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Prefata

Scopul principal al luarii de faf este reprezentat de studiul idealelor
binomialein inele de polinoame ce provin din combinataric

Printr-un graf simpluG definit pe mutimea dearfuri [n] vomintelege
un graf neorienta® fara bucle si &ra muchii multiple. Villareal 0] a in-
trodus notiunea de ideale monomiale mudtlif) asociate cu graful simplu
Gininelul de polinoam&|x, ..., X,] Tn n variabile peste corpi. Idealul
monomial muchid (G) este generat de toate monoamebg undei < j,
iar {i, j} este o muchie a IuB. intr-un mod similar, se poate defini idealul
binomial muchielg C S= K|[xy,...,%n,Y1,...,Yn] asociat grafuluG drept
idealul generat de toate binoamdile = xiy; — Xjyi, undei < j, iar {i,j}
este 0 muchie a graful@.

Idealele binomiale muchie au fost introduse pentru primaig[19] si
[22] (independent sin acelasi timp). Autorii din19] au obtinut o serie de
rezultate interesante privind bazeledBner, descompunerea priraai ide-
alele prime minimale ale idealelor binomiale mucHie continuare, multe
alte lucirii de cercetare au abordat subiectul idealelor binomralehie.
Un efort deosebit a fost realizat studiul propriedtii Cohen-Macaulay a
idealelor binomiale muchidg [14, 23, 3], relatiile syzygies pentrug
impreura cu regularitatea s&0, 25, 27, 16, 29, 32 Importanta studiu-
lui idealelor binomiale muchie se dator@aaptului @ acestea au anumite
aplicatiiin algebra statist&c[19, 13, 24, 28

In cadrul aceastei luari vom avea doa directii importante. Prima
consh in descrierea proprigtilor omologice ale unor clase de ideale bi-
nomiale muchie, anume cele asociate cu grafuri completatitip, cicluri
si grafuri de tip bloc. A doua directie se preo@ugu studiul unei clase de
ideale binomiale asociate cu scrolls. Lucrarea da fa fi constituid, in



principal, din rezultatele originale obtinute cadrul lucérilor [9], [7] Si
[8].

In continuare, vom prezenta structura acestedrcr

In Capitolul 1 vom prezenta notiunile si rezultatele fundantale nece-
sareintelegerii depline a acestei l@r. Vom urn@riin principal urnatoarele
carti[11, 13, 18. Vom aminti o serie de definitii de bazi notiuni bine cu-
noscute despre ideale monomiatgreura cu o serie de concepte cum ar fi
rezolutia minimad liberd si descompunerea prindanom prezenta o scurt
introducere a caracteristiciilor importante ale teoreélor Gobner, inclu-
siv criteriul si algoritmul Buchberger.

In partea a doua a acestui capitol, vom &rnproprietatile importante
ale idealelor muchie binomiale, care vor reprezenta proati&a principa
a acestei lu@ri, si vom considera o serie de exemple de ideale binomiale
asociate cu grafuri liniare si grafuri complete. Acéasarte estén princi-
pal bazah pe lucrarea fundamendglll9] in care s-au introdus idealele mu-
chie binomiale. Vom studia grafu@ din care generatoriu vor forma baze
Grobner ordonate lexicografic odate avem o etichetare dad \arfurilor
lui G si vom prezenta o metaddin combinatorigpentru identificarea bazei
Grobner reduse a oféeui ideal muchie binomial intr-un final, vom aminti
cum idealul prim minimal al ludg poate fi obtinut din anumite submultimi
ale varfurilor lui G. A

Capitolul 2 este bazat pe lucrarea propi® [In acest capitol, sunt
studiate numerele Betti extremale ale unor clase de ideatarbale mu-
chie. Vom demonstragidealul binomial muchi€g impreura cu idea-
lul sau initial in- (Jg) relativ la ordinea lexicografécau aceleasi numere
Betti extremale pentru grafuri complete bipartite, si witl Aceasta este
un raspuns pozitiv partial pentru conjectura prapus[14] care spune &,
pentru orice grai, Jg Si in- (Jg) au aceleasi numere Betti extremale. Vom
utiliza avantajele date de anumite rezultate cunoscutgreeszolutia ludg
datein [29] si [32]. In primul rand, vom @si mutimea de generatori mini-
mala pentru idealele initiale pentru aceste grafuri, foldggorema 1.4.11,
care caracterizeain termeni de drumuri admisibile, bazadner redus
a lui Jg relativa la ordinea lexicograf&cin inelul S. Propozitia 2.3.1 arat
ca in.(Jg) are coeficienti lineari dadG este un graf complet bipartit. Pen-
tru ideale monomiale cu coeficienti lineari, se poate dalaigor, nume-
rele Betti. Asadar, vom putea calcula toate numerele Bettilgate ale
lui in-(Jg) pentru graful complet bipartit; vezi teorema 2.3.h conti-
nuare vom &ta @ projdimin (Jg) = projdimJg si regin. (Jg) = regJg,
si, prin urmare, ia(Jg) au un nurar Betti extremal unic, precum gk.
Intr-un final, vom aita & numerele Betti extremale ale lui.ifdg) sunt
egale cu cele ale lulg; In timp ce, pentru grafuri complete bipartite, ca



saajungem la aceastoncluzie nu a fost foarte dificil, pentru cicluri avem
nevoie de o tehni putin mai avansat Pasul initial, similar pentru cazul
grafurilor complete bipartite, corssin identificarea generatorilor minimali
monomiali ai lui in: (Jg) undeG este um-—ciclu dotat cu o etichetare natu-
rala a \arfurilor sale.in aceasta situatie, vom folosi un argument inductiv
(lema 2.4.1 si lema 2.4.3) pentru a calcula dimensiunegegiea si re-
gularitatea lui in-(Jg). Intr-un final, in teorema 2.4.6, vom aa @ Jg Si
in<(Jg) au aceleasi numere Betti extremale.

In Capitolul 3, vom studia idealele binomiale muchie a griédude tip
bloc. Acest capitol se bazeape lucrarea realizatn colaborare§)]. Printr-
un graf de tip blo&G vomintelege un graf cordal and propriedtile c este
cordal si @ orice doa clici maximale se intersectegin maxim un varf.
In ajutorul conjecturii din 14], vom demonstrain teorema 3.1.2,& pen-
tru un graf de tip blods, deptiS/Jg) = deptiS/in-(Jg)) = n+c, unde
c este nurarul componentelor conexe ale IG. Vom demonstra o ega-
litate simila& pentru regularitate, anume (&4Jz) = reg(S/in-(Jg)) =
¢ da@ G este unC,-graf unde/ repreziné lungimea celui mai lung drum
indus al luiG. Cy-grafuri constituie o subclasa grafurilor de tip blocln
[20], Matsuda si Murai demonstreaza, pentru orice graf cone®, avem
cal <reg(S/Js) <n—1. Asadar, vom concluziona prin fapt@ C,-grafuri
au regularitate minimal

Scopul principal al acestei luan este de a da uraspuns la urmatoarea
intrebare. Putem caracteriza grafurile con@ade @ror drumuri maximale
induse au lungime§ iar req S/Js) = ¢? Cu alte cuvinte, putem caracteriza
grafurile ale caror ideale minimale au regularitate miri@?a Am reusit
sa raspundem la aceashtrebare, partial, pentru arbori. Demonstraa c
da@T este un arbore, aacui drum maximal indus are lungiméaatunci
reg(S/Jr) = ¢ da@ si numai da& T este 'caterpillar’; vezi teorema 3.2.1.

In [21], as sunt introduse grafurile slab inchise . Acestea faza®
clasa de grafuri ce cuprind grafurii@chise.ln aceeasi lucrare este demon-
strat @ un arbore este ’caterpillar’ daci numai da& este un graf slab
inchis. Avandin vedere teorema 3.2.1 i, Theorem 3.2] care spurac
reqgS/Jg) = ¢ da@ G este un graf conechis a carui drum maximal indus
are lungimed, impreura cu o serie de experimente realizate pe calculator,
suntem tentatidformubm urnatoarea afirmatie.

Conjectura. Daca G este un graf conex slab inchis a carui drum
maximal indus are lungime§ atuncireg(S/Jg) = ¢.

In Capitolul 4, baandu-ne pe lucrarea noasteolaboratia [7], ca o
analogie adusidealelor binomiale muchig&; generate de minori de ordin



2 fij = Xiyj; — X;yi ai matricei

X:(Xl xn>7
YiI .o Yn

undei < jiar {i, j} este o muchie a Ius, vom introduce idealul binomial
muchie asociat cu matricea Hankel

5 — ( X1 ... Xp—1 Xn )
Xo ... Xp Xn+1
Este cunoscut faptulctoti minorii de ordin 2 ai matricei Hankel generéaz
ideqlullx al curbei normale rationalg” c P".

In sectiunea 4.1, vom ara @ generatorii lulg formeaz o baa Grobner
relativa la ordinea invers lexicograidda@ si numai da& G esteinchis la
etichetarea dat Ca o consecigata acestei teoreme, vom obtirgegentru un
grafinchisG, idealullg este Cohen-Macaulay de dimensiune d, undec
reprezin& nunmarul componentelor conexe ale [@i

In sectiunea 4.2, vom studia propagtle lui Ig ale unui grafinchis
G. Vom calcula idealele prime minimale ale I Tn teorema 4.2.2 pentru
un grafinchis conexG. Folosind aceagtteorem, vom caracteriza acele
grafuriinchise conex& pentru cardg este un ideal radical. Mai mult, vom
arata @ Ig este o intersectie compéetset-theoretic’, da&G este conex Si
inchis. Vom concluziona prin a da o margine supeagauterni@ pentru
regularitatea luig sidemonst@ind @l are o rezolutie line@da@ si numai
da@ G este un graf complet.



CHAPTER 1

Preliminarii

In acest capitol vom aminti o serie de notiuni si rezulfatedamentale,
care vor fi folosite pe tot parcursul uori.

1.1. Baze Gbbner

1.1.1. Ideale monomiale. Propriedti de baza. Fie K un corp, si fie
S=K]xy, .., X] inelul polinoameloin n variabile cu coeficienti diKK. Notam
prin Z!} multimea tuturor vectoriloa= (ay,...,a,) € Z", 8 >0,i € {1,...,n}.
Vom folosi notatia standard pentru a desemna mulfimeaenelor naturale
N.

Un element dirSde formax‘i‘l ---X8 se numeste monom. Putem repre-
zenta un mononu prin u = x2, undea = (ay,...,an) € Z.. Fie Mon@®
multimea tuturor monoamelor di& Orice polinomf in S poate fi repre-
zentat unic ca &-combinatie liniad de monoame din Mo§J

f = Z auu, undea, € K.
ueMon(S)

Vom defini multimea sup@f ) = {u € Mon(S) : a, # 0} ca fiindsuportullui
f.

Dacau = X&' ---x& este un monorin S, vom definigradul lui u astfel
dequ) =aj;+---+an. Da@a f € S\ {0} este un polinom, gradul Iui este
degf = max{degu: u € supff)}.

Inelul Sare oN-gradare déat deS= ©4.nSy undeSy esteK-subspatiul
vectorial al luiS generat de toate monoamele de gdatln element nenul
din & este numipolinom omogewle gradd.

1



2 Preliminarii

Un ideal monomial IC S este un ideal generat de o multime de mo-
noame. Conform cu lema lui Dicksob3, Theorem 1.3], stim&orice ideal
monomial poate fi generat de o multime fénde monoame. Uratoarea te-
orema prezirét o proprietate importaata idealelor monomiale.

TEOREMA 1.1.1. L3] Fie | un ideal monomial. Mulfimea# de mo-
noame apartiand lui | este o K-baa a lui I.

COROLAR 1.1.2. [L3] Fiel c Sun ideal. Urnatoarele afirmatii sunt
echivalente:

(i) I este ideal monomial.
(i) Pentru orice polinomf € Savem @& f € | da@ si numai da&
supg f) C 1.

CoOROLAR 1.1.3. f13] Fiel C Sun ideal monomial. Clasele reziduu
ale monoamelor ce nu apartin béormeaz oK-baz a ineluluiS/I.

EXEMPLU 1.1.4. Fiel = (x3%,...,x2) C S Atunci oK-baz a IuiS/I
este dai de clasele reziduu ale tuturor monoamelee xtfl ---xh € Scare
satisfac proprietateaady; < a pentru orice I< i < n. Asadar, obtinema&
dimg (S/l)=ag---an.

PropozImE 1.1.5. [L3] Fie multimea de monoamfu,...,uy} care
genereaz idealul monomial. Atunci monomulv apartine dd da@ si
numai da@ exish un mononw astfelincatv = wy; pentru niste.

PrRoPOzINE 1.1.6. [L3] Fiel C Sunideal monomial si fi&(l) mutimea
monoamelor difl care sunt minimale relativ la divizibilitate. Atun@(l)
este mutimea minimaluni@ de monoame generatoare allui

Evident, inelul de polinoam@esteZ"-graduat cu componente graduate

S — Kx?, dadaecZl,
0, altfel.

Fief =cx e Scuce Ksiae Z". Atunci f este numit omogen de grad
Obsenam @& orice ideal monomidl C Seste un submodul"-graduat
alui S Inacest caz,&tul S/1 este de asemeng&d-graduat. Cu alte cuvinte,

| = GBS §1 S/ = Brapr S

1.1.1.1. Operdii algebrice standardn cadrul idealelor monomialeFie
| siJdowaideale ale lus. Suma si produsul acestor doigdeale se defineste
dupd cum urmeaa.

l+3={f+g:fel,ged}silI=(G),undeG={fg: fel,ged}.



1.1. Baze Gibbner 3

Evident,| +J si IJ sunt ele inasi ideale monomiale da¢ si J sunt ideale
monomiale. Mai multG(l +J) C G(1)uG(J) siG(1J) C G(1)G(J).

Intersectia a dauideale monomialé si J este tot un ideal monomial,
definit prin

NI = ({lem(u,w) :ue G(l),we GI)}).

Idealul &t a do@ ideale monomiale este tot un ideal monomial, fiind definit
astfel

unde
I 2 (w) =({u/gecdu,w) :ue G(I)}).

Radicalulunui ideal monomial este un ideal dat de

VI = (Vu:ue G(1)),

n
unde, pentru=x2,/u= [] X. Spre exemplu, d@ai = x3xx3, atunci
i=1,3£0

VU = X1X2X4.

| este numit un ideal radical dag/l = 1. Obseram é un ideal mono-
mial | este un radical ideal dacsi numai da&| este un ideal de monoame
libere de @trate, i.e. monoamele generatoare minimale sunt mondame |
bere de ptrate.

EXEMPLU 1.1.7. Fiel = (x3,x%y,y®) siJ = (xy,y?) doua ideale mono-
miale ale inelului de polinoam®&= K|x,y|. Atunci

1 +3=0C,Y%) + (xyY7) = 0S54, Y2 3y, ¥7) = 08, xy, 7).

Deoarecey divide x?y si y? divide y3, putem elimina generatony si y°.
Produsul idealelor si J este

13 = (3, %%y, y3) (xy, ) = (<, Y2, 22, xyP yP),

iar intersectia lor este

1N = (Ilem(x3,xy), lem(x3,y?),lem(x®y,xy), ..., lem(y?,y?))
= (Y, Y2, XY Y2 Xy, )
= (YY)



4 Preliminarii

Catul celor do@ ideale este

113 = (/ged,xy), x%y/ gedxy, xy), y*/ gedy®, xy))
N (¢/ged0C,y?), x°y/ ged %y, y2),¥%/ gedly?, y?))
= (&, x¥°) N (X, x,y)
= (xY)N(EY)
= (O, xy.y?).

1.1.2. Aspecte introductive ale teoriei bazelor Gsbner. in algebra
de polinoameK[X| intr-o singua variabik peste un corf, vom folosi teo-
rema impartirii cu rest pentru dayolinoamef, g € K[x| cug # 0: Exis&
dowa polinoame unic determinatgsi r din K[x| astfelincat f = qg+r,
unde deg < degg.

Algoritmul de calcul al polinoamelog si r este urmtorul: Da@ deg
f < deggatunciq=0 sir = f. Daca degf > degg, vom calcular; =
f —(a/b)x"~™M, undeax si bX™ sunt termenii dominanti ai lu si respectiv
g. Dac degr; < degg, atuncig = (a/b)x"™sir = r;. Altfel, vom aplica
aceeasi reducere si ltj. Algoritmul se va finalizantr-un numar finit de
pasi.

Teoria bazelor Gibner se bazeaze o generalizare a acestui algoritm,
la algebre de polinoania mai multe variabilein acest caz, identifem o
problen@in identificarea termenilor dominanti si compararea nanelor
ce contin mai mult de o singarvariabih. Pentru a remedia aceagiro-
blema, vom introduce notiunea de ordonare monoaial

1.1.2.1. Ordonare monomia. Vom numi cuplul(X, <) ca fiind partial
ordonat dag X este o multime sK este o relatie binarpeX reflexiva,
antisimetri@ si tranzitia, i.e. pentru orice, b, sic din X avem:

() ac X=a<g
(i) a<b,b<a=a=Db;

(i) a<b,b<c=a<c.

Vom scriea < b, inteleganda < b sia # b. De asemenea, > b va repre-
zentab < a.

EXeEmPLU 1.1.8.

(1) Multimea tuturor submultimilor luX, mutimea @rtilor lui X, no-
tata prin £ (X). Relatia de incluziun& este o relatie de ordine
partiab peZ(X).

(2) Definim relatia bina | pe monoamele din M%) dupa cum ur-
meaa:

X B da@ a; < by,...,an < bn.
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in acest caz, putem spuna & ---x2 divide xi’l---xﬁn. Putem
verifica usor faptul @ (Mon(S),|) este un 'poset’.

O relatie de ordine partiak definita peX se numeste relatie dedine
totald, da@ pentru orice daielemente, b € X avem @a < b saua > b.
Cu alte cuvinte, orice pereche de elementeXtjpot fi comparate relativ la
relatia daé de<.

Definim, In continuare, o relatie de ordine t@geste mutimea tuturor
monoamelor dirS= K|xy,...,Xp| care respeét structura multiplicati& a
lui Mon(S).

DEFINITIE 1.1.9. O relatie d®rdine monomial pesteS este o relatie
de ordine tota < peste Mon§) dac sunt satisfcute conditiile:

() 1 <u, pentru oricau € Mon(S);
(i) dacau <, atunci pentru orica&v € Mon(S), uw < vw.

Subliniem faptul & orice do@a monoame pot fi comparate relativ la o
relatie de ordine monomial Urnmatoarele afirmatii sunt satéstute de orice
relatie de ordine monomial

PropozImE 1.1.10. [L3] Fie < o relatie de ordine monomibpestes.
Atunci, au loc urmatoarele afirmatii:
(i) dacu,v € Mon(S) astfelincatulv, atunciu <v;
(i) daca up,up,... este un sir de monoame ey > up > ... atunci
exist@ un nunar intregm astfelincat u; = un, pentru oricd > m.

Vom prezentdn continuare o serie de relatii de ordine mono@tan-
dard pestes. In aceste exemple vom desemna ordinea variabifetloun
mod standard, astfek; > Xo > ... > X,. Fiex? six? doud monoame peste
S

e Ordinea lexicografia: Avemx® < x° , da@ fiey! ;a < S ;b
fie S & = >, bi si componenta nend) cea mai din $inga a
vectoruluia— b este negati#. in aceasta ordonare vom compara
mai intai gradele totale, si apoi puterile variabilelor pornind c
variabila de index minim.

EXEMPLU 1.1.11. X2xx3x2 < X2xox3xs, deoarece cele dau
monoame au acelasi grad si aveéaec-b = (0,0,0,—2,2).

e Ordinea lexicografig purd: Avem x2 < x° dacé componenta cea
mai din snga a vectorulud — b este negati&. In aceasta relatie
de ordine totala, gradul total nu este relevant.

EXEMPLU 1.1.12.X3%%; < X3XoX3, deoarece avera—b =
(0,0,-1,5).
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e Ordinea lexicografia inversa Avem éx? < x° dac fies ; a <
Si,bi fie S ,a = 3 ,bi si componenta nenailcea mai din
dreapta a vectoruli — b este pozitia.

EXEMPLU 1.1.13.X2X3X4 < X1X5X4, deoareca—b = (1,-2,1,0).

Diferenta dintre ordinea lexicograéicsi ordinea invers lexicografic
poate fi explicitah in modul urnétor. Fiex?,x° € Mon(S) doud monoame
de acelasi grad. Daoc& < x° in ordinea lexicografi&, atuncix® are gra-
dele componentelor mai mare deiteeput spre sfarsit datgradele com-
ponentelor luix®. Dac x® < x° in ordinea invers lexicografic atuncix®
are gradele componentelor mai mic de la sfarsit $pceput deat gradele
componentelor lui@.

ExeEmMpPLU 1.1.14. Considém toate monoamele dii= K|[xy, X2, X3]
de grad 2In ordine lexicografig avem:x2 > x1xp > X1Xg > X3 > XoX3 > X2,
iar in ordine invers lexicograficavem:xz > xjxp > X5 > X1X3 > XoX3 > X3.

1.1.2.2. Ideale initiale si baze Gibner. Fie < o relatie de ordine mo-
nomiah fixa@ definié pe inelul de polinoam®8= K|x, ..., Xn] peste corpul
K. Pentru un polinom nenul € S monomul initiakl lui f relativ la relatia
< este cel mai mare monom dintre monoamele continute de( $ipilo-
nomul initial, relativ la relatia<, al lui f este notat prinin(f). Coeficientul
dominant cc K al lui f este coefiecientul in(f), iar termenul dominanal
lui f estecin_(f).

EXEMPLU 1.1.15. Fief = 5x3x3x3 + X2x3 + 3x{x3. Daca< repreziné
ordinea lexicografig, atunci in () = x3x3xs; dac < repreziné ordinea
invers lexicografia, atunciin-(f) = x%xg si da@ < repreziné ordinea pur
lexicografi@, atunci in-(f) = x{xs.

Monoamele initiale ale sumei si produsului a dquolinoame este dat
de urmatoarea lera:

LEmMA 1.1.16. [L3] Fie f si g dowa polinoame nenule si fie relatia de
ordine monomial < pesteS. Atunci
(i) in<(fg)=in.(f)in<(9) ;
(i) in(f+g) <max{in(f),in-(g)}. Egalitatea are loc dadn. (f) #
in-(g).

Fiel C Sun ideal nenulldealul iniial al lui | este un ideal monomial
generat de toate monoamele initiale nenule ale polincamah |. ldea-
lul initial al lui | relativ la ordinea monomial< este nota prin in-(I).
Asadar, in(I)=(in.(f): f el, f#£0).
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Obsenam @ in. (1) = (0), dad@l = (0). in general, monoamele initiale
ale elementelor unei multimi generatoare, nu vor generé in Spre exem-
plu, consideam idealull = (x% — X1X2 + X2, X1 — X2) Tmpreura cu ordinea
lexicografi@ pu@in inelul de polinoame[x1,xz]. Avem @& (x% — X1 X2 +
X2) — X1(X1 — X2) = X2 € |. Dac presupunemzin. (1) = (x2,x1) = (x1),
atunci ar trebuid avem &x; € in-(l), desixz ¢ (X1).

Conform propozitiei 1.1.6, un ideal monomial are o multimmimak
unica de generatori monomiali. Lema lui Dickson ne spuaemutimea
minimald de generatori este o multime féitPrin urmare orice ideal mo-
nomial este finit generat. Cum.il ) este un ideal monomial, atunci exst
di,--.,0m € | astfelincat in. (1) = (in<(91), ..., iN<(gm))-

DEFINITIE 1.1.17. Fiel C Sun ideal nenul si fie relatiac o relatie
de ordine monomial pesteS. O multime de polinoam€g;,...,Om} se
numestébaza Grobnera lui | relativa la relatia de ordine: da@ in-(I) =

(in<(g1),- .., iN<(gm)).

Conform cu definitia, pentru orice ideal monomial neintbtdeauna
exist o baa Gibner.

EXEMPLU 1.1.18. MultimeaG = (X3 — X1X2 + X2,X1 — X2) NU este 0
baza Giobner pentrd = (G) relativ la relatia de ordine pur lexicogradic
deoarece, asa cum am explicat antenore |. In pofida acestui lucru

X2 & (34, x1) = (xa).

TEOREMA1.1.19. [13] Fie | unideal al lui S si fie mutimegg;, ..., Om}
0 baz Grobner al lui | relativ la relatia de ordine monomial<. Atunci,
| = (01,---,0m). Cu alte cuvinte, fiecare bazGrobner al lui | este o
multime de generatori pentru I.

COROLAR 1.1.20 (Teorema bazelor a lui Hilbert)13] Fiecare idealn
inelul de polinoames = K|x1,...,Xy] este finit generat. Cu alte cuvinte,
inelul Seste Noetherian.

TEOREMA 1.1.21 (Algoritmul de impartire). 3] Fie f Si ¢i,...,9m
polinoame nenule din S si fie o relatie de ordine monomial Atunci,
exis@ dowa polinoame r si@,...,gnN Scu f=qg1+... +gmQm+7r
astfelincat urmatoarele conditii & fie satishcute:

(i) nici-un element disupgr) nu este contindn (in<(g1), ..., iN<(gm));
(i) in.(f) > in-(gigi) pentru orice i.

Expresiagig; + - .. + gmdm+ I care satisface conditiile de mai sus este
numita expresie standaral lui f. Polinomulr esteestul lui f relativ la
01,...,0m. Urmatorul exemplu arat & expresia standard a Idinu este
unica.
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EXEMPLU 1.1.22. Polinomulf = xZ — x3 are dot expresii standard
distincte relative lags = X1 + X2 Sigo = X1 +x§. Consideam ordinea lexi-
cografi@ pura. Avemf = X191 — X202 Si f = (X1 —X2)01 +x§ — xg. In aceste
expresii standard avem resturi diferite: 0&i- X3.

Daa f are un rest nul relativ la polinoametg, . ..,gm, vOom spune &
f se reduce |® relativ lagy, . . ., gm.

In continuare vom descrie un algoritm désjre a unei expresii standard
pentruf relativa la o multime ordonatde polinoame,,...,gm. In acest
algoritm obtinem un sir finit de polinoantg, 1 <i < s, astfel:

Fie hg = f Presupunemadeja am definit polinoamelg, ..., h;. Sirul
se termird cuh; dac polinomulh; satisface urmatoarea conditie s(ipp ¢
(in<(gl)a o iNc (gm)>

Altfel, fie u cel mai mare monom din sufim) care apartine lui (in(g1), . . -,
in<(gm)) si fie j cel mai mic nurarintreg astfeincat (in-(g;j) | u.

Definimhj, 1 =h; — ab*lng , undew = u/in.(g;) iarasib sunt coeficienti
dominanti ai luih; si respectivgj. Presupunemecsirul deh;-uri se termira
in hs. Atunci, obtinem urratoarele ecuatii:

(1) f=ho=0djgj,+h1
(2) hy=qy9j,+h2
(3) hp=030j;,+h3

(4) hs_1=0Qj,+hs

inlocuindhy in (1) cu (2), obtinemf = ¢}g;j, + d,gj, + ho. In aceasi
expresie noa, in loc deh; scriem expresié3). Repe&nd procesul, obtinem
0 expresie standard pentfwcu restulr = hg.

EXEMPLU 1.1.23. Fief = x§x; + X5 —3x3. Vom calcula o expresie
standard pentrd relativa lag; = X3 — X2 Si g2 = X folosind algoritmul
descris mai sus, utilénd ordinea lexicografic

f =hg=Xx1X01 + 2x1x§ — 3X‘;’ undeh; = 2x1x§ — 3x§
h]_ = 2x§gl — Xg undeh2 = —Xg
hy = —x3g, undehg = 0.

Prin urmare expresia standard e$te (x3x2 + 2x§)91 — x%gz. f are restul
0 relativ laxs — X2 Si Xo.

PrRoPOzITE 1.1.24. [L3] Fie < o relatie de ordine monomialpesteS
si fie mutimea{qgs, ...,gm} 0 baz Giobner pentru idealul = (gy, .. .,09m)-
Atunci, orice polinom nenuf din Sare un rest unic relativ lgs, . . ., gm.
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COROLAR 1.1.25. [L3] Fie mutimea{qs,...,gm} 0 bazé Gidbner pen-
tru idealull = (g1,...,9m). Atunci, orice polinomf
'nScare apartine Iui, are restul zero relativ lgy, . . ., gm.

In continuare vom prezenta un algoritm care ne perngitecmstruim o
baz Gdbner a unui ideal pornind de la orice multimeade generatori.
\Vom avea nevoie de uratoarea definitie.

DEerFINITIE 1.1.26. Fief sigdoua polinoame dirSsi fie < o relatie de
ordine monomia. Polinomul
_ lem(in<(f),in<(@)) . lem(in<(f),in-(g))
A7) = cin<(f) f din(g)

este numiS-polinomullui f sigrelativ la relatia<.

Amintim faptul @ lcm(in(f),in<(g)) repreziné cel mai mic multiplu

comun al lui inc(f) si inc(g). In formula, c si d reprezina coeficientii
dominanti ai luif si respectig.

EXEMPLU 1.1.27. Fief =x3%z + X1X2 + X5 Si g = 2X2 + XpX3. Atunci
lem(in< (f),in<(g)) = x3x. relativ la ordinea lexicografic Prin urmares-
polinomul lui f sigeste

X3xo o XX 5 2 2
S(f,0)= E(X?X2+X1X2+X3) - y(leerzxe,) = X1X2 — 1/2X1 X5X3 +X3.
172 1

Obsenam faptul @ S-polinomul ne ajuh s& anuam termeni dominanti
ailui f sig, sisa obtinem un alt polinorin acelasi ideal cu termeni dominanti
distincti.

Urmatoarea teorefnne ofead o metoa de a verifica pentru un ideal dat
| =(91,...,9m) da@ o multime de generatofds, . ..,9m} formeaa o baa
Grobner pentrd.

TEOREMA 1.1.28 (Criteriul Buchberger).1B] Fie | = (g1,...,9m) un
ideal al lui S si< o relatie de ordine monomialdefinit pe S. Atunci
G =1{01,...,0m} este o baa Grobner al lui | relativ la relatia< dac si
numai da@ Sgi,g;j) se reduce la zero relativ la G, pentru oriceij.

Pentru a calcul&-polinoamele lul = (gi,...,9m) pentru orice perechi
de generatori poatefinpovo@tor. Urmatoarea propozitie ne poate ajuéa s
evitam calculele din anumite cazuri.

PrRopPoOzInE 1.1.29. [L3] Fie f sigdowa polinoame dirScu relatia de
ordine monomia <. Dac@ monoamele initiale in( f) si in-(g) sunt prime
intre ele, atuncy(f,g) se reduce la O relativ 1& si g.
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ExempPLU 1.1.30. Fid C K[Xg,...,Xn,Y1,---,Yn] generat de cei doi mi-
nori ai matricei
X1 X2 ... Xp
Yi Y2 o Yn )~

Cu alte cuvinte] = ({fij = xy; —X;yi : 1 <i < j <n}). Fie < relatia
de ordine lexicografi dinK|[xy, ..., Xn,Y1,...,Yn] indusadex; > x> ... >
Xn > Y1 > ... > Yn. Vrem sa aatam @ oriceS-polinom§(fjj, fi ) are restul
zero, unddg(i, j} # {k,1}. Dac@i #ksi j #1, atunciin (fjj) siin.(fi) sunt
primeintre ele, dec§(fjj, f) are restul 0. Dagi = k, putem presupuneic
j < | si obtinem astfeB(fij, fiy) = S(fij, fi) = —xjyivi +x1y; = =i fji,
care reprezirét o expresie standard al I8 fij, fy) cu restul zero.

Dac j = |, putem presupunead < k si astfel obtinemS(fij, fi) =
S(fij, fij) = XiXj¥k — XXj¥i = Xj fi, care din nou repreziato expresie stan-
dard cu restul zerdn consecir, mutimea minorilog fij : 1<i < j<n}
formeaa o baa Gobner al luil relativa la ordinea lexicografic

Exista un algoritm care permite calculul unei bazedrer pentru un
ideall folosind o multime d&t de generatori a Iui Algoritmul numitago-
ritmul Buchberger este de fapt o consecing teoremei 1.1.28. Agoritmul
Buchberger functioneazastfel:

Pas 1: Calci@m S-polinomul pentru fiecare pereche de elemente ale
multimi generatoar& a idealuluil .

Pas 2: Daa toateS-polinoamele se reduc la zef@ este o baa Grbbner
a lui l. Altfel adaugam unul dintre resturile nenule la sistemul nostru de
generatori, pentru a forma un nou sistem de generatovegnmm la Pas 1.

Cum orice sir strict crestor de ideale monomiale ale I8ieste finit,
algortimul se sdirseste dugpun nunar finit de pasi.

EXEMPLU 1.1.31. Figl = (X2 + 2x1X3, X1X2 + 2X3 — 1) C Q[Xq,%2]. Fo-
losind algoritmul Buchberger, foram o baa Grobner pentrul in S=
K[x1, %] relativ la ordinea lexicografi

Fie f = X2+ 2x1X3, g = XX + 23 — 1. Vom calculaS-polinomul
S(f,g) =x; al lui f sig. Deoarece5(f,g) = x1 ¢ (in-(f),in-(g)), vom
adaugah = x; la mutimea generatorilor, obfimd o no@a multime de gene-
ratori{ f,g,h}.

Acum, vom alege perechgah. Deoarece monomul initial & polinomului
S(g,h) = 2x3 — 1 nu este (in (f),in-(g), in< (h)), vom obtine un nou gene-
rator, anume = 2x§ — 1 si astfel mutimea de generatori devifie g, h,t}.

Acum, nu trebuie & calcuam S-polinoamele pentru fiecare pereche, de-
oarece stima&S(f,g) = hsiS(g,h) =t. Avem, de asemenea, toate celelalte
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resturi egale cu zero:
S(f,h) = 2x%5 = 2x3h
S(f,1) = 1/2¢ + 2x)3 = 1/2f 4 x93t
S(g,t) = 1/2x1 + 23 — x5 = 1/2h+ 3t
Sh,t)=1/2x, =1/2h

Asadar baza @bner estgx2 + 2x1x3, X1 X2 + 23 — 1,x7,2x3 — 1}

Putem aduga mai multe polinoame la mutim&sasi vom avedn conti-
nuare o baa Gidbner a idealuluilnsa, sub anumite conditii, ex&to unica
baza Grdbner.

DEFINITIE 1.1.32. O multimé&s = {gs, ...,0m} S€ numestbaza Grobner
redus a lui | C Srelativ la ordinea monomial< da@d G este o baz
Grobner pentru si sunt satisdcute urmtoarele conditii:

(i) Coeficientul dominant pentru fiecageeste 1;
(i) Pentru totii # j, nici-unu € supgg;) nu este divizibil prinin-(g;).

ExXempPLU 1.1.33. Baza Gibner redua a luil Tn exemplul anterior este
{Xbx% - 1/2}

1.2. Rezolutii libere graduate minimale de idealuri gradiate

In aceadi sectiune, vom prezenta date numerice care iedintrezolutii
libere graduate minimale de coeficienti ai unui inel de padime printr-un
ideal graduat.

Vom fixa, Tn aceasta sectiun&= K|[xy,...,X,] un inel de polinoame
in n variabile peste un corl. Fiecare ideal graduatC S are orezolutie
libera graduaf minimak (unica para la un izomorfism).

Fe:0—>Fp—--—>F—+FR=S—S/-0,

undeF = EBJ-GZS(—j)Bii, pentru orice valoare a lui Exponentifj =
Bij (S/1) sunt numitinumerele graduate Beittile lui S/I. Numerele totale
Betti ale lui S/I suntf = 5 ; Bjj,i > 0. Dimensiunea proiect&/a lui S/I
este dai de

projdim(S/1) = max{i : Bjj # 0, pentru anumitij € Z}.
Conform cu formula Auslander-Buchsbaut@] Corollary A 4.3] avem &
depthS/I = n— projdimS/I.

Amintim faptul & deptts/I reprezin& lungimea maximal a uneiS/1—
secvente de elemente omogene contiintreun ideal graduat maximal a lui
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S Este bine-cunoscut faptubdepthiiS/l) < dim(S/1). Daa are loc ega-
litatea, vom spune&l este un ideal Cohen-Macaulay. Ddcgste Cohen-
Macaulay daa si numai da& depttiS/I) = dim(S/I).

Regularitatealui S/I este definé astfel: daaé redS/lI) = max{j —i:
Bij # 0}. Toate datele numerice ce reies din rezolutii libere gadewmini-
male ale IuiS/I sunt numite invarianti omologici ai [/1.

De obicei, numerele Betti graduate sunt prezeritatesa-numitalia-
grama Bettia lui S/I, care are forma indicafin Figura 1.1.

projdim

regl————__ 4.

FIGURA 1.1

Numerele Betti marcati figura prin puncte mari sunt numiteumere
Betti extremale

ExempLU 1.2.1. FieJ C S=K]x,..,Xs,Y1,..,Ys] un ideal

J = (X1Y2 — X2Y1, XoY3 — X3Y2, XoY4 — XaY2, X3Ya — Xay3, X2Y5 — X5Y2, XaY5 — X5Y4)

avand idealul au initial in.(J) C K[xg,..,Xs,Y1,..,Ys], unde< reprezin&
ordinea lexicografi& indus dex; > --- > Xs > y; > --- > ys. Diagramele
Betti ale uiS/J si S/in-(J) sunt prezentate mai jos.

Conform cu aceste diagram8/in-(J) si S/J au acelasi nudr Betti
extremal: 4. Mai mult, avem projdif®/J) = projdim(S/in-(J)) = 4, de
unde deptliS/J) = deptHS/in-(J)) =6 siredS/J) =reg S/in-(J)) = 2.

0O 1 2 3 4

0 1 - - - —

J: 1 |- 6 4 — —
2 |— — 9 12 4
Total| 1 6 13 12 4
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0O 1 2 3 4
1

0 — - - =
inc(J): 1 |- 6 5 — —
2 |— 1 10 12 4

Total| 1 7 15 12 4

Diagramele Betti ne ajatin a scrie rezolutiile libere graduate minimale
pentru fiecare ideal:

0— §(—6)* = §(-5)12 = §-3)*a §—4)° - §-2)°* - S+ S/I =0,
0— S(—6)* = §(-5)12 » §(—3)° 3 §—4)10 -
—5-2)%®5-3) > S— S/in.(J) = 0.

DEFINITIE 1.2.2. Un inel gradua®/I are(d — 1)-rezoluti lineare(sau,
echivalent,| ared-rezolutii liniare) daé rezolutia sa liber gradua mini-
mala are urmtoarea forra

0— S(_p)ﬁp—d+1 N S(_p_|_ 1)/3p—d B S(_d_ 1)32 N S(_d)ﬁl N
S— S/l — 0. *

Aceasa definitie ne spune faptulacS/I are (d — 1)-rezolutii lineare
da@ si numai da& 3 (S/1) = 0 pentru fiecarg #i+d—1. In diagrama
Betti a lui S/I, excepand pozitiaBo0) = 1, toate celelalte numere Betti
graduate nenule sunt situate pe ran@l 1). Cu alte cuvinte S/l are
(d — 1)-rezolutii lineare da& si numai da& | este generat cu graddlsi
regS/1)=d—1.

ExeEMpPLU 1.2.3. Fid CK[Xg,...,Xa,Y1,---,Ya], | = (X1y2 —X2Y1,X1Y3 —
X3Y1, X1Ya — XaY1,X2y3 — X3aY2, X2Y4 — XaY2, Xay4 — Xay3). S/1 are 2—rezolutii
lineare. Diagrama Iug/I este urnatoarea.

\ 0 1 2 3
o1 - — —
11— 6 8 3

OBSERVATIE 1.2.4. Facem ur@atoarea remagcdespre rezolutiile li-
neare. Da& S/ are o rezolutie line@;, atunci, apliand proprietatea de
aditivitate a seriilor Hilberin (*), obtinem @&

1 But?+ Bt — 4 (“1)P By g atP
Hei () = 1_t)n '

Aceash formuk ne indi@ faptul @ da@S/| are o rezolutie lined, atunci
numerele Betti sunt determinate de seriile sale Hilbiyt.

O comparatiéntre numerele graduate Betti ale &/l siS/in- (1), unde
< repreziné o relatie de ordine monoméin S, este da de urnatoarea
teorend si urmatorul corolar.
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TEOREMA1.2.5. [L8] Pentru orice i si j,5ij(S/I) < Bij (S/in<(1)).

Aceasé inegalitate dintre numerele graduate Betti ne conduc |atoanele
consecinte.

COROLAR1.2.6. [L8]
(i) projdimS/1 < projdim(S/in(1)).
(i) depthS/1 > dept(S/in(l)).
(iii) regS/1 <regS/in(l)).
(iv) DacaS/in-(l) este Cohen-Macaulay, atur/l este Cohen-Macaulay.
(v) Daca S/in.(l) are o rezolutie lined, atunciS/| are o rezolutie
linear.

1.3. Un scurt rezumat despre descompunerea primar

In aceast subsectiune vom ugdi in principal carteajl, Chapter 3].
Fie Run inel siM un R—-modul. Idealul primP al lui R este numitprim
asociata lui M, da@ exisk anumitim € M astfelincat

P=(0:rm)={reR:rm=0}.

In particular, da&| c R este un ideal, atund® este un prim asociat al
lui R/I (sau, mai simplu, al lui), da@P =1 : (a) pentruuna € R.

Vom descrie rezultatele principale despre primi asoeatinui modul
in teorema urratoare. Vonincepe prin a aminti faptulecmutimea tuturor
asociatilor primi ai luiM este notdt, de obicei, prin AgM). Foarte des,
vom scrie As§l) Tn loc de As$R/1) pentru un ideal a lui R

TEOREMA1.3.1. [L1] Fie R uninel Noetherian si M un R—modul nevid
finit generat. Atunci:

(a) AsgM) este o multime nevéd care contine multimea idealelor
prime minimale peste anihilatorul lui MAnn(M), undeAnn(M) =
{r e R:rM =0}. In particular, Ass() 2 Min(1). Aici, Min (1) des-
crie mutimea idealelor prime minimale ale lui |

(b) Avem é Z(M.) = Upeassm) P unde ZM) descrie mutimea tuturor
divizorilor lui zero din M

(c) As{M) comug cu localizarea. Mai precis, d&SC R reprezin
0 mutimea multiplicati&, atunci

Asss 1r(SIM) = {SIP: P c AsgM),PNS=0}.

(d) Daca0 —+ M’ — M — M” — 0 reprezini o secverd exacta de
R—module, atunci

Ass(M’) C AsgM) C AssM’) UAs{M").
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DEFINITIE 1.3.2. FieRun inel Noetherian gP un ideal prim al luiR.
Idealul | al lui R este numit urP—ideal primar(sau mai simplu undeal
primar) dacd AsgR/l) = {P}.

TEOREMA 1.3.3. [L1] Fie R un inel Noetherian. Atunci orice ideal | al
lui R are o descompuneres Q1N ---NQy, unde:

(a) Q; este R-primar pentru orice
(b) descompunerea este ireduntaadic@ nici-un Q nu poate fi omis
din descompunere;
(c) B-urile sunt do@ cate doa distincte.
Mai mult, As(l) = {P4,...,R}.

Descompunerea de mai sus este nardgéscompunere primara lui
I. In continuare vom analiza rezultatele principale despszaoi@punerea
primara de ideale monomiale, uarind in principal notiunile descrisin
[18].

TEOREMA 1.3.4. [18] Fie | C S= K][Xq,...,X,] un ideal monomial.
Atunci | = N, Q;, unde fiecare Qeste generat de puteri pure ale vari-
abilelor. Cu alte cuvinte, fiecare;@re forma(x,fall, e ,xﬁf).

Mai mult, se poate ata faptul @ descrierea iredundantonstruié in
demonstratia de mai sus este unic

Un ideal monomial este numiteductibil dac@ nu poate fi scris ca o
intersectie proprie de dalideale monomiale. Se numesgeluctibila dac
nu este ireductibd.

COROLAR 1.3.5. 18] Un ideal monomial este ireductibil dagi numai
dac este generat de puterile pure ale variabilelor.

Conform teoremei 1.3.4 si corolarului 1.3.5, aveanarice monom are
0 reprezentare urdgcca o intersectie iredunda@ntie ideale monomiale ire-
ductibile, mai mult, demonstratia teoremei 1.3.4 ne@femetod de a @si
o astfel de reprezentare.

EXEMPLU 1.3.6. Fiel = (x2x3,X3xX3,X2). Atunci
| = (4,53, %5) N (G, XX, X5)
= (4,36, X8) N (x4, X3, 08) N (6, X5,58) N (33, X3, X5)
= (4.8,58) N (4. x3) N (. %s).
Pentru ideale monomiale libere datpate avem ur@torul corolar.
COROLAR 1.3.7. [L8] Fie | € Sun ideal monomial liber dedirate.

Atunci
= (] R
PeMin(l)
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si fiecareP € Min(l) este un ideal monomial prim.

Aici Min (1) repreziné, ca de obicei, mutimea idealelor prime minimale
ale luil.

Vom incheia aceaatsectiune prin a aminti faptulacdescompunerea
primard obtinué dintr-o intersectie iredundantle ideale ireductibile este
unica si 0 vom numidescompunerea primarstandard a lui |

1.4. Ideale binomiale muchie

Fie G un graf simplu definit pe mutimea désfuri [n] si avand mutimea
de muchiiE(G). ConsideamS= K|[x,...,Xn,Y1,-..,Yn| ca fiind un inel de
polinoamein 2n variabile cu coeficienfin corpulK.

Definim idealul binomial muchidg C S asociat cu grafuls ca fiind
idealul generat de toate binoamd|g= xjy; — Xjyi unde 1<i < j<ncu
{i,j} €E(G).

Remaram faptul @ da@G are unarf izolati, siG' repreziné restrictia
lui G la mutimea de &rfuri [n] \ {i}, atunciJs = Jz. Din aceasi caua,
vom presupuneaG nu are \arfuri izolate.

Consideam inelul de polinoamé& inzestrat cu o ordine lexicogradic
indusa de ordinea naturala variabilelorx; > X > -+ > X, > y1 > Yo >
.-+ >Yyn. Vom nota prin in-(Jg) idealul initial al lui Jg respecind ordinea
monomiad. Idealul in.(Jg) este un ideal monomial generat minimal de
monoamele initiale ale binoamelor din baza@@mer redua a luiJg, relativ
la ordinea lexicografi.

ExEMPLU 1.4.1.1n Figura 1.2G este un graf simplu definit pe mutimea
de \arfuri [6].

FIGURA 1.2

Idealul binomial muchie a IuG esteJg = (f12, f23, f24, f45, f46). Baza
Grobner redud a luiJg relativa la ordinea lexicograficested = {x1y, —

X2Y1,X2Y3 — X3Y2, X2Ya — X4Y2, XaY5 — X5Y4, XaYe6 — XeY4, X3Y2Ya — X4Y2Y3, X5Y4Y6 —
XeYays}. Asadar, idealul initial al ludg este

iN<(Jg) = (X1Y2, X2Y3, X2Ya, XaYs5, X4Y6, X3Y2Y4, X5y4Y6 ) -
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1.4.1. Ideale binomiale muchie cu baze Gibner patratice. in aceasta
subsectie, vom prezenta doexemple fundamentale de ideale binomiale
muchie. Ambele exemple sunt ideale cu proprietateganeratorii lor for-
meaa o baa Giobner redus.

Grafurile G a caror ideale binomiale muchie asocidgedetin si ele
proprietatea de mai sus (i.&s are o baa Grobner fatrati@) sunt descrise
in combinatorica prin urd@oarea teoreén

TEOREMA 1.4.2. [L9, Theorem 1.1JFie G un graf simplu definit pe
mutimea de &rfuri [n] avand multimea de muchii ), si fie < relatia de
ordine lexicografié peste S inddsde X > -+ > Xp > Y1 > - -+ > Yp. Atunci
urmatoarele afirmatii sunt echivalente:

(a) Generatorii fj ai lui Jg formeaa o baa Grobner patrati@.
(b) Pentru orice muchiéi, j} si{i,k} cu j>i<ksau j<i>kavem
{i,k} € E(G).

Cu alte cuvinte, dacreprezerdm muchigi, j } cui < j printr-o sagead
de la punctul la punctul j, vom avea urratoarea reprezentare a unui graf
care satisface conditia (b) din teorema 1.4.2.

FIGURA 1.3

ExEmMPLU 1.4.3. FieG un graf cu muchiile{1,2} si {1,3}. Vom avea
Jeo= (X1y2—X2y1,X1y3—X3y1). CalcuémS—poIinomuI lui f12 §I f13. Ob;inem
S(f12, f13) = y1(Xoy3 — Xay2) € Jg. DeciS(f12, f13) = Xoy1y3 — Xay1Y2 € Jo.

Dar, monomul inifialxay1ys of S(f12, f13) nu apartine idealului gene-
rat de monoamele initiale ale Idi» si f13. Aceasta ne demonstréaza
{f12, f13} nu este o baz Gidbner a luilg.

In ciuda acestui fapt, pentru acelasi graf, ca altichetarg 1,2}, {2, 3}
generatorii luiJg formeaa o baa Gridbner.

Pentru idealul binomial muchie asocllat = (X1y2 — X2Y1, X2Y3 — X3Y2),
S—polinomul lui f15 si fo3 se reduce la 0 deoarece monoamele initiale ale
lui 12 si fo3 sunt priméintre ele.

DEFINITIE 1.4.4. Un grafG inzestrat cu o etichetare care satisface
conditia (b) din teorema 1.4.2 este nuifimichis relativ la etichetarea dat
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Astfel, putem reformula teorema 1.4.2, spad @ generatorii luidg
formea& o baa Grbner relatia la ordinea lexicograf&c da@ si numai
da@ G esteinchis relativ la etichetarea dat

Am indicat faptul @ graful din Figura 1.3(a)afa muchia{ j,k}, nu este
nchis pentru etichetarea= 1, ] = 2,k = 3 si estdnchis pentru etichetarea
k=1i=2j=3.

DEFINITIE 1.4.5. Un grafs esteinchisda@ exish o etichetare aarfurilor
astfelincat G sa fieinchis relativ la aceasta.

Urmatoarele grafuri sunt exemple de grafuri care nu $ochise. &
remar@am faptul @ da@ un grafG esteinchis, atunci orice subgraf indus a
lui G este, de asemenéachis. Asadar, dacgrafulG contine drept subgraf
indus oricare dintre uratoarele grafuri descrise mai jos, atunci el nu va fi
inchis.

EXEMPLU 1.4.6.

(i) Graful cu trei muchii diferiteer, e>,e3 astfelincat ey NeyNes #
0 este numé graful ghiara. Graful ghiad nu esténchis; vezi
Figura 1.4. Asadar, orice graifchis, trebuie & fie liber de ghiare.

FIGURA 1.4

(i) Orice ciclu C, de lungimen > 4 nu esténchis. & presupunem
ca exish o etichetare aarfurilor sale ,as,...,a, (etichetarein
sensul acelor de ceasornic). Pentru a obtine o etichitenesa, ar
trebui, fie @ alegenmay < ap < ---<ap<ay, fieag>ay > ---ap >
a;. DeoareceC, nu are nici-o coard, ambele alegeri conduc la o
contradictie.

Spre exemplin Cy4, da@ etichedmin directia acelor de cea-
sornic, 12,3,4, atunci,{2,4} ar trebuii sa apartén multimii de
muchi, deoarec¢l, 2} € E(Cy) si{1,4} € E(Cy); si de asemenea
{1,3} ar trebui & apartid multimii de muchii, pentru a avea un
grafinchis, deoarecél, 4} € E(Cy) Si {3,4} € E(Cy).
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FIGURA 1.5

Conform cu aceagtobservatie, vom formula u@oarea propozitie.

PrRopozITE 1.4.7. Da@a G esteinchis atunciG este un graf cordal,
adia nu are nici-un ciclu de lungime 4 si este liber de ghiare.

De asemenea se poate demonsdrarcgraf bipartit nu esfichis deat
da@ este un graf linie; vezilP, Corollary 1.3].

In urmatoarea sectiune, vom studia ideale binomiale muchie & dou
clase de grafuiinchise.

1.4.1.1. Idealul binomial muchie al unui graf compleEie G = K, un
graf complet definit pe mutimea désfuri [n]. K,, are mutimea de muchii
E(Kn) ={{i,]}:1<i< j<n}. Maijos, am reprezentat graful complet cu
3 si 4 varfuri. Evident,K,, esteinchis reativ la orice etichetare a varfurilor.

Kz Ky

FIGURA 1.6. Grafuri complete

Idealul binomial muchie al IUK, este idealul(X) al tuturor minorilor
2 x 2 (minori maximali) ai matricei X n:

X:(Xl Xn)
Yi =0 Yn
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Prin urmare, avemsa
JG :JKn = |2<X) = (Xin _iji 1< I < J < n) CS= K[X:b e Xny Y1, ;yn]-

Vom lista o serie de propriati a lui Jg,,.

(i) Graful complet esténchis relativ la orice etichetare. Prin urmare,
conform cu teorema 1.4.2, generatorii lij, formeaza o baz
Grobner.

(i) Fie < relatia de ordine lexicografadefini peSindus de ordinea
naturaé a nedeterminatelor. Atunci
in<<‘JKn) - (lej : 1 S I < J S n) = ﬂin:]_(xjn s 7Xi—17Yi+1, e 7Yn)-

(iii) Avem ca dim(%) —dim (ﬁ) — dim(S) — heightin- (J.))
=2n—(n—1)=n+1.

(iv) % este un domeniul3, Theorem 6.35]. Asadalk, este un ideal

prim.

(v) in<(J,) are coeficienti lineari.

(vi) Atat in-(J,), cat siJk, au o rezolutie lined. Intr-ade\ar, este
bine-cunoscut faptula un ideal graduat generaitr-un singur
grad, care are coeficienti lineari, are de asemenea o tezthu
neas; vezi [L8, Proposition 8.2.1]. Aceasta ne aah in-(J,)
are o rezolutie linea@:. Pentru partea a doua ag@lia corolarul 1.2.6.

(vii) in(Jk,) este Cohen-Macaulay.

(viii) Jk, este Cohen-Macaulay, deoarece, conform cu corolarul 1.2.6,
da@in- (J,) este Cohen-Macaulay atuncilgj, este Cohen-Macaulay.

1.4.1.2. Idealul binomial muchie al unui graf liniarFie G = L, un graf
liniar definit pe multimea dedsfuri[n] cuE(G) = {(i,i+1):1<i<n-—-1}.
Idealul binomial muchiglg al lui L, ested,, = (fij;1:1<i<n-1). In
continuare vom lista o serie de propégta luiJ.,.

(i) Graful linearL, esteinchis relativ la ordinea natuiak \arfurilor
sale. Asadarin concordarg cu teorema 1.4.2, multimea gene-
ratorilor {fij11:1 <i <n-—1} formea& o baa Gibner pentru
J.,,.- De fapt este posibil sa obtinem aceeasi concluzig & fo-
losi teorema 1.4.2. Stimacmonoamele initiale ale o@dcor doi
generatori distincti ai luiJ, sunt primeintre ele. Atunci, con-
cluzioram @& generatorii lud,,, formeaa o baa Gibbner datoré
propozitiei 1.1.29.

(i) in<(J,) = (Xiyi+1:1<i<n—1) este generat de secventa reghlat
de lungimen— 1 de monoame de grad Aceasta implia faptul @
generatoriify, fo3,..., fn_1n ai lui J_, formeaa o secverd regu-
lata pesteS. Acest rezultat este o conse@rd urnatoarei leme.
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LEMA 1.4.8. Fiel C S=K]Xy,...Xn| un ideal graduat & =
{01,...,0m} baza Grabner redud a luil relativa la <. Daa
in<(91),...,iNn<(gm) este o secveafreguladin S atuncigy, . ..,gm
este o secveatreguladin S.

(iii) Deoarece],, este o intersectie compéetadi@, J,, este generat de
0 secverd regulad, rezula @ J,, este Cohen-Macaulay. Avenac

depth(ﬁ) = dim (%) =n+1.

1.4.2. Baze Gobner pentru ideale binomiale muchie.in general,
pentru un graf arbitraG, Js are o baa Grdbner a caror monoame initiale

sunt libere de atrate.
Pentru a caracterida termeni de combinatogchaza Gobner a luilg,
introducem urratoarea definitie.

DEFINITIE 1.4.9. Fiel < j dowa varfuri a luiG. Un drumi =g, iq,...,
ir_1,ir = j de lai la j este numitadmisibilda@ urmatoarele conditii sunt
satishcute:

(i) ix # iy pentruk # ¢;
(i) pentru oricek=1,...,r—1, avem fie @iy < i, fie @iy > j;
(ii) pentru orice submultime propri¢j1,...,js} a lui {iq,...,ir—1},
secventa, j1,..., Js, ] U este un drurin G.

Avand un drum dat admisibita lui G de lai la j, vom asocia un monom
U = (I_lxlk)(l_l yi(()'
iKk>] ip<I

Evident, orice muchie a IuG este un drum admisibilin acest caz,
monomul asociat este doar 1.

EXEMPLU 1.4.10. Toate drumurile admisibile, excrd muchiile sale,
ale luiCs, relativ la etichetarea datn Figura 1.7, sunt:
m=154, m=215;, ’3=1543, m=2154; m1=3215.

Monoamele asociate pentru aceste drumuri admisibile sunt:

Ug =X5, Ump =Y1, Umpg =X4X5, Uy = XsY1; Ug = Y1Y2.
Remaram faptul &, intr-un grafinchis, drumurile admisibile sunt doar

muchiile lui G. Asadar, da& G esteinchis si conex atundji,i + 1} este o
muchie a luiG pentru orice.

TEOREMA 1.4.11. L9 Multimea binoamelor

M= U{Un—fij : reste un drum admisibil de la i la} j
i<j
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FIGURA 1.7

este baz Grobner redua a lui Js relativa la ordinea lexicografia defini&
pe S indud de ordinea natura a nedeterminatelor, ) -+ > Xp >y >

<> Y.

EXEMPLU 1.4.12. Pentru grafuls din figura 17 dag&in exemplul an-
terior, baza Gibner redus a luiJ, relativa la ordinea lexicograficeste:

{Xaxs 13,X5y1 f24,Y1Y2 f35, X5 F14, Y1 f25, f12, f15, f23, T34, f45}.
Ca o conseciidt a teoremei 1.4.11, obs&m @& orice drum admisibil a
grafului G poate fi determinat prin calculul bazei@mner redus a luiJg.

EXEmMPLU 1.4.13. FieG = Kz un graf complet bipartit cu 5arfuri
date can Figura 1.8.

FIGURA 1.8

Drumurile admisibile ale IuK3 >, excluzAnd muchiile sunt:
m=142, =152, '5=143;, mu=153;, 15=24,3,;
=253, "7h=4,15;, ig=4,2,5; g=4,3,5.
Baza Gbbner redud a unui ideal binomial muchie a unui graf complet
bipartit G= K372 este da deJg = (f14, f15, foa, f25, f34, f35,X4f12, X5 f12,
X4f13, X513, X4 T23, X5 T23, y1 fa5, Y2 f45, y3 fas5).
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1.4.3. Descompunere prima& de ideale binomiale muchie.Js este
un ideal radical 19, Corollary 2.2]. Aceasta este o conseéiatteoremei
1.4.2. Deoarece un ideal radical poate fi exprimat ca intgeseintre idea-
lele sale prime minimale, avenac

k= (] P

PeMin(JG)

unde MinJg) reprezin& multimea idealelor prime minimale ale lig.

In continuare, dorim& caracteriam idealele prime minimale ale 10
in termeni combinatorici ai luG. Pentru a realiza aceasta avem nevaie s
introducem urratoarea notatie.

Fie G un graf simplu cu multimea deéwfuri [n]. Pentru fiecare submultime
& C [n] definim un ideal primPg in modul urnator. FieGy,...,G¢.»)
componentele conexe ale IGiy), », undeG,, »» este subgraful indus de
G peste multimea dearfuri [n]\.#. Pentru 1< i < ¢(.), fie G; graful
complet peste multimea désfuri V (G;). Vom fixa

Ps(G) = ({Xi,yi}iefv‘]éy . "‘Jéc(y))'

Folosind proprietateév) a lui Jg,,, rezul @Py (G) este un ideal prim, de-
oarecels,,...,Jg , sunt ideale prime binomiale aaoor generatori apartin

unor multimi de variabile distincte.

Obser\am @, pentru orice C [n|, P#(G) D Jg si dimS/P»(G) =
Z. dlm(S/J ) unde§ este inelul polinoameldin variabilelex;,y; cu
] eV(G) Astfel obtinem &

()

dimS/Py(G) = Z(IV(G|)|+1 =c( +ZIV ) +n-|7].

TEOREMA1.4.14. L9 Fie G un graf simplu cu multimea désfuri [n].

Atunci
= () P#(G)
L]

in particular, idealele prime minimale ale luig)se af& printre idealele
prime P»(G), unde.” C [n|.

Demonstratia acestei teoreme poateaigin [19, Theorem 3.2].

COROLAR1.4.15. [L9, Corollary 3.3] FieG un graf simplu definit peste
multimea de @rfuri [n]. Atunci

dimS/Jg = max{n—|.7|+c(.) : .¥ C [n]}.
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Dac alegem¥ = 0, atunci nurarul de componente conexe a [@i
estec = c(0). Deoarece nu exigtnici-o variabildn Py(G), se poate observa
usor @ Py(G) nu este comparabil cu nici-un alt ideal prify (G) unde
< # 0. Asadar,Py(G) este un ideal prim minimal al lulg. Calcubm
dimS/Py(G) = n+c care reprezirdt valoarea maxida luin— |.7| 4+ ¢(.¥),
spre exemplu, atunciand Js este Cohen-Macaulay. Deoarede,acest
caz ,Js nu este mixt, rezudt ca toate idealele prime minimale au aceeasi
dimensiune.in particular, daé G este conex, atundg nu este mixt da&
si numai da& pentru orice ideal prim minima&. (G) al lui G, avem @&
n—|.|+c() =n+1, adicac(.¥) — |.7| = 1.

In continuare, vom prezenta o teoricare caracterizeamultimile.”
pentru care idealul prirR. (G) este minimal.

TEOREMA 1.4.16. [L9] Fie G un graf conex definit pe multimea de
varfuri [n], si fie.” C [n]. Atunci P,(G) este un ideal prim minimal al
lui Jg daa si numai daa.” = 0 sau.” este nevid si pentru fiecare € .
avem ¢\ {i}) < c(.¥).

Demonstratia poate fi gagiin [19, Corollary 3.9].

O multime . C [n] care satisface conditia teoremei de mai sus este
numitamultime de puncte-taietar lui G. Teorema ne spune simplu faptul
ca, da@ G este un graf conex, atunei, (G) este un ideal prim minimal al
lui Jg da@ si numai daa fiecard
'n.7 este un punct détetua a grafuluiGn o) (i1 -

EXeEmPLU 1.4.17.

(1) Singura multime de puncte de taigieste multimea vl pentru
grafuri completeG.

(2) Fie G = L un graf linear definit pe multimea desfuri [n] cu
etichetarea naturala \arfurilor. Atunci, o submultime nevil
& C [n] este o multime de puncte d@¢tui a luiG da@ si numai
da@d.” = {i1,...,irfcul<ip<---<ip <ngiigy1 —ig>1 pen-
tru toate 1< s<r —1. Spre exemplu, fi& = Lg graful linear cu
5 varfuri. Vezi Figura 1.9.

FIGURA 1.9

Multimile punctelor dedietu@a sunt 0{2},{3},{4},{2,4}. Asadar,
putem scrie

Jo = P@(G) N P{2}<G) N P{3}(G) N P{4}(G) N P{274}(G)
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ca pe o intersectie de ideale prime minimale coresgtoaze. Avem,
spre exempluPy, 41 (G) = (X2,Y2,%4,¥4), P2y (G) = (X2, Y2, Xaya—
X4Y3,X3Y5 — X5¥3, X4Y5 — X5Y4).

(3) Fie G un ciclu cun varfuri, G = C,. O multime nevié de puncte
de faietua.” C [n] are loc atunci and|.”| > 1 si dow elemente
I, ] €. apartin aceleiasi muchii a |@,. Jg nu este mixt deoarece
dimPy(G) = n+1 si orice alt ideal prim minimal are dimensiunea
n. Aici, spre exemplu, avem idealele prime minimale aleGui
Cs datein Figura 1.7:

Po(G), P131(G), P14y(G), P24 (G), Ppsy(G), Pas(G).
(4) FieG un graf aénd multimea varfurilof7] cain Figura 1.10.

FIGURA 1.10

Multimea punctelor dedietu@a a luiG este 0{2},{6},{2,6},{3,5},{2,4,6}.
Asadar avema&

Je = Po(G) NP2, (G) NP6 (G) NP26) (G) P35 (G) NP2,46)(G),
unde, spre exemplu,

P26} (G) = (X2,Y2, %6, Y6, X3Ya — XaY3, X35 — X5Y3, X4Y5 — X5Y4).

Calcum simplu @ dimS/Jg = 8 pentru valoarea maxiana
lui n—|.|+c(¥) when. = 0.

1.4.4. Rezoldtiile libere graduate minimale ale anumitorideale bi-
nomiale muchie. Vom considera idealul binomial muchie al grafului li-
near. FieG = Ly graful linear cun varfuri SiE(G) = {{i,i+1} :1<i <
n—1}.

Asa cum am uzut deja, generatorii = f1o, f23,..., fa_1n ai lui Jg,
formeaa o secverd regulad in S Asadar, complexul Koszuk,(f) ne
conduce la rezolutia libérgradua minimak a luiS/J,, :

Ke(f):0—=Kno1(f) = = Kj(f)--- = Ke(f) > Ko(f) =S— S/, = 0.
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S-modululK;(f) este &j-a putere exterioaraS-modulului liber de rang
n—1de baaey,...,e,_1. Deci,Kj(f) este de asemenea liber peStde

rang(”]l) si baz
{egA-ng i l<ip < <ijp<n—1}.
Deoarece vremasavem toate magile din rezolutia de mai sus de graf
0, vom luaK;(f) = S(—2j)(n}1), pentru oricej. Asadar,

n—1 -
Bij(S/d,) = {(() ) Jaﬁfj;,

Pe de ak parte, generatorii lui in(J.,,) au aceeasi proprietate, prin-
cipal formeaa o secverd reguladin S. Aceasta implié faptul @ avem o
rezolutie similaé pentruS/in-(J.,,). Pentru regularitate avem

regS/J., =reg(S/in.(J,,)) =n—1.

Consideam, acum, idealul binomial muchie al unui graf complet. Fie
G = K, graful complet definit pe multimea dé~furi [n]. Asa cum am mai
vazut,in acest cazJk, coincide cu idealul tuturor minorilor de ordin 2 ai
matriceiX a crei &nduri suntxy,..., X, Siyi,...,Yn. Rezolutia luily(X)
este cunoscat anume ea este complexul Eagon-Northcott, dar noi dorim
sa ne restingem la a @ta @ B (S/in<(J,)) = Bij (S/k,) Siin acest caz,
fara a folosi complexul.

Vom incepe prin a observaadn.(Jk,) = (Xiyj : 1 <i < j<n) are
coeficienti lineari da& ordor@m generatoriidi intr-o ordine descreatoare,
relativ la ordinea lexicograficindus dex > --- > X, > Y1 > -+ > Yn. Prin
urmare,S/in<(Jk,) si, in consecird, S/Jk, are o rezolutie linea, prin co-
rolarul 1.2.6. Prin remarca 1.2.4, numerele Betti al&Slhik, $i S/ in<(Jk,)
sunt determinate de seriile lor Hilbert. D8fJk,, si S/in<(J,) au aceeasi
serii Hilbert. DeciS/Jk, si S/in<(J,) au aceleasi numere graduate Betti.



CHAPTER 2

Numere Betti extremale pentru unele clase de ideale
muchie binomiale

In [14], autorii emit ipoteza & numerele Betti extremale ale 14 si
in<(Jg) coincid pentru orice grab. Aici, < semnifi@ ordonarea lexicogra-
ficain S= K|xq,...,Xn,Y1,...,Yn] indusa de ordinea naturala variabilelor
X1>...>X% >Y1> ... > Y

In aceasd sectiune, vom da uréspuns pozitiv la aceasta conjeéur
pentru cazul &nd grafulG este un graf bipartit complet sau ciciin acest
sens, folosim unele rezultate demonstiatg29] si [32] care caracterizeaz
complet rezolutia idealului muchie binomid cand G este ciclu sau un
graf bipartit complet.In particular,in acest caz, rezdtca Js are un unic
numar Betti extremal. Amintim toate aspectele cunoscute paivezolutia
idealelor muchie binomiale ale grafurilor bipartite coeel si ciclurilor.

Studiem idealul initial pentrds undeG este un graf bipartit sau un
ciclu. Arattm @& projdimin. (Jg) = projdimJg si regin. (Jg) = regJg, Si
prin urmare, in(Jg) are un unic nurér Betti extremalln final, ag&&m c
numarul Betti extremal pentru in(Jg) este egal cu cel al Iuls.

Dupa cunostiintele noastre, aceasta este pfimtarcare de a dovedi
conjectura considerain [14] pentru numerele Betti extremale.

In studiul nostru, vom profita de rezultatele cunoscuteipdivezolutiile
idealelor muchie binomiale asociate ciclurilor si grafurbipartite com-
plete si de faptul & idealele lor initiale au propriati interesante.
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2.1. Ideale muchie binomiale asociate grafurilor bipartie complete

Fie G = Kmn un graf bipartit complet pe multimea de noduri

{1,....mfu{m+1,..., m+n} with m>n> 1 sifieJs idealul muchie
binomial asociat.

Je este generat de toate binoaméle= Xjy; — Xjy; unde 1<i <msi
m-+1< j <m+n. In [29, Theorem 5.3] se aratta diagrama Betti pentru
S/Jc are forma

‘o 1 2 ... p

o1 0 0 -- 0

10 mn O 0
2/0 0 Poa - Bppi2
- m, ifn=1,
undep:prOJdlmS/JG:{ omin—2. ifn>1

In particular, din diagrama Betti de mai sus putem citiS#Jg are un
unic numar Betti extremal, si anunfg p, .

In plus,in [29, Theorem 5.4] sunt calculate toate numerele Betti pentru
S/Js. Din moment ce suntem interesati doar de auwh Betti extremal,
amintim aici valoarea sa, asa cum a fostdaf29, Theorem 5.4], sianume,

_f m=-1 ifp=m,
Bpprz= n—1, if p=2m+n-2.

Se poate vedea cu usuring@drumurile admisibile ale grafului complet
G = K n sunt doar muchiile luG, de formai,m+k,j cu 1<i< j<m,

1 <k<m,sidrumurile de forman+i,k,m+jcul<i<j<n 1<k<m
Prin urmare, vom obtine uratoarea consecinta la teorema de mai sus.

CoOROLAR2.1.1. Fie G= K un graf bipartit complet cu multimea de
noduriV(G) ={1,...,mfuU{m+1,...,m+n}. Atunci

iNc(Jg) = ({XYj}  a<iem > {XXmakYj ba<icicm, {Xmr1YkYmij a<ici<n)-
m+-1<j<m+-n 1<k<n 1<k<m

2.2. ldeale muchie binomiale asociate ciclurilor

In aceast sectiuneG semnifi@& unn—ciclu pe multimea de nodufn|
cu muchiile{1,2},{2,3},...,{n—1,n},{1,n}.
In [32] s-a demonstrat&diagrama Betti pentr8/Js are forma
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01 2 3 n
0O |1 0 O 0 0
1 /0n O 0 0
2 |00 Bg O 0
3 /00 0 P 0
n-2/0 0 Bz,n BS,n+1 Bn,2n72

si s-au calculat toate numere Betti.
Se vede & avem un unic nuar Betti extremal si, dind2], avemf, on—2 =

(") -1

Acum ne uiam la idealul initial al luiJg.

Este evident din definitia 1.4.9 si din etichetarea ndduhii G ca dru-
murile admisibile sunt muchiile IU6 si drumurile de form&i—1,...,1,n,n—
1....j+lcu2<j—i<n-2

Prin urmare, vom obtine uratorul sistem de generatori pentru idealul
initial al lui Jg.

COROLAR 2.2.1. Fie G un n—ciclu cu etichetarea natugab nodurilor
sale. Atunci

iNc(Jg) = (X1Y2; - - - s Xn—1Yn: XtYn, {XiXj+1- - - XnY1- - - Yi—1Yj }2<j—i<n—2)-

2.3. Numere Betti extremale pentru grafurile bipartite

Fie G = Kmn un graf bipartit complet cu multimea de nod{ti ..., m}u
{m+1,....m+n}jcum>n>1 sifie Jg idealul muchie binomial aso-
ciat. Idealul initial in-(Jg) are o proprietate interesa@ntare este stabidit
in propozitia urnatoare.

PropPoOzITE 2.3.1. Fie G= Ky un graf complet. Atundn.(Jg) are
caturi liniare.

TEOREMA 2.3.2. Fie G= Kmy un graf complet. Atunci

. I+j—m—2
prainGe)= 3 (1)
1<i<m
m+1<j<m+n
21§i<j§m (n+kij73), ifn= 1,
143 in JG — 1<k<n o . .
Btt+( <( )) zlgq_gm(n—kk—tu 3)+21§i<j<n (m+k;H 3)7 ifn> 1.
1<k<n 1<k<m
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In particular, din teorema de mai sus, reaultrmatorul corolar care
ara@ ca pentr = Ky n numerele Betti extremale ale I8/ Jg $iS/in< (Jg)
coincid.

COROLAR 2.3.3. Fie G = Kmp un graf complet. Atunci:

(@) projdim(s/ in. () = projdimin. (de))+ 1 { 5
(b) S/in-(Jg) are un unic numar Betti extremal, si anume

Boa-(S/in- () = Po-s-alin-(e) = { I~ {7

2.4. Numere Betti extremale asociate ciclurilor

In aceast sectiune, grafuG este unn—ciclu. Da& n = 3, atunciG
este un graf complet, prin urmare idealétesi in- (Js) au aceleasi numere
graduate Betti. Astfelin continuare, putem considema> 4.

Asa cum am azut deja Corollary 2.2.1, inJs) este minimal generat
de monoamele initiale ale binoamelor coresgtoare muchiilor UG Si
dem=n(n— 3)/2 monoame de grag 3 care ne indigvy, ..., vy in cazul
in care vom presupuné&da@i < j, atunci fie deg; < degvj sau deg; =
degvj SiVvi > Vvj. Sa obseram @ da@ Vi = XiXj+1---Xny1---Yi—1Yj, avem
degiy=n—j+i+1.

Prin urmare, exist dold monoame de grad 8i anumey; = X1XnYn_1
Si Vo = XoY1Yn, trei monoame de grad 4, Si anumeg = X1Xn—1XnYn—2,V4 =
X1XnY1Yn-1, V5 = X1Y1Y2Yn, €tc.

Vom introduce urratoarea notatie. Stabilith= (X1Yy2,X2Y3, ..., Xn—1Yn),
| =J+ (Xayn), Si, pentru I< k< m, Iy, = lx_1+ (), culg=1. Prin urmare,
Im= in<(JG).

LEMA 2.4.1. |dealele &t J: (x1yn) Si lk_1: (W), pentru k> 1, sunt
minimal generate de secvente regulate de monoame, devengt 1.

OBSERVATIE 2.4.2. Dinlema de mai sus, refined, da@vy = XiXj+1- - - Xny1
atunci sirul regulat de monoame care geneid@az : (vi) continej —i—2
monoame de grad 2 gi— j+i+ 1 variabile.

In urmatoarea lera vom calcula dimensiunea proiectigi regularitatea
pentruS/I.
Aceasta ne va fi util pentru studiul inductiv al invariaatilui S/I.

LEMA 2.4.3. AvemprojdimS/l =n—1sgiregS/| =n—2.
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2.4. Numere Betti extremale asociate ciclurilor 31

LEMA 2.4.4. Pentrul < k < m, avemprojdimS/lx < n siregS/lx <
n—2.

PROPOZITE 2.4.5. projdin®/in.(Jg) =nsiregS/in.(Jg) =n—2.

TEOREMA 2.4.6. Fie G un ciclu. Atunci gin.(Jg) si S/Jc au acelagi

nurér Betti extremal, si anum@h 2n—2(S/Js) = Bn2n-2(S/in<(Jg)) = (”51) —
1.

OBSERVATIE 2.4.7. Exish exemple de grafuri, pentru care idealul mu-
chie asociat are mai multe numere Betti extremale. De exengpaful
G afisat mai jos are d@unumere Betti care sunt egale cu numerele Betti
extremale pentru in(Jg).






CHAPTER 3

Asupra idealelor binomiale muchie asociate grafurilor
bloc

In acest capitol studiem proprétle omologice pentru unele clase de
ideale muchie binomiale.

Fie G un graf simplu pe multimea de nodimj si fie S=K|[Xa, ..., Xn, Y1,---,Yn]

inelul polinoamelofin 2n variabile peste un corld. Aratam @ da@ G
este un graf bloc, dept8/Js) = deptHS/in-(Jg)).

De asemenea agh o egalitate simila pentru regularitate, si anume
regS/Jg) =reg(S/in-(Jg)) = ¢ da@ G esteC,-graf.

GrafurileC, constituie o subcldsa grafurilor blocin [21] s-a a&tat &,
pentru orice graf cone pe multimea de nodufn|, avem

¢ <reg(S/Js) <n-—1,

unde/ este lungimea celui mai lung drum al IGi

Principala motivatie a lué@rii noastre a fostaraspund la urnatoarea
intrebare.

Putem & caracteriam grafurile conex& pentru care cel mailung drum
indus are lungimed&si req'S/Jg) = ¢(?

Am reusit & raspundem la aceasintrebare pentru arbori. Aam @&
da@T este un arbore pentru care cel mai lung drum indus are lusgime
atunci reqS/Jr) = ¢ da@ si numai da& T este 'caterpillar’.

Un arbore 'caterpillar’ este un arbofecu proprietatea@acesta contine
un drumP astfel @ orice nod al Iuil este fie un nod al IR fie este adiacent
la un nod al luiP.
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In [22], au fost introduse asa numitele grafuri slabhise. Acesta este
o clas de grafuri care includ grafurilchise. In lucrarea citad, s-a de-
monstrat @ un arbore este 'caterpillar’ dagi numai dag& este un graf slab
inchis.

Avandin vedere teorema Theorem 3.2.1 si teorema 3.2L6h are
afirma @ redS/Jg) = ¢ dacaG este un grainchis conex pentru care cel mai
lung drum indus are lungimea si pe baza unor experimente de calculator,
suntem tentati&dformubim urn@toarele.

CONJECTURE3.0.8. Daca G este un grainchis slab conex pentru care
cel mai lung drum indus are lungiméaatuncireg(S/Jg) = ¢.

Amintim la inceput éteva definitii de ba&din teoria grafurilor.

Un nodi al lui G a crui stergere din grafaun graf cu mai multe
componente conexe &G se numestpunct de dietura al lui G. Un graf
cordal este un grafdra cicluri de lungime mai mare sau egal cu 4

Clica unui grafG este un subgraf complet al I@. Clicile unui grafG
formeaa un complex simplicialA(G), care se numesteomplex cli@ al
lui G. Fatetele acestuia sunt clicile maximale aleGui

Un graf G este ungraf bloc daca si humai daceste cordal si fiecare
doua clici maximale au cel mult un ndd comun.

Complexul cli@A(G) al unui graf cordals are proprietateagcexisa o
ordine fruna pe fatetele sale. Aceastiasseama @ fatetele IUiA(G) pot fi
ordonate astfdf,, ..., astfel inét, pentru fiecare> 1, F; este o fruna a
complexului simplicial generat d&,...,F.

O frunza F a complexului simplicialA este o fatet pentruA cu propri-
etatea & exist o alk fateh a luip, s zicemG, astfel inét, pentru orice
fate@H #F aluiA,HNF C GNF.

3.1. Ideale initiale pentru ideale muchie binomiale asoate grafurilor
bloc

In aceast sectiune, ldnceput demonsim @&, pentru un graf bloG
pe [n] cu c componente conexe avem de@hlg) = depth(S/in<(Jg)) =
n+ ¢, unde< semnifi@ ordonarea lexicograhdndusa de; > -+ > X >
y1 > - >Yypininelul S=Kixg,...,Xn,Y1,--.,Yn)-

Vom incepe cu urratoarea lera.

LEmMA 3.1.1. Fie G un graf pe multimea de nodujm] si fie i< [n].
Atunci
in<(Jg, X%, Y1) = (iIN<(Js), %, ¥i)-
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TEOREMA 3.1.2. Fie G un graf bloc si fie ¢ nuarul de componente
conexe ale lui G . Atunci

depth(S/Jg) = depth(S/in-(Jg)) = n+c.

Fie G un graf conex pe multimea de nod{m] care constin

(i) un sir de clici maximaleF,...,F, cu dimF > 1 pentrui astfel
incat|F NFi1| =1 pentru I<i </—1 siFNFj; = 0 pentru orice
i < jastfelincat j #i+ 1, impreura cu

(i) cateva muchii aditionale de fornka= {j,k} undej este un punct
de intersectie a doua clici consecutiyel . pentru unele Ki <
¢—1, sik este un nod de grad 1

Cu alte cuvinte( este obtinut dintr-un grafl cuA(H) = (Fy,...,F) a
carui ideal muchie binomial este Cohen-Macaulay (vé&2j Theorem 3.1])
prin atasarea de muchii punctele de intersectie ale fatetelorAfH ).

Prin urmareG arat ca graful afisain Figure 3.1.

NZNINZ N

FIGURA 3.1. Cy-graph

Un astfel de graf are, evident, proprietatéadcumul §wu indus cel mai
lung are lungimea egalcu/. Daca un graf conexG satisface conditiile de
mai sus (i) si (ii), spunema&G este urs,-graf. In cazulin care dinF =1
pentru 1< i </, atunciG se numestgraf 'caterpillar’.

Vom retine de asemenea orice%,—graf este cordal si are proprietatea
ca oricare doa clici maximale distincte se intersectéaa cel mult un nod.
Deci, unC,-graf este un graf bloc conex.

TEOREMA 3.1.3. Fie G un%,-graf pe multimea de noduf]. Atunci

regS/Jg) =reqgS/in.(Jg)) =¢.
ExeEmMPLU 3.1.4. Pentru grafub din Figure 3.1 obtinem ré®/Js) = 5.
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3.2. Ideale muchie binomiale asociate arborilor 'caterpilar’

Matsuda si Murai au demonstrat [20] ca, pentru orice graf conex
G pe multimea de nodufi], avem/ < reg(S/Js) < n— 1, unde/ repre-
zinta lungimea celui mai lung drum indus al IGi, si au emis ipotezag
regS/Js) =n—1da@ si numai dag T este un graf linie.

Mai multe luciri recente sunt preocupate de aceasta congectezi,
de exemplu, 16, [29)], si [27].

Se poaténtreba cum se caracteriz@agrafurile conexe pentru care cel
mai lung drum indus are lungiméasi req S/Jg) = /.

In aceast sectiune, vomaspunde la acedsintrebare, pentru cazul ar-
borilor.

Un arbore 'caterpillar’ este un arbofecu proprietatea@&acesta contine
un drump astfelincat orice nod al luil’ este fie un nod al I sau adiacent
la un nod al luiP. In mod clar, orice arbore ’caterpillar’ este @fi-graf
pentru unintreg pozitive/.

FIGURA 3.2. Caterpillar

FIGURA 3.3. Induced graph H
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3.2. Ideale muchie binomiale asociate arborilor 'caterpilar’ 37

Arborii ‘caterpillar’ au fost studiati pentru prima aade Harary si Schwenk
[17]. Aceste grafuri au aplicatin chimie si fizi@ [12]. In Figure 3.2, este
afisat un exemplu de arbore 'caterpillar’.

Retineti @ orice arbore 'caterpillar’ este un graigustin sensul dat de
Cox si Erskine 9.

Reciproc, se poate observa usararice arbore ingust este un arbore
‘caterpillar’.

In plus, du@ cum s-a observan [21], un arbore este un graf 'caterpil-
lar’ daca si numai da& este slalinchisin sensul definitiei datin [21].

In urmatoarea teored caracteriam arboriiT cu redS/Jr) = ¢ unde?
este lungimea drumului celui mai lung indus alTui

TEOREMA3.2.1.Fie T un arbore pe multimea de nodi{mj pentru care
drumul cel mai lung indus P are lungiméaAtuncireg(S/Jr) = ¢ da@& si
numai da@ T este 'caterpillar’.






CHAPTER 4

|dealele binomiale muchie si scrol normal rational

Fie K un corp siS= K|Xxy,...,Xn+1] inelul polinoamelofin n+ 1 varia-
bile K. Minorii de ordinul 2 ai matricei

X — ( X1 ... Xp1 Xn )
Xo ... Xn Xn+1

genereaz idealullx pentru curba normalrationah 2" C P". Este bine
cunoscut & S/lx este Cohen-Macaulay si are o rezolgidiniara.

Recomandm cititorului referintele 10], [4], [1] pentru propriedtile
idealului asociat unui scrol normal rational.

Pe de ali partejn ultimii ani, idealele muchie binomiale au fost intensiv
studiate.

In analogie cu constructia idealelor muchie binomialsick,in aceast
lucrare considérm urn@toarele idealén S. Pentru un graf simpl@ pe
multimea de nodurjn], fie I idealul generat de minorii de ordinul g =
XiXj+1— XjXi+1 pentruX cui < j si{i, j} € E(G).

Denumimlig idealul muchie binomial pentru X.

Este clar de la inceputacspre deosebire de cazul clasic al idealelor
muchie binomiale, idealuls depinde puternic de etichetarea grafului
De exemplu, da&G este graful afisdh Figure 4.1, obtinem dif%/lg) =3
pentru etichetaretn Figure 4.2 (a) si dirf5/1g) = 4 pentru etichetarea lui
G datin Figure 4.2 (b).

Totusi, pentru unele clase de graf@icare admit o etichetare natuaal
putem & asociem luG un unic ideal g si S3-i studiem propriéttile. Acesta
este cazul, de exemplu, pentru grafutilehise.
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Reamintim din 19] ca G esteinchis da&@ are o etichetartn raport cu
care esténchis.

Un graf G se numesténchisin raport cu o etichetare datla@ pentru
toate muchiile{i, j} si{i,k} cuj >i < ksauj <i>k,avem{j,k} € E(G).

FIGURA 4.1
3 5 2 5
2 4 3 4
1 6 1 6
(a) (b)
FIGURA 4.2

Un grafinchisG este cordal si, prin urmare, din teorema Dirac, complex
clica saA(G) este o cvasi-fpdure.

A(G) este o cvasi-pdure daa fatetele, ...,/ of A(G) au o ordonare
frunza.

S-a demonstrdn [14] ca da@ G esteinchis, atunci putem eticheta no-
durile lui G astfelincat fatetele IUA(G), sa zicemFy, ..., F, sa fie intervale,
F = [aj,bi] C [n] si da@ ordonant, ..., F astfelincata; < ax < --- < &,
atunci aceasta este o ordonare fianz

In continuare, acest capitol este structuratalopm urmeaa.

In Section 4.1, a&tam @& da@ generatorilg formeaa o baa Grbbner
in raport cu ordinea invers lexicogradida@ si numai da&G esteinchis cu
etichetarea dat

Ca o conseciid a acestei teoreme, deduceapentru un grainchisG,
idealullg este Cohen-Macaulay de dimensiung 4, undec este nurarul
de componente conexe ale (Bi

In Section 4.2, studiem propréagtle lui lg pentru un grafnchisG. Cal-
culam idealele prime minimale ale Ilg Tn Theorem 4.2.2. Folosind aceast
teorend, caracteriam aceste grafuinchise conex& pentru cardg este
un ideal radical (Proposition 4.2.3). Suplimentaat@min Corollary 4.2.4,
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ca lg este intersectie completda@ G este conectat gichis. In ultima
parte, la Section 4.2,an o margine supericamentru regularitatea lug
(Theorem 4.2.7) si demonatn @ lgare o rezolutie liniax da@ si numai
da@ G este un graf complet.

4.1. Baze Gbbner

Fie G un graf pe multimea de nodun] silg C S=K]|xg,...,X,] idealul
sau asociat. Rezultatul principal al acestei sectiuni estétorul.

TEOREMA4.1.1. Generatorii lui I formeaa o baa Grobner redua a
lui I Tn raport cu ordonarea invers lexicografigndusa de x> - - - > Xp >
Xn+1 dac si numai daé G esteinchisin raport cu etichetarea sa.

La fel cain cazul idealelor muchie binomiale clasice asociate gilafy
idealullg undeG este graful linie pe& noduri are propriéti interesante.

Fie G un graf linie peln] cuE(G) = {{i,i+1}:1<i <n-—1}. Atunci
I este minimal generat d@); j+1 = Xi2+1 —XXi+2:1<i<n}siine/lc) =
(x5,%5,...,%2). Asx3,x2 ... X2 este 0 secventa reguldh S, rezulé G ge-
neratorii luilg formeas de asemenea o secvemegulad. Prin urmare,
complexul Koszul al generatorilor lug furnizeaa rezolutia libea mini-
mala pentruS/Ig pesteS.

Propozitia urmatoare arat G, pentru un grainchisG, idealul initial al
lui I Tn raport cu ordonarea invers lexicografi@re o structura simpla.

PRoPOZITIE 4.1.2. Fie G un grafinchis pe[n] cuA(G) = (Fy,...,R)
unde k= [a,bj] pentrul <i<r sil=a < --- <a < b, =n. Atunci
inrev(lg) este un ideal monomial primar, prin urmare este Cohen-Maapaul

COROLAR 4.1.3. Fie G un grafinchis. Atunci ¢ este un ideal Cohen-
Macaulay cudim(S/Ig) = 1+ ¢ unde c este nuanul de componente conexe
pentru G.

4.2. Proprietati ale idealelor muchie binomiale scrol asociate
grafurilor inchise

In aceast sectiune studieméateva propriet ti algebrice si omologice
ale idealuluilg undeG este un grafnchis pe multimea de nodun).
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4.2.1. ldeale prime asociate grafurilor. Reamintim @& lx semnifi@&
idealul muchie binomial asociat grafului comphkgt. Este cunoscutalx
este un ideal prim.

PROPOZITE 4.2.1. Fie G un graf arbitrar conectat pe multimea de no-
duri [n]. Atunci I este un ideal prim minimal al lug. Daca P este un ideal
prim minimal al lui Iz care nu contine variabile, atunci 2 Ix.

In continuare ne concefdm studiul pe idealele asociate cu grafurile
inchise conexe.

TEOREMA 4.2.2. Fie G # K, un grafinchis conex pe mulfimea de no-
duri [n] si Ig idealul asociat. Atunci

ASS(S/|G) = Min(lg) = {|x, (Xz, . ,Xn)}.

Ca o consecitd la teorema de mai sus, putem caracteriza idealul radical
Ig.

PrRoOPOzITE 4.2.3. Fie G un grafinchis conex pe multimea de noduri
[n]. Atunci | este un ideal radical daécsi numai daé G = K, sauA(G) =
<[17n_1]7 [27n]>

Theorem 4.2.2 are uraoarea conseciajnteresard.

COROLAR4.2.4. Fie G un grafinchis conex. Atuncil este intersectie
compled.

4.2.2. Regularitate. Fie G un grafinchis pe multimea de nodun) si
Ic C Sidealul asociat. Priméntrebare este sub care conditii pentru graful
Gidealullg are o rezolutie linia.

Propozitia urmtoare aspunde la aceasintrebare. Avem nevoign
primul rand de urratoarea afirmatie.

LEMA 4.2.5. B, Exercise 4.1.17 (c)Fie R= K|xq,...,X]/I un inel
omogen Cohen-Macaulay. Inelul R are o rezolutie m-liaidaca si numai

daci Ij = 0 pentru j< m sidimk Im = (™" 97%) unde g= height .

PrRoPOzITE 4.2.6. Fie G un grafinchis pe[n]. Atunci urrmétoarele
afirmatii sunt echivalente:

(a) G este un graf complet;
(b) I are o rezolutie liniag;
(c) Toate puterile lui & au o rezolutie liniad.

Teorema urratoare @ o margine superioarpentru regularitatea Il
candG este un grafnchis.
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TEOREMA4.2.7.Fie G un grafinchis pe multimea de nodyni]. Atunci
regS/lg) < runde r este nu@rul de clici maximale ale lui G

OBSERVATIE 4.2.8. Marginea supericardin teorema de mai sus este
stricta.

In adevar, fie G un grafinchis cu clicile maximalds = [g;,a 1] unde
l=agy<ay<--<a <ay1=nInacestcaz, avem

inrev(lG) - (X27 e 7X612)2 + (Xaz+17 e axag)z + e + (X&(—O—l? e 7Xn)2-
Prin urmare,

S/(inrev(lG), X1, Xn 1) = (S1/ (X2, - -, Xap)?) @K *++ Rk (S/ (Kag 41, - - -+ %n)?)

unde§ = K[Xa+1,-.-,%a,,] PENtru tofii, ceea ce implia
r

Hs) (inreu(ic) x1. 0.0 (1) = _|'!(1+ (aiy1—at).

Aceasta ar@taregS/lg) =r.

Din Proposition 4.2.6 si Theorem 4.2.7, deducematoarea conseciat

COROLAR4.2.9. Fie G un grafinchis cu doa clici maximale.
Atuncireg(S/lg) = 2.

Exemplul urnator aratlu a @ inegalitatea datin Theorem 4.2.7 este
stricta.

ExeEmMPLU 4.2.10. FieG un grafinchis pe multimea de noduj] cu
clicile maximaleF; = [1,4], F, = [3,5], si Fs = [4,6]. Avem redS/lg) =
2<3.
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Concluzii si dezvoltari ulterioare

In rezumat, principalele rezultate ale tezei suntamarele.

1. Am a@atat @, da@ G este un graf complet bipartit sau ciclu, atunci
idealul binomial asociadg si idealul s initial in.(Jg) Tn ra-
port cu ordonarea lexicografién S= K|x1,...,Xn,Y1,...,Yn] @U
aceleasi numere Betti extremale.

2. Da@G este un graf bloc pe multimea de nodunii atunci

depth(S/Jg) = depti{S/in-(Jg)) = n+ c undec este nurarul
de componente conexe pentu

3. Da@ G este urCy-graf, atunci re¢S/Jg) = reg(S/in-(Jg)) = ¢.
In particular, rezuli ca idealul binomial muchie al grafulGj are
o regularitate minima.

4. Am caracterizat arborii pentru care idealele binomialeiie au
regularitate minima.

5. Am introdus idealele binomiale muchie ale grafurflechise aso-
ciate cu scroluri si am studiat mai multe propéigtalgebrice si
omologice ale lor.

Idealele binomiale muchie au fost intensiv studiateltimii 5 ani.
Intentioram s contin@m cerceldrile pe aceaatten@ cu o focalizare
speciala pe conjectura lui Matsuda si Mur20] care stabileste& pentru
un grafG pe multimea de nodufn|, avem re¢S/Js) = n— 1 da@ si numai
da@ G este un graf linie. A
Aceasé conjectud a fost demonstratpentru grafurile bloén [16]. In
particular, rezubh G aceast conjectua este valabil pentru arbori.
O alta problena interesard este rezolvarea conjecturii pentru idealele
binomiale muchie cu regularitate mininéalpe care am propusto [8].
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In plus, am dori & extindem cercetarea asupra idealelor binomiale mu-
chie asociate cu scroluri. De exemplu, o directie esgeneraliam constructia
noasté la perechea de grafuri pentru matricea Hankel de tip arhitmarind
ideile din lucrarealq|.
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