
rem 3.4 and Theorem 6.7], still hold without the nonsingularity hypotheses.

3.1 Previous results on this topic

We consider block row decompositions of the matrix A and corresponding
vector b. In this respect, let p ≥ 2, 1 ≤ mi ≤ m, with i ∈ {1, 2, . . . , p}, such
that m1 + m2 + · · · + mp = m,

A =




A1

A2
...
Ap


 and b =




b1
b2
...
bp


 , (38)

where Ai are mi × n matrices and bi ∈ Rmi .
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Similarly, for q ≥ 2 and n = n1 + n2 + · · · + nq, with 1 ≤ nj < n for any
j ∈ {1, 2, . . . , q}, the block column decomposition of A is given by

AT =




B1

B2
...
Bq


 , (39)

where Bj are nj ×m real matrices.
In [41] the author introduced extended block versions of the Kaczmarz

and Jacobi with relaxation parameters algorithms. They proved that under
the hypotheses

det (AiA
T
i ) 6= 0, ∀ i ∈ {1, 2, . . . , p} (40)

and
det (BjB

T
j ) 6= 0, ∀ j ∈ {1, 2, . . . , q} (41)

these methods converge to an element of the linear least square solutions set
of the problem (1).

Let the linear applications f i
0(b; ·), F0(b; ·) : Rn → Rn be defined by

f i
0(b; x) = x + AT

i (AiA
T
i )−1(bi − Aix), ∀ i ∈ {1, 2, . . . , p}, (42)

F0(b; x) =
(
f 1
0 ◦ f 2

0 ◦ · · · ◦ f p
0

)
(b; x) (43)

and the linear mapping

Φ0 =

q∏

j=1

(
I −AT

i (AiA
T
i )−1Ai

)
. (44)

The following algorithm was introduced in [41].
Extended Block Kaczmarz Algorithm(EBK)

Initialization: x0 ∈ Rn is arbitrary and y0 = b.
Iterative step For every k ≥ 0,

yk+1 = Φ0y
k; bk+1 = b− yk+1; xk+1 = F0(b

k+1; xk). (45)

Now, for the real parameters ω, α 6= 0, consider

Qω
0 = I − ω

p∑

i=1

AT
i (AiA

T
i )−1Ai, (46)
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Rω
0 = ωcol

[
AT

1 (A1A
T
1 )−1 | AT

2 (A2A
T
2 )−1 | . . . | AT

p (ApA
T
p )−1

]
(47)

and

Φα
0 = I − α

q∑

j=1

BT
j (BjB

T
j )−1Bj . (48)

An extended version of the Jacobi method was given in [41].
Extended Block Jacobi Algorithm with Relaxation Parameters
(EBJRP)

Initialization: x0 ∈ Rn is arbitrary and y0 = b.
Iterative step For every k ≥ 0,

yk+1 = Φα
0 y

k; bk+1 = b− yk+1; xk+1 = Qω
0x

k + Rω
0 b

k+1. (49)

Unfortunately, in real examples, conditions of the type (40)-(41) are usu-
ally not true or hard to verify. Following the considerations from [41], we will
show that if we use the Moore-Penrose pseudoinverse rather than the inverse
operator, the convergence results remain true without the assumptions (40)-
(41). This is accomplished by proving that the two algorithms are particular
cases of the extended general projection method EGEN [45], described in
Section 1.2.

3.2 EBK and EBJRP algorithms as special cases of the
EGEN method

In the rest of the paper we will denote by f i, F , Φ, Qω, Rω and Φα, the
linear operators f i

0, F0, Φ0, Q
ω
0 , Rω

0 and Φα
0 defined according to (42)-(44)

and (46)-(48), respectively, in which we replaced the inverse mapping with
the Moore-Penrose pseudoinverse.

For every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}, we define the matrices

Pi = I − AT
i (AiA

T
i )†Ai, φj = I −BT

j (BjB
T
j )†Bj, (50)

P̄i = AT
i (AiA

T
i )†Ai, φ̄j = BT

j (BjB
T
j )†Bj . (51)

We will now consider the corresponding linear mappings

∆i = AT
i (AiA

T
i )†, Qi = P1P2 . . . Pi, ∀ i ∈ {1, 2, . . . , p}, (52)

Q = P1P2 . . . Pp, (53)

12



R = col [ ∆1 | Q1∆2 | . . . | Qp−1∆p ] , (54)

Φj = φ1φ2 . . . φj, ∀ j ∈ {1, 2, . . . , q}, (55)

Q̃ω = QωPR(AT ) and Φ̃α = ΦαPR(A). (56)

Consequently, we have

Φ = φ1φ2 . . . φq, Qω = I − ω

p∑

i=1

P̄i, (57)

and

Rω = ωcol [ ∆1 | ∆2 | . . . | ∆p ] , Φα = I − α

q∑

j=1

φ̄j . (58)

The following theorem ensures the convergence of the extended block
Kaczmarz algorithm defined using the Moore-Penrose pseudoinverse, without
the assumptions (40)-(41).

Theorem 5 If Q, R and Φ are linear applications defined according to (53),
(54) and (57), respectively, then

(i) we have the equality

F (b; x) = Qx + Rb, (59)

(ii) Q and R satisfy (3)-(5),
(iii) for the matrix Φ the properties (10)-(12) hold.

In the case of the EBJRP algorithm we will confirm similar statements.
The assumptions (5) and (12) will be proved using results from [15, 41].

Theorem 6 The following properties are true
(i) Qω and Rω satisfy (3)-(4),
(ii) for the matrix Φα the assumptions (10)-(11) hold.

Corollary 1 [41] If 0 < ω < 2
ρ(E)

and 0 < α < 2
ρ(D)

, where D = 1
α

(I − Φα)

and E = 1
ω
RωA, then Q̃ω and Φ̃α satisfy the assumptions (5) and (12),

respectively.

From Theorem 6 and Corollary 1 it results that the EBJRP algorithm is
a particular case of the EGEN method.
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4 Supplementary projections for the

acceleration of Kaczmarz algorithm

In the earlier work [45] the authors observed that the Extended Kaczmarz
algorithm computes a solution of (1) in a single iteration, provided that the
matrix A satisfies special hypotheses. Hence, they studied a procedure of
transforming the original problem by adding an appropriate set of directions
for projection, built as linear combinations of the rows and columns of the
system matrix. Although the obtained extended matrices will verify the
desired hypotheses, one disadvantage is that they will usuallly have a high
fill-in percentage compared with the original matrix A.

Our purpose is to explore the possibility of adding a subset of supplemen-
tary directions for projection that keep the sparsity of the extended matrices
near the initial level of A. Because in this way we will lose the direct solver
property of the Kaczmarz algorithm we will try to get for it a better conver-
gence speed.

4.1 The Direct Extended Kaczmarz algorithm

In [45], the authors introduced a Direct Extended Kaczmarz projection solver
for (1) and proved is convergence in the inconsistent case. The idea is to
transform the original problem by constructing new row and column direc-
tions for projections as follows. For all i ∈ {1, 2, . . .m} and j ∈ {1, 2, . . . n},
let Pi : Rn → Rn, φj,R

m → Rm, be the applications defined by Pi(x) =

x − xTAi

‖Ai‖
2Ai, φj(x) = x − xTAj

‖Aj‖2
Aj. Consider the sets of direction vectors

d1, d2, . . . dm−1 ∈ Rn and δ1, δ2, . . . , δn−1 ∈ Rm defined ([45]) by

dm−1 = Pm(Am−1),

dm−2 = Pm−1P
dm−1Pm(Am−2),

. . . . . .

d1 = P2P
d2P3 . . . Pm−1P

dm−1Pm(A1), (60)

δn−1 = φn(An−1),

δn−2 = φn−1φ
δn−1φn(An−2),

. . . . . .

δ1 = φ2φ
δ2φ3 . . . φn−1φ

δn−1φn(A1), (61)
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where the linear mappings P di : Rn → Rn and φδj : Rm → Rm are defined by

P di(x) = x− xT di
‖di‖

2di, φδj(x) = x− xT δj

‖δj‖
2 δj. We then define the (2m− 1) × n

and m× (2n− 1) matrices Â and Ā as follows

Â = col
[
A1 | d1 | A2 | d2 | . . . | dm−1 | Am

]T
, (62)

Ā = col
[
A1 | δ1 | δ2 | δ2 | . . . | δn−1 | An

]
. (63)

For any i ∈ {1, 2, . . .m−1}, each direction di is (from its construction) a lin-
ear combination of the rows Ai, Ai+1, . . . Am (for more details see, e.g., [45]).
Therefore, there exist scalars βi

i , β
i
i+1, . . . β

i
m ∈ R such that di =

∑m
k=i β

i
kAk.

We then set b(di) =
∑m

k=i β
i
kbk and

b̂ = (b1, b(d1), b2, b(d2), b3, . . . b(dm−1), bm)T . (64)

Unfortunately, the DEK method, although direct, has the disadvantage
that, even for a sparse matrix A, usually yields a large fill-in percentage of
Â and Ā.

4.2 Accelerating the convergence of the Kaczmarz

method in the consistent case

In this section we focus our attention on finding a procedure of adding row
directions for projection to (1) for which both the performance of the Kacz-
marz iterative methods ([49, 40]) is improved and the sparsity of the new
obtained matrix is conserved. The idea is to perform an agglomerative clus-
tering of its rows and columns according to their sparsity similarity. This
may be measured with one of the distances Jaccard or Hamming (for more
details concerning these distances and a wide variety of usage examples see,
e.g., [46]). We propose the following algorithm.
The Modified Kaczmarz Algorithm with Clustering (MKC)

Clustering. Using one of the distances Jaccard or Hamming compute a
clustering of the matrix A rows with maximum nc clusters; we denote by mk

the number of rows in the k-th cluster and let {Ak
1, A

k
2, . . . A

k
mk

} be its set of
rows. Let the mk × n and m× n matrices Bk and Anc

c , respectively, defined
by

Bk =




(Ak
1)

T

(Ak
2)

T

...
(Ak

m1
)T


 and Anc

c =




B1

B2
...

Bnc


 . (65)
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The matrix Anc
c is obtained from a permutation of the original matrix rows.

Apply the same permutation on b, to obtain bncc . We have that S(A; b) =
S(Anc

c ; bncc ).
Matrix transformation. For every k ∈ {1, 2, . . . nc} compute the

whole set of direction vectors dk1, d
k
2, . . . d

k
mk−1 ∈ Rn according to (60) for

Bk to obtain the matrix B̂k according to (62). We will now define the new
matrix.

Ânc
c =




B̂1

B̂2

...

B̂nc


 . (66)

The corresponding vector b̂ncc is calculated from bncc as in (64) for each row
direction added to Anc

c .
Iterative Kaczmarz algorithm. Use the Kaczmarz algorithm to solve

the problem (equivalent to (1)): find x ∈ Rn such that
∥∥∥Ânc

c x− b̂ncc

∥∥∥ = min{
∥∥∥Ânc

c z − b̂ncc

∥∥∥ , z ∈ Rn}.

Remark 6 When nc = m, the MKC algorithm is actually the classical Kacz-
marz iterative method applied to (1). For a single cluster the whole set of
directions is added to the original matrix and the MKC algorithm becomes
Direct Kaczmarz, which converges in a single iteration to a solution of (1)(for
details see [45, Theorem 3]).

4.3 An extended algorithm for the inconsistent case

In the inconsistent case we will apply the reasoning of the previous section.
We will obtain independently two different transformations of the matrices
A and AT , denoted by Â0 and Ā0, and introduce a modified version of the
Extended Kaczmarz (EK) algorithm. However, ÂT

0 6= Ā0, and the new algo-
rithm will not be equivalent to the EK method.

For arbitrarily fixed scalars β1, β2, . . . , βn ∈ R, α1, α2, . . . , αn ∈ R and the
indices i0 ∈ {2, 3, . . . , m} and j0 ∈ {2, 3, . . . , n} we define the vectors d, δ by

d =

m∑

i=1

βiAi, δ =

n∑

i=1

αiA
i (67)
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and the matrices of dimensions (m + 1) × n and m× (n + 1), respectively,

ÂT
0 = col [A1, . . . , Ai0−1, d, Ai0, . . . , Am], (68)

Ā0 = col
[
(A1), . . . , (Aj0−1), δ, (Aj0), . . . , (An)

]
. (69)

To any vector z = (z1, z2, . . . , zm)T ∈ Rm we associate the vector ẑ ∈ Rm+1

given by

ẑ = (z1, z2, . . . , zi0−1,

m∑

i=1

βizi, zi0, . . . , zm)T . (70)

Consider the linear applications P d : Rn → Rn, φδ : Rm → Rm, Q̂0 :
Rn → Rn, Φ̄o : Rm → Rm defined by P d(x) = x− xT d

‖d‖2
d, φδ(x) = x− xT δ

‖δ‖2
δ,

Q̂0 = (P1 ◦ · · · ◦ Pi0 ◦ P
d ◦ Pi0+1 ◦ · · · ◦ Pm), (71)

Φ̄o = (φ1 ◦ · · · ◦ φj0 ◦ φ
δ ◦ φj0+1 ◦ · · · ◦ φn), (72)

and the n× (m+ 1) matrix R̂0 = col
[
R̂1

0, R̂
2
0, . . . , R̂

m+1
0

]
defined by (see [45])

R̂k
0 =

1

‖Ak‖
2P1P2 . . . Pk−1(Ak), for all k ∈ {1, 2, . . . , i0 − 1},

R̂i0
0 =

1

‖d‖2
P1P2 . . . Pi0−1(d),

R̂k
0 =

1

‖Ak−1‖
2P1P2 . . . Pi0−1P

d . . . Pk−2(Ak−1), for all k ∈ {i0 + 1, . . . , m}.

(73)

The Extended Kaczmarz Modified Algorithm(EKM)
Initialization. x0 ∈ Rn is arbitrary and y0 = b.
Iterative step. For every k ≥ 0, compute

yk+1 = Φ̄0(y
k); xk+1 = Q̂0x

k + R̂0( ̂b− yk+1). (74)

Theorem 7 The sequences (xk)k≥0 and (yk)k≥0 generated with the algorithm
EKM converge and

lim
k→∞

yk = PN (AT )(b), lim
x→∞

xk = PN (A)(x
0) + xLS. (75)
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Theorem 8 For any m×n matrix A, any vector b ∈ Rm, let the (m+1)×n

matrix Â0 be defined as in (68), the vector b̂ ∈ R(m+1) as in (70) and the

applications Q̂0 : Rn → Rn, R̂0 : R(m+1) → Rn, Φ̄0 : Rm → Rm be defined
according to (71), (73), and (72), respectively. If

Q̂0(Ai) = 0, ∀ i ∈ {1, 2, . . . , m}, Q̂0(d) = 0,

Φ̄0(A
j) = 0, ∀ j ∈ {1, 2, . . . , n}, Φ̄0(δ) = 0, (76)

then the Extended Kaczmarz Modified Algorithm converges in one iteration
to a solution of (1).

When (1) is inconsistent we propose the following algorithm
The Modified Extended Kaczmarz Algorithm with Clustering
(MEKC)

Clustering. Perform agglomerative clustering on the columns of the
matrix A with maximum ncc clusters using one of the distances Jaccard or
Hamming. For any cluster k with k ∈ {1, 2, . . . ncc}, let A1

k, A
2
k, . . . A

nk

k be its
set of columns, where nk is the size of the cluster. Let the nk ×m and n×m

matrices Bk and Ac
ncc, respectively, defined by

Bk = col
[
A1

k, A
2
k, . . . , A

nk

k

]
, (77)

Ac
ncc = col

[
B1, B2, . . . , Bnc

]
. (78)

The matrix Ac
ncc is obtained from a permutation of the original matrix

columns. Using one of the distances Jaccard or Hamming compute a cluster-
ing of the matrix A rows with maximum ncr clusters to obtain the matrix
Ancr

c according to (65) and apply the same permutation on b, to obtain bncrc .
Matrix transformations. For every k ∈ {1, 2, . . . ncc} construct the

direction vectors δ1k, δ
2
k, . . . , δ

nk

k ∈ Rn from (61) for the column block Bk and
compute B̄k as in (63). Consider the new matrix.

Āc
ncc = col

[
B̄1, B̄2, . . . , ¯Bncc

]
. (79)

Calculate for ncr clusters the matrix Âncr
c as in (66) and compute the

corresponding b̂ncrc .
Extended Kaczmarz Modified algorithm. Calculate an approxi-

mation of a solution for (1) using EKM algorithm with respect to the new

matrices Āc
ncc and Ânc

c .
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5 Numerical experiments

5.1 Constraining techniques

In this section we try to develop and analyze an algorithm for solving prob-
lem (1) based on prior information about the exact solution. The purpose of
our numerical experiments is solely to demonstrate that the use of a family
of adaptively built constraining functions gives better results than the use
of a single one. For this reason we study a simplified version of a real world
problem. The problem in question is to reconstruct a solution vector, corre-
sponding to the exact image, known to be only composed of zeros and ones.
We concentrate on finding the number and the approximate location of the
nonzero components. In this respect, we apply to the classical Kaczmarz
projection method a family of constraining functions, defined in an adaptive
manner.

5.1.1 Defining an adaptive version of the general algorithm
CGENk

We define the following family constrained algorithm, where the operator
K : Rn −→ Rn stands for an iteration step of the Kacmzarz method.
Family Constrained Kaczmarz Algorithm (FCK)

Initialization. Let x0 = 0, n0 a given positive integer, ε0 and δ two
real positive numbers and Ck the metric projection operator onto the box
[ak, bk] = [ak1, b

k
1] × · · · × [akn, b

k
n] ⊂ Rn (see (20)).

Step I. For every k ∈ {0, 1, . . . , n0 − 1} let [ak, bk] = [0, 1]n and

xk+1 = Ck+1(Kxk). (80)

Step II. Let x0 = xn0 and for every k > n0 compute x̃k as

x̃k = Kxk−1. (81)

For every i ∈ {1, 2, . . . , n}, if x̃k
i ≤ εk then [aki , b

k
i ] = [0, 10−4]; else

[aki , b
k
i ] = [ak−1

i , bk−1
i ].

Then compute xk as
xk = Ck(x̃

k), (82)

and update εk to εk+1 by εk+1 = εk + δ.
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The values of the parameters n0, ε0 and δ are chosen according to the
reconstruction problem, through systematic tests. We built our family of
constraining functions to satisfy condition (23). The algorithm is composed
of two steps and starts with the null vector as an initial approximation.
During the first step, for a fixed number of iterations, we use a constant
constraining function, which is the metric projection operator onto the box
[a, b] = [0, 1]n. The idea of this step is to keep the approximation vector in
the expected range and also to let the “ones” - points to “grow”.

In the second step we consider the fact that, if after a sufficient number
of iterations the value at a point is still small enough, it probably means
that in the exact solution, its true value is zero. At each iteration we apply
Kaczmarz and we “measure” the value of every pixel. If it is smaller than
a given threshold εk, then the corresponding interval in the box will be set
to [0, 10−4], such that the value of the pixel to be constrained to be very
close to 0. We chose [0, 10−4] in favor of the trivial [0, 0] because we observed
experimentally that better results are obtained when the interior of the con-
straining intervals is not empty. In order to accelerate the convergence of the
algorithm more components are assumed to be zero with every step. This is
done by increasing the threshold with δ before the next iteration.

In the following two sections we study a particular image reconstruction
inverse problem discussed in [35] and [34]. This problem arises from 3D
Tomographic Particle Image Velocimetry (TomoPIV), which is an optical
method for measuring velocities of fluids.

5.1.2 Solving an image reconstruction problem
5.1.3 Numerical results

5.2 Adding directions for projection

In the following section we investigate numerical results concerning the MKC
and MEKC algorithms for two different sparse matrices.

5.2.1 Some case studies

5.2.2 Preserving data sparsity under a given threshold

When dealing with an inconsistent problem (1) and a large, ill-conditioned
and sparse matrix A, usually iterative methods give a reduced time perfor-
mance, while the direct algorithms lead to the loss of the sparsity property of
the system. Using the MEKC algorithm, as the number of rows or columns
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clusters increases, the fill-in percentage decreases. However, the convergence
rate of the iterative process also decreases. Therefore, the problem is to find
small values for ncr and ncc such that the number of nonzero elements of
Âncr

c and Āc
ncc, respectively, is under a given threshold.

Let us consider that the linear least squares problem (1) is consistent.
For a fixed distance and threshold we are interested in finding a minimum

ncr∗ such that nz(Âncr∗) < threshold.
Solution. Our solution is to perform a binary search of ncr∗ on the

ordered sequence nz(Â) ≥ nz(Â2) ≥ · · · ≥ nz(Âm−1) ≥ nz(A), where nz(M)
denotes the number of nonzero elements of a matrix M :

– start with ncr = m+1
2

and compute nz(Âncr);

– if nz(Âncr) > threshold continue the binary search in the right subse-

quence nz(Âncr+1) ≥ · · · ≥ nz(Âm−1) ≥ nz(A);
– else, ncr is a candidate for ncr∗ and continue search for a smaller one

in nz(Â) ≥ nz(Â2) ≥ · · · ≥ nz(Âncr−1);
– stop when reached a void subsequence; ncr∗ is the last found number

of clusters for which nz(Âncr) < threshold.

Remark 7 At each step of the binary search we compute the sequence of
directions only until the threshold is reached.

After finding ncr∗ we want to compare the classical K algorithm with our
MKC(dist, ncr∗).

Solution. Evaluate the number of flops (floating-point additions, sub-
tractions, multiplications, or divisions) in these algorithms.

Method Number of flops

Direct Kaczmarz 3 ∗ nz(Â) + 2 ∗ (2 ∗m− 1)

MKC(dist, ncr∗)
(

3 ∗ nz(Âncr∗) + 2 ∗ (2 ∗m− ncr∗)
)
∗ niterncr∗

Kaczmarz (3 ∗ nz(A) + 2 ∗m) ∗ niterK

Our results show that when sparsity threshold constraints prevent us from
applying Direct Kaczmarz, the (MKC) algorithm provides a more efficient
alternative to the classical Kaczmarz method. The same concepts may also
be applied in the inconsistent case.

21



References

[1] A. Aleyner and Y. Censor. Best approximation to common fixed points
of a semigroup of nonexpansive operators. J. Nonlinear Convex Anal.,
6:137–151, 2005.

[2] H. Bauschke. The approximation of fixed points of compositions of
nonexpansive mappings in hilbert space. J. Math. Anal. Appl., 202:
150–159, 1996.

[3] H. Bauschke and J. Borwein. On projection algorithms for solving con-
vex feasibility problems. SIAM Rev., 38:367–426, 1996.

[4] H. Bauschke and P.L. Combettes. Convex Analysis and Monotone Op-
erator Theory in Hilbert Spaces. Springer, New York, 2011.

[5] A. Ben-Israel and T. Greville. Generalized Inverses: Theory and Appli-
cations, Second Edition. Springer-Verlag, New York, 2003.

[6] A. Björk. Numerical Methods for Least Squares Problems. SIAM,
Philadelphia, 1996.

[7] C. Byrne. A unified treatment of some iterative algorithms in signal
processing and image reconstruction. Inverse Probl., 20:103–120, 2004.

[8] A. Cegielski. Iterative Methods for Fixed Point Problems in Hilbert
Spaces, Lecture Notes in mathematics 2057. Springer-Verlag, Berlin,
Heidelberg, 2012.

[9] Y. Censor and A.Z. Stavros. Parallel optimization: theory, algorithms
and applications, “Numer. Math. and Sci. Comp.” Series. Oxford Univ.
Press, New York, 1997.

[10] Y. Censor, I. Pantelimon, and C. Popa. Family constraining of it-
erative algorithms. Numerical Algorithms, pages 1–16, 2013. doi:
10.1007/s11075-013-9736-5.

[11] C. Chaux, J.C. Pesquet, and N. Pustelnik. Nested iterative algorithms
for convex constrained image recovery problems. SIAM J. Imaging Sci.,
2:730–762, 2009.

22



[12] P.L. Combettes. Fejér-monotonicity in convex optimization, volume 2,
pages 106–114. Kluwer, Boston, 2001.

[13] A.R. De Pierro and A. Iusem. On the asymptotic behavior of some
alternate smoothing series expansion iterative methods. Linear Algebra
Appl., 130:3–24, 1990.

[14] B. Eicke. Iteration methods for convexly constrained ill-posed problems
in hilbert space. Numer. Funct. Anal. Optim., 13:413–429, 2007.

[15] T. Elfing. Block-iterative methods for consistent and inconsistent linear
equations. Numer. Math., 35:1–12, 1980.

[16] T. Elfing. A stationary iterative pseudoinverse algorithm. BIT, 38(2):
275–282, 1998.

[17] T. Elfing, T. Nikazad, and P.C. Hansen. Semi-convergence and relax-
ation parameters for a class of sirt algorithms. Electron. Trans. Numer.
Anal., 37:321–336, 2010.

[18] L. Elsner, I. Koltracht, and M. Neumann. Convergence of sequential
and asynchronous nonlinear paracontractions. Numer. Math., 62:305–
319, 1992.

[19] G. Gan, C. Ma, and J. Wu. Data Clustering: Theory, Algorithms and
Applications. Society for Industrial and Applied Mathematics, Philadel-
phia, 2007.

[20] G.T. Herman. Image Reconstruction from Projections. The Fundamen-
tals of Computerized Tomography. Academic Press, New York, 1980.

[21] G.T. Herman. The Fundamentals of Computerized Tomography: Image
Reconstruction from Projections, 2nd edition. Springer-Verlag, London,
UK, 2009.

[22] S.A. Hirstoaga. Iterative selection methods for common fixed point prob-
lems. J. Math. Anal. Appl, 324:1020–1035, 2006.

[23] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University
Press, New York, NY, USA, 1990.

23



[24] A. Katsaggelos, J. Biemond, R. Mersereau, and R. Schafer. A general
formulation of constrained iterative restoration algorithms. IEEE Int.
Conf. on Acoustics, Speech, and Signal Process., 10:700–703, 1985.

[25] A.K. Katsaggelos, J. Biemond, R. Mersereau, and R. Schafer. A regular-
ized iterative image restoration algorithm. IEEE Trans. Signal Process.,
39:914–929, 1991.

[26] S. Kawata and O. Nalcioglu. Constrained iterative reconstruction by
the conjugate gradient method. IEEE Trans. on Med. Imaging, 4:65–
71, 1985.

[27] K.C. Kiwiel and B.  L opuch. Surrogate projection methods for finding
fixed points of firmly nonexpansive mappings. SIAM J. Optim., 7:1084–
1102, 1997.

[28] I. Koltracht and P. Lancaster. Constraining strategies for linear iterative
processes. IMA J. Numer. Anal., 10:555–567, 1990.

[29] I. Koltracht, P. Lancaster, and D. Smith. The structure of some matrices
arising in tomography. Linear Algebra Appl., 130:193–218, 1990.

[30] L. Landweber. An iterative formula for fredholm integral equations of
the first kind. Amer. J. Math., 73:615–624, 1951.

[31] A. Nicola, S. Petra, C. Popa, and C. Schnörr. On a general extending
and constraining procedure for linear iterative methods. Int. J. Comput.
Math., 89:231–253, 2012.

[32] J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equa-
tions in Several variables. Academic Press, New York, NY, USA, 1970.

[33] I. Pantelimon and C. Popa. Constraining by a family of strictly nonex-
pansive idempotent functions with applications in image reconstruction.
BIT Numerical Mathematics, 53(2):527–544, 2013. doi: 10.1007/s10543-
012-0414-0.
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