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Introduction

Let us consider the following system of linear inequalities

Ax ≤ b (1)

where A ∈ IRm×n, b ∈ Rm.

Solving the system (1) is fundamental in linear optimization problems, especially for those

of reconstruction of computed tomography images, and can be done in two ways. The first

way consists in transforming the system into a convex programming problem and then applying

direct methods for finding the solution. There are some limitations of these methods, due to the

inconsistency of the system, its large size {m,n ≥ 105} or to the fact that the matrix A is rare

and ill-conditioned. A second way of solving system (1) involves using iterative methods, which

don’t consist of complex matrix calculation techniques, implementation steps being simple and

relatively easy to program.

In this paper we follow the latter direction, by performing a thorough study of a special type

of iterative algorithms designed to solve the inconsistent (incompatible) system (1) in a least

squares sense. From this point of view, the paper is composed of six chapters followed by a

section in which there are exposed the original contributions of the thesis, and a bibliography

section consisting of the main materials that formed the basis for writing the paper, and the

author’s publications.

In the first chapter we introduce the notation that will be used throughout the thesis and the

main concepts for solving systems of linear equalities and inequalities in a least squares sense.

In Chapter 2 is made a brief presentation of some classical iterative projection algorithms for

solving consistent systems of linear equalities and inequalities.

Chapter 3 presents a thorough study of the iterative algorithm designed by S.P. Han and de-

scribed in [12] (algorithm H), the first in its class of algorithms specifically developed for efficiently

approximating least squares solutions of inconsistent systems of linear inequalities, this problem

being formulated as follows: determine x∗ ∈ IRn such that

1

2
‖ (Ax− b)+ ‖2= min! (2)

where

((Ax− b)+)i = max{(Aix− bi), 0}, i = 1, . . . ,m

Having x0 ∈ IRn an initial datum, at each iteration, k = 0, 1, . . . , the algorithm H consists of three

steps:

Step 1. Find Ik = I(xk) = {i|AT
i x

k ≥ bi} and compute dk ∈ IRn as the (unique) minimal norm
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solution of the linear equalities least squares problem

‖ AIkd− (bIk − AIkx
k) ‖= min! (3)

Step 2. Compute λk ∈ IR as the smallest minimizer of the function

θ(λ) = f(xk + λdk), λ ∈ IR. (4)

Step 3. Set xk+1 = xk + λkdk

The descent direction dk in Step 1 is computed by Han using the singular value decomposition

(SVD).

Chapter 4 is dedicated to algorithms Generalized Han (GH), Regularized Han (RH) and Mod-

ified Han (MH), which we call of type Han because they are designed with the same structure as

the one of the Han’s algorithm. The Han-type algorithms differ at Step 1, the calculation of the de-

scent direction: in algorithms H, GH and RH the direction dk is computed by direct methods (SVD

or QR decomposition with column pivoting), whereas the algorithm MH proposes to approximate

it in an iterative way, which is basically justified especially for large problems. The algorithm GH

and its properties, which arise from the study of a particular case presented by R. Bramley and

B. Winnicka in [4, 5], is introduced in section 4.1. In section 4.2 is analysed the algorithm RH

proposed by K. Yang in [27]. The analyses made in sections 4.1 and 4.2 were published by the

author of this thesis in [19]. Section 4.3 is dedicated to algorithm MH proposed by the author C.

Şerban et al, the results of this section being published in [7] and [20].

Chapter 5 includes an optimized version of the algorithm MH, and the theoretical analysis

of an unified approach to all four Han-type algorithm presented in Chapters 3 and 4. Thus, we

introduce the general form of a Han-Type algorithm, the algorithm TH, and give the necessary

conditions that the direction dk must satisfy in order that the algorithm TH to be classified as

Han-type. The results of this chapter have been the subject of the paper [19].

In Chapter 6 we present the numerical experiments performed with the four algorithms on

two types of problems: linear separability problems and classical and maritime transportation

problems, showing that the solutions computed by algorithm MH are reliable. The two types of

constrained optimization problem are equivalent to systems of inequalities. If the optimization

problems are inconsistent, the corresponding systems of inequalities will also be inconsistent,

so we may solve them by algorithms H, GH, RH or MH. The study in this section has been the

subject of works [6], [21].

In closing, I wish to thank those with whom I collaborated in developing this thesis. First, I

want to express all my gratitude to my scientific coordinator, Professor Constantin Popa, for the

numerous discussions which helped substantially in clarifying important aspects of the current

research direction, for all the books and articles offered for study and for the patience and will-

ingness always offered. I also want to thank Professor Doina Carp, for all her support granted,
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and also my thesis committee members for their guidance through this process. Last but not

least, I would especially like to thank my family for the continuous love, support and constant

encouragement offered throughout the doctoral studies.
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Chapter 1

Preliminaries

In this section we will present the main results related to the least squares formulation of incon-

sistent systems of linear equalities and inequalities. We will first introduce some notations, which

will be used throughout the paper: 〈·, ·〉, ‖ · ‖ will be used for the Euclidean scalar product and

norm on some space IRn, defined by

〈x, y〉 =
n
∑

i=1

xiyi, ∀x = (xi)i=1,...,n, y = (yi)i=1,...,n ∈ IRn (1.1)

‖ x ‖= (
n
∑

i=1

x2
i )

1
2 (1.2)

We also know the Cauchy-Buniakowski-Schwarz (C-B-S) inequality

|〈x, y〉| ≤ ‖ x ‖ · ‖ y ‖, (1.3)

with equality if and only if the vectors x, y are collinear (i.e. y = αx for some α ∈ IR).

AT will denote the n × m transpose of the m × n matrix A and A+ its Moore-Penrose pseu-

doinverse. By ‖ A ‖2=
√

ρ (ATA) we will denote the spectral norm of A, where ρ(B) is the

spectral radius of the square matrix B. By Ai, A
j we will denote the i-th row and j-th column of

A, respectively and by N (A),R(A) the vector subspaces defined by

N (A) = {x ∈ IRn, Ax = 0}, R(A) = {y ∈ IRm, y = Ax, x ∈ IRn}. (1.4)

1.1 Systems of linear equalities

In this section we will present the main results concerning the least squares solutions of systems

of linear equalities. Let A be an m × n matrix and b ∈ IRm. We consider the system of linear

equations

Ax∗ = b (1.5)
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and denote by S(A; b) the set of all its solutions. We shall call the system 1.5 consistent if

S(A; b) 6= ∅, and inconsistent if S(A; b) = ∅. If the system (1.5) is inconsistent, we will say that

x∗ ∈ IRn is a least squares solution for it if

1

2
‖ Ax∗ − b ‖2= min{

1

2
‖ Az − b ‖2, z ∈ IRn}, (1.6)

and will denote by LSS(A; b) the set of all such vectors.

Proposition 1. ( [18],Prop.19) (i) The set LSS(A; b) is convex, nonempty and LSS(A; b) =

N (A) + xLS, i.e for any x∗ ∈ LSS(A; b) we have

x∗ = PN (A)(x
∗) + xLS. (1.7)

where xLS ∈ LSS(A; b) is given by

xLS = A+b (1.8)

If n ≤ m si rank(A) = n then LSS(A; b) = {xLS}.

(ii)( [18],Prop.19) xLS is the unique minimal norm solution, i.e.

‖ xLS ‖ ≤ ‖ x∗ ‖, ∀x∗ ∈ LSS(A; b). (1.9)

(iii)([18],Prop.21 - The normal equation) We have the equivalence

x ∈ LSS(A; b) ⇔ ATAx = AT b (1.10)

1.2 Systems of linear inequalities

Let now A be an m× n real matrix and b ∈ IRm. We consider the system

Ax∗ ≤ b, (1.11)

in which the inequalities are component-wise, i.e.
∑n

j=1 Aijx
∗
j ≤ bi, ∀i = 1, . . . ,m. In the

consistent case of (1.11) many classes of efficient iterative solvers have been designed for its

numerical solution (see for a good overview the monograph [9]). In the inconsistent case, it results

that at least for one index i the corresponding inequality is violated, i.e. the set I(x) ⊂ {1, . . . ,m},

defined by

I(x) = {i ∈ {1, . . . ,m}, 〈Ai, x〉 ≥ bi} (1.12)

is nonempty for any x ∈ IRn. Moreover, let us suppose that the set I(x) = {i1, . . . , ip} is ordered

such that i1 < i2 < · · · < ip; then, AI(x), bI(x) will denote the submatrix of A with the rows

Ai1 , . . . , Aip and the subvector of b with components bi1 , . . . , bip , respectively. For any vector
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y ∈ IRm we define

(y+)i = max{yi, 0} =

{

yi, yi ≥ 0

0, yi < 0.
(1.13)

and the convex sets by Ci = {x ∈ IRn, 〈Ai, x〉 ≤ bi}, i = 1, . . . ,m. The inconsistency of the

system (1.11) is equivalent to ∩m
i=1Ci = ∅, and we reformulate it as (see e.g. [12]): find x∗ ∈ IRn

a minimizer of

f(x) =
1

2
‖ (Ax− b)+ ‖2 . (1.14)

where

((Ax− b)+)i = max{(Aix− bi), 0} =

{

Aix− bi, Aix− bi ≥ 0

0, Aix− bi < 0.
(1.15)

In [12] are also proved the following results.

Proposition 2. (i) The objective function f from (1.14) is continuously differentiable and convex.

(ii) The gradient of f is

∇f(x) = AT (Ax− b)+ = AT
I (AIx− bI) (1.16)

(iii)[12, 25] The gradient of f is Lipschitz continuous,

‖∇f(x)−∇f(y))‖ ≤ ‖A‖22 ‖x− y‖ , ∀x, y ∈ IRn. (1.17)

(iv) ([12],Theorem 2.1) A vector x∗ ∈ IRn is a least squares solution of (1.11) if and only if

∇f(x∗) = AT (Ax∗ − b)+ = 0, (1.18)

i.e. the normal equation of an inconsistent system of linear inequalities.

(v) ([12], Theorem 2.3) There exists (at least) a least squares solution of (1.11).

The set of all least squares solutions of (1.11) will be denoted by ILSS(A; b).

Theorem 1. ([12], Theorem 2.5) It exists a unique z∗ ∈ IRm such that x∗ ∈ ILSS(A; b) if and

only if (Ax∗ − b)+ = z∗. Moreover z∗ ≥ 0, AT z∗ = 0
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Chapter 2

Iterative projection algorithms for

consistent systems of linear equalities and

inequalities

In this chapter we briefly present some of the classical projection algorithms used to solve the

consistent systems of linear equalities and inequalities.

2.1 Kaczmarz algorithm for consistent systems of linear equal-

ities

We consider the consistent systems of linear equalities

Ax = b (2.1)

The Kaczmarz method, based on orthogonal successive projections on hyperplanes Hi = {x ∈

IRn| 〈Ai, xi〉 = bi, i = 1, 2, ...,m}, was proposed by its author in [14]. The solution of system 2.1

is the unique intersection point of the hyperplanes Hi.

Kaczmarz Algorithm Let us consider x0 ∈ IRn arbitrary fixed; for k = 0, 1, . . . , do

x(k+1) = PHik
(x(k)) = x(k) +

bik − AT
ik
x(k)

‖Aik‖
2 Aik (2.2)

2.2 Cimmino algorithm for consistent systems of linear equal-

ities

The Cimmino algorithm is an iterative method proposed by G. Cimmino in [10], in which simulta-

neous projections are made on all the hyperplanes Hi = {x ∈ IRn| 〈Ai, xi〉 = bi, i = 1, 2, ...,m}.
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Instead of orthogonal projections, the Cimmino algorithm uses the orthogonal reflections with re-

spect to the hyperplanes Hi.

Cimmino Algorithm (I) Let us consider x0 ∈ IRn arbitrary fixed; for k = 0, 1, . . . , do

x(k+1) = x(k) + 2
µ

n
∑

i=1

mi
bi−AT

i x(k)

‖Ai‖
2 Ai

= x(k) + ATD(b− Ax(k))

where {mi}i=
____

1,n are positive quantities called masses, µ =
n
∑

i=1

mi and D = 2
µ
diag( mi

‖Ai‖
2 ).

2.3 Cimmino algorithm for consistent systems of linear in-

equalities

This algorithm has the following form:

Cimmino Algorithm (II):

xk+1 = xk +
2

µk

m
∑

i=1

mic
k
iAi (2.3)

where mi =
m̂i

m∑

i=1
m̂i

are called generalized masses, {m̂i}i=
____

1,n are positive quantities called masses,

m
∑

i=1

mi = 1, 0 < mi < 1, ∀i ∈ I , cki = min{0,
bi−〈Ai,x

k〉
‖Ai‖

2 } and

µk =







∑

i∈Ik

mi, daca |Ik| ≥ 2

1, daca |Ik| = 1

with Ik = {i|cki < 0} the set of indices for which xk /∈ Li = {x ∈ IRn| 〈Ai, x〉 ≤ bi}

2.4 Richardson algorithm for consistent systems of linear equal-

ities

Let us consider the residual vector rk = b − Axk, Ik = {i| 〈Ai, x〉 > bi} and the diagonal matrix

Dk defined by

Dk
ii =

{

1, daca i ∈ Ik

0, daca i /∈ Ik

The Richardson algorithm has the following form:

Richardson Algorithm Let M = (mij) be a positive definite matrix with nonzero elements and
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x0 ∈ IRn arbitrary fixed. If rk ≥ 0 then STOP. Otherwise,

xk+1 = xk + αkA
TMk(b− Axk) (2.4)

where Mk = DkMDk and the parameters {αk} have the property 0 < αk <
2

ρ(ATMkA)
.

2.5 Lent-Censor Algorithm for consistent systems of linear

inequalities

The Lent-Censor algorithm is proposed in [16] and represents an extended form of the Hildreth

algorithm [13], a useful method for solving optimization problems of large dimensions. First of all,

a set of relaxation parameters was introduced in Hildreth algorithm, {r(k)}, 0 < r(k) < 2, which

does not change in any way its convergence, a fact proven in [16]. The second change made on

Hildreth algorithm consists in changing the way the rows of the matrix A are considered at each

iteration, thus having an almost cyclic control over them, less restrictive than the cyclic one.

Definition 1. Let’s consider the finite set I = {1, 2, ...,m}. The sequence {ik}
∞
k=0 is almost cyclic

on I if:

a) ik ∈ I, for all k ≥ 0;

b) It exists C such as for all

k ≥ 0, I ⊆ {ik+1, ..., ik+C}

A sequence almost cyclic on {1, 2, ...,m} is cyclic if C = m. Assuming that Ai 6= 0 ∀i ∈ I =

{1, 2, ...,m}, the Lent-Censor algorithm for the problem

{

min 1
2
‖x‖

Ax ≤ b
(2.5)

has the following form:

Lent-Censor Algorithm Let us consider z0 ∈ IRm
+ and x0 = −AT z0; for k = 0, 1, 2, . . . do

xk+1 = x+ ckAik

zk+1 = z − ckeik

ck = min(zkik , r
k
bik −

〈

Aik , x
k
〉

‖Aik‖
2 )

10



where

{ik}
∞
k=0 almost-cyclic on I = {1, 2, ...,m}

0 < rk < 2

ei =
.........i...........

(..0...1....0..)T

Let’s consider xk, zk , Lik = {x ∈ IRn| 〈Aik , x〉 ≤ bik} si Hik = {x ∈ IRn| 〈Aik , x〉 = bik} the

subspace and the hyperplane, respectively, determined by ik-th inequality of system (2.5).

• If xk /∈ Lik ⇔ xk+1 is the orthogonal projection of xk on Lik , x
k+1 ∈ Hik

• If xk ∈ Hik , then ck = 0, so xk+1 = xk

• If xk ∈ int(Lik) then

- ck = zkik ⇒ xk+1 = x+ zkikAik , so xk+1 is on an orthogonal direction on Hik given by zkikAik , or

- ck =
bik−〈Aik

,xk〉
‖Aik‖

2 ⇒ xk+1 = xk +
bikt−〈Aik

,xk〉
‖Aik‖

2 Aik so xk+1 is the orthogonal projection of the

vector xk on Hik , so xk+1 is the minimal norm solution.
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Chapter 3

Han algorithm for systems of linear

inequalities

The only algorithm specifically designed for solving arbitrary systems of linear inequalities in a

least squares sense was developed by S.-P. Han [12]. This algorithm requires finding the mini-

mum norm least squares solution to systems AIx = bI , where AI is a submatrix of A consisting

of some rows of A, and has the following form:

Algorithm H. Let x0 ∈ IRn be an initial datum; for k = 0, 1, . . . do:

Step 1. Find Ik = I(xk) = {i|AT
i x

k ≥ bi} and compute dkLS ∈ IRn as the (unique) minimal norm

solution of the linear equalities least squares problem

‖ AIkd− (bIk − AIkx
k) ‖= min! (3.1)

Step 2. Compute λk ∈ IR as the smallest minimizer of the function

θ(λ) = f(xk + λdkLS), λ ∈ IR. (3.2)

Step 3. Set xk+1 = xk + λkdkLS.

According to the existence and computation of the smallest minimizer from Step 2, we provided

in [7] the following result (which also gives us an algorithmic procedure to find it).

Proposition 3. The smallest minimizer of the function θ(λ) from (3.2) always exists and can be

efficiently and accurately computed in each iteration of the algorithm H.

Theorem 2. (i) ([12], Lemma 4.1) For the sequence (xk)k≥0 generated with the algorithm H, the

gradient of the objective function (see (1.14)) satisfies

∇(xk) = AT (Ax− b)+ = AT
I (AIx

k − bI) = −AT
I AId

k
LS. (3.3)

12



(ii) ([12], Theorem 4.2) dkLS is a descent direction, i.e.

〈∇(xk), dkLS〉 = −
∥

∥AId
k
LS

∥

∥

2
. (3.4)

Theorem 3. ([12], Theorem 4.4) Let (xk)k≥0 be the sequence generated by algorithm H from any

x0 ∈ IRn. Then either ∇f(xk̄) = 0, for some k̄ < ∞ or lim
k→∞

∇f(xk) = 0.

Theorem 4. ([12],Theorem 4.6) Let (xk)k≥0 be the sequence generated by algorithm H, zk =

(Axk − b)+ and z∗ the unique vector from Theorem 1. Then

lim
k→∞

zk = z∗. (3.5)

The main result related to Han’s algorithm will be presented below (for proof details see the

original paper [12]).

Theorem 5. ([12], Theorem 4.10) For any m× n matrix A, any right-hand side b ∈ IRm and any

initial datum x0 ∈ IRn, Han’s algorithm H produces a least squares solution of the system (1.11)

in a finite number of steps (in exact arithmetic).

Remark 1. (i) It results that Han’s algorithm can be (theoretically) also used for consistent systems

of the form (1.11); but, in this case there are many other more efficient methods (see e.g. [9]).

(ii) From a practical view point, because of round-off errors, Han’s algorithm becomes an iterative

method.

(iii) At each iterative step of the algorithm H, a Singular Value Decomposition (SVD) of the matrix

AIk needs to be computed. When the matrix is large, rare or ill-conditioned, SVD is not an

efficient method in terms of computation cost, so other versions of the Han algorithm have been

developed, in which the descent direction from Step 1 is computed in a more effective way.
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Chapter 4

Han-type algorithms for systems of linear

inequalities

In this chapter we present three versions of Han algorithm, together with their specific way of

computing the descent direction in Step 1.

4.1 Generalized Han algorithm (GH)

One question that can occur related to Han’s algorithm is: can we use instead of the minimal

norm solution dkLS in Step 1 any other solution of the problem 3.1 ? An answer was given in the

paper [4] (see also [5]). We will present it below, a little bit more generally than in the original

paper. First of all we will consider a Generalized version of Han’s algorithm.

Algorithm GH Let x0 ∈ IRn be an initial datum; for k = 0, 1, . . . do:

Step 1. Find Ik = I(xk) and compute dk ∈ IRn an arbitrary least squares solution of the problem

3.1:

‖ AIkd− (bIk − AIkx
k) ‖= min!

Step 2. Compute λk ∈ IR as the smallest minimizer of the function

θ(λ) = f(xk + λdk), λ ∈ IR. (4.1)

Step 3. Set xk+1 = xk + λkdk.

The least squares solution dk from Step 1 can not be completely arbitrary, as mentioned in the

result below.

Theorem 6. Let us suppose that it exists a constant C ≥ 0, independent on the iteration k, such

that

‖ dk ‖ ≤ C ‖ dkLS ‖, ∀k ≥ 0. (4.2)

Then the same conclusion of Theorem 5 holds for the algorithm GH.
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The proof of this theorem starts with the remark that a general least squares solution of

problem 3.1 is

dk = PNAIk

(d) + dkLS

hence

AIkd
k = AIkd

k
LS, ∀k ≥ 0 (4.3)

We also have

∇f(xk) = −AT
Ik
AIkd

k
LS = −AT

Ik
AIkd

k, (4.4)

and

〈∇f(xk), dk〉 = − ‖ AIkd
k ‖2 ≤ 0. (4.5)

In [4, 5], R. Bramley and B. Winnicka proposed as dk for algorithm GH a least squares solution

of the problem 3.1 computed by a QR decompositon with column pivoting; thus, the relation (4.3)

is satisfied. It is also shown, by using a general result of QR decomposition proven in [11], that

the Theorem 6 holds.

4.2 Regularized Han algorithm (RH)

In [27], K. Yang comments on Han’s algorithm by considering its major drawback in the fact that,

in each iteration, initial objective function from (1.14) is replaced by

f(xk) =
1

2
‖ (Axk − b)+ ‖2=

1

2
‖ AIkx

k − bIk ‖2

In this way, many originally satisfied constraints might be violated in the new iterative solution xk.

Regarding this aspect, he also proposed to use the complement of the set Ik, denoted by Jk and

characterized by

Jk = J(xk) = {i ∈ {1, . . . ,m}, Aix
k < bi} = {1, . . . ,m} \ Ik, (4.6)

together with a diagonal weights matrix

Wk = diag(wk
1 , . . . , w

k
qk
), wk

i ≥ 0 (4.7)

where qk is the number of elements in the set Jk, ∀k ≥ 0. With these ideas, Yang designed the

Regularized version of Han’s algorithm from below.

Algorithm RH Let x0 ∈ IRn be an initial datum; for k = 0, 1, . . . do:

Step 1. Find Ik = I(xk), Jk = J(xk) as before and compute d̃k ∈ IRn the minimal norm solution

of the (regularized) linear least squares problem

‖ AIkd− (bIk − AIkx
k) ‖2 + ‖ WkAJkd ‖2= min! (4.8)
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Step 2. Compute λk ∈ IR as the smallest minimizer of the function

θ(λ) = f(xk + λd̃k), λ ∈ IR. (4.9)

Step 3. Set xk+1 = xk + λkd̃k.

The next results, proved in [27] shows properties of the algorithm RH. We extended the proofs

of these results with elements that later helped us formulate the unified approach of Han-type

algorithms (section 5.2)

Proposition 4. (i)([27], Lemma 10.1) The descent direction d̃k satisfies

(AT
Ik
AIk + AT

Jk
W 2

kAJk)d̃
k = AT

Ik
(bIk − AIkx

k) = −∇f(xk) (4.10)

and

d̃k = −(AT
Ik
AIk + AT

Jk
W 2

kAJk)
+∇f(xk). (4.11)

(ii) ([27], Lemma 9.1) The vector

x̂k = xk + d̃k (4.12)

is a least squares solution of the regularized problem

‖ AIkx− bIk ‖2 + ‖ WkAJk(x− xk) ‖2= min! (4.13)

Remark 2. If W k = 0, ∀k ≥ 0 then d̃k = dkLS and we get the algorithm H.

Proposition 5. (i) ([27], Corollary 10.2) We have the equality

〈∇f(xk), d̃k〉 = −(‖ AIk d̃
k ‖2 + ‖ WkAJk d̃

k ‖2) ≤ 0. (4.14)

(ii) ([27], Lemma 10.4) If x0 ∈ IRn is the initial datum in the algorithm RH then

‖ ∇f(xk) ‖2 ≤ 2 ‖ A ‖22 f(x
0), ∀k ≥ 0. (4.15)

The next result show that the Theorem 3 holds for algorithm RH as well.

Theorem 7. ([27], Theorem 10.5) Let x0 ∈ IRn be arbitrary fixed, and (xk)k≥0 the sequence gen-

erated by the algorithm RH. Then, either it exists k0 ≥ 0 such that ∇f(xk0) = 0, or limk→∞ ∇f(xk) =

0.

4.3 Modified Han algorithm (MH)

In many practical applications (see e.g. [9]), the matrix A is large and sparse, and so can be the

submatrices AIk in Han’s algorithm iterations. Then, the use of a direct method for computing the
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dkLS or dk solutions of the problem 3.1 can be affected by round-off errors, fill-in process in AIk and

a (too) big computational time. One way to overcome such a difficulty would be to approximate

the “directly computed” solutions dkLS or dk, with one obtained with an iterative solver for problems

of the form 3.1. Having all these aspects in mind, in [7] we proposed a Han-type algorithm based

on an iterative approximation of dkLS and we proved that the Theorems 3 and 4 also hold for the

sequence (xk)k≥0 generated by algorithm MH.

Concerning this aspect, let ALG be an iterative algorithm which approximates the minimal norm

solution of a linear least squares problem of the form

‖ Fx− c ‖= min!, (4.16)

where F is an arbitrary rectangular matrix and c an appropriate vector.

Algorithm MH. Let x0 ∈ IRn be an initial datum; for k = 0, 1, . . . do:

Step 1. Find Ik = I(xk) and compute an approximation dk,j ∈ IRn of the minimal norm solution

dkLS of the problem 3.1

‖ AIkd− (bIk − AIkx
k) ‖= min!

by performing j ≥ 1 iterations of the algorithm ALG, with 0 as initial approximation

Step 2. Compute λk,j ∈ IR as the smallest minimizer of

θ(λ) = f(xk + λdk,j), λ ∈ IR

Step 3. Set xk+1 = xk + λk,jdk,j .

Theorem 8. Let us suppose that there exist an integer J ≥ 1, independent on the iteration index

k, such that

‖ AIkd
k,J ‖≥

1

2
‖ AIkd

k
LS ‖, ‖ AIk(d

k,J − dkLS) ‖≤
1

2
‖ AIkd

k,J ‖,

‖ dk,J − dkLS ‖≤
1

2
‖ AIkd

k,J ‖, ∀k ≥ 0, (4.17)

where dkLS is the minimal norm solution of 3.1 and dk,J the approximation generated after J iter-

ations of ALG in Step1 of MH. Then the conclusions of Theorems 3 and 4 hold for the sequence

(xk)k≥0 generated by the algorithm MH.

Related to the assumption (4.17), we can provide the following result, published in [7]:

Theorem 9. If as ALG in Step 1 of the algorithm MH we use the Kaczmarz Extended (KE)

algorithm from [17], with zero as initial approximation, then the inequalities from (4.17) hold with

J ≥ 1 independent on the iteration k.

This proves that the algorithm MH allows resolving inconsistent system 1.11 in a least squares

sense. Moreover, we give an example of an iterative algorithm, Extended Kaczmarz algorithm and

we demonstrated that it can be successfully used in Step 1 of the algorithm MH.
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Chapter 5

The unified approach of Han-type

algorithms

From the study of the algorithms H, GH, RH and MH, a series of elements have emerged, helping

us to develop an unified approach of the Han-type algorithms. Next, we give the form of an

algorithm of Type Han (TH), and the conditions it has to satisfy. This general algorithm will

include as particular cases the four algorithms considered in the paper: H, GH, RH and MH.

5.1 An optimized version of Modified Han (MH) algorithm

The MH algorithm presented in section 4.3 can be optimized by reducing the number of conditions

in (4.17). This change also allows us to consider it for the unified approach we aim to produce.

The results of this section have been published in [19].

Next, we give the optimized version of Theorem 8.

Theorem 10. Let us suppose that there exists an integer J ≥ 1, and constants C1 ∈ [0, 1), C2 ≥

0, all independent on the iteration index k, such that

‖ AIk(d
k,J − dkLS) ‖≤ C1 ‖ AIkd

k,J ‖, ‖ dk,J − dkLS ‖≤ C2 ‖ AIkd
k,J ‖, ∀k ≥ 0, (5.1)

where dkLS is the minimal norm solution of 3.1 and dk,J the approximation generated after J

iterations of ALG in Step 1 of algorithm MH. Then the conclusions of Theorems 3 and 4 hold for

the sequence (xk)k≥0 generated by the algorithm MH.

For the unification procedure from section 5.2 we need the following modified version of the

above theorem.

Corollary 1. The conclusion of Theorem 10 remains true if we replace the second inequality from

(5.1)

‖ AIk(d
k,J − dkLS) ‖≤ C1 ‖ AIkd

k,J ‖, ‖ dk,J − dkLS ‖≤ C2 ‖ AIkd
k,J ‖, ∀k ≥ 0,
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by

‖ dk,J − dkLS ‖≤ Ĉ2 ‖ AIkd
k
LS ‖, ∀k ≥ 0. (5.2)

Related to the assumption (5.2), we can provide the following result, proven in [7], which

assures us that the algorithm Kaczmarz Extended (KE) can be successfully used in the calculus

of the descent direction in Step 1 of algorithm MH.

Theorem 11. If as ALG in Step 1 of the algorithm MH we use the Kaczmarz Extended (KE)

algorithm from [17], with zero as initial approximation, then the first inequality from (5.1) and the

inequality from (5.2) hold with C1 =
1
2
, C2 =

1
4

and J ≥ 1 independent on the iteration k.

5.2 The unified approach

The results of this section have been published in [19]. In order to obtain an unified point of view

related to the Han-type algorithms, we will introduce three general assumptions on the descent

direction Dk generated in Step 1, and xk from Step 3.

Assumption 1.

〈∇f(xk), Dk〉 ≤ 0, ∀ k ≥ 0. (5.3)

Assumption 2. It exists a constant C ≥ 0, independent on the iteration k such that

‖ Dk ‖≤ C ‖ ∇f(xk) ‖, ∀ k ≥ 0. (5.4)

Assumption 3.

If lim
k→∞

〈∇(xk), Dk〉 = 0, then lim
k→∞

∇f(xk) = 0. (5.5)

In what follows we show that the descent directions dkLS, d
k, d̃k and dk,J corresponding to the

algorithms H, GH, RH and MH, respectively, satisfy the above assumptions.

Proposition 6. The assumption (5.5) holds for Dk ∈ {dkLS, d
k, d̃k, dk,J}.

Proposition 7. The assumptions (5.3) and (5.4) hold for Dk ∈ {dkLS, d
k, d̃k, dk,J}.

Taking into consideration all the above, we give the following form of the algorithm of Type

Han (TH):

Algorithm THLet x0 ∈ IRn be an initial datum; for k = 0, 1, . . . do:

Step 1. Find Ik = I(xk) and compute Dk ∈ IRn a descent direction.

Step 2. Compute λk ∈ IR as the smallest minimizer of the function

θ(λ) = f(xk + λDk), λ ∈ IR. (5.6)

Step 3. Set xk+1 = xk + λkDk.

The next theorem is the main result of our approach because it shows that the algorithm TH

satisfies Theorem 3.
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Theorem 12. Let us suppose that the descent direction Dk in Step 1 of the algorithm TH satisfies

Dk ∈ {dkLS, d
k, d̃k, dk,J}. Then, the conclusion of the Theorem 3 holds for the sequence (xk)k≥0

generated by TH.

We proved in this section that algorithms H, GH, RH and MH satisfy Theorem 3. Algorithms

H, GH and MH have in addition the properties mentioned in Theorem 4, whereas H, GH also

those from Theorem 5. Work is in progress in order to prove such results for the algorithms RH

and MH, and to extend the unification results from this paper to cover also these results. Till then,

the successful experiments from the papers [7] and [20] are encouraging us for these theoretical

developments.
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Chapter 6

Applications

To test the Han-type algorithms discussed in this paper, we have implemented each of the four

algorithms H, GH, RH and MH in Matlab R2010a, using the built-in Matlab functions as pinv and

qr to compute the descent direction for algorithms H, GH, RH, whereas for MH we used the

Kaczmarz Extended (KE) algorithm from [17] as ALG in Step 1. In order to solve the problem 4.8

of RH algorithm, we set wk = 10−3, ∀k, this value being determined experimentally as the most

suitable value of the weights. For all algorithms, we computed λk, the smallest minimizer of the

convex function θ, as in Proposition 3. We also made use of the build-in Matlab implementation

of Simplex algorithm, linprog. All runs with respect to the four algorithms are started with the

initial datum x0 = (0, . . . , 0)T and are terminated if at the current iteration xk satisfy AT (Axk −

b)+ ‖ ≤ 10−15. The results of our numerical experiments have been published in [6, 7, 21].

6.1 Linear separability problems

6.1.1 Linear separability

Lemma 1. ([2])Two sets A = {A1, A2, . . . , Am} ⊆ IRn, B = {B1, B2, . . . , Bk} ⊆ IRn are linearly

separable if and only if there exist w ∈ IRn and γ ∈ IR such that

〈w,Ai〉 − γ ≥ 1 and 〈w,Bj〉 − γ ≤ −1, ∀i ∈ 1, . . . ,m, ∀j ∈ 1, . . . , k

The point sets A and B represented by the matrices A ∈ Rm×n and B ∈ Rk×n, respectively,

are linearly separable if it exists v ∈ Rn such that

min
1≤i≤m

〈Ai, v〉 > max
1≤i≤k

〈Bi, v〉, (6.1)

which is equivalent with: there exist w ∈ Rn and γ ∈ R such that (see also Lemma 1)

Aw ≥ emγ + em, Bw ≤ ekγ − ek, ei ∈ IRi, ei = (1, . . . , 1) (6.2)

21



In [1], the linear separability problem in IRn is formulated as a problem which minimizes the points

of A and B incorrectly classified by the separating hyperplane ωx = γ:

min
w,γ

1

m
‖ (−Aw + eγ + e)+ ‖1 +

1

k
‖ (Bw − eγ + e)+ ‖1, (6.3)

where ‖ z ‖1=
∑n

i=1 |zi|, z ∈ IRn. According to Lemma 2.2 in [1], the optimization problem

6.3 will always generate a separating hyperplane wx = γ for linearly separable sets A and B;

as for linearly inseparable sets, an optimal separating hyperplane will be generated such that it

minimizes the number of points in A which lie in {x, 〈w, x〉 < γ + 1} and the number of points in

B which lie in {x, 〈w, x〉 > γ − 1}.

In [4, 5], the optimization problem 6.3 is expressed as a linear system of inequalities

Gw ≤ g (6.4)

which my be solved in a least-squares sense:

minw̃ ‖ (Gw̃ − g)+ ‖2 (6.5)

where G =

(

−A em

B −ek

)

, ω̃ = (ωT , γ)T si g =

(

−em

−ek

)

.

Next, we shall present computational comparisons on several linear separability problems, follow-

ing the papers [4] and [5]. All tests were performed on finite sets of points, linearly inseparable.

The measure of error used for both sets of problems was given by counting the number of incor-

rectly classified points (ICP): Aω > γem and Bω ≤ γek. The results of these tests have been

published in [7, 19].

6.1.2 Numerical experiments

Two-dimensional problems. The first set of linear separability problems addressed is the two-

dimensional one, and consists of two cases: the first is a smaller square inside the unit square

(Square problem), and the second are two triangles that overlap (Triangle problem). For the

Square problem, a total of two hundred data points were used, randomly distributed inside the

two squares, two-thirds of them being inside the unit square. As for the Triangle problem, each

triangle had one hundred data points, also randomly generated. To produce all these uniformly

distributed data points, we used the build-in Matlab random number generator, rand. Table 6.1

presents the results obtained for the Square and Triangle problems.
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Problem ICP ICP %

Square 13 6.5

Triangle 27 13.36

Table 6.1: The number of incorrectly classified points (ICP) for the Triangle and the Square

problems. Algorithms: H, GH, RH and MH

Figure 6.1: Triangle problem (left); Square problem (right) A:+, B : ◦

Database tests. The second set of problems contains two real world databases: the Wiscon-

sin Breast Cancer Database (WBC) and the Cleveland Heart Disease Database (CHD) (see [4]).

Both files were downloaded from [28]. Each data point in the WBC and CHD databases has 9,

respectively, 13 components, corresponding to experimental measurements. After we discarded

the data points that had missing measurements, the WBC database was comprised of 551 data

points of which 346 were benign (set A) and 205 were malignant (set B). The CHD database

remained with 297 data points of which 137 were negative (set A) and 160 were positive (set

B). As in [4], each set was divided randomly into a training set with 67% of the data points and

a testing set with the remaining 33%. This division was carried out by a random permutation of

integers i ∈ [1, |S|], S ∈ {A,B} generated with the build-in Matlab function, randperm. The main

idea was to apply the solvers on the training set, and then to test the resulting hyperplane on the

testing set.

For each database, we randomly partitioned the data sets and ran the solvers ten times and com-

puted the incorrectly classified points ICP S
i , i = 1, . . . , 10; then we obtained the average and the

percentage of the results: MICP S = 1
10

10
∑

i=1

ICP S
i and ICP% = MICPS

|S|
∗ 100.

Baza de date ICP% training ICP% test

WBC 3.30 3.50

CHD 15.30 16.19

Table 6.2: ICP% for databases WBC and CHD. Algorithms: H, GH, RH and MH

23



6.2 Unbalanced and inconsistent classical and maritime trans-

portation problems

The results of this section have been published in [6, 21].

The classical transportation problem involves sources (Si)i∈{1,...,n}, where supplies (si)i = 1, . . . , n

of some goods are available, and destinations (Dj)j∈{1,...,m}, where some demands (dj)j=1,...,m

are requested ([15]). If we denote by xij, i = 1, . . . , n, j = 1, . . . ,m the number of units trans-

ported from source Si to destination Dj , we get the following mathematical model of the (classical)

transportation problem:

min

n
∑

i=1

m
∑

j=1

cijxij (6.6)

s.t.

n
∑

i=1

xij ≥ dj;
m
∑

j=1

xij = si; xij ≥ 0 i = 1, . . . , n, j = 1, . . .m

We will consider in this paper the unbalanced case, i.e.
n
∑

i=1

si <
m
∑

j=1

dj for which the linear pro-

gram (6.6) becomes inconsistent (i.e. the set of feasible solutions is empty).

The maritime container transportation is a transportation problem subject to the following addi-

tional hypothesis: (M1) the unit of cargo (container) has different capacities, so the cost of a unit

of transport is different for a particular route. The most common unit used in cargo transportation

is TEU (Twenty-foot Equivalent Unit), corresponding to a 20-foot-long (6.1 m) intermodal con-

tainer; (M2) the destinations become in this case warehouses with specific dimensions; hence,

the number of containers transported to a given warehouse will be restricted by these dimen-

sions.

We analysed in our numerical experiments the following two variants of the unbalanced and in-

consistent transportation problem described in Table 5 from [6], for which we supposed that there

exist 7 sources, Si, i = 1, . . . , 7, and 7 destinations, Dj, j = 1, . . . , 7. In the case of maritime

transportation, the destinations are warehouses and we will assume that all the warehouses are

rectangular buildings, with known length (L), width (W) and height(H) (Table 3 in [6]). Thus, the

containers will be stored on superposed rows in each warehouse. Here are the problems consid-

ered:

Problem P1 - a 2-index unbalanced and inconsistent transportation problem; (xij) represents

the quantity of commodity shipped from source Si to destination Dj . The mathematical model of

this problem is the following (see inequalities from (6.6)):

7
∑

i=1

xij ≥ dj, j = 1, . . . , 7;
7
∑

j=1

xij = si, i = 1, . . . , 7 (6.7)
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Problem P2 - a 2-index inconsistent maritime container transportation problem; (xij) is the num-

ber of containers of Type(i) shipped from Si to warehouse Dj and we assume that each source

Si provides only one category of containers (see Table 2 in [6]). The mathematical model of this

problem is the following:
7
∑

i=1

lixij ≤ T (j), j = 1, . . . , 7 (6.8)

7
∑

i=1

Twi
xij ≥ dj, j = 1, . . . , 7;Twi

7
∑

j=1

xij = si, i = 1, . . . , 7. (6.9)

where (6.8) represents the storage restrictions imposed by the dimensions of each warehouse,

(6.9) are the inequalities from (6.6), l is the length of each type of container (see Table 2, column

2 in [6]), and Twi
is the TEU’s equivalent weights of the container types (see Table 2, last column

in [6]).

Problem P3 - a 3-index inconsistent maritime container transportation problem; (xij) is the num-

ber of containers of Type(i) shipped from Si to warehouse Dj and we assume that each source

Si provides all types of containers Type(l), l = 1, . . . , 7 (see Table 2 in [6]). The mathematical

model of this problem is the following:

min
n
∑

i=1

m
∑

j=1

7
∑

l=1

cijlxijl = min
n
∑

i=1

m
∑

j=1

7
∑

l=1

cijqlxijl (6.10)

s.t.

n
∑

i=1

7
∑

l=1

xijl ≥ dj, j = 1, . . . ,m;
m
∑

j=1

7
∑

l=1

xijl = si, i = 1, . . . , n

xijl ≥ 0, i = 1, . . . , n, j = 1, . . .m, l = 1, . . . , 7

where: cijl is the transportation cost of one container of Type(l) from source Si to warehouse Dj ;

cij is the transportation cost of one TEU (one unit of commodity) from source Si to warehouse

Dj ; q = (q1, q2, . . . , q7) holds the TEU’s equivalent weights of the container types considered (see

last column of Table 2 in [6]).

After several steps of processing (see [6]), we get the following form of the linear programs P1,

P2 si P3:

min〈c, y〉 s.t. By ≥ d, y ≥ 0 (6.11)

and its dual

max〈d, u〉 s.t. BTu ≤ c, u ≥ 0 (6.12)

where B : m×n, c, y ∈ IRn, d, u ∈ IRm. We will denote by P ,D the set of feasible solutions of the

primal (6.11) and its dual. The following result, mentioned (without proof) by Han in his original

paper [12], gives us the possibility to express in an equivalent way the primal-dual pair of linear

programs. We included its proof in [6].

Proposition 8. Let us suppose that both problems have feasible solutions, i.e. P 6= ∅,D 6= ∅.
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Then the following assumptions are equivalent:

(i) ŷ ∈ P , û ∈ D are optimal solutions for problems (6.11) and (6.12), respectively; (ii) the vector

x = [ŷT , ûT ]T ∈ IRm×n is a solution of the system of linear inequalities

Ax ≤ b, (6.13)

where

A =

















cT −dT

−B 0

0 BT

−I 0

0 −I

















, b =

















0

−d

c

0

0

















(6.14)

It holds that solving a pair of feasible primal-dual linear programs is equivalent with solving a

certain system of linear inequalities. There are two more possible cases that can occur beside

the feasible one: one of the problem has feasible solutions and the other does not, and both

problems do not have feasible solutions. In these cases, as Han himself mentioned in [12], the

system (6.13) - (6.14) provides a kind of least squares solution for one or both linear programs, re-

spectively. Such a situation is considered for the inconsistent problems P1, P2 and P3 described

above, the systems of linear inequalities to which these problems are equivalent being inconsis-

tent too. The problems were solved with linprog Matlab implementation of Simplex algorithm,

whereas the two associated systems with MH algorithm. The problems P1, P2 and P3 being

inconsistent, the Simplex algorithm failed to solve them, returning instead a result that minimizes

the worst case constraint violation (see [26]). The tables from Fig. 6.2 show the cost solution of

the problems considered.

Figure 6.2: The transportation cost of problem P1 (left), P2 (center), P3 (right)

where * denotes that the Simplex algorithm failed to solve the problem, returning instead a

result that minimizes the worst case constraint violation (see [26]).

The study presented in this paper will be continued in the future, especially because systems of

linear inequalities often appear in applications that target, for example, reconstruction of the CT

images, signal processing, etc. Because these problems are usually large, one may consider to

parallelize different stages of the algorithms, for example by applying parallel gradient solver in

Step 1. Furthermore, we will consider to implement these algorithms in a Grid environment, to

use all the computing power offered by this platform. The author of this paper has made certain

steps in this direction through the works [22], [23] and [24] which describe the modelling of some
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algorithms applied on satellite images as Grid services. Since the Grid environment enables

satellite image processing on its true size, which is usually hundreds of MB, the results are more

accurate that those obtained in classical ways, when the image is truncated.
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