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Introduction

Let us consider the following system of linear inequalities
Az <D (1)

where A € R™*" b e R™.

Solving the system (1) is fundamental in linear optimization problems, especially for those
of reconstruction of computed tomography images, and can be done in two ways. The first
way consists in transforming the system into a convex programming problem and then applying
direct methods for finding the solution. There are some limitations of these methods, due to the
inconsistency of the system, its large size {m,n > 10°} or to the fact that the matrix A is rare
and ill-conditioned. A second way of solving system (1) involves using iterative methods, which
don’t consist of complex matrix calculation techniques, implementation steps being simple and
relatively easy to program.

In this paper we follow the latter direction, by performing a thorough study of a special type
of iterative algorithms designed to solve the inconsistent (incompatible) system (1) in a least
squares sense. From this point of view, the paper is composed of six chapters followed by a
section in which there are exposed the original contributions of the thesis, and a bibliography
section consisting of the main materials that formed the basis for writing the paper, and the
author’s publications.

In the first chapter we introduce the notation that will be used throughout the thesis and the
main concepts for solving systems of linear equalities and inequalities in a least squares sense.

In Chapter 2 is made a brief presentation of some classical iterative projection algorithms for
solving consistent systems of linear equalities and inequalities.

Chapter 3 presents a thorough study of the iterative algorithm designed by S.P. Han and de-
scribed in [12] (algorithm H), the first in its class of algorithms specifically developed for efficiently
approximating least squares solutions of inconsistent systems of linear inequalities, this problem
being formulated as follows: determine z* € IR" such that

5 || (Az = b),. |*= min! @)
where
((Az = b)1); = max{(Ajz — ;),0},i=1,...,m
Having 2° € IR™ an initial datum, at each iteration, k = 0, 1, . . ., the algorithm H consists of three
steps:

Step 1. Find I, = I(2%) = {i|AT2* > ;} and compute d* € IR" as the (unique) minimal norm



solution of the linear equalities least squares problem
| Az.d — (br, — Az, 2%) ||= min! (3)
Step 2. Compute \* € IR as the smallest minimizer of the function
O(\) = f(2* + Ad"), ) € R. (4)

Step 3. Set zF ! = zF + \F¢*
The descent direction d* in Step 1 is computed by Han using the singular value decomposition
(SVD).

Chapter 4 is dedicated to algorithms Generalized Han (GH), Regularized Han (RH) and Mod-
ified Han (MH), which we call of type Han because they are designed with the same structure as
the one of the Han’s algorithm. The Han-type algorithms differ at Step 1, the calculation of the de-
scent direction: in algorithms H, GH and RH the direction d* is computed by direct methods (SVD
or QR decomposition with column pivoting), whereas the algorithm MH proposes to approximate
it in an iterative way, which is basically justified especially for large problems. The algorithm GH
and its properties, which arise from the study of a particular case presented by R. Bramley and
B. Winnicka in [4, 5], is introduced in section 4.1. In section 4.2 is analysed the algorithm RH
proposed by K. Yang in [27]. The analyses made in sections 4.1 and 4.2 were published by the
author of this thesis in [19]. Section 4.3 is dedicated to algorithm MH proposed by the author C.
Serban et al, the results of this section being published in [7] and [20].

Chapter 5 includes an optimized version of the algorithm MH, and the theoretical analysis
of an unified approach to all four Han-type algorithm presented in Chapters 3 and 4. Thus, we
introduce the general form of a Han-Type algorithm, the algorithm TH, and give the necessary
conditions that the direction d* must satisfy in order that the algorithm TH to be classified as
Han-type. The results of this chapter have been the subject of the paper [19].

In Chapter 6 we present the numerical experiments performed with the four algorithms on
two types of problems: linear separability problems and classical and maritime transportation
problems, showing that the solutions computed by algorithm MH are reliable. The two types of
constrained optimization problem are equivalent to systems of inequalities. If the optimization
problems are inconsistent, the corresponding systems of inequalities will also be inconsistent,
so we may solve them by algorithms H, GH, RH or MH. The study in this section has been the
subject of works [6], [21].

In closing, | wish to thank those with whom | collaborated in developing this thesis. First, |
want to express all my gratitude to my scientific coordinator, Professor Constantin Popa, for the
numerous discussions which helped substantially in clarifying important aspects of the current
research direction, for all the books and articles offered for study and for the patience and will-
ingness always offered. | also want to thank Professor Doina Carp, for all her support granted,



and also my thesis committee members for their guidance through this process. Last but not
least, | would especially like to thank my family for the continuous love, support and constant
encouragement offered throughout the doctoral studies.



Chapter 1
Preliminaries

In this section we will present the main results related to the least squares formulation of incon-
sistent systems of linear equalities and inequalities. We will first introduce some notations, which
will be used throughout the paper: (-,-), || - || will be used for the Euclidean scalar product and
norm on some space IR", defined by

(z,y) = Z%yuvx = (Ti)i=1,.0, ¥ = Yi)i=1,..n. € R" (1.1)

Iz )= )2 (1.2)
=1

We also know the Cauchy-Buniakowski-Schwarz (C-B-S) inequality

[zl < Mz -lyll (1.3)

with equality if and only if the vectors x, y are collinear (i.e. y = ax for some a € IR).

AT will denote the n x m transpose of the m x n matrix A and A" its Moore-Penrose pseu-
doinverse. By || A [l»= \/p(ATA) we will denote the spectral norm of A, where p(B) is the
spectral radius of the square matrix B. By A;, A’ we will denote the i-th row and j-th column of
A, respectively and by AV(A), R(A) the vector subspaces defined by

N(A)={re R" Az =0}, R(A)={ye R",y= Ax,x € R"}. (1.4)

1.1 Systems of linear equalities

In this section we will present the main results concerning the least squares solutions of systems
of linear equalities. Let A be an m x n matrix and b € IR™. We consider the system of linear
equations

Az* =0 (1.5)



and denote by S(A;b) the set of all its solutions. We shall call the system 1.5 consistent if
S(A;b) # (), and inconsistent if S(A;b) = 0. If the system (1.5) is inconsistent, we will say that
x* € IR" is a least squares solution for it if

1 1
5 | Ax* — b ||*= min{§ | Az — b ||?, 2 € R"}, (1.6)

and will denote by LSS(A;b) the set of all such vectors.

Proposition 1. ( [18],Prop.19) (i) The set LSS(A;b) is convex, nonempty and LSS(A;b) =
N(A) + x5, i.e forany z* € LSS(A;b) we have

$* = PN(A)(.I*) +1’LS. (1.7)
where x5 € LSS(A;b) is given by
rrs = A+b (1 8)
Ifn <m sirank(A) = n then LSS(A;b) = {zLs}.
(ii)( [18],Prop.19) x5 is the unique minimal norm solution, i.e.
lzos | < |l ||, Va* € LSS(A; D). (1.9)

(iii)([18],Prop.21 - The normal equation) We have the equivalence

x € LSS(A;b) & AT Az = ATb (1.10)

1.2 Systems of linear inequalities

Let now A be an m x n real matrix and b € IR™. We consider the system

Az* < b, (1.11)

in which the inequalities are component-wise, i.e. Z?:1 Aijxj < b,Vi=1,....,m. In the
consistent case of (1.11) many classes of efficient iterative solvers have been designed for its
numerical solution (see for a good overview the monograph [9]). In the inconsistent case, it results
that at least for one index i the corresponding inequality is violated, i.e. the set I(z) C {1,...,m},
defined by

I(x)={i e {1,....,m}, (Anz) > b} (1.12)

is nonempty for any = € IR". Moreover, let us suppose that the set I(z) = {iy,...,i,} is ordered
such that i; < iy < --- < iy} then, Ay, by, will denote the submatrix of A with the rows
Aj, ..., A;, and the subvector of b with components b;,,...,b; , respectively. For any vector



y € IR™ we define

Yi, Yi=>0
(y4)i = max{y;,0} = (1.13)
0, wy; <O.

and the convex sets by C; = {z € R", (A;,;x) < b;},i = 1,...,m. The inconsistency of the
system (1.11) is equivalent to N, C; = (), and we reformulate it as (see e.g. [12]): find z* € IR"
a minimizer of
Flo) =5 1 (Az = b). |1 (1.19
where
Ax—b,>0

Aifﬂ—bi,
((Ax = b)); = max{(Asz ~ b:), 0} { 0 oAb (1.15)

In [12] are also proved the following results.

Proposition 2. (i) The objective function f from (1.14) is continuously differentiable and convex.
(ii) The gradient of f is
Vf(r) = AT (Ax —b), = AT (A;x —by) (1.16)

(ii)[12, 25] The gradient of f is Lipschitz continuous,
IVf@@) =Vl < 1Al; Iz =yl Yo,y € R™ (1.17)
(iv) ([12], Theorem 2.1) A vector z* € IR" is a least squares solution of (1.11) if and only if
Vf(z*) = AT(Az* —b), =0, (1.18)

i.e. the normal equation of an inconsistent system of linear inequalities.
(v) ([12], Theorem 2.3) There exists (at least) a least squares solution of (1.11).

The set of all least squares solutions of (1.11) will be denoted by ILSS(A;b).

Theorem 1. ([12], Theorem 2.5) It exists a unique z* € IR™ such that x* € ILSS(A;b) if and
only if (Az* —b), = z*. Moreover z* > 0, ATz* =0



Chapter 2

Iterative projection algorithms for
consistent systems of linear equalities and
inequalities

In this chapter we briefly present some of the classical projection algorithms used to solve the
consistent systems of linear equalities and inequalities.

2.1 Kaczmarz algorithm for consistent systems of linear equal-
ities
We consider the consistent systems of linear equalities
Az =b (2.1)

The Kaczmarz method, based on orthogonal successive projections on hyperplanes H; = {z €
R™| (A;, x;) = b;,i = 1,2,...,m}, was proposed by its author in [14]. The solution of system 2.1
is the unique intersection point of the hyperplanes H,.

Kaczmarz Algorithm Let us consider 2° € IR" arbitrary fixed; for k = 0,1, ..., do

(k+1) _ (k)Y — (k)
x =Py, (%)== 3 i
1Azl '

(2.2)

2.2 Cimmino algorithm for consistent systems of linear equal-
ities

The Cimmino algorithm is an iterative method proposed by G. Cimmino in [10], in which simulta-
neous projections are made on all the hyperplanes H; = {z € IR"| (A;, z;) = b;,i = 1,2,...,m}.



Instead of orthogonal projections, the Cimmino algorithm uses the orthogonal reflections with re-
spect to the hyperplanes H..

Cimmino Algorithm (I) Let us consider 2° € IR™ arbitrary fixed; for k = 0,1, ..., do
2 =20+ 2 Z PTa A

=z ATD(b — Az®)

— are positive quantities called masses, ;1 = Z m; and D = deag(
=1

where {m;}._ AT .

2.3 Cimmino algorithm for consistent systems of linear in-
equalities

This algorithm has the following form:
Cimmino Algorithm (ll):

2 m
gt = gh 4 = Z mich A (2.3)
"

where m; = 24
>y
=1

Sm=1,0 <m, < 1.vi € I, ¢k = minf0, "7y and

are called generalized masses, {7, },_;— are positive quantities called masses,

> m;, daca |I;| > 2
/’Lk = ie]k
1, daca |[x| =1

with I, = {i|c¥ < 0} the set of indices for which z* ¢ L, = {z € IR"| (A;,x) < b;}

2.4 Richardson algorithm for consistent systems of linear equal-
ities

Let us consider the residual vector r* = b — Ax*, I, = {i| (A;, ) > b;} and the diagonal matrix
DF defined by

o 1, dacai € I,

" 0, dacai ¢ I

The Richardson algorithm has the following form:
Richardson Algorithm Let A/ = (m,;) be a positive definite matrix with nonzero elements and



20 € IR™ arbitrary fixed. If r* > 0 then STOP. Otherwise,
" = 2 o AT MR (b — Az”) (2.4)

where M* = D*)M D* and the parameters {a;} have the property 0 < oy, < m.

2.5 Lent-Censor Algorithm for consistent systems of linear
inequalities

The Lent-Censor algorithm is proposed in [16] and represents an extended form of the Hildreth
algorithm [13], a useful method for solving optimization problems of large dimensions. First of all,
a set of relaxation parameters was introduced in Hildreth algorithm, {r(®} 0 < »®*) < 2, which
does not change in any way its convergence, a fact proven in [16]. The second change made on
Hildreth algorithm consists in changing the way the rows of the matrix A are considered at each
iteration, thus having an almost cyclic control over them, less restrictive than the cyclic one.

Definition 1. Let’s consider the finite set I = {1, 2, ..., m}. The sequence {iy}°, is almost cyclic
onl if:
a)ip €1, forallk > 0;
b) It exists C' such as for all
k>0,1C {irs1,..iprc)

A sequence almost cyclic on {1,2,...,m} is cyclic if C' = m. Assuming that A; #0Vi € [ =
{1,2,...,m}, the Lent-Censor algorithm for the problem

min 2 ||z
2 [l (2.5)
Ax <b
has the following form:
Lent-Censor Algorithm Let us consider 2° € R and 2° = —A”2%; for k = 0,1,2,... do
N $+Ckz4¢k
M= o e,
b, — Ai.alﬂk
& = min(zf, ¥ < = >)
[ As ]

10



where

{ir}po, almost-cyclicon I = {1,2,...m}
0 < <2

e; = (.0...1...0..)T

Let's consider z*, 2% , L, = {z € R"|(A;,,z) < b, } si H;, = {x € R"|(A;,,x) = b;, } the
subspace and the hyperplane, respectively, determined by i,-th inequality of system (2.5).

o If 2% ¢ L; & z*'!is the orthogonal projection of z* on L; , x*™1 € H;,

k

o IfzF e H, ,thenc® =0,s0 2" =2

k?
e If 2% € int(L;,) then

-k =2k = P = 4 2F A, so 2¥t1is on an orthogonal direction on H;, given by zF A, , or
ik it Tk k T Tk
bi — Ai ,xk bi, - Ai ,l‘k . . .
-k = % = ghtl = g+ + %Aik so z**! is the orthogonal projection of the
ip g

vector z* on H; ,so 2**1 is the minimal norm solution.

11



Chapter 3

Han algorithm for systems of linear
inequalities

The only algorithm specifically designed for solving arbitrary systems of linear inequalities in a
least squares sense was developed by S.-P. Han [12]. This algorithm requires finding the mini-
mum norm least squares solution to systems A;x = b;, where A; is a submatrix of A consisting
of some rows of A, and has the following form:

Algorithm H. Let 2° € IR™ be an initial datum; fork = 0,1, ... do:

Step 1. Find I, = 1(z*) = {i|AT2* > b;} and compute d% ; € IR" as the (unique) minimal norm
solution of the linear equalities least squares problem

|| A]kd — (b[k — A]kxk) ”: min! (31)
Step 2. Compute \* € IR as the smallest minimizer of the function
0(\) = f(2* + Mdig), A € R. (3.2)

Step 3. Setz**! = 2% + \rdk .
According to the existence and computation of the smallest minimizer from Step 2, we provided
in [7] the following result (which also gives us an algorithmic procedure to find it).

Proposition 3. The smallest minimizer of the function 6(\) from (3.2) always exists and can be
efficiently and accurately computed in each iteration of the algorithm H.

Theorem 2. (i) ([12], Lemma 4.1) For the sequence (x*);>, generated with the algorithm H, the
gradient of the objective function (see (1.14)) satisfies

V(") = AT(Az — b), = AT(Apz® — b)) = —ATAydb . (3.3)

12



(i) ([12], Theorem 4.2) d* , is a descent direction, i.e.
2
(V(a"),dig) = — || Ardis||”- (3.4)

Theorem 3. ([12], Theorem 4.4) Let (z*);>0 be the sequence generated by algorithm H from any
20 € IR". Then either V f(z*) = 0, for some k < oo or Jim Vf(z*) =0.
—00

Theorem 4. ([12], Theorem 4.6) Let (")~ be the sequence generated by algorithm H, 2% =
(Ax* —b), and »* the unique vector from Theorem 1. Then
lim 2% = 2*. (3.5)
k—o00

The main result related to Han’s algorithm will be presented below (for proof details see the
original paper [12]).

Theorem 5. ([12], Theorem 4.10) For any m x n matrix A, any right-hand side b € IR™ and any
initial datum 2° € IR™, Han’s algorithm H produces a least squares solution of the system (1.11)
in a finite number of steps (in exact arithmetic).

Remark 1. (i) It results that Han’s algorithm can be (theoretically) also used for consistent systems
of the form (1.11); but, in this case there are many other more efficient methods (see e.g. [9]).
(ii) From a practical view point, because of round-off errors, Han’s algorithm becomes an iterative
method.

(iii) At each iterative step of the algorithm H, a Singular Value Decomposition (SVD) of the matrix
Ay, needs to be computed. When the matrix is large, rare or ill-conditioned, SVD is not an
efficient method in terms of computation cost, so other versions of the Han algorithm have been
developed, in which the descent direction from Step 1 is computed in a more effective way.

13



Chapter 4

Han-type algorithms for systems of linear
inequalities

In this chapter we present three versions of Han algorithm, together with their specific way of
computing the descent direction in Step 1.

4.1 Generalized Han algorithm (GH)

One question that can occur related to Han’s algorithm is: can we use instead of the minimal
norm solution d¥ ; in Step 1 any other solution of the problem 3.1 ? An answer was given in the
paper [4] (see also [5]). We will present it below, a little bit more generally than in the original
paper. First of all we will consider a Generalized version of Han’s algorithm.
Algorithm GH Let 2° € IR™ be an initial datum; fork = 0,1, ... do:
Step 1. Find I, = I(z*) and compute d* € IR™ an arbitrary least squares solution of the problem
3.1:
| Az, d— (b, — Az 2%) ||= min!

Step 2. Compute \* € IR as the smallest minimizer of the function
O(\) = f(z* + \d*), A € R. (4.1)

Step 3. Set zF*! = 2% + \ed*.
The least squares solution d* from Step 1 can not be completely arbitrary, as mentioned in the
result below.

Theorem 6. Let us suppose that it exists a constant C' > 0, independent on the iteration k, such
that
Id" | < Clldisll, Yk >0. (4.2)

Then the same conclusion of Theorem 5 holds for the algorithm GH.

14



The proof of this theorem starts with the remark that a general least squares solution of
problem 3.1 is

hence
Apdh = Apdig, Yk >0 (4.3)
We also have
Vf(a") = —A] A dyg = —A] Apd", (4.4)
and
(Vf("),d") =— | Apd" ||” <o (4.5)

In [4, 5], R. Bramley and B. Winnicka proposed as d* for algorithm GH a least squares solution
of the problem 3.1 computed by a QR decompositon with column pivoting; thus, the relation (4.3)
is satisfied. It is also shown, by using a general result of QR decomposition proven in [11], that
the Theorem 6 holds.

4.2 Regularized Han algorithm (RH)

In [27], K. Yang comments on Han’s algorithm by considering its major drawback in the fact that,
in each iteration, initial objective function from (1.14) is replaced by

1 1
Py = 5 I Ak = b, = 5 || A — by P

In this way, many originally satisfied constraints might be violated in the new iterative solution z*.
Regarding this aspect, he also proposed to use the complement of the set [, denoted by J, and
characterized by

Jo=J@") ={ie{l,...,m}, Ax® < b} ={1,... . m}\ I, (4.6)
together with a diagonal weights matrix

Wi = diag(w?, . .. ,wgk), wk >0 (4.7)

7, =

where ¢, is the number of elements in the set J,,Vk > 0. With these ideas, Yang designed the
Regularized version of Han’s algorithm from below.

Algorithm RH Let 2° € IR" be an initial datum; fork = 0,1,... do:
Step 1. Find I;, = I(z*), J, = J(z*) as before and compute d* € IR" the minimal norm solution
of the (regularized) linear least squares problem

|| Afkd - (bIk - Alkxk) ||2 + || WkAJkd ||2: min! (48)

15



Step 2. Compute \* € IR as the smallest minimizer of the function
O(\) = f(zF + \d"), ) € R. (4.9)

Step 3. Set 2+t = z* + Nk

The next results, proved in [27] shows properties of the algorithm RH. We extended the proofs
of these results with elements that later helped us formulate the unified approach of Han-type
algorithms (section 5.2)

Proposition 4. (i)([27], Lemma 10.1) The descent direction d* satisfies

(AT Ap, + AT W2A;)d" = AT (by, — Apa®) = =V f(2") (4.10)
and
d* = —(A] A, + AiW,?AJk)JFVf(a:k). (4.11)

(i) ([27], Lemma 9.1) The vector
¥ =ab 4 d* (4.12)

is a least squares solution of the regularized problem
| Az = by, ||> + || Wi Ay, (z — 2) ||*= min! (4.13)

Remark 2. IfIWW* = 0,Yk > 0 then d* = d% ; and we get the algorithm H.

Proposition 5. (i) ([27], Corollary 10.2) We have the equality
(Vf(@a"),d") = (| Apd" [P + || WA, d" |P) < 0. (4.14)
(i) ([27], Lemma 10.4) If z° € IR™ is the initial datum in the algorithm RH then
IVFE) 12 < 2 A5 f(2°), ¥k 2 0. (4.15)

The next result show that the Theorem 3 holds for algorithm RH as well.

Theorem 7. ([27], Theorem 10.5) Let 2° € IR™ be arbitrary fixed, and (z*);>, the sequence gen-
erated by the algorithm RH. Then, either it exists ko > 0 such thatV f(z*) = 0, orlimy,_,., V f(z*) =
0.

4.3 Modified Han algorithm (MH)

In many practical applications (see e.g. [9]), the matrix A is large and sparse, and so can be the
submatrices A;, in Han’s algorithm iterations. Then, the use of a direct method for computing the

16



d% ¢ or d* solutions of the problem 3.1 can be affected by round-off errors, fill-in process in A;, and
a (too) big computational time. One way to overcome such a difficulty would be to approximate
the “directly computed” solutions d* ¢ or d*, with one obtained with an iterative solver for problems
of the form 3.1. Having all these aspects in mind, in [7] we proposed a Han-type algorithm based
on an iterative approximation of d% ¢ and we proved that the Theorems 3 and 4 also hold for the
sequence (z%);>¢ generated by algorithm MH.

Concerning this aspect, let ALG be an iterative algorithm which approximates the minimal norm
solution of a linear least squares problem of the form

| Fx — ¢ ||= min!, (4.16)

where F'is an arbitrary rectangular matrix and ¢ an appropriate vector.
Algorithm MH. Let 2° € IR" be an initial datum; fork = 0,1, ... do:
Step 1. Find I, = I(x*) and compute an approximation d* € IR™ of the minimal norm solution
d% ¢ of the problem 3.1
| Az, d— (b, — Az 2%) ||= min!

by performing 5 > 1 iterations of the algorithm ALG, with O as initial approximation
Step 2. Compute \*7 € IR as the smallest minimizer of

0(\) = f(a* + M), A€ R

Step 3. SetzF ! = zF + \kigki,

Theorem 8. Let us suppose that there exist an integer J > 1, independent on the iteration index
k, such that

1 1
I Apd™ 1> 5 | Andis |, || A (@™ = dig) 1< 5 || Apd™ |,
2 2

1
| d*7 = dis < 5 I Agd™" |, VE >0, (4.17)

where d% ¢ is the minimal norm solution of 3.1 and d*” the approximation generated after J iter-
ations of ALG in Step1 of MH. Then the conclusions of Theorems 3 and 4 hold for the sequence
(z%)x>0 generated by the algorithm MH.

Related to the assumption (4.17), we can provide the following result, published in [7]:

Theorem 9. If as ALG in Step 1 of the algorithm MH we use the Kaczmarz Extended (KE)
algorithm from [17], with zero as initial approximation, then the inequalities from (4.17) hold with
J > 1 independent on the iteration k.

This proves that the algorithm MH allows resolving inconsistent system 1.11 in a least squares
sense. Moreover, we give an example of an iterative algorithm, Extended Kaczmarz algorithm and
we demonstrated that it can be successfully used in Step 1 of the algorithm MH.

17



Chapter 5

The unified approach of Han-type
algorithms

From the study of the algorithms H, GH, RH and MH, a series of elements have emerged, helping
us to develop an unified approach of the Han-type algorithms. Next, we give the form of an
algorithm of Type Han (TH), and the conditions it has to satisfy. This general algorithm will
include as particular cases the four algorithms considered in the paper: H, GH, RH and MH.

5.1 An optimized version of Modified Han (MH) algorithm

The MH algorithm presented in section 4.3 can be optimized by reducing the number of conditions
in (4.17). This change also allows us to consider it for the unified approach we aim to produce.
The results of this section have been published in [19].

Next, we give the optimized version of Theorem 8.

Theorem 10. Let us suppose that there exists an integer J > 1, and constants C € [0,1), Cy >
0, all independent on the iteration index k, such that

| Ar (d™ —djg) IS Cy || A d™ ||, || d —djg |< Co || Ard™ ||, VE >0, (5.1)

where d¥ 4 is the minimal norm solution of 3.1 and d*’ the approximation generated after .J
iterations of ALG in Step 1 of algorithm MH. Then the conclusions of Theorems 3 and 4 hold for
the sequence (z*);>o generated by the algorithm MH.

For the unification procedure from section 5.2 we need the following modified version of the
above theorem.

Corollary 1. The conclusion of Theorem 10 remains true if we replace the second inequality from
(5.1)

I Ap (@™ = di) I< CLll Agd™ I, || d™ = dig 1< Co || A d™ ||, VE >0,
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by
| d* —dig < Co |l Apdis ||, Yk > 0. (5.2)

Related to the assumption (5.2), we can provide the following result, proven in [7], which
assures us that the algorithm Kaczmarz Extended (KE) can be successfully used in the calculus
of the descent direction in Step 1 of algorithm MH.

Theorem 11. If as ALG in Step 1 of the algorithm MH we use the Kaczmarz Extended (KE)
algorithm from [17], with zero as initial approximation, then the first inequality from (5.1) and the
inequality from (5.2) hold with C, = 1, C5 = % and J > 1 independent on the iteration k.

5.2 The unified approach

The results of this section have been published in [19]. In order to obtain an unified point of view
related to the Han-type algorithms, we will introduce three general assumptions on the descent
direction D* generated in Step 1, and z* from Step 3.
Assumption 1.

(Vf(x*),D*) <0, Yk >0. (5.3)

Assumption 2. It exists a constant C' > 0, independent on the iteration £ such that

| DE < C | V") [, V>0 (5.4)
Assumption 3.
If lim (V(z"), DF) =0, then lim Vf(z*) = 0. (5.5)

In what follows we show that the descent directions d% ¢, d*, d* and d*” corresponding to the
algorithms H, GH, RH and MH, respectively, satisfy the above assumptions.

Proposition 6. The assumption (5.5) holds for D* € {d% o, d*, d*, d*’}.
Proposition 7. The assumptions (5.3) and (5.4) hold for D* ¢ {d* ¢, d*, d*, d*’}.

Taking into consideration all the above, we give the following form of the algorithm of Type
Han (TH):
Algorithm THLet 2° € IR" be an initial datum; fork = 0,1, ... do:
Step 1. Find I, = I(x*) and compute D* € IR" a descent direction.
Step 2. Compute \* € IR as the smallest minimizer of the function

O(\) = f(2* +AD"), X € IR. (5.6)

Step 3. Set ¥t = 2% 4 \EDF,
The next theorem is the main result of our approach because it shows that the algorithm TH
satisfies Theorem 3.
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Theorem 12. Let us suppose that the descent direction D* in Step 1 of the algorithm TH satisfies
D* ¢ {dks, d* d* d*7}. Then, the conclusion of the Theorem 3 holds for the sequence (z*);>o
generated by TH.

We proved in this section that algorithms H, GH, RH and MH satisfy Theorem 3. Algorithms
H, GH and MH have in addition the properties mentioned in Theorem 4, whereas H, GH also
those from Theorem 5. Work is in progress in order to prove such results for the algorithms RH
and MH, and to extend the unification results from this paper to cover also these results. Till then,
the successful experiments from the papers [7] and [20] are encouraging us for these theoretical
developments.
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Chapter 6
Applications

To test the Han-type algorithms discussed in this paper, we have implemented each of the four
algorithms H, GH, RH and MH in Matlab R2010a, using the built-in Matlab functions as pinv and
gr to compute the descent direction for algorithms H, GH, RH, whereas for MH we used the
Kaczmarz Extended (KE) algorithm from [17] as ALG in Step 1. In order to solve the problem 4.8
of RH algorithm, we set w;, = 1073, VEk, this value being determined experimentally as the most
suitable value of the weights. For all algorithms, we computed \*, the smallest minimizer of the
convex function 6, as in Proposition 3. We also made use of the build-in Matlab implementation
of Simplex algorithm, linprog. All runs with respect to the four algorithms are started with the
initial datum xo = (0,...,0)T and are terminated if at the current iteration 2* satisfy AT (Axz* —
b), || < 107'. The results of our numerical experiments have been published in [6, 7, 21].

6.1 Linear separability problems

6.1.1 Linear separability

Lemma 1. ([2])Two sets A = {A', A% ... A™} C IR", B = {B',B?,...,B*} C IR" are linearly
separable if and only if there exist w € IR" and v € IR such that

(w, A" —y>1land (w,B) —y < —1,¥Vic€1,.... m\Vjel,. ..k

The point sets A and B represented by the matrices A € R™*" and B € R**", respectively,
are linearly separable if it exists v € R" such that

121§nm<Aiav> > 112%}2:<BZ7U>7 (61)

which is equivalent with: there exist w € R" and v € R such that (see also Lemma 1)

Aw > ey + em, Bw < ey — e, e € R es = (1,...,1) (6.2)
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In [1], the linear separability problem in IR" is formulated as a problem which minimizes the points
of A and B incorrectly classified by the separating hyperplane wx = ~:

1 1
min— || (—Aw + ey +e)s 1+ || (Bw —ey+e)s |, (6.3)

where || z 1= >, |zl.# € IR". According to Lemma 2.2 in [1], the optimization problem
6.3 will always generate a separating hyperplane wx = ~ for linearly separable sets A and B;
as for linearly inseparable sets, an optimal separating hyperplane will be generated such that it
minimizes the number of points in .4 which lie in {x, (w,z) < v + 1} and the number of points in
B which lie in {z, (w,x) > v — 1}.

In [4, 5], the optimization problem 6.3 is expressed as a linear system of inequalities

Gw <y (6.4)
which my be solved in a least-squares sense:
ming || (G — g). |1 (6.5)
-A e,

),sz(wT,v)Tsig=< )
—€L —C€L

Next, we shall present computational comparisons on several linear separability problems, follow-

where G =

ing the papers [4] and [5]. All tests were performed on finite sets of points, linearly inseparable.
The measure of error used for both sets of problems was given by counting the number of incor-
rectly classified points (ICP): Aw > ve,, and Bw < ve,. The results of these tests have been
published in [7, 19].

6.1.2 Numerical experiments

Two-dimensional problems. The first set of linear separability problems addressed is the two-
dimensional one, and consists of two cases: the first is a smaller square inside the unit square
(Square problem), and the second are two triangles that overlap (Triangle problem). For the
Square problem, a total of two hundred data points were used, randomly distributed inside the
two squares, two-thirds of them being inside the unit square. As for the Triangle problem, each
triangle had one hundred data points, also randomly generated. To produce all these uniformly
distributed data points, we used the build-in Matlab random number generator, rand. Table 6.1
presents the results obtained for the Square and Triangle problems.
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Problem | ICP | ICP %
Square 13 | 6.5
Triangle | 27 | 13.36

Table 6.1: The number of incorrectly classified points (ICP) for the Triangle and the Square
problems. Algorithms: H, GH, RH and MH

L | A ol 1 |
ED 01 02 03 04 05 06 87 08 0B |

Figure 6.1: Triangle problem (left); Square problem (right) A:+, B : o

Database tests. The second set of problems contains two real world databases: the Wiscon-
sin Breast Cancer Database (WBC) and the Cleveland Heart Disease Database (CHD) (see [4]).
Both files were downloaded from [28]. Each data point in the WBC and CHD databases has 9,
respectively, 13 components, corresponding to experimental measurements. After we discarded
the data points that had missing measurements, the WBC database was comprised of 551 data
points of which 346 were benign (set .A) and 205 were malignant (set 5). The CHD database
remained with 297 data points of which 137 were negative (set .A) and 160 were positive (set
B). As in [4], each set was divided randomly into a training set with 67% of the data points and
a testing set with the remaining 33%. This division was carried out by a random permutation of
integers i € [1,]S]], S € {A, B} generated with the build-in Matlab function, randperm. The main
idea was to apply the solvers on the training set, and then to test the resulting hyperplane on the
testing set.
For each database, we randomly partitioned the data sets and ran the solvers ten times and com-

puted the incorrectly classified points ICP°,i = 1, ..., 10; then we obtained the average and the
10
percentage of the results: MICP® = =3 ICP® and ICP% = Mﬁglps % 100.

1=1

Baza de date | ICP% training | ICP% test
WBC 3.30 3.50
CHD 15.30 16.19

Table 6.2: ICP% for databases WBC and CHD. Algorithms: H, GH, RH and MH
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6.2 Unbalanced and inconsistent classical and maritime trans-
portation problems

The results of this section have been published in [6, 21].

,,,,,

The classical transportation problem involves sources (S;)ic(1,....n}, Where supplies (s;); = 1,...,n

.....

are requested ([15]). If we denote by z;;,7 = 1,...,n,7 = 1,..., m the number of units trans-

T

ported from source S; to destination D;, we get the following mathematical model of the (classical)
transportation problem:

min i icl-jxij (66)

i=1 j=1

n m
s.t. Zfbij Zdj,z% = 85 Tij >0 izl,...,n,j: 1,...m
i=1 Jj=1

We will consider in this paper the unbalanced case, i.e. > s; < ) d; for which the linear pro-
i=1 j=1
gram (6.6) becomes inconsistent (i.e. the set of feasible solutions is empty).

The maritime container transportation is a transportation problem subject to the following addi-
tional hypothesis: (M1) the unit of cargo (container) has different capacities, so the cost of a unit
of transport is different for a particular route. The most common unit used in cargo transportation
is TEU (Twenty-foot Equivalent Unit), corresponding to a 20-foot-long (6.1 m) intermodal con-
tainer; (M2) the destinations become in this case warehouses with specific dimensions; hence,
the number of containers transported to a given warehouse will be restricted by these dimen-
sions.

We analysed in our numerical experiments the following two variants of the unbalanced and in-
consistent transportation problem described in Table 5 from [6], for which we supposed that there
exist 7 sources, S;,7 = 1,...,7, and 7 destinations, D;,j = 1,...,7. In the case of maritime
transportation, the destinations are warehouses and we will assume that all the warehouses are
rectangular buildings, with known length (L), width (W) and height(H) (Table 3 in [6]). Thus, the
containers will be stored on superposed rows in each warehouse. Here are the problems consid-
ered:

Problem P1 - a 2-index unbalanced and inconsistent transportation problem; (x;;) represents
the quantity of commaodity shipped from source S; to destination D;. The mathematical model of
this problem is the following (see inequalities from (6.6)):

7 7
i=1 Jj=1
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Problem P2 - a 2-index inconsistent maritime container transportation problem; (x;;) is the num-
ber of containers of T'ype(i) shipped from S; to warehouse D; and we assume that each source
S; provides only one category of containers (see Table 2 in [6]). The mathematical model of this
problem is the following:

7
=1
7 7
ZTwixij Z dj,j = 1,,7,Tw22xw :Si,i: ]_,...77. (69)

=1 7j=1

where (6.8) represents the storage restrictions imposed by the dimensions of each warehouse,
(6.9) are the inequalities from (6.6), [ is the length of each type of container (see Table 2, column
2in [6]), and T,,, is the TEU’s equivalent weights of the container types (see Table 2, last column
in [6]).

Problem P3 - a 3-index inconsistent maritime container transportation problem; (x;;) is the num-
ber of containers of T'ype(i) shipped from S; to warehouse D; and we assume that each source
S; provides all types of containers T'ype(l),l = 1,...,7 (see Table 2 in [6]). The mathematical
model of this problem is the following:

n

n m 7 m
min Z Z Z CijiTij = Min Z Z Z Cij Qi Tij1 (6.10)

i=1 j=1 i=1 i=1 j=1 I=1

n 7 m 7
s.t. sziﬂ Zdj,j:1,...,m;Zin]—l:si,i:1,...,n

i=1 I=1 Jj=11=1

riig>0i=1,...,nj=1,..ml=1,...,7

where: ¢;;; is the transportation cost of one container of T'ype(l) from source S; to warehouse D;;
c;j is the transportation cost of one TEU (one unit of commodity) from source S; to warehouse
D;;q=(q1,¢,-.-,q7) holds the TEU’s equivalent weights of the container types considered (see
last column of Table 2 in [6]).
After several steps of processing (see [6]), we get the following form of the linear programs P1,
P2 si P3:

min{c,y) s.t. By>d, y >0 (6.11)

and its dual
max(d,u) s.t. BTu<c¢, u>0 (6.12)

where B :mxn,c,y € IR",d,u € IR™. We will denote by P, D the set of feasible solutions of the
primal (6.11) and its dual. The following result, mentioned (without proof) by Han in his original
paper [12], gives us the possibility to express in an equivalent way the primal-dual pair of linear
programs. We included its proof in [6].

Proposition 8. Let us suppose that both problems have feasible solutions, i.e. P # 0,D # (.
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Then the following assumptions are equivalent:
(i) y € P,u € D are optimal solutions for problems (6.11) and (6.12), respectively; (ii) the vector
x = [g7,a’]" € IR™ " is a solution of the system of linear inequalities

Ar < b, (6.13)
where ) ) ) )
f— 0
-B 0 —d
A= 0 BT b= (6.14)
-1 0
L O _] . L .

It holds that solving a pair of feasible primal-dual linear programs is equivalent with solving a
certain system of linear inequalities. There are two more possible cases that can occur beside
the feasible one: one of the problem has feasible solutions and the other does not, and both
problems do not have feasible solutions. In these cases, as Han himself mentioned in [12], the
system (6.13) - (6.14) provides a kind of least squares solution for one or both linear programs, re-
spectively. Such a situation is considered for the inconsistent problems P1, P2 and P3 described
above, the systems of linear inequalities to which these problems are equivalent being inconsis-
tent too. The problems were solved with linprog Matlab implementation of Simplex algorithm,
whereas the two associated systems with MH algorithm. The problems P1, P2 and P3 being
inconsistent, the Simplex algorithm failed to solve them, returning instead a result that minimizes
the worst case constraint violation (see [26]). The tables from Fig. 6.2 show the cost solution of
the problems considered.

Algoritm  cost || (Az —b), || Algoritm  cost || (Axz —b), || Algoritm  cost || (Az —b), |
MH 15336 38.7529 MH 15336 38.7529 MH 15336 38.7529
Simplex 31235" 145.0241 Simplex 29070* 145.0626 Simplex 31235* 146.0675

Figure 6.2: The transportation cost of problem P1 (left), P2 (center), P3 (right)

where * denotes that the Simplex algorithm failed to solve the problem, returning instead a
result that minimizes the worst case constraint violation (see [26]).
The study presented in this paper will be continued in the future, especially because systems of
linear inequalities often appear in applications that target, for example, reconstruction of the CT
images, signal processing, etc. Because these problems are usually large, one may consider to
parallelize different stages of the algorithms, for example by applying parallel gradient solver in
Step 1. Furthermore, we will consider to implement these algorithms in a Grid environment, to
use all the computing power offered by this platform. The author of this paper has made certain
steps in this direction through the works [22], [23] and [24] which describe the modelling of some
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algorithms applied on satellite images as Grid services. Since the Grid environment enables
satellite image processing on its true size, which is usually hundreds of MB, the results are more
accurate that those obtained in classical ways, when the image is truncated.
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