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TEZĂ DE DOCTORAT
(Rezumat)
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Prefaţă

Scopul principal al lucr̆arii de faţ̆a este reprezentat de studiul idealelor
binomialeı̂n inele de polinoame ce provin din combinatorică.

Printr-un graf simpluG definit pe muţimea de v̂arfuri [n] vom ı̂nţelege
un graf neorientatG făr̆a bucle şi f̆ar̆a muchii multiple. Villareal [30] a in-
trodus noţiunea de ideale monomiale muchieI(G) asociate cu graful simplu
G ı̂n inelul de polinoameK[x1, . . . ,xn] ı̂n n variabile peste corpulK. Idealul
monomial muchieI(G) este generat de toate monoamelexix j undei < j,
iar {i, j} este o muchie a luiG. Într-un mod similar, se poate defini idealul
binomial muchieJG ⊂ S= K[x1, . . . ,xn,y1, . . . ,yn] asociat grafuluiG drept
idealul generat de toate binoamelefi j = xiy j − x jyi, undei < j, iar {i, j}
este o muchie a grafuluiG.

Idealele binomiale muchie au fost introduse pentru prima dată ı̂n [19] şi
[22] (independent şîın acelasi timp). Autorii din [19] au obţinut o serie de
rezultate interesante privind bazele Gröbner, descompunerea primară şi ide-
alele prime minimale ale idealelor binomiale muchie.În continuare, multe
alte lucr̆arii de cercetare au abordat subiectul idealelor binomialemuchie.
Un efort deosebit a fost realizatı̂n studiul propriet̆aţii Cohen-Macaulay a
idealelor binomiale muchieJG [14, 23, 31], relaţiile syzygies pentruJG
ı̂mpreun̆a cu regularitatea sa [20, 25, 27, 16, 29, 32]. Importanţa studiu-
lui idealelor binomiale muchie se datorează faptului c̆a acestea au anumite
aplicaţii ı̂n algebra statistic̆a [19, 13, 24, 28].

În cadrul aceastei lucrări vom avea doŭa direcţii importante. Prima
const̆a ı̂n descrierea proprietăţilor omologice ale unor clase de ideale bi-
nomiale muchie, anume cele asociate cu grafuri complete bipartite, cicluri
şi grafuri de tip bloc. A doua direcţie se preocupă cu studiul unei clase de
ideale binomiale asociate cu scrolls. Lucrarea de faţă va fi constituit̆a, ı̂n
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principal, din rezultatele originale obţinuteı̂n cadrul lucr̆arilor [9], [7] şi
[8].

În continuare, vom prezenta structura acestei lucrări.
În Capitolul 1 vom prezenta noţiunile şi rezultatele fundamentale nece-

sarêınţelegerii depline a acestei lucrări. Vom urm̆ari ı̂n principal urm̆atoarele
cărţi [11, 13, 18]. Vom aminti o serie de definiţii de bază şi noţiuni bine cu-
noscute despre ideale monomialeı̂mpreun̆a cu o serie de concepte cum ar fi
rezoluţia minimal̆a liber̆a şi descompunerea primară. Vom prezenta o scurtă
introducere a caracteristiciilor importante ale teoriei bazelor Gr̈obner, inclu-
siv criteriul şi algoritmul Buchberger.

În partea a doua a acestui capitol, vom urmări proprietaţile importante
ale idealelor muchie binomiale, care vor reprezenta problematica principal̆a
a acestei lucr̆ari, şi vom considera o serie de exemple de ideale binomiale
asociate cu grafuri liniare şi grafuri complete. Această parte estêın princi-
pal bazat̆a pe lucrarea fundamentală [19] ı̂n care s-au introdus idealele mu-
chie binomiale. Vom studia grafuriG din care generatoriu vor forma baze
Gröbner ordonate lexicografic odată ce avem o etichetare dată a v̂arfurilor
lui G şi vom prezenta o metodă din combinatoric̆apentru identificarea bazei
Gröbner reduse a oricărui ideal muchie binomială. Într-un final, vom aminti
cum idealul prim minimal al luiJG poate fi obţinut din anumite submulţimi
ale v̂arfurilor lui G.

Capitolul 2 este bazat pe lucrarea proprie [9]. În acest capitol, sunt
studiate numerele Betti extremale ale unor clase de ideale binomiale mu-
chie. Vom demonstra că idealul binomial muchieJG ı̂mpreun̆a cu idea-
lul sau iniţial in<(JG) relativ la ordinea lexicografic̆a au aceleaşi numere
Betti extremale pentru grafuri complete bipartite, şi cicluri. Aceasta este
un r̆aspuns pozitiv parţial pentru conjectura propusă ı̂n [14] care spune c̆a,
pentru orice grafG, JG şi in<(JG) au aceleaşi numere Betti extremale. Vom
utiliza avantajele date de anumite rezultate cunoscute despre rezoluţia luiJG
dateı̂n [29] şi [32]. În primul rând, vom ğasi muţimea de generatori mini-
mal̆a pentru idealele iniţiale pentru aceste grafuri, folosind teorema 1.4.11,
care caracterizează ı̂n termeni de drumuri admisibile, baza Gröbner redus̆a
a lui JG relativă la ordinea lexicografic̆a ı̂n inelul S. Propoziţia 2.3.1 arată
că in<(JG) are coeficienţi lineari dacăG este un graf complet bipartit. Pen-
tru ideale monomiale cu coeficienţi lineari, se poate calcula uşor, nume-
rele Betti. Aşadar, vom putea calcula toate numerele Betti graduate ale
lui in<(JG) pentru graful complet bipartit; vezi teorema 2.3.2.În conti-
nuare vom ar̆ata c̆a projdimin<(JG) = projdimJG şi reg in<(JG) = regJG,
şi, prin urmare, in<(JG) au un num̆ar Betti extremal unic, precum şiJG.
Într-un final, vom ar̆ata c̆a numerele Betti extremale ale lui in<(JG) sunt
egale cu cele ale luiJG; În timp ce, pentru grafuri complete bipartite, ca
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săajungem la această concluzie nu a fost foarte dificil, pentru cicluri avem
nevoie de o tehnic̆a puţin mai avansată. Pasul iniţial, similar pentru cazul
grafurilor complete bipartite, constă ı̂n identificarea generatorilor minimali
monomiali ai lui in<(JG) undeG este unn–ciclu dotat cu o etichetare natu-
rală a v̂arfurilor sale. În aceasta situaţie, vom folosi un argument inductiv
(lema 2.4.1 şi lema 2.4.3) pentru a calcula dimensiunea proiectivă şi re-
gularitatea lui in<(JG). Într-un final, ı̂n teorema 2.4.6, vom arăta c̆a JG şi
in<(JG) au aceleaşi numere Betti extremale.

În Capitolul 3, vom studia idealele binomiale muchie a grafurilor de tip
bloc. Acest capitol se bazează pe lucrarea realizată ı̂n colaborare [8]. Printr-
un graf de tip blocG vomı̂nţelege un graf cordal având propriet̆aţile c̆a este
cordal şi c̆a orice doŭa clici maximale se intersectează ı̂n maxim un varf.
În ajutorul conjecturii din [14], vom demonstra,̂ın teorema 3.1.2, c̆a, pen-
tru un graf de tip blocG, depth(S/JG) = depth(S/ in<(JG)) = n+ c, unde
c este num̆arul componentelor conexe ale luiG. Vom demonstra o ega-
litate similar̆a pentru regularitate, anume reg(S/JG) = reg(S/ in<(JG)) =
ℓ dac̆a G este unCℓ-graf undeℓ reprezint̆a lungimea celui mai lung drum
indus al luiG. Cℓ-grafuri constituie o subclasă a grafurilor de tip bloc.̂In
[20], Matsuda şi Murai demonstrează c̆a, pentru orice graf conexG, avem
căℓ≤ reg(S/JG)≤ n−1. Aşadar, vom concluziona prin faptul căCℓ-grafuri
au regularitate minimală.

Scopul principal al acestei lucrări este de a da un răspuns la urmatoarea
ı̂ntrebare. Putem caracteriza grafurile conexeG ale c̆aror drumuri maximale
induse au lungimeaℓ, iar reg(S/JG) = ℓ? Cu alte cuvinte, putem caracteriza
grafurile ale caror ideale minimale au regularitate minimală? Am reuşit
să raspundem la această ı̂ntrebare, parţial, pentru arbori. Demonstram că,
dac̆a T este un arbore, a cărui drum maximal indus are lungimeaℓ, atunci
reg(S/JT) = ℓ dac̆a şi numai dac̆aT este ’caterpillar’; vezi teorema 3.2.1.

În [21], aş sunt introduse grafurile slab inchise . Acestea formeaz̆a o
clas̆a de grafuri ce cuprind grafurilêınchise.̂In aceeaşi lucrare este demon-
strat c̆a un arbore este ’caterpillar’ dacă şi numai dac̆a este un graf slab
inchis. Avandı̂n vedere teorema 3.2.1 şi [16, Theorem 3.2] care spun că
reg(S/JG) = ℓ dac̆aG este un graf conex̂ınchis a carui drum maximal indus
are lungimeaℓ, ı̂mpreun̆a cu o serie de experimente realizate pe calculator,
suntem tentaţi s̆a formul̆am urm̆atoarea afirmaţie.

Conjectură. Daca G este un graf conex slab inchis a carui drum
maximal indus are lungimeaℓ, atuncireg(S/JG) = ℓ.

În Capitolul 4, baẑandu-ne pe lucrarea noastră colaborativ̆a [7], ca o
analogie adus̆a idealelor binomiale muchieJG generate de minori de ordin
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2 fi j = xiy j −x jyi ai matricei

X =

(
x1 . . . xn
y1 . . . yn

)
,

undei < j iar {i, j} este o muchie a luiG, vom introduce idealul binomial
muchie asociat cu matricea 2×n Hankel

X =

(
x1 . . . xn−1 xn
x2 . . . xn xn+1

)
.

Este cunoscut faptul că toti minorii de ordin 2 ai matricei Hankel generează
idealulIX al curbei normale raţionaleX ⊂ Pn.

În secţiunea 4.1, vom arăta c̆a generatorii luiIG formeaz̆a o baz̆a Gr̈obner
relativă la ordinea invers lexicografică dac̆a şi numai dac̆a G esteı̂nchis la
etichetarea dată. Ca o consecinţă a acestei teoreme, vom obţine că pentru un
graf ı̂nchisG, idealulIG este Cohen-Macaulay de dimensiune 1+c, undec
reprezint̆a num̆arul componentelor conexe ale luiG.

În secţiunea 4.2, vom studia proprietăţiile lui IG ale unui grafı̂nchis
G. Vom calcula idealele prime minimale ale luiIG ı̂n teorema 4.2.2 pentru
un graf ı̂nchis conexG. Folosind această teorem̆a, vom caracteriza acele
grafuri ı̂nchise conexeG pentru careIG este un ideal radical. Mai mult, vom
ar̆ata c̆a IG este o intersecţie completă ’set-theoretic’, dac̆a G este conex şi
ı̂nchis. Vom concluziona prin a da o margine superioară puternic̆a pentru
regularitatea luiIG şi demonstr̂and c̆aIG are o rezoluţie lineară dac̆a şi numai
dac̆aG este un graf complet.
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CHAPTER 1

Preliminarii

În acest capitol vom aminti o serie de noţiuni şi rezultatefundamentale,
care vor fi folosite pe tot parcursul lucrării.

1.1. Baze Gr̈obner

1.1.1. Ideale monomiale. Propriet̆aţi de baz̆a. Fie K un corp, şi fie
S=K[x1, ..,xn] inelul polinoamelor̂ınnvariabile cu coeficienţi dinK. Notăm
prinZn

+ mulţimea tuturor vectorilora=(a1, . . . ,an)∈Zn, ai ≥ 0, i ∈{1, . . . ,n}.
Vom folosi notaţia standard pentru a desemna mulţimea numerelor naturale
N.

Un element dinSde formaxa1
1 · · ·xan

n se numeşte monom. Putem repre-
zenta un monomu prin u = xa, undea = (a1, . . . ,an) ∈ Zn

+. Fie Mon(S)
mulţimea tuturor monoamelor dinS. Orice polinom f ı̂n S poate fi repre-
zentat unic ca oK-combinaţie liniar̆a de monoame din Mon(S)

f = ∑
u∈Mon(S)

auu, undeau ∈ K.

Vom defini mulţimea supp( f ) = {u∈ Mon(S) : au 6= 0} ca fiindsuportullui
f .

Dac̆a u= xa1
1 · · ·xan

n este un monom̂ın S, vom definigradul lui u astfel
deg(u) = a1+ · · ·+an. Dac̆a f ∈ S\{0} este un polinom, gradul luif este
degf = max{degu : u∈ supp( f )}.

Inelul Sare oN-gradare dat̆a deS=⊕d∈NSd undeSd esteK-subspaţiul
vectorial al luiSgenerat de toate monoamele de gradd. Un element nenul
din Sd este numitpolinom omogende gradd.
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2 Preliminarii

Un ideal monomial I⊂ S este un ideal generat de o mulţime de mo-
noame. Conform cu lema lui Dickson [13, Theorem 1.3], ştim c̆a orice ideal
monomial poate fi generat de o mulţime finită de monoame. Urm̆atoarea te-
orema prezint̆a o proprietate importantă a idealelor monomiale.

TEOREMA 1.1.1. [13] Fie I un ideal monomial. MulţimeaM de mo-
noame aparţin̂and lui I este o K-baz̆a a lui I.

COROLAR 1.1.2. [13] Fie I ⊂ S un ideal. Urm̆atoarele afirmaţii sunt
echivalente:

(i) I este ideal monomial.
(ii) Pentru orice polinomf ∈ S avem c̆a f ∈ I dac̆a şi numai dac̆a

supp( f )⊂ I .

COROLAR 1.1.3. [13] Fie I ⊂ S un ideal monomial. Clasele reziduu
ale monoamelor ce nu aparţin deI formeaz̆a oK-baz̆a a ineluluiS/I .

EXEMPLU 1.1.4. FieI = (xa1
1 , . . . ,xan

n ) ⊂ S. Atunci o K-baz̆a a luiS/I

este dat̆a de clasele reziduu ale tuturor monoamelorw= xb1
1 · · ·xbn

n ∈ Scare
satisfac proprietatea că bi < ai pentru orice 1≤ i ≤ n. Aşadar, obţinem c̆a
dimK(S/I) = a1 · · ·an.

PROPOZIŢIE 1.1.5. [13] Fie mulţimea de monoame{u1, . . . ,um} care
genereaz̆a idealul monomialI . Atunci monomulv aparţine deI dac̆a şi
numai dac̆a exist̆a un monomw astfelı̂ncâtv= wui pentru niştei.

PROPOZIŢIE 1.1.6. [13] Fie I ⊂Sun ideal monomial şi fieG(I)muţimea
monoamelor dinI care sunt minimale relativ la divizibilitate. AtunciG(I)
este muţimea minimală unic̆a de monoame generatoare a luiI .

Evident, inelul de polinoameSesteZn-graduat cu componente graduate

Sa =

{
Kxa, dac̆aa∈ Zn

+,

0, altfel.

Fie f = cxa ∈ Scuc∈ K şi a∈ Zn. Atunci f este numit omogen de grada.
Observ̆am c̆a orice ideal monomialI ⊂ Seste un submodulZn-graduat

a lui S. În acest caz, ĉatulS/I este de asemeneaZn-graduat. Cu alte cuvinte,

I =⊕xa∈ISa şi S/I =⊕xa/∈ISa.

1.1.1.1. Operâtii algebrice standard̂ın cadrul idealelor monomiale.Fie
I şi J doŭa ideale ale luiS. Suma şi produsul acestor două ideale se defineşte
dup̆a cum urmeaz̆a:

I +J = { f +g : f ∈ I ,g∈ J} şi IJ = (G), undeG= { f g : f ∈ I ,g∈ J}.
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Evident,I +J şi IJ sunt ele ins̆aşi ideale monomiale dacă I şi J sunt ideale
monomiale. Mai mult,G(I +J)⊂ G(I)∪G(J) şi G(IJ)⊂ G(I)G(J).

Intersecţia a doŭa ideale monomialeI şi J este tot un ideal monomial,
definit prin

I ∩J = ({lcm(u,w) : u∈ G(I),w∈ G(J)}).

Idealul ĉat a doŭa ideale monomiale este tot un ideal monomial, fiind definit
astfel

I : J =
⋂

w∈G(J)

I : (w),

unde

I : (w) = ({u/gcd(u,w) : u∈ G(I)}).

Radicalulunui ideal monomialI este un ideal dat de
√

I = (
√

u : u∈ G(I)),

unde, pentruu= xa,
√

u=
n
∏

i=1,ai 6=0
xi. Spre exemplu, dacău= x3

1x2x2
4, atunci

√
u= x1x2x4.

I este numit un ideal radical dacă
√

I = I . Observ̆am c̆a un ideal mono-
mial I este un radical ideal dacă şi numai dac̆a I este un ideal de monoame
libere de p̆atrate, i.e. monoamele generatoare minimale sunt monoame li-
bere de p̆atrate.

EXEMPLU 1.1.7. FieI = (x3,x2y,y3) şi J = (xy,y2) doŭa ideale mono-
miale ale inelului de polinoameS= K[x,y]. Atunci

I +J = (x3,x2y,y3)+(xy,y2) = (x3,x2y,y3,xy,y2) = (x3,xy,y2).

Deoarecexy divide x2y şi y2 divide y3, putem elimina generatoriix2y şi y3.
Produsul idealelorI şi J este

IJ = (x3,x2y,y3)(xy,y2) = (x4y,x3y2,x2y3,xy4,y5),

iar intersecţia lor este

I ∩J = (lcm(x3,xy), lcm(x3,y2), lcm(x2y,xy), . . . , lcm(y3,y2))

= (x3y,x3y2,x2y,x2y2,xy3,y3)

= (x2y,y3).
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Câtul celor doŭa ideale este

I : J = (x3/gcd(x3,xy),x2y/gcd(x2y,xy),y3/gcd(y3,xy))

∩ (x3/gcd(x3,y2),x2y/gcd(x2y,y2),y3/gcd(y3,y2))

= (x2,x,y2) ∩ (x3,x2,y)

= (x,y2)∩ (x2,y)

= (x2,xy,y2).

1.1.2. Aspecte introductive ale teoriei bazelor Gr̈obner. În algebra
de polinoameK[x] ı̂ntr-o singur̆a variabil̆a peste un corpK, vom folosi teo-
rema imparţirii cu rest pentru două polinoamef ,g∈ K[x] cu g 6= 0: Exist̆a
doŭa polinoame unic determinateq şi r din K[x] astfel ı̂ncât f = qg+ r,
unde degr < degg.

Algoritmul de calcul al polinoamelorq şi r este urm̆atorul: Dac̆a deg
f < degg atunciq = 0 şi r = f . Dac̆a deg f ≥ degg, vom calcular1 =
f − (a/b)xn−m, undeaxn şi bxm sunt termenii dominanţi ai luif şi respectiv
g. Dac̆a degr1 < degg, atunciq= (a/b)xn−m şi r = r1. Altfel, vom aplica
aceeaşi reducere şi luir1. Algoritmul se va finalizâıntr-un numar finit de
paşi.

Teoria bazelor Gr̈obner se bazează pe o generalizare a acestui algoritm,
la algebre de polinoamêın mai multe variabile.̂In acest caz, identific̆am o
problem̆a ı̂n identificarea termenilor dominanţi şi compararea monoamelor
ce contin mai mult de o singură variabil̆a. Pentru a remedia această pro-
blemă, vom introduce noţiunea de ordonare monomială.

1.1.2.1. Ordonare monomială. Vom numi cuplul(X,≤) ca fiind parţial
ordonat dac̆a X este o mulţime şi≤ este o relaţie binară peX reflexivă,
antisimetric̆a şi tranzitiv̆a, i.e. pentru oricea,b, şi c din X avem:

(i) a∈ X ⇒ a≤ a;
(ii) a≤ b, b≤ a⇒ a= b;
(iii) a≤ b, b≤ c⇒ a≤ c.

Vom scriea< b, ı̂nţeleĝanda≤ b şi a 6= b. De asemenea,a≥ b va repre-
zentab≤ a.

EXEMPLU 1.1.8.

(1) Mulţimea tuturor submulţimilor luiX, muţimea p̆arţilor lui X, no-
tat̆a prin P(X). Relaţia de incluziune⊆ este o relaţie de ordine
parţial̆a peP(X).

(2) Definim relaţia binar̆a | pe monoamele din Mon(S) dup̆a cum ur-
meaz̆a:

xa1
1 · · ·xan

n |xb1
1 · · ·xbn

n dac̆a a1 ≤ b1, . . . ,an ≤ bn.
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În acest caz, putem spune că xa1
1 · · ·xan

n divide xb1
1 · · ·xbn

n . Putem
verifica uşor faptul c̆a (Mon(S),|) este un ’poset’.

O relaţie de ordine parţială≤ definit̆a peX se numeşte relaţie deordine
totală, dac̆a pentru orice doŭa elementea,b∈ X avem c̆a a≤ b saua≥ b.
Cu alte cuvinte, orice pereche de elemente dinX pot fi comparate relativ la
relaţia dat̆a de≤.

Definim, ı̂n continuare, o relaţie de ordine totală peste muţimea tuturor
monoamelor dinS= K[x1, . . . ,xn] care respectă structura multiplicativ̆a a
lui Mon(S).

DEFINIŢIE 1.1.9. O relaţie deordine monomial̆a pesteS este o relaţie
de ordine total̆a≤ peste Mon(S) dac̆a sunt satisf̆acute condiţiile:

(i) 1 ≤ u, pentru oriceu∈ Mon(S);
(ii) dacău≤ v, atunci pentru oricew∈ Mon(S), uw≤ vw.

Subliniem faptul c̆a orice doŭa monoame pot fi comparate relativ la o
relaţie de ordine monomială. Urm̆atoarele afirmaţii sunt satisfăcute de orice
relaţie de ordine monomială.

PROPOZIŢIE 1.1.10. [13] Fie ≤ o relaţie de ordine monomială pesteS.
Atunci, au loc urmatoarele afirmaţii:

(i) dac̆au,v∈ Mon(S) astfelı̂ncâtu|v, atunciu≤ v;
(ii) dacă u1,u2, . . . este un şir de monoame cuu1 ≥ u2 ≥ . . . atunci

exist̆a un num̆ar ı̂ntregmastfelı̂ncâtui = um pentru oricei ≥ m.

Vom prezentâın continuare o serie de relaţii de ordine monomială stan-
dard pesteS. În aceste exemple vom desemna ordinea variabilelorı̂ntr-un
mod standard, astfel:x1 > x2 > .. . > xn. Fiexa şi xb doŭa monoame peste
S.

• Ordinea lexicografic̆a: Avem xa < xb , dac̆a fie ∑n
i=1ai < ∑n

i=1bi
fie ∑n

i=1ai = ∑n
i=1bi şi componenta nenulă, cea mai din stânga a

vectoruluia−b este negativ̆a. În aceasta ordonare vom compara
mai ı̂ntâi gradele totale, şi apoi puterile variabilelor pornind cu
variabila de index minim.

EXEMPLU 1.1.11. x2
1x2x2

4x3
5 < x2

1x2x4
4x5, deoarece cele două

monoame au acelaşi grad şi avem căa−b= (0,0,0,−2,2).

• Ordinea lexicografic̆a pură: Avem xa < xb dac̆a componenta cea
mai din st̂anga a vectoruluia−b este negativ̆a. În aceasta relaţie
de ordine totala, gradul total nu este relevant.

EXEMPLU 1.1.12. x3
1x2x5

4 < x3
1x2x3, deoarece avema− b =

(0,0,−1,5).



6 Preliminarii

• Ordinea lexicografic̆a inversa: Avem c̆axa < xb dac̆a fie∑n
i=1ai <

∑n
i=1bi fie ∑n

i=1ai = ∑n
i=1bi şi componenta nenulă cea mai din

dreapta a vectoruluia−b este pozitiv̆a.

EXEMPLU 1.1.13.x2
1x3x4< x1x2

2x4, deoarecea−b=(1,−2,1,0).

Diferenţa dintre ordinea lexicografică şi ordinea invers lexicografică
poate fi explicitat̆a ı̂n modul urm̆ator. Fiexa,xb ∈ Mon(S) doŭa monoame
de acelaşi grad. Dacaxa < xb ı̂n ordinea lexicografic̆a, atuncixb are gra-
dele componentelor mai mare de laı̂nceput spre sfarşit decât gradele com-
ponentelor luixa. Dac̆a xa < xb ı̂n ordinea invers lexicografică, atuncixb

are gradele componentelor mai mic de la sfarşit spreı̂nceput deĉat gradele
componentelor luixa.

EXEMPLU 1.1.14. Considerăm toate monoamele dinS= K[x1,x2,x3]
de grad 2.̂In ordine lexicografic̆a avem:x2

1 > x1x2 > x1x3 > x2
2 > x2x3 > x2

3,
iar ı̂n ordine invers lexicografic̆a avem:x2

1 > x1x2 > x2
2 > x1x3 > x2x3 > x2

3.

1.1.2.2. Ideale iniţiale şi baze Gr̈obner. Fie< o relaţie de ordine mo-
nomial̆a fixat̆a definit̆a pe inelul de polinoameS=K[x1, . . . ,xn] peste corpul
K. Pentru un polinom nenulf ∈ S monomul iniţialal lui f relativ la relaţia
< este cel mai mare monom dintre monoamele conţinute de supp( f ). Mo-
nomul iniţial, relativ la relaţia<, al lui f este notat prin in<( f ). Coeficientul
dominant c∈ K al lui f este coefiecientul in<( f ), iar termenul dominantal
lui f estecin<( f ).

EXEMPLU 1.1.15. Fief = 5x3
1x2

2x3+ x2
1x4

2+3x4
1x3. Daca< reprezint̆a

ordinea lexicografic̆a, atunci in<( f ) = x3
1x2

2x3; dac̆a < reprezint̆a ordinea
invers lexicografic̆a, atunci in<( f ) = x2

1x4
2, şi dac̆a< reprezint̆a ordinea pur

lexicografic̆a, atunci in<( f ) = x4
1x3.

Monoamele iniţiale ale sumei şi produsului a două polinoame este dată
de urm̆atoarea lem̆a:

LEMA 1.1.16. [13] Fie f şi g doŭa polinoame nenule şi fie relaţia de
ordine monomial̆a< pesteS. Atunci

(i) in<( f g)=in<( f )in<(g) ;
(ii) in<( f +g)≤max{in<( f ), in<(g)}. Egalitatea are loc dacă in<( f ) 6=

in<(g).

Fie I ⊂ Sun ideal nenul.Idealul iniţial al lui I este un ideal monomial
generat de toate monoamele iniţiale nenule ale polinoamelor din I . Idea-
lul iniţial al lui I relativ la ordinea monomială < este notat̆a prin in<(I).
Aşadar, in<(I) = (in<( f ) : f ∈ I , f 6= 0).
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Observ̆am c̆a in<(I) = (0), dac̆a I = (0). În general, monoamele iniţiale
ale elementelor unei mulţimi generatoare, nu vor genera in<(I). Spre exem-
plu, consider̆am idealulI = (x2

1− x1x2+ x2,x1− x2) ı̂mpreun̆a cu ordinea
lexicografic̆a pur̆a ı̂n inelul de polinoameK[x1,x2]. Avem c̆a (x2

1− x1x2+
x2)− x1(x1− x2) = x2 ∈ I . Dac̆a presupunem că in<(I) = (x2

1,x1) = (x1),
atunci ar trebui s̆a avem c̆ax2 ∈ in<(I), deşix2 /∈ (x1).

Conform propoziţiei 1.1.6, un ideal monomial are o mulţimeminimal̆a
unică de generatori monomiali. Lema lui Dickson ne spune că muţimea
minimal̆a de generatori este o mulţime finită. Prin urmare orice ideal mo-
nomial este finit generat. Cum in<(I) este un ideal monomial, atunci există
g1, . . . ,gm ∈ I astfelı̂ncât in<(I) = (in<(g1), . . . , in<(gm)).

DEFINIŢIE 1.1.17. FieI ⊂ S un ideal nenul şi fie relaţia< o relaţie
de ordine monomială pesteS. O mulţime de polinoame{g1, . . . ,gm} se
numeştebaz̆a Gröbnera lui I relativă la relaţia de ordine< dac̆a in<(I) =
(in<(g1), . . . , in<(gm)).

Conform cu definiţia, pentru orice ideal monomial nenulı̂ntotdeauna
exist̆a o baz̆a Gr̈obner.

EXEMPLU 1.1.18. MulţimeaG = (x2
1 − x1x2 + x2,x1 − x2) nu este o

baz̆a Gr̈obner pentruI = (G) relativ la relaţia de ordine pur lexicografică,
deoarece, aşa cum am explicat anterior,x2 ∈ I . În pofida acestui lucru
x2 /∈ (x2

1,x1) = (x1).

TEOREMA 1.1.19. [13] Fie I un ideal al lui S şi fie muţimea{g1, . . . ,gm}
o baz̆a Gröbner al lui I relativ la relaţia de ordine monomială <. Atunci,
I = (g1, . . . ,gm). Cu alte cuvinte, fiecare bază Gröbner al lui I este o
mulţime de generatori pentru I.

COROLAR 1.1.20 (Teorema bazelor a lui Hilbert). [13] Fiecare ideal̂ın
inelul de polinoameS= K[x1, . . . ,xn] este finit generat. Cu alte cuvinte,
inelul Seste Noetherian.

TEOREMA 1.1.21 (Algoritmul de impartire). [13] Fie f şi g1, . . . ,gm
polinoame nenule din S şi fie< o relaţie de ordine monomială. Atunci,
exist̆a doŭa polinoame r şi q1, . . . ,qm ı̂n S cu f= q1g1 + . . .+ qmgm+ r
astfelı̂ncât următoarele condiţii s̆a fie satisf̆acute:

(i) nici-un element dinsupp(r) nu este conţinut̂ın (in<(g1), . . . , in<(gm));
(ii) in<( f )≥ in<(qigi) pentru orice i.

Expresiaq1g1+ . . .+qmgm+ r care satisface condiţiile de mai sus este
numit̆a expresie standardal lui f . Polinomul r esterestul lui f relativ la
g1, . . . ,gm. Următorul exemplu arată c̆a expresia standard a luif nu este
unică.
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EXEMPLU 1.1.22. Polinomulf = x2
1 − x3

2 are doŭa expresii standard
distincte relative lag1 = x1+ x2 şi g2 = x1+ x2

2. Consider̆am ordinea lexi-
cografic̆a pura. Avemf = x1g1−x2g2 şi f = (x1−x2)g1+x2

2−x3
2. În aceste

expresii standard avem resturi diferite: 0 şix2
2−x3

2.

Dac̆a f are un rest nul relativ la polinoameleg1, . . . ,gm, vom spune c̆a
f se reduce la0 relativ lag1, . . . ,gm.

În continuare vom descrie un algoritm de găsire a unei expresii standard
pentru f relativă la o mulţime ordonată de polinoameg1, . . . ,gm. În acest
algoritm obţinem un şir finit de polinoamehi ,1≤ i ≤ s, astfel:

Fie h0 = f Presupunem c̆a deja am definit polinoameleh1, . . . ,hi. Sirul
se termin̆a cuhi dac̆a polinomulhi satisface urmatoarea condiţie supp(hi) /∈
(in<(g1), . . ., in<(gm)).

Altfel, fie ucel mai mare monom din supp(hi) care aparţine lui (in<(g1), . . .,
in<(gm)) şi fie j cel mai mic num̆ar ı̂ntreg astfel̂ıncât (in<(g j) | u.

Definimhi+1= hi−ab−1wgj , undew= u/in<(g j) iara şibsunt coeficienţi
dominanţi ai luihi şi respectivg j . Presupunem c̆a şirul dehi-uri se termin̆a
ı̂n hs. Atunci, obţinem urm̆atoarele ecuaţii:

(1) f = h0 = q′1g j1 +h1
(2) h1 = q′2g j2 +h2
(3) h2 = q′3g j3 +h3

...
(4) hs−1 = q′sg js+hs

Înlocuindh1 ı̂n (1) cu (2), obţinem f = q′1g j1 +q′2g j2 +h2. În aceast̆a
expresie noŭa, ı̂n loc deh2 scriem expresia(3). Repet̂and procesul, obţinem
o expresie standard pentruf cu restulr = hs.

EXEMPLU 1.1.23. Fief = x2
1x2+ x1x2

2−3x3
2. Vom calcula o expresie

standard pentruf relativă la g1 = x1 − x2 şi g2 = x2 folosind algoritmul
descris mai sus, utiliẑand ordinea lexicografică.

f = h0 = x1x2g1+2x1x2
2−3x3

2 undeh1 = 2x1x2
2−3x3

2

h1 = 2x2
2g1−x3

2 undeh2 =−x3
2

h2 =−x2
2g2 undeh3 = 0.

Prin urmare expresia standard estef = (x1x2+2x2
2)g1− x2

2g2. f are restul
0 relativ lax1−x2 şi x2.

PROPOZIŢIE 1.1.24. [13] Fie < o relaţie de ordine monomială pesteS
şi fie muţimea{g1, . . . ,gm} o baz̆a Gr̈obner pentru idealulI = (g1, . . . ,gm).
Atunci, orice polinom nenulf din Sare un rest unic relativ lag1, . . . ,gm.
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COROLAR 1.1.25. [13] Fie muţimea{g1, . . . ,gm} o baz̆a Gr̈obner pen-
tru idealulI = (g1, . . . ,gm). Atunci, orice polinomf
inScare aparţine luiI , are restul zero relativ lag1, . . . ,gm.

În continuare vom prezenta un algoritm care ne permite să construim o
baz̆a Gr̈obner a unui ideal pornind de la orice mulţime dată de generatori.
Vom avea nevoie de urm̆atoarea definiţie.

DEFINIŢIE 1.1.26. Fief şi g doŭa polinoame dinS şi fie< o relaţie de
ordine monomial̆a. Polinomul

S( f ,g) =
lcm(in<( f ), in<(g))

cin<( f )
f − lcm(in<( f ), in<(g))

din<(g)
g

este numitS-polinomullui f şi g relativ la relaţia<.

Amintim faptul c̆a lcm(in<( f ),in<(g)) reprezint̆a cel mai mic multiplu
comun al lui in<( f ) şi in<(g). În formula, c şi d reprezint̆a coeficienţii
dominanţi ai lui f şi respectivg.

EXEMPLU 1.1.27. Fief = x3
1x2+ x1x2+ x2

3 şi g = 2x2
1+ x2x3. Atunci

lcm(in<( f ),in<(g)) = x3
1x2 relativ la ordinea lexicografic̆a. Prin urmareS-

polinomul lui f şi g este

S( f ,g)=
x3

1x2

x3
1x2

(x3
1x2+x1x2+x2

3)−
x3

1x2

2x2
1

(2x2
1+x2x3)= x1x2−1/2x1x2

2x3+x2
3.

Observ̆am faptul c̆a S-polinomul ne ajut̆a s̆a anul̆am termeni dominanţi
ai lui f şig, şi s̆a obţinem un alt polinom̂ın acelaşi ideal cu termeni dominanţi
distincţi.

Următoarea teorem̆a ne ofer̆a o metod̆a de a verifica pentru un ideal dat
I = (g1, . . . ,gm) dac̆a o mulţime de generatori{g1, . . . ,gm} formeaz̆a o baz̆a
Gröbner pentruI .

TEOREMA 1.1.28 (Criteriul Buchberger). [13] Fie I = (g1, . . . ,gm) un
ideal al lui S şi< o relaţie de ordine monomială definit̆a pe S. Atunci
G = {g1, . . . ,gm} este o baz̆a Gröbner al lui I relativ la relaţia< dac̆a şi
numai dac̆a S(gi ,g j) se reduce la zero relativ la G, pentru orice i< j.

Pentru a calculaS-polinoamele luiI = (g1, . . . ,gm) pentru orice perechi
de generatori poate fîımpovor̂ator. Urm̆atoarea propoziţie ne poate ajuta să
evităm calculele din anumite cazuri.

PROPOZIŢIE 1.1.29. [13] Fie f şi g doŭa polinoame dinScu relaţia de
ordine monomial̆a<. Dac̆a monoamele iniţiale in<( f ) şi in<(g) sunt prime
ı̂ntre ele, atunciS( f ,g) se reduce la 0 relativ laf şi g.
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EXEMPLU 1.1.30. FieI ⊂ K[x1, . . . ,xn,y1, . . . ,yn] generat de cei doi mi-
nori ai matricei

(
x1 x2 ... xn
y1 y2 ... yn

)
.

Cu alte cuvinte,I = ({ fi j = xiy j − x jyi : 1≤ i < j ≤ n}). Fie< relaţia
de ordine lexicografic̆a dinK[x1, . . . ,xn,y1, . . . ,yn] indus̆a dex1 > x2 > .. . >
xn > y1 > .. . > yn. Vrem sa ar̆at̆am c̆a oriceS-polinomS( fi j , fkl) are restul
zero, unde{i, j} 6= {k, l}. Dac̆a i 6= k şi j 6= l , atunci in<( fi j ) şi in<( fkl) sunt
primeı̂ntre ele, deciS( fi j , fkl) are restul 0. Dac̆a i = k, putem presupune că
j < l şi obţinem astfelS( fi j , fkl) = S( fi j , fil ) = −x jyiyl + xlyiy j = −yi f jl ,
care reprezint̆a o expresie standard al luiS( fi j , fkl) cu restul zero.

Dac̆a j = l , putem presupune că i < k şi astfel obţinemS( fi j , fkl) =
S( fi j , fk j) = xix jyk−xkx jyi = x j fik, care din nou reprezintă o expresie stan-
dard cu restul zero.̂In consecinţ̆a, muţimea minorilor{ fi j : 1≤ i < j ≤ n}
formeaz̆a o baz̆a Gr̈obner al luiI relativă la ordinea lexicografic̆a.

Exist̆a un algoritm care permite calculul unei baze Gröbner pentru un
idealI folosind o mulţime dat̆a de generatori a luiI . Algoritmul numitago-
ritmul Buchberger este de fapt o consecinţă a teoremei 1.1.28. Agoritmul
Buchberger funcţionează astfel:

Pas 1: Calcul̆am S-polinomul pentru fiecare pereche de elemente ale
mulţimi generatoareG a idealuluiI .

Pas 2: Dac̆a toateS-polinoamele se reduc la zero,G este o baz̆a Gr̈obner
a lui I . Altfel adăuğam unul dintre resturile nenule la sistemul nostru de
generatori, pentru a forma un nou sistem de generatori şi revenim la Pas 1.

Cum orice şir strict crescător de ideale monomiale ale luiS este finit,
algortimul se sf̂arşeşte dup̆a un num̆ar finit de paşi.

EXEMPLU 1.1.31. FieI = (x2
1+2x1x2

2,x1x2+2x3
2−1)⊂Q[x1,x2]. Fo-

losind algoritmul Buchberger, form̆am o baz̆a Gr̈obner pentruI ı̂n S=
K[x1,x2] relativ la ordinea lexicografic̆a.

Fie f = x2
1 + 2x1x2

2, g = x1x2 + 2x3
2 − 1. Vom calculaS-polinomul

S( f ,g) = x1 al lui f şi g. DeoareceS( f ,g) = x1 /∈ (in<( f ),in<(g)), vom
ad̆augah= x1 la muţimea generatorilor, obţinând o noŭa mulţime de gene-
ratori{ f ,g,h}.

Acum, vom alege perecheag,h. Deoarece monomul iniţial alS-polinomului
S(g,h) = 2x3

2−1 nu este (in<( f ),in<(g), in<(h)), vom obţine un nou gene-
rator, anumet = 2x3

2−1 şi astfel muţimea de generatori devine{ f ,g,h, t}.
Acum, nu trebuie s̆a calcul̆amS-polinoamele pentru fiecare pereche, de-

oarece ştim c̆aS( f ,g) = h şi S(g,h) = t. Avem, de asemenea, toate celelalte
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resturi egale cu zero:

S( f ,h) = 2x1x2
2 = 2x2

2h

S( f , t) = 1/2x2
1+2x1x5

2 = 1/2 f +x1x2
2t

S(g, t) = 1/2x1+2x5
2−x2

2 = 1/2h+x2
2t

S(h, t) = 1/2x1 = 1/2h

Aşadar baza Gröbner este{x2
1+2x1x2

2,x1x2+2x3
2−1,x1,2x3

2−1}.

Putem ad̆auga mai multe polinoame la muţimeaG şi vom aveâın conti-
nuare o baz̆a Gr̈obner a idealului.̂Insă, sub anumite condiţii, există o unica
baz̆a Gr̈obner.

DEFINIŢIE 1.1.32. O mulţimeG= {g1, . . . ,gm} se numeştebaz̆a Gröbner
redus̆a a lui I ⊂ S relativ la ordinea monomială < dac̆a G este o baz̆a
Gröbner pentruI şi sunt satisf̆acute urm̆atoarele conditii:

(i) Coeficientul dominant pentru fiecaregi este 1;
(ii) Pentru toţii 6= j, nici-unu∈ supp(g j) nu este divizibil prin in<(gi).

EXEMPLU 1.1.33. Baza Gr̈obner redus̆a a luiI ı̂n exemplul anterior este
{x1,x3

2−1/2}.

1.2. Rezoluţii libere graduate minimale de idealuri graduate

În aceast̆a secţiune, vom prezenta date numerice care rezultă din rezoluţii
libere graduate minimale de coeficienţi ai unui inel de polinoame printr-un
ideal graduat.

Vom fixa, ı̂n aceasta secţiune,S= K[x1, . . . ,xn] un inel de polinoame
ı̂n n variabile peste un corpK. Fiecare ideal graduatI ⊂ S are orezoluţie
liberă graduat̆a minimal̆a (unică p̂an̆a la un izomorfism).

F• : 0→ Fp → ·· · → F1 → F0 = S→ S/I → 0,

undeFi =
⊕

j∈ZS(− j)βi j , pentru orice valoare a luii. Exponenţiβi j =
βi j (S/I) sunt numiţinumerele graduate Bettiale lui S/I . Numerele totale
Betti ale lui S/I suntβi = ∑ j βi j , i ≥ 0. Dimensiunea proiectiv̆a a lui S/I
este dat̆a de

projdim(S/I) = max{i : βi j 6= 0, pentru anumiti j ∈ Z}.
Conform cu formula Auslander-Buchsbaum [18, Corollary A 4.3] avem c̆a

depthS/I = n−projdimS/I .

Amintim faptul c̆a depthS/I reprezint̆a lungimea maximală a uneiS/I–
secvenţe de elemente omogene conţinuteı̂ntr-un ideal graduat maximal a lui
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S. Este bine-cunoscut faptul că depth(S/I) ≤ dim(S/I). Dac̆a are loc ega-
litatea, vom spune c̆a I este un ideal Cohen-Macaulay. Deci,I este Cohen-
Macaulay dac̆a şi numai dac̆a depth(S/I) = dim(S/I).

Regularitatealui S/I este definit̆a astfel: dac̆a reg(S/I) = max{ j − i :
βi j 6= 0}. Toate datele numerice ce reies din rezoluţii libere graduate mini-
male ale luiS/I sunt numite invarianţi omologici ai luiS/I .

De obicei, numerele Betti graduate sunt prezentateı̂n aşa-numitadia-
gramă Bettia lui S/I , care are forma indicată ı̂n Figura 1.1.

•

•

•

reg

j

i projdim

βi,i+ j

FIGURA 1.1

Numerele Betti marcatêın figur̆a prin puncte mari sunt numitenumere
Betti extremale.

EXEMPLU 1.2.1. FieJ ⊂ S= K[x1, ..,x5,y1, ..,y5] un ideal

J=(x1y2−x2y1,x2y3−x3y2,x2y4−x4y2,x3y4−x4y3,x2y5−x5y2,x4y5−x5y4)

având idealul s̆au iniţial in<(J) ⊂ K[x1, ..,x5,y1, ..,y5], unde< reprezint̆a
ordinea lexicografic̆a indus̆a dex1 > · · · > x5 > y1 > · · · > y5. Diagramele
Betti ale luiS/J şi S/ in<(J) sunt prezentate mai jos.

Conform cu aceste diagrame,S/ in<(J) şi S/J au acelaşi num̆ar Betti
extremal: 4. Mai mult, avem projdim(S/J) = projdim(S/ in<(J)) = 4, de
unde depth(S/J) = depth(S/ in<(J)) = 6 şi reg(S/J) = reg(S/ in<(J)) = 2.

J :

0 1 2 3 4
0 1 − − − −
1 − 6 4 − −
2 − − 9 12 4

Total 1 6 13 12 4



1.2. Rezoluţii libere graduate minimale de idealuri graduate 13

in<(J) :

0 1 2 3 4
0 1 − − − −
1 − 6 5 − −
2 − 1 10 12 4

Total 1 7 15 12 4
Diagramele Betti ne ajută ı̂n a scrie rezoluţiile libere graduate minimale
pentru fiecare ideal:

0→ S(−6)4 → S(−5)12 → S(−3)4⊕S(−4)9 → S(−2)6 → S→ S/J → 0,

0→ S(−6)4 → S(−5)12 → S(−3)5⊕S(−4)10 →
→ S(−2)6⊕S(−3)→ S→ S/ in<(J)→ 0.

DEFINIŢIE 1.2.2. Un inel graduatS/I are(d−1)-rezoluţi lineare(sau,
echivalent,I ared-rezoluţii liniare) dac̆a rezoluţia sa liberă graduat̆a mini-
mal̆a are urm̆atoarea form̆a

0→S(−p)βp−d+1 →S(−p+1)βp−d →·· ·→S(−d−1)β2 →S(−d)β1 →
S→ S/I → 0. (*)

Aceast̆a definiţie ne spune faptul că S/I are (d− 1)-rezoluţii lineare
dac̆a şi numai dac̆a βi j (S/I) = 0 pentru fiecarej 6= i +d−1. În diagrama
Betti a lui S/I , except̂and poziţiaβ(0,0) = 1, toate celelalte numere Betti
graduate nenule sunt situate pe randul(d− 1). Cu alte cuvinte,S/I are
(d− 1)-rezoluţii lineare dac̆a şi numai dac̆a I este generat cu graduld şi
reg(S/I) = d−1.

EXEMPLU 1.2.3. FieI ⊂K[x1, . . . ,x4,y1, . . . ,y4], I =(x1y2−x2y1,x1y3−
x3y1,x1y4− x4y1,x2y3− x3y2,x2y4− x4y2,x3y4− x4y3). S/I are 2–rezoluţii
lineare. Diagrama luiS/I este urm̆atoarea.

0 1 2 3
0 1 − − −
1 − 6 8 3

OBSERVAŢIE 1.2.4. Facem urm̆atoarea remarcă despre rezoluţiile li-
neare. Dac̆a S/I are o rezoluţie lineară, atunci, apliĉand proprietatea de
aditivitate a seriilor Hilbert̂ın (*), obţinem c̆a

HS/I (t) =
1−β1td +β2td+1−·· ·+(−1)p−d+1βp−d+1t p

(1− t)n .

Aceast̆a formul̆a ne indic̆a faptul c̆a dac̆a S/I are o rezoluţie lineară, atunci
numerele Betti sunt determinate de seriile sale HilbertHS/I .

O comparaţiêıntre numerele graduate Betti ale luiS/I şi S/ in<(I), unde
< reprezint̆a o relaţie de ordine monomială ı̂n S, este dat̆a de urm̆atoarea
teorem̆a şi urm̆atorul corolar.
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TEOREMA 1.2.5. [18] Pentru orice i şi j,βi j (S/I)≤ βi j (S/ in<(I)).

Aceast̆a inegalitate dintre numerele graduate Betti ne conduc la următoarele
consecinţe.

COROLAR 1.2.6. [18]

(i) projdimS/I ≤ projdim(S/ in<(I)).
(ii) depthS/I ≥ depth(S/ in<(I)).
(iii) regS/I ≤ reg(S/ in<(I)).
(iv) DacăS/ in<(I) este Cohen-Macaulay, atunciS/I este Cohen-Macaulay.
(v) Dac̆a S/ in<(I) are o rezoluţie lineară, atunciS/I are o rezoluţie

linear̆a.

1.3. Un scurt rezumat despre descompunerea primară

În aceast̆a subsecţiune vom urm̆ari ı̂n principal cartea [11, Chapter 3].
Fie R un inel şiM un R–modul. Idealul primP al lui R este numitprim
asociata lui M, dac̆a exist̆a anumiţim∈ M astfelı̂ncât

P= (0 :R m) = {r ∈ R : rm= 0}.
În particular, dac̆a I ⊂ R este un ideal, atunciP este un prim asociat al

lui R/I (sau, mai simplu, al luiI ), dac̆aP= I : (a) pentru una∈ R.
Vom descrie rezultatele principale despre primi asociaţiai unui modul

ı̂n teorema urm̆atoare. Vom̂ıncepe prin a aminti faptul că muţimea tuturor
asociaţilor primi ai luiM este notat̆a, de obicei, prin Ass(M). Foarte des,
vom scrie Ass(I) ı̂n loc de Ass(R/I) pentru un idealI a lui R.

TEOREMA 1.3.1. [11] Fie R un inel Noetherian şi M un R–modul nevidă
finit generat. Atunci:

(a) Ass(M) este o mulţime nevidă, care conţine mulţimea idealelor
prime minimale peste anihilatorul lui M,Ann(M), undeAnn(M)=
{r ∈R: rM = 0}. În particular,Ass(I)⊇Min(I). Aici, Min(I) des-
crie muţimea idealelor prime minimale ale lui I.

(b) Avem c̆a Z(M) =
⋃

P∈Ass(M)P unde Z(M) descrie muţimea tuturor
divizorilor lui zero din M.

(c) Ass(M) comut̆a cu localizarea. Mai precis, dacă S⊂ R reprezint̆a
o muţimea multiplicativ̆a, atunci

AssS−1R(S
−1M) = {S−1P : P∈ Ass(M),P∩S= /0}.

(d) Dacă 0 → M′ → M → M′′ → 0 reprezint̆a o secvenţ̆a exacta de
R–module, atunci

Ass(M′)⊂ Ass(M)⊂ Ass(M′)∪Ass(M′′).
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DEFINIŢIE 1.3.2. FieR un inel Noetherian şiP un ideal prim al luiR.
Idealul I al lui R este numit unP–ideal primar(sau mai simplu unideal
primar) dac̆a Ass(R/I) = {P}.

TEOREMA 1.3.3. [11] Fie R un inel Noetherian. Atunci orice ideal I al
lui R are o descompunere I= Q1∩·· ·∩Qr , unde:

(a) Qi este Pi–primar pentru orice i;
(b) descompunerea este ireduntantă, adic̆a nici-un Qi nu poate fi omis

din descompunere;
(c) Pi-urile sunt doŭa cate doŭa distincte.

Mai mult,Ass(I) = {P1, . . . ,Pr}.
Descompunerea de mai sus este numită descompunere primară a lui

I . În continuare vom analiza rezultatele principale despre descompunerea
primar̆a de ideale monomiale, urm̆arind ı̂n principal noţiunile descrisêın
[18].

TEOREMA 1.3.4. [18] Fie I ⊂ S= K[x1, . . . ,xn] un ideal monomial.
Atunci I =

⋂m
i=1Qi , unde fiecare Qi este generat de puteri pure ale vari-

abilelor. Cu alte cuvinte, fiecare Qi are forma(xa1
i1
, . . . ,xak

ik
).

Mai mult, se poate arăta faptul c̆a descrierea iredundantă construit̆a ı̂n
demonstraţia de mai sus este unică.

Un ideal monomial este numitireductibil dac̆a nu poate fi scris ca o
intersecţie proprie de două ideale monomiale. Se numeştereductibilă dac̆a
nu este ireductibil̆a.

COROLAR 1.3.5. [18] Un ideal monomial este ireductibil dacă şi numai
dac̆a este generat de puterile pure ale variabilelor.

Conform teoremei 1.3.4 şi corolarului 1.3.5, avem că orice monom are
o reprezentare unică ca o intersecţie iredundantă de ideale monomiale ire-
ductibile, mai mult, demonstraţia teoremei 1.3.4 ne oferă o metod̆a de a ğasi
o astfel de reprezentare.

EXEMPLU 1.3.6. FieI = (x2
1x3

2,x
2
2x3,x2

3). Atunci

I = (x2
1,x

2
2x3,x

2
3)∩ (x3

2,x
2
2x3,x

2
3)

= (x2
1,x

2
2,x

2
3)∩ (x2

1,x3,x
2
3)∩ (x3

2,x
2
2,x

2
3)∩ (x3

2,x3,x
2
3)

= (x2
1,x

2
2,x

2
3)∩ (x2

1,x3)∩ (x3
2,x3).

Pentru ideale monomiale libere de pătrate avem urm̆atorul corolar.

COROLAR 1.3.7. [18] Fie I ⊂ S un ideal monomial liber de p̆atrate.
Atunci

I =
⋂

P∈Min(I)

P,
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şi fiecareP∈ Min(I) este un ideal monomial prim.

Aici Min (I) reprezint̆a, ca de obicei, muţimea idealelor prime minimale
ale lui I .

Vom ı̂ncheia această secţiune prin a aminti faptul că descompunerea
primar̆a obţinut̆a dintr-o intersecţie iredundantă de ideale ireductibile este
unică şi o vom numidescompunerea primară standard a lui I.

1.4. Ideale binomiale muchie

FieG un graf simplu definit pe muţimea de vârfuri [n] şi av̂and muţimea
de muchiiE(G). Consider̆amS= K[x1, . . . ,xn,y1, . . . ,yn] ca fiind un inel de
polinoamêın 2n variabile cu coeficienţîın corpulK.

Definim idealul binomial muchieJG ⊂ S asociat cu grafulG ca fiind
idealul generat de toate binoamelefi j = xiy j − x jyi unde 1≤ i < j ≤ n cu
{i, j} ∈ E(G).

Remarc̆am faptul c̆a dac̆aG are un v̂arf izolati, şiG′ reprezint̆a restricţia
lui G la muţimea de v̂arfuri [n] \ {i}, atunciJG = JG′. Din aceast̆a cauz̆a,
vom presupune c̆aG nu are v̂arfuri izolate.

Consider̆am inelul de polinoameS ı̂nzestrat cu o ordine lexicografică
indus̆a de ordinea naturală a variabilelorx1 > x2 > · · · > xn > y1 > y2 >
· · · > yn. Vom nota prin in<(JG) idealul iniţial al lui JG respect̂and ordinea
monomial̆a. Idealul in<(JG) este un ideal monomial generat minimal de
monoamele iniţiale ale binoamelor din baza Gröbner redus̆a a luiJG, relativ
la ordinea lexicografic̆a.

EXEMPLU 1.4.1. În Figura 1.2,Geste un graf simplu definit pe muţimea
de v̂arfuri [6].

•

•

•

•

•

•3

2

1

4

5

6

FIGURA 1.2

Idealul binomial muchie a luiG esteJG = ( f12, f23, f24, f45, f46). Baza
Gröbner redus̆a a luiJG relativă la ordinea lexicografic̆a esteG = {x1y2−
x2y1,x2y3−x3y2,x2y4−x4y2,x4y5−x5y4,x4y6−x6y4,x3y2y4−x4y2y3, x5y4y6−
x6y4y5}. Aşadar, idealul iniţial al luiJG este

in<(JG) = (x1y2,x2y3,x2y4,x4y5,x4y6,x3y2y4,x5y4y6).
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1.4.1. Ideale binomiale muchie cu baze Gröbner pătratice. În aceasta
subsecţie, vom prezenta două exemple fundamentale de ideale binomiale
muchie. Ambele exemple sunt ideale cu proprietatea că generatorii lor for-
meaz̆a o baz̆a Gr̈obner redus̆a.

Grafurile G a caror ideale binomiale muchie asociateJG deţin şi ele
proprietatea de mai sus (i.e.JG are o baz̆a Gr̈obner p̆atratic̆a) sunt descrise
ı̂n combinatorica prin urm̆atoarea teorem̆a.

TEOREMA 1.4.2. [19, Theorem 1.1]Fie G un graf simplu definit pe
muţimea de v̂arfuri [n] având mulţimea de muchii E(G), şi fie< relaţia de
ordine lexicografic̆a peste S indus̆a de x1 > · · ·> xn > y1 > · · ·> yn. Atunci
următoarele afirmaţii sunt echivalente:

(a) Generatorii fi j ai lui JG formeaz̆a o baz̆a Gröbner patratic̆a.
(b) Pentru orice muchie{i, j} şi {i,k} cu j> i < k sau j< i > k avem

{ j,k} ∈ E(G).

Cu alte cuvinte, dac̆a reprezent̆am muchia{i, j} cu i < j printr-o s̆ageat̆a
de la punctuli la punctul j, vom avea urm̆atoarea reprezentare a unui graf
care satisface condiţia (b) din teorema 1.4.2.

(a) (b)

k

i

j k

i

j

FIGURA 1.3

EXEMPLU 1.4.3. FieG un graf cu muchiile{1,2} şi {1,3}. Vom avea
JG=(x1y2−x2y1,x1y3−x3y1). Calcul̆amS−polinomul lui f12 şi f13. Obţinem
S( f12, f13) = y1(x2y3−x3y2)∈ JG. DeciS( f12, f13) = x2y1y3−x3y1y2 ∈ JG.

Dar, monomul iniţialx2y1y3 of S( f12, f13) nu aparţine idealului gene-
rat de monoamele iniţiale ale luif12 şi f13. Aceasta ne demonstrează c̆a
{ f12, f13} nu este o baz̆a Gr̈obner a luiJG.

În ciuda acestui fapt, pentru acelaşi graf, cu altă etichetare{1,2},{2,3}
generatorii luiJG formeaz̆a o baz̆a Gr̈obner.

Pentru idealul binomial muchie asociatJG = (x1y2−x2y1,x2y3−x3y2),
S−polinomul lui f12 şi f23 se reduce la 0 deoarece monoamele iniţiale ale
lui f12 şi f23 sunt primêıntre ele.

DEFINIŢIE 1.4.4. Un grafG ı̂nzestrat cu o etichetare care satisface
condiţia (b) din teorema 1.4.2 este numitı̂nchis relativ la etichetarea dată.
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Astfel, putem reformula teorema 1.4.2, spunând c̆a generatorii luiJG
formeaz̆a o baz̆a Gr̈obner relativ̆a la ordinea lexicografic̆a dac̆a şi numai
dac̆aG estêınchis relativ la etichetarea dată.

Am indicat faptul c̆a graful din Figura 1.3(a), făr̆a muchia{ j,k}, nu este
ı̂nchis pentru etichetareai = 1, j = 2,k= 3 şi estêınchis pentru etichetarea
k= 1, i = 2, j = 3.

DEFINIŢIE 1.4.5. Un grafGestêınchisdac̆a exist̆a o etichetare a v̂arfurilor
astfelı̂ncâtG sa fieı̂nchis relativ la aceasta.

Următoarele grafuri sunt exemple de grafuri care nu suntı̂nchise. S̆a
remarc̆am faptul c̆a dac̆a un grafG estêınchis, atunci orice subgraf indus a
lui G este, de asemenea,ı̂nchis. Aşadar, dacă grafulG conţine drept subgraf
indus oricare dintre urm̆atoarele grafuri descrise mai jos, atunci el nu va fi
ı̂nchis.

EXEMPLU 1.4.6.
(i) Graful cu trei muchii diferitee1,e2,e3 astfel ı̂ncât e1∩ e2∩ e3 6=

/0 este numit̆a graful ghiară. Graful ghiar̆a nu estêınchis; vezi
Figura 1.4. Aşadar, orice grafı̂nchis, trebuie s̆a fie liber de ghiare.

•

•

• •

FIGURA 1.4

(ii) Orice ciclu Cn de lungimen ≥ 4 nu estêınchis. S̆a presupunem
că exist̆a o etichetare a v̂arfurilor sale ,a1, . . . ,an (etichetarêın
sensul acelor de ceasornic). Pentru a obţine o etichetareı̂nchisa, ar
trebui, fie s̆a alegema1 < a2 < · · ·< an < a1, fiea1 > a2 > · · ·an >
a1. DeoareceCn nu are nici-o coard̆a, ambele alegeri conduc la o
contradicţie.

Spre exemplûın C4, dac̆a etichet̆am ı̂n direcţia acelor de cea-
sornic, 1,2,3,4, atunci,{2,4} ar trebuii sa aparţin̆a mulţimii de
muchi, deoarece{1,2} ∈ E(C4) şi {1,4} ∈ E(C4); şi de asemenea
{1,3} ar trebui s̆a aparţin̆a mulţimii de muchii, pentru a avea un
graf ı̂nchis, deoarece{1,4} ∈ E(C4) şi {3,4} ∈ E(C4).
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• •

••

4 3

21

FIGURA 1.5

Conform cu această observaţie, vom formula urm̆atoarea propoziţie.

PROPOZIŢIE 1.4.7. Dac̆a G esteı̂nchis atunciG este un graf cordal,
adic̆a nu are nici-un ciclu de lungime≥ 4 şi este liber de ghiare.

De asemenea se poate demonstra că un graf bipartit nu estêınchis deĉat
dac̆a este un graf linie; vezi [19, Corollary 1.3].

În următoarea secţiune, vom studia ideale binomiale muchie a două
clase de grafurîınchise.

1.4.1.1. Idealul binomial muchie al unui graf complet.Fie G= Kn un
graf complet definit pe muţimea de vârfuri [n]. Kn are muţimea de muchii
E(Kn) = {{i, j} : 1≤ i < j ≤ n}. Mai jos, am reprezentat graful complet cu
3 şi 4 v̂arfuri. Evident,Kn estêınchis reativ la orice etichetare a varfurilor.

•

•

• •

• •

•
K3 K4

FIGURA 1.6. Grafuri complete

Idealul binomial muchie al luiKn este idealulI2(X) al tuturor minorilor
2×2 (minori maximali) ai matricei 2×n:

X =

(
x1 · · · xn
y1 · · · yn

)
.
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Prin urmare, avem c̆a

JG= JKn = I2(X)= (xiy j −x jyi : 1≤ i < j ≤ n)⊂S=K[x1, . . . ,xn,y1, . . . ,yn].

Vom lista o serie de proprietăţi a luiJKn.

(i) Graful complet estêınchis relativ la orice etichetare. Prin urmare,
conform cu teorema 1.4.2, generatorii luiJKn formeaz̆a o baz̆a
Gröbner.

(ii) Fie < relaţia de ordine lexicografică definit̆a peSindus̆a de ordinea
natural̆a a nedeterminatelor. Atunci

in<(JKn) = (xiy j : 1≤ i < j ≤ n) =
⋂n

i=1(x1, . . . ,xi−1,yi+1, . . . ,yn).

(iii) Avem că dim
(

S
JKn

)
= dim

(
S

in<(JKn)

)
= dim(S)−height(in<(JKn))

= 2n− (n−1) = n+1.
(iv) S

JKn
este un domeniu [13, Theorem 6.35]. Aşadar,JKn este un ideal

prim.
(v) in<(JKn) are coeficienţi lineari.
(vi) At ât in<(JKn), cât şi JKn au o rezoluţie lineară. Într-adev̆ar, este

bine-cunoscut faptul c̆a un ideal graduat generatı̂ntr-un singur
grad, care are coeficienţi lineari, are de asemenea o rezoluţie li-
near̆a; vezi [18, Proposition 8.2.1]. Aceasta ne arată c̆a in<(JKn)
are o rezoluţie lineară. Pentru partea a doua aplicăm corolarul 1.2.6.

(vii) in<(JKn) este Cohen-Macaulay.
(viii) JKn este Cohen-Macaulay, deoarece, conform cu corolarul 1.2.6,

dac̆a in<(JKn) este Cohen-Macaulay atunci şiJKn este Cohen-Macaulay.

1.4.1.2. Idealul binomial muchie al unui graf liniar.FieG= Ln un graf
liniar definit pe mulţimea de v̂arfuri [n] cuE(G)= {(i, i+1) : 1≤ i ≤ n−1}.
Idealul binomial muchieJG al lui Ln esteJLn = ( fi,i+1 : 1≤ i ≤ n−1). În
continuare vom lista o serie de proprietăţi a luiJLn.

(i) Graful linearLn esteı̂nchis relativ la ordinea naturală a v̂arfurilor
sale. Aşadar,̂ın concordanţ̆a cu teorema 1.4.2, mulţimea gene-
ratorilor { fi,i+1 : 1 ≤ i ≤ n−1} formeaz̆a o baz̆a Gr̈obner pentru
JLn. De fapt este posibil sa obţinem aceeaşi concluzie făr̆a a fo-
losi teorema 1.4.2. Stim că monoamele iniţiale ale oricăror doi
generatori distincţi ai luiJLn sunt primeı̂ntre ele. Atunci, con-
cluzion̆am c̆a generatorii luiJLn formeaz̆a o baz̆a Gr̈obner datorit̆a
propoziţiei 1.1.29.

(ii) in<(JLn) = (xiyi+1 : 1≤ i ≤ n−1) este generat de secvenţa regulată
de lungimen−1 de monoame de grad 2. Aceasta implic̆a faptul c̆a
generatoriif12, f23, . . . , fn−1,n ai lui JLn formeaz̆a o secvenţ̆a regu-
lată pesteS. Acest rezultat este o consecinţă a urm̆atoarei leme.
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LEMA 1.4.8. FieI ⊂ S= K[x1, . . .xn] un ideal graduat şiG=
{g1, . . . ,gm} baz̆a Gröobner redus̆a a lui I relativă la <. Dac̆a
in<(g1), . . . , in<(gm) este o secvenţă regulat̆aı̂nS, atuncig1, . . . ,gm
este o secvenţă regulat̆a ı̂n S.

(iii) DeoareceJLn este o intersecţie completă, adic̆a,JLn este generat de
o secvenţ̆a regulat̆a, rezult̆a c̆aJLn este Cohen-Macaulay. Avem că

depth
(

S
JLn

)
= dim

(
S

JLn

)
= n+1.

1.4.2. Baze Gr̈obner pentru ideale binomiale muchie. În general,
pentru un graf arbitrarG, JG are o baz̆a Gr̈obner a caror monoame iniţiale
sunt libere de p̆atrate.

Pentru a caracterizâın termeni de combinatorică baza Gr̈obner a luiJG,
introducem urm̆atoarea definiţie.

DEFINIŢIE 1.4.9. Fiei < j doŭa vârfuri a lui G. Un drumi = i0, i1, . . .,
ir−1, ir = j de la i la j este numitadmisibildac̆a urmatoarele condiţii sunt
satisf̆acute:

(i) ik 6= iℓ pentruk 6= ℓ;
(ii) pentru oricek= 1, . . . , r −1, avem fie c̆a ik < i, fie c̆a ik > j;
(iii) pentru orice submulţime proprie{ j1, . . . , js} a lui {i1, . . . , ir−1},

secvenţai, j1, . . . , js, j nu este un drum̂ın G.

Având un drum dat admisibilπa luiGde lai la j, vom asocia un monom

uπ = (∏
ik> j

xik)(∏
iℓ<i

yiℓ).

Evident, orice muchie a luiG este un drum admisibil.̂In acest caz,
monomul asociat este doar 1.

EXEMPLU 1.4.10. Toate drumurile admisibile, excluzând muchiile sale,
ale luiC5, relativ la etichetarea dată ı̂n Figura 1.7, sunt:

π1 = 1,5,4; π2 = 2,1,5; π3 = 1,5,4,3; π4 = 2,1,5,4; π5 = 3,2,1,5.

Monoamele asociate pentru aceste drumuri admisibile sunt:

uπ1 = x5; uπ2 = y1; uπ3 = x4x5; uπ4 = x5y1; uπ5 = y1y2.

Remarc̆am faptul c̆a, ı̂ntr-un graf̂ınchis, drumurile admisibile sunt doar
muchiile lui G. Aşadar, dac̆a G esteı̂nchis şi conex atunci{i, i +1} este o
muchie a luiG pentru oricei.

TEOREMA 1.4.11. [19] Mulţimea binoamelor

Γ =
⋃

i< j

{uπ fi j : π este un drum admisibil de la i la j}
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FIGURA 1.7

este baz̆a Gröbner redus̆a a lui JG relativă la ordinea lexicografic̆a definit̆a
pe S indus̆a de ordinea natural̆a a nedeterminatelor, x1 > · · · > xn > y1 >
· · ·> yn.

EXEMPLU 1.4.12. Pentru grafulC5 din figura 1.7 dat̆a ı̂n exemplul an-
terior, baza Gr̈obner redus̆a a luiJC5 relativă la ordinea lexicografic̆a este:

{x4x5 f13,x5y1 f24,y1y2 f35,x5 f14,y1 f25, f12, f15, f23, f34, f45}.
Ca o consecinţă a teoremei 1.4.11, observăm c̆a orice drum admisibil a

grafuluiG poate fi determinat prin calculul bazei Gröbner redus̆e a luiJG.

EXEMPLU 1.4.13. FieG = K3,2 un graf complet bipartit cu 5 v̂arfuri
date câın Figura 1.8.

•

•

•

•

•1 2 3
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FIGURA 1.8

Drumurile admisibile ale luiK3.2, excluẑand muchiile sunt:
π1 = 1,4,2; π2 = 1,5,2; π3 = 1,4,3; π4 = 1,5,3; π5 = 2,4,3;

π6 = 2,5,3; π7 = 4,1,5; π8 = 4,2,5; π9 = 4,3,5.
Baza Gr̈obner redus̆a a unui ideal binomial muchie a unui graf complet

bipartit G = K3,2 este dat̆a deJG = ( f14, f15, f24, f25, f34, f35,x4 f12,x5 f12,
x4 f13,x5 f13,x4 f23,x5 f23,y1 f45,y2 f45,y3 f45).
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1.4.3. Descompunere primar̆a de ideale binomiale muchie.JG este
un ideal radical [19, Corollary 2.2]. Aceasta este o consecinţă a teoremei
1.4.2. Deoarece un ideal radical poate fi exprimat ca intersecţia dintre idea-
lele sale prime minimale, avem că

JG =
⋂

P∈Min(JG)

P,

unde Min(JG) reprezint̆a mulţimea idealelor prime minimale ale luiJG.
În continuare, dorim s̆a caracteriz̆am idealele prime minimale ale luiJG

ı̂n termeni combinatorici ai luiG. Pentru a realiza aceasta avem nevoie să
introducem urm̆atoarea notaţie.

FieGun graf simplu cu mulţimea de vârfuri [n].Pentru fiecare submulţime
S ⊂ [n] definim un ideal primPS ı̂n modul urm̆ator. FieG1, . . . ,Gc(S )

componentele conexe ale luiG[n]\S , undeG[n]\S este subgraful indus de

G peste mulţimea de vârfuri [n] \S . Pentru 1≤ i ≤ c(S ), fie G̃i graful
complet peste mulţimea de vârfuri V(Gi). Vom fixa

PS (G) = ({xi ,yi}i∈S ,JG̃1
, . . . ,JG̃c(S )

).

Folosind proprietatea(iv) a lui JKn, rezult̆a c̆aPS (G) este un ideal prim, de-
oareceJG̃1

, . . . ,JG̃c(S )
sunt ideale prime binomiale ai căror generatori aparţin

unor mulţimi de variabile distincte.
Observ̆am c̆a, pentru oriceS ⊂ [n], PS (G) ⊃ JG şi dimS/PS (G) =

∑c(S )
i=1 dim(Si/JG̃i

) undeSi este inelul polinoamelor̂ın variabilelex j ,y j cu
j ∈V(Gi). Astfel, obţinem c̆a

dimS/PS (G)=
c(S )

∑
i=1

(|V(Gi)|+1)= c(S )+
c(S )

∑
i=1

|V(Gi)|= c(S )+n−|S |.

TEOREMA 1.4.14. [19] Fie G un graf simplu cu mulţimea de vârfuri [n].
Atunci

JG =
⋂

S⊂[n]

PS (G).

În particular, idealele prime minimale ale lui JG se afl̆a printre idealele
prime PS (G), undeS ⊂ [n].

Demonstraţia acestei teoreme poate fi găsit̆a ı̂n [19, Theorem 3.2].

COROLAR 1.4.15. [19, Corollary 3.3] FieG un graf simplu definit peste
mulţimea de v̂arfuri [n]. Atunci

dimS/JG = max{n−|S |+c(S ) : S ⊂ [n]}.
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Dac̆a alegemS = /0, atunci num̆arul de componente conexe a luiG
estec= c( /0). Deoarece nu există nici-o variabilâın P/0(G), se poate observa
usor c̆a P/0(G) nu este comparabil cu nici-un alt ideal primPS (G) unde
S 6= /0. Aşadar,P/0(G) este un ideal prim minimal al luiJG. Calcul̆am
dimS/P/0(G) = n+c care reprezint̆a valoarea maxim̆a a luin−|S |+c(S ),
spre exemplu, atunci când JG este Cohen-Macaulay. Deoarece,ı̂n acest
caz ,JG nu este mixt, rezultă c̆a toate idealele prime minimale au aceeaşi
dimensiune.̂In particular, dac̆a G este conex, atunciJG nu este mixt dac̆a
şi numai dac̆a pentru orice ideal prim minimalPS (G) al lui G, avem c̆a
n−|S |+c(S ) = n+1, adicac(S )−|S |= 1.

În continuare, vom prezenta o teoremă care caracterizează mulţimileS

pentru care idealul primPS (G) este minimal.

TEOREMA 1.4.16. [19] Fie G un graf conex definit pe mulţimea de
vârfuri [n], şi fie S ⊂ [n]. Atunci PS (G) este un ideal prim minimal al
lui JG dac̆a şi numai dac̆a S = /0 sauS este nevid̆a şi pentru fiecare i∈S

avem c(S \{i})< c(S ).

Demonstraţia poate fi gasită ı̂n [19, Corollary 3.9].
O mulţime S ⊂ [n] care satisface condiţia teoremei de mai sus este

numit̆amulţime de puncte-taietură a lui G. Teorema ne spune simplu faptul
că, dac̆a G este un graf conex, atunciPS (G) este un ideal prim minimal al
lui JG dac̆a şi numai dac̆a fiecarei
inS este un punct de tăietur̆a a grafuluiG([n]\S )∪{i}.

EXEMPLU 1.4.17.
(1) Singura mulţime de puncte de taietură este mulţimea vid̆a, pentru

grafuri completeG.
(2) Fie G = Ln un graf linear definit pe mulţimea de vârfuri [n] cu

etichetarea naturală a v̂arfurilor. Atunci, o submulţime nevid̆a
S ⊂ [n] este o mulţime de puncte de tăietur̆a a luiG dac̆a şi numai
dac̆aS = {i1, . . . , ir} cu 1< i1 < · · ·< ir < n şi is+1− is > 1 pen-
tru toate 1≤ s≤ r −1. Spre exemplu, fieG= L5 graful linear cu
5 vârfuri. Vezi Figura 1.9.

• • • • •
1 2 3 4 5

FIGURA 1.9

Mulţimile punctelor de t̆aietur̆a sunt /0,{2},{3},{4},{2,4}. Aşadar,
putem scrie

JG = P/0(G)∩P{2}(G)∩P{3}(G)∩P{4}(G)∩P{2,4}(G)
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ca pe o intersecţie de ideale prime minimale corespunzătoare. Avem,
spre exemplu,P{2,4}(G)= (x2,y2,x4,y4), P{2}(G)= (x2,y2,x3y4−
x4y3,x3y5−x5y3,x4y5−x5y4).

(3) FieG un ciclu cun vârfuri, G=Cn. O mulţime nevid̆a de puncte
de t̆aietur̆a S ⊂ [n] are loc atunci ĉand|S | > 1 şi doŭa elemente
i, j ∈S aparţin aceleiaşi muchii a luiCn. JG nu este mixt deoarece
dimP/0(G) = n+1 şi orice alt ideal prim minimal are dimensiunea
n. Aici, spre exemplu, avem idealele prime minimale ale luiG=
C5 dateı̂n Figura 1.7:

P/0(G), P{1,3}(G), P{1,4}(G), P{2,4}(G), P{2,5}(G), P{3,5}(G).

(4) FieG un graf av̂and mulţimea varfurilor[7] caı̂n Figura 1.10.
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FIGURA 1.10

Mulţimea punctelor de tăietur̆a a luiGeste /0,{2},{6},{2,6},{3,5},{2,4,6}.
Aşadar avem c̆a

JG = P/0(G)∩P{2}(G)∩P{6}(G)∩P{2,6}(G)∩P{3,5}(G)∩P{2,4,6}(G),

unde, spre exemplu,

P{2,6}(G) = (x2,y2,x6,y6,x3y4−x4y3,x3y5−x5y3,x4y5−x5y4).

Calcul̆am simplu c̆a dimS/JG = 8 pentru valoarea maxim̆a a
lui n−|S |+c(S ) whenS = /0.

1.4.4. Rezoluţiile libere graduate minimale ale anumitorideale bi-
nomiale muchie. Vom considera idealul binomial muchie al grafului li-
near. FieG = Ln graful linear cun vârfuri şi E(G) = {{i, i +1} : 1 ≤ i ≤
n−1}.

Aşa cum am v̆azut deja, generatoriif = f12, f23, . . . , fn−1,n ai lui JLn

formeaz̆a o secvenţ̆a regulat̆a in S. Aşadar, complexul KoszulK•( f ) ne
conduce la rezoluţia liberă graduat̆a minimal̆a a luiS/JLn :

K•( f ) : 0→Kn−1( f )→·· ·→K j( f ) · · ·→K1( f )→K0( f )=S→S/JLn →0.
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S-modululK j( f ) este aj-a putere exterioară aS-modulului liber de rang
n−1 de baz̆a e1, . . . ,en−1. Deci, K j( f ) este de asemenea liber pesteS de
rang

(n−1
j

)
şi baz̆a

{ei1 ∧·· ·∧ei j : 1≤ i1 < · · ·< i j ≤ n−1}.
Deoarece vrem să avem toate mapările din rezoluţia de mai sus de graf

0, vom luaK j( f ) = S(−2 j)(
n−1

j ), pentru oricej. Aşadar,

βi j (S/JLn) =

{(n−1
i

)
, j = 2i

0, altfel.

Pe de alt̆a parte, generatorii lui in<(JLn) au aceeaşi proprietate,ı̂n prin-
cipal formeaz̆a o secvenţ̆a regulat̆a ı̂n S. Aceasta implic̆a faptul c̆a avem o
rezoluţie similar̆a pentruS/ in<(JLn). Pentru regularitate avem

regS/JLn = reg(S/ in<(JLn)) = n−1.

Consider̆am, acum, idealul binomial muchie al unui graf complet. Fie
G= Kn graful complet definit pe mulţimea de vârfuri [n]. Aşa cum am mai
văzut, ı̂n acest caz,JKn coincide cu idealul tuturor minorilor de ordin 2 ai
matriceiX a c̆arei r̂anduri suntx1, . . . ,xn şi y1, . . . ,yn. Rezoluţia luiI2(X)
este cunoscută, anume ea este complexul Eagon-Northcott, dar noi dorim
să ne restr̂angem la a arăta c̆a βi j (S/ in<(JKn)) = βi j (S/JKn) şi ı̂n acest caz,
făr̆a a folosi complexul.

Vom ı̂ncepe prin a observa că in<(JKn) = (xiy j : 1 ≤ i < j ≤ n) are
coeficienţi lineari dac̆a ordon̆am generatorii s̆ai ı̂ntr-o ordine descrescătoare,
relativ la ordinea lexicografic̆a indus̆a dex1 > · · ·> xn > y1 > · · ·> yn. Prin
urmare,S/ in<(JKn) şi, ı̂n consecinţ̆a,S/JKn are o rezoluţie lineară, prin co-
rolarul 1.2.6. Prin remarca 1.2.4, numerele Betti ale luiS/JKn şi S/ in<(JKn)
sunt determinate de seriile lor Hilbert. DarS/JKn şi S/ in<(JKn) au aceeaşi
serii Hilbert. DeciS/JKn şi S/ in<(JKn) au aceleaşi numere graduate Betti.



CHAPTER 2

Numere Betti extremale pentru unele clase de ideale

muchie binomiale

În [14], autorii emit ipoteza c̆a numerele Betti extremale ale luiJG si
in<(JG) coincid pentru orice grafG. Aici, < semnific̆a ordonarea lexicogra-
fica ı̂n S= K[x1, . . . ,xn,y1, . . . ,yn] indus̆a de ordinea naturală a variabilelor
x1 > .. . > xn > y1 > .. . > yn.

În aceast̆a secţiune, vom da un răspuns pozitiv la aceasta conjectură
pentru cazul ĉand grafulG este un graf bipartit complet sau ciclu.În acest
sens, folosim unele rezultate demonstrateı̂n [29] şi [32] care caracterizează
complet rezoluţia idealului muchie binomialJG cândG este ciclu sau un
graf bipartit complet.̂In particular,ı̂n acest caz, rezultă c̆a JG are un unic
număr Betti extremal. Amintim toate aspectele cunoscute privind rezoluţia
idealelor muchie binomiale ale grafurilor bipartite complete şi ciclurilor.

Studiem idealul iniţial pentruJG undeG este un graf bipartit sau un
ciclu. Arat̆am c̆a projdimin<(JG) = projdimJG şi reg in<(JG) = regJG, şi
prin urmare, in<(JG) are un unic num̆ar Betti extremal.̂In final, ar̆at̆am c̆a
numărul Betti extremal pentru in<(JG) este egal cu cel al luiJG.

După cunoştiinţele noastre, aceasta este primaı̂ncercare de a dovedi
conjectura considerată ı̂n [14] pentru numerele Betti extremale.

În studiul nostru, vom profita de rezultatele cunoscute privind rezoluţiile
idealelor muchie binomiale asociate ciclurilor şi grafurilor bipartite com-
plete şi de faptul c̆a idealele lor iniţiale au proprietăţi interesante.
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2.1. Ideale muchie binomiale asociate grafurilor bipartite complete

FieG= Km,n un graf bipartit complet pe mulţimea de noduri
{1, . . . ,m}∪{m+1, . . . ,m+n} with m≥ n≥ 1 şi fieJG idealul muchie

binomial asociat.
JG este generat de toate binoamelefi j = xiy j − x jyi unde 1≤ i ≤ m şi

m+1≤ j ≤ m+n. În [29, Theorem 5.3] se arată c̆a diagrama Betti pentru
S/JG are forma

0 1 2 · · · p
0 1 0 0 · · · 0
1 0 mn 0 · · · 0
2 0 0 β24 · · · βp,p+2

undep= projdimS/JG =

{
m, if n= 1,
2m+n−2, if n> 1.

În particular, din diagrama Betti de mai sus putem citi că S/JG are un
unic numar Betti extremal, şi anumeβp,p+2.

În plus,ı̂n [29, Theorem 5.4] sunt calculate toate numerele Betti pentru
S/JG. Din moment ce suntem interesaţi doar de numărul Betti extremal,
amintim aici valoarea sa, aşa cum a fost dată ı̂n [29, Theorem 5.4], şi anume,

βp,p+2 =

{
m−1, if p= m,
n−1, if p= 2m+n−2.

Se poate vedea cu uşurinţa că drumurile admisibile ale grafului complet
G = Km,n sunt doar muchiile luiG, de formai,m+ k, j cu 1≤ i < j ≤ m,
1≤ k≤m, şi drumurile de formam+ i,k,m+ j cu 1≤ i < j ≤ n, 1≤ k≤m.
Prin urmare, vom obţine urm̆atoarea consecinţa la teorema de mai sus.

COROLAR 2.1.1. Fie G= Km,n un graf bipartit complet cu mulţimea de
noduri V(G) = {1, . . . ,m}∪{m+1, . . . ,m+n}. Atunci

in<(JG) = ({xiy j} 1≤i≤m
m+1≤ j≤m+n

,{xixm+ky j}1≤i< j≤m
1≤k≤n

,{xm+1ykym+ j}1≤i< j≤n
1≤k≤m

).

2.2. Ideale muchie binomiale asociate ciclurilor

În aceast̆a secţiune,G semnific̆a unn–ciclu pe mulţimea de noduri[n]
cu muchiile{1,2},{2,3}, . . . ,{n−1,n},{1,n}.

În [32] s-a demonstrat c̆a diagrama Betti pentruS/JG are forma
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0 1 2 3 · · · n
0 1 0 0 0 · · · 0
1 0 n 0 0 · · · 0
2 0 0 β24 0 · · · 0
3 0 0 0 β36 · · · 0
...

...
...

...
...

...
...

n−2 0 0 β2,n β3,n+1 · · · βn,2n−2

şi s-au calculat toate numere Betti.
Se vede c̆a avem un unic num̆ar Betti extremal şi, din [32], avemβn,2n−2=(n−1

2

)
−1.

Acum ne uit̆am la idealul iniţial al luiJG.
Este evident din definiţia 1.4.9 şi din etichetarea nodurilor lui G că dru-

murile admisibile sunt muchiile luiG şi drumurile de formai, i−1, . . . ,1,n,n−
1, . . . , j +1 cu 2≤ j − i ≤ n−2.

Prin urmare, vom obţine urm̆atorul sistem de generatori pentru idealul
iniţial al lui JG.

COROLAR 2.2.1. Fie G un n–ciclu cu etichetarea naturală a nodurilor
sale. Atunci

in<(JG) = (x1y2, . . . ,xn−1yn,x1yn,{xix j+1 · · ·xny1 · · ·yi−1y j}2≤ j−i≤n−2).

2.3. Numere Betti extremale pentru grafurile bipartite

FieG=Km,n un graf bipartit complet cu mulţimea de noduri{1, . . . ,m}∪
{m+ 1, . . . ,m+ n}cu m ≥ n ≥ 1 şi fie JG idealul muchie binomial aso-
ciat. Idealul iniţial in<(JG) are o proprietate interesantă care este stabilită
ı̂n propoziţia urm̆atoare.

PROPOZIŢIE 2.3.1. Fie G= Km,n un graf complet. Atunciin<(JG) are
câturi liniare.

TEOREMA 2.3.2. Fie G= Km,n un graf complet. Atunci

βt,t+2(in<(JG)) = ∑
1≤i≤m

m+1≤ j≤m+n

(
i+ j −m−2

t

)
,

βt,t+3(in<(JG)) =





∑1≤i< j≤m
1≤k≤n

(n+k+ j−3
t

)
, if n = 1,

∑1≤i< j≤m
1≤k≤n

(n+k+ j−3
t

)
+∑1≤i< j≤n

1≤k≤m

(m+k+ j−3
t

)
, if n > 1.
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În particular, din teorema de mai sus, rezultă urm̆atorul corolar care
arat̆a ca̧ pentruG=Km,n numerele Betti extremale ale luiS/JG şi S/ in<(JG)
coincid.

COROLAR 2.3.3. Fie G= Km,n un graf complet. Atunci:

(a) projdim(S/ in<(JG))= projdim(in<(JG))+1=

{
m, if n = 1,
2m+n−2, if n > 1.

(b) S/ in<(JG) are un unic numar Betti extremal, şi anume

βp,p+2(S/ in<(JG)) = βp−1,p+2(in<(JG)) =

{
m−1, if n = 1,
n−1, if n > 1.

2.4. Numere Betti extremale asociate ciclurilor

În aceast̆a secţiune, grafulG este unn–ciclu. Dac̆a n = 3, atunci G
este un graf complet, prin urmare idealeleJG şi in<(JG) au aceleaşi numere
graduate Betti. Astfel,̂ın continuare, putem consideran≥ 4.

Aşa cum am v̆azut deja Corollary 2.2.1, in<(JG) este minimal generat
de monoamele iniţiale ale binoamelor corespunzătoare muchiilor luiG şi
dem= n(n−3)/2 monoame de grad≥ 3 care ne indic̆a v1, . . . ,vm ı̂n cazul
ı̂n care vom presupune că dac̆a i < j, atunci fie degvi < degv j sau degvi =
degv j şi vi > v j . Să observ̆am c̆a dac̆a vk = xix j+1 · · ·xny1 · · ·yi−1y j , avem
degvk = n− j + i+1.

Prin urmare, există doŭa monoame de grad 3, şi anume,v1 = x1xnyn−1
şi v2 = x2y1yn, trei monoame de grad 4, şi anume,v3 = x1xn−1xnyn−2,v4 =
x1xny1yn−1,v5 = x1y1y2yn, etc.

Vom introduce urm̆atoarea notaţie. StabilimJ=(x1y2,x2y3, . . . ,xn−1yn),
I = J+(x1yn), şi, pentru 1≤ k≤ m, Ik = Ik−1+(vk), cu I0 = I . Prin urmare,
Im = in<(JG).

LEMA 2.4.1. Idealele ĉat J : (x1yn) si Ik−1 : (vk), pentru k≥ 1, sunt
minimal generate de secvenţe regulate de monoame, de lungime n−1.

OBSERVAŢIE 2.4.2. Din lema de mai sus, reţinem că, dac̆avk = xix j+1 · · ·xny1 · · ·yi−1y j ,
atunci şirul regulat de monoame care generează Ik−1 : (vk) conţine j − i−2
monoame de grad 2 şin− j + i+1 variabile.

În următoarea lem̆a vom calcula dimensiunea proiectivă şi regularitatea
pentruS/I .

Aceasta ne va fi util pentru studiul inductiv al invarianţilor lui S/Ik.

LEMA 2.4.3. AvemprojdimS/I = n−1 şi regS/I = n−2.
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LEMA 2.4.4. Pentru1 ≤ k ≤ m, avemprojdimS/Ik ≤ n şi regS/Ik ≤
n−2.

PROPOZIŢIE 2.4.5. projdimS/ in<(JG) = n şi regS/ in<(JG) = n−2.

TEOREMA 2.4.6. Fie G un ciclu. Atunci S/ in<(JG) şi S/JG au acelaşi
num̆ar Betti extremal, şi anumeβn,2n−2(S/JG)=βn,2n−2(S/ in<(JG))=

(n−1
2

)
−

1.

OBSERVAŢIE 2.4.7. Exist̆a exemple de grafuri, pentru care idealul mu-
chie asociat are mai multe numere Betti extremale. De exemplu, graful
G afişat mai jos are două numere Betti care sunt egale cu numerele Betti
extremale pentru in<(JG).

• • • • • • •

•

•





CHAPTER 3

Asupra idealelor binomiale muchie asociate grafurilor

bloc

În acest capitol studiem proprietăţile omologice pentru unele clase de
ideale muchie binomiale.

FieGun graf simplu pe mulţimea de noduri[n] şi fieS=K[x1, . . . ,xn,y1, . . . ,yn]
inelul polinoamelor̂ın 2n variabile peste un corpK. Aratăm c̆a dac̆a G

este un graf bloc, depth(S/JG) = depth(S/ in<(JG)).
De asemenea aratăm o egalitate similară pentru regularitate, şi anume

reg(S/JG) = reg(S/ in<(JG)) = ℓ dac̆aG esteCℓ-graf.
GrafurileCℓ constituie o subclasă a grafurilor bloc.̂In [21] s-a ar̆atat c̆a,

pentru orice graf conexG pe mulţimea de noduri[n], avem

ℓ≤ reg(S/JG)≤ n−1,

undeℓ este lungimea celui mai lung drum al luiG.
Principala motivaţie a lucrării noastre a fost s̆a r̆aspund̆a la urm̆atoarea

ı̂ntrebare.
Putem s̆a caracteriz̆am grafurile conexeG pentru care cel mai lung drum

indus are lungimeaℓ şi reg(S/JG) = ℓ?
Am reuşit s̆a r̆aspundem la această ı̂ntrebare pentru arbori. Arăt̆am c̆a

dac̆a T este un arbore pentru care cel mai lung drum indus are lungimea ℓ,
atunci reg(S/JT) = ℓ dac̆a şi numai dac̆aT este ’caterpillar’.

Un arbore ’caterpillar’ este un arboreT cu proprietatea c̆a acesta conţine
un drumP astfel c̆a orice nod al luiT este fie un nod al luiP fie este adiacent
la un nod al luiP.
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În [22], au fost introduse aşa numitele grafuri slabı̂nchise. Acesta este
o clas̆a de grafuri care includ grafurilêınchise. În lucrarea citat̆a, s-a de-
monstrat c̆a un arbore este ’caterpillar’ dacă şi numai dac̆a este un graf slab
inchis.

Având ı̂n vedere teorema Theorem 3.2.1 şi teorema 3.2 in [16] care
afirmă c̆a reg(S/JG) = ℓ dacaG este un graf̂ınchis conex pentru care cel mai
lung drum indus are lungimeaℓ, şi pe baza unor experimente de calculator,
suntem tentaţi s̆a formul̆am urm̆atoarele.

CONJECTURE3.0.8. Dacă G este un graf̂ınchis slab conex pentru care
cel mai lung drum indus are lungimeaℓ, atuncireg(S/JG) = ℓ.

Amintim la inceput ĉateva definiţii de baz̆a din teoria grafurilor.
Un nod i al lui G a c̆arui ştergere din graf d̆a un graf cu mai multe

componente conexe decât G se numeştepunct de t̆aietură al lui G. Un graf
cordaleste un graf f̆ar̆a cicluri de lungime mai mare sau egal cu 4.

Clica unui grafG este un subgraf complet al luiG. Clicile unui grafG
formeaz̆a un complex simplicial,∆(G), care se numeştecomplex clic̆a al
lui G. Faţetele acestuia sunt clicile maximale ale luiG.

Un graf G este ungraf bloc daca şi numai dacă este cordal şi fiecare
doŭa clici maximale au cel mult un nod̂ın comun.

Complexul clic̆a ∆(G) al unui graf cordalG are proprietatea că exist̆a o
ordine frunz̆a pe faţetele sale. Aceastaı̂nseamn̆a c̆a faţetele lui∆(G) pot fi
ordonate astfelF1, . . . ,Fr astfel inĉat, pentru fiecarei > 1, Fi este o frunz̆a a
complexului simplicial generat deF1, . . . ,Fi.

O frunz̆a F a complexului simplicial∆ este o faţet̆a pentru∆ cu propri-
etatea c̆a exist̆a o alt̆a faţet̆a a lui ∆, s̆a zicemG, astfel inĉat, pentru orice
faţet̆aH 6= F a lui ∆, H ∩F ⊆ G∩F.

3.1. Ideale iniţiale pentru ideale muchie binomiale asociate grafurilor
bloc

În aceast̆a secţiune, lâınceput demonstrăm c̆a, pentru un graf blocG
pe [n] cu c componente conexe avem depth(S/JG) = depth(S/ in<(JG)) =
n+c, unde< semnific̆a ordonarea lexicografică indusa dex1 > · · · > xn >
y1 > · · ·> yn ı̂n inelulS= K[x1, . . . ,xn,y1, . . . ,yn].

Vom ı̂ncepe cu urm̆atoarea lem̆a.

LEMA 3.1.1. Fie G un graf pe mulţimea de noduri[n] şi fie i∈ [n].
Atunci

in<(JG,xi,yi) = (in<(JG),xi,yi).
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TEOREMA 3.1.2. Fie G un graf bloc şi fie c num̆arul de componente
conexe ale lui G . Atunci

depth(S/JG) = depth(S/ in<(JG)) = n+c.

FieG un graf conex pe mulţimea de noduri[n] care const̆a ı̂n
(i) un şir de clici maximaleF1, . . . ,Fℓ cu dimFi ≥ 1 pentrui astfel

ı̂ncât |Fi ∩Fi+1|= 1 pentru 1≤ i ≤ ℓ−1 şiFi ∩Fj = /0 pentru orice
i < j astfelı̂ncât j 6= i+1, ı̂mpreun̆a cu

(ii) câteva muchii adiţionale de formaF = { j,k} unde j este un punct
de intersecţie a doua clici consecutiveFi ,Fi+1 pentru unele 1≤ i ≤
ℓ−1, şik este un nod de grad 1.

Cu alte cuvinte,G este obţinut dintr-un grafH cu∆(H) = 〈F1, . . . ,Fℓ〉 a
cărui ideal muchie binomial este Cohen-Macaulay (vezi [14, Theorem 3.1])
prin ataşarea de muchiiı̂n punctele de intersecţie ale faţetelor lui∆(H).

Prin urmare,G arat̆a ca graful afişat̂ın Figure 3.1.

•

•

•

•

• •

••

•

•

•

•

• •

•

•

• •

•

FIGURA 3.1. Cℓ-graph

Un astfel de graf are, evident, proprietatea că drumul s̆au indus cel mai
lung are lungimea egală cuℓ. Dac̆a un graf conexG satisface condiţiile de
mai sus (i) şi (ii), spunem c̆a G este unCℓ-graf. În cazulı̂n care dimFi = 1
pentru 1≤ i ≤ ℓ, atunciG se numeştegraf ’caterpillar’ .

Vom reţine de asemenea că oriceCℓ–graf este cordal şi are proprietatea
că oricare doŭa clici maximale distincte se intersectează ı̂n cel mult un nod.
Deci, unCℓ-graf este un graf bloc conex.

TEOREMA 3.1.3. Fie G unCℓ-graf pe mulţimea de noduri[n]. Atunci

reg(S/JG) = reg(S/ in<(JG)) = ℓ.

EXEMPLU 3.1.4. Pentru grafulGdin Figure 3.1 obţinem reg(S/JG)= 5.
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3.2. Ideale muchie binomiale asociate arborilor ’caterpillar’

Matsuda şi Murai au demonstratı̂n [20] că, pentru orice graf conex
G pe mulţimea de noduri[n], avemℓ ≤ reg(S/JG) ≤ n− 1, undeℓ repre-
zintă lungimea celui mai lung drum indus al luiG, şi au emis ipoteza că
reg(S/JG) = n−1 dac̆a şi numai dac̆aT este un graf linie.

Mai multe lucr̆ari recente sunt preocupate de aceasta conjectură; vezi,
de exemplu, [16], [25], şi [27].

Se poatêıntreba cum se caracterizează grafurile conexe pentru care cel
mai lung drum indus are lungimeaℓ si reg(S/JG) = ℓ.

În aceast̆a secţiune, vom răspunde la această ı̂ntrebare, pentru cazul ar-
borilor.

Un arbore ’caterpillar’ este un arboreT cu proprietatea c̆a acesta conţine
un drumP astfelı̂ncât orice nod al luiT este fie un nod al luiP sau adiacent
la un nod al luiP. În mod clar, orice arbore ’caterpillar’ este unCℓ-graf
pentru un̂ıntreg pozitivℓ.

• • •• • • • •

• •

• • •
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• •

•

•

FIGURA 3.2. Caterpillar

• • •• • • • •

•

•

FIGURA 3.3. Induced graph H
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3.2. Ideale muchie binomiale asociate arborilor ’caterpillar’ 37

Arborii ’caterpillar’ au fost studiaţi pentru prima oară de Harary şi Schwenk
[17]. Aceste grafuri au aplicaţiîın chimie şi fizic̆a [12]. În Figure 3.2, este
afişat un exemplu de arbore ’caterpillar’.

Reţineţi c̆a orice arbore ’caterpillar’ este un grafı̂ngust̂ın sensul dat de
Cox şi Erskine [5].

Reciproc, se poate observa uşor că orice arbore ingust este un arbore
’caterpillar’.

În plus, dup̆a cum s-a observatı̂n [21], un arbore este un graf ’caterpil-
lar’ dac̆a şi numai dac̆a este slab̂ınchisı̂n sensul definiţiei datêın [21].

În următoarea teorem̆a, caracteriz̆am arboriiT cu reg(S/JT) = ℓ undeℓ
este lungimea drumului celui mai lung indus al luiT.

TEOREMA 3.2.1.Fie T un arbore pe mulţimea de noduri[n] pentru care
drumul cel mai lung indus P are lungimeaℓ. Atuncireg(S/JT) = ℓ dac̆a şi
numai dac̆a T este ’caterpillar’.





CHAPTER 4

Idealele binomiale muchie şi scrol normal raţional

Fie K un corp şiS= K[x1, . . . ,xn+1] inelul polinoamelor̂ın n+1 varia-
bile K. Minorii de ordinul 2 ai matricei

X =

(
x1 . . . xn−1 xn
x2 . . . xn xn+1

)

genereaz̆a idealulIX pentru curba normală raţional̆aX ⊂ Pn. Este bine
cunoscut c̆aS/IX este Cohen-Macaulay şi are o rezoluţieS–liniară.

Recomand̆am cititorului referinţele [10], [4], [1] pentru propriet̆aţile
idealului asociat unui scrol normal raţional.

Pe de alt̆a parte,̂ın ultimii ani, idealele muchie binomiale au fost intensiv
studiate.

În analogie cu construcţia idealelor muchie binomiale clasice,̂ın aceast̆a
lucrare considerăm urm̆atoarele idealêın S. Pentru un graf simpluG pe
mulţimea de noduri[n], fie IG idealul generat de minorii de ordinul 2,gi j =
xix j+1−x jxi+1 pentruX cu i < j şi {i, j} ∈ E(G).

DenumimIG idealul muchie binomial pentru X.
Este clar de la inceput că spre deosebire de cazul clasic al idealelor

muchie binomiale, idealulIG depinde puternic de etichetarea grafuluiG.
De exemplu, dac̆aG este graful afişat̂ın Figure 4.1, obţinem dim(S/IG) = 3
pentru etichetareâın Figure 4.2 (a) si dim(S/IG) = 4 pentru etichetarea lui
G dat̆a ı̂n Figure 4.2 (b).

Totuşi, pentru unele clase de grafuriG care admit o etichetare naturală,
putem s̆a asociem luiG un unic idealIG şi s̆a-i studiem propriet̆aţile. Acesta
este cazul, de exemplu, pentru grafurileı̂nchise.
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Reamintim din [19] că G esteı̂nchis dac̆a are o etichetarêın raport cu
care estêınchis.

Un grafG se numeştêınchisı̂n raport cu o etichetare dată dac̆a pentru
toate muchiile{i, j} şi {i,k} cu j > i < k sau j < i > k, avem{ j,k} ∈E(G).
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FIGURA 4.1
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FIGURA 4.2

Un grafı̂nchisG este cordal şi, prin urmare, din teorema Dirac, complex
clica sa∆(G) este o cvasi-p̆adure.

∆(G) este o cvasi-p̆adure dac̆a faţeteleF1, . . . ,Fr of ∆(G) au o ordonare
frunză.

S-a demonstrat̂ın [14] că dac̆a G estêınchis, atunci putem eticheta no-
durile lui G astfel̂ıncât faţetele lui∆(G), s̆a zicemF1, . . . ,Fr , să fie intervale,
Fi = [ai,bi]⊂ [n] şi dac̆a ordonamF1, . . . ,Fr astfelı̂ncâta1 < a2 < · · ·< ar ,
atunci aceasta este o ordonare frunză.

In continuare, acest capitol este structurat după cum urmeaz̆a.
În Section 4.1, ar̆at̆am c̆a dac̆a generatoriiIG formeaz̆a o baz̆a Gr̈obner

ı̂n raport cu ordinea invers lexicografică dac̆a şi numai dac̆aG estêınchis cu
etichetarea dată.

Ca o consecinţă a acestei teoreme, deducem că pentru un graf̂ınchisG,
idealul IG este Cohen-Macaulay de dimensiune 1+ c, undec este num̆arul
de componente conexe ale luiG.

În Section 4.2, studiem proprietăţile lui IG pentru un graf̂ınchisG. Cal-
culăm idealele prime minimale ale luiIG ı̂n Theorem 4.2.2. Folosind această
teorem̆a, caracteriz̆am aceste grafurîınchise conexeG pentru careIG este
un ideal radical (Proposition 4.2.3). Suplimentar, arăt̆amı̂n Corollary 4.2.4,
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că IG este intersecţie completă dac̆a G este conectat şîınchis. În ultima
parte, la Section 4.2, dăm o margine superioară pentru regularitatea luiIG
(Theorem 4.2.7) şi demonstrăm c̆a IGare o rezoluţie liniar̆a dac̆a şi numai
dac̆aG este un graf complet.

4.1. Baze Gr̈obner

FieG un graf pe mulţimea de noduri[n] şi IG ⊂ S= K[x1, . . . ,xn] idealul
său asociat. Rezultatul principal al acestei secţiuni este următorul.

TEOREMA 4.1.1. Generatorii lui IG formeaz̆a o baz̆a Gröbner redus̆a a
lui IG ı̂n raport cu ordonarea invers lexicografică indusa de x1 > · · ·> xn >
xn+1 dac̆a şi numai dac̆a G estêınchisı̂n raport cu etichetarea sa.

La fel caı̂n cazul idealelor muchie binomiale clasice asociate grafurilor,
idealulIG undeG este graful linie pen noduri are propriet̆aţi interesante.

Fie G un graf linie pe[n] cu E(G) = {{i, i +1} : 1≤ i ≤ n−1}. Atunci
IG este minimal generat de{gi,i+1 = x2

i+1−xixi+2 : 1≤ i ≤ n} şi inrev(IG) =
(x2

2,x
2
3, . . . ,x

2
n). As x2

2,x
2
3, . . . ,x

2
n este o secvenţa regulată ı̂n S, rezult̆a c̆a ge-

neratorii lui IG formeaz̆a de asemenea o secvenţă regulat̆a. Prin urmare,
complexul Koszul al generatorilor luiIG furnizeaz̆a rezoluţia liber̆a mini-
mal̆a pentruS/IG pesteS.

Propoziţia urm̆atoare arat̆a c̆a, pentru un graf̂ınchisG, idealul iniţial al
lui IG ı̂n raport cu ordonarea invers lexicografică are o structura simpla.

PROPOZIŢIE 4.1.2. Fie G un grafı̂nchis pe[n] cu ∆(G) = 〈F1, . . . ,Fr〉
unde Fi = [ai ,bi] pentru1 ≤ i ≤ r, şi 1 = a1 < · · · < ar < br = n. Atunci
inrev(IG) este un ideal monomial primar, prin urmare este Cohen-Macaulay.

COROLAR 4.1.3. Fie G un grafı̂nchis. Atunci IG este un ideal Cohen-
Macaulay cudim(S/IG) = 1+c unde c este num̆arul de componente conexe
pentru G.

4.2. Proprietăţi ale idealelor muchie binomiale scrol asociate
grafurilor ı̂nchise

În aceast̆a secţiune studiem câteva propriet̆c ti algebrice şi omologice
ale idealuluiIG undeG este un graf̂ınchis pe mulţimea de noduri[n].
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4.2.1. Ideale prime asociate grafurilor. Reamintim c̆a IX semnific̆a
idealul muchie binomial asociat grafului completKn. Este cunoscut c̆a IX
este un ideal prim.

PROPOZIŢIE 4.2.1. Fie G un graf arbitrar conectat pe mulţimea de no-
duri [n]. Atunci IX este un ideal prim minimal al lui IG. Dacă P este un ideal
prim minimal al lui IG care nu conţine variabile, atunci P= IX.

În continuare ne concentrăm studiul pe idealele asociate cu grafurile
ı̂nchise conexe.

TEOREMA 4.2.2. Fie G 6= Kn un graf ı̂nchis conex pe mulţimea de no-
duri [n] şi IG idealul asociat. Atunci

Ass(S/IG) = Min(IG) = {IX,(x2, . . . ,xn)}.
Ca o consecinţă la teorema de mai sus, putem caracteriza idealul radical

IG.

PROPOZIŢIE 4.2.3. Fie G un grafı̂nchis conex pe mulţimea de noduri
[n]. Atunci IG este un ideal radical dac̆a şi numai dac̆a G= Kn sau∆(G) =
〈[1,n−1], [2,n]〉.

Theorem 4.2.2 are urm̆atoarea consecinţă interesant̆a.

COROLAR 4.2.4. Fie G un graf̂ınchis conex. Atunci IG este intersecţie
complet̆a.

4.2.2. Regularitate. Fie G un grafı̂nchis pe mulţimea de noduri[n] şi
IG ⊂ S idealul asociat. Primâıntrebare este sub care condiţii pentru graful
G idealulIG are o rezoluţie liniar̆a.

Propoziţia urm̆atoare r̆aspunde la această ı̂ntrebare. Avem nevoiêın
primul rand de urm̆atoarea afirmaţie.

LEMA 4.2.5. [3, Exercise 4.1.17 (c)]Fie R= K[x1, . . . ,xn]/I un inel
omogen Cohen-Macaulay. Inelul R are o rezoluţie m-liniară daca şi numai
dac̆a I j = 0 pentru j< m sidimK Im =

(m+g−1
m

)
unde g= heightI .

PROPOZIŢIE 4.2.6. Fie G un graf ı̂nchis pe[n]. Atunci urm̆atoarele
afirmaţii sunt echivalente:

(a) G este un graf complet;
(b) IG are o rezoluţie liniar̆a;
(c) Toate puterile lui IG au o rezoluţie liniar̆a.

Teorema urm̆atoare d̆a o margine superioară pentru regularitatea luiIG
cândG este un graf̂ınchis.
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TEOREMA 4.2.7.Fie G un graf̂ınchis pe mulţimea de noduri[n]. Atunci
reg(S/IG)≤ r unde r este num̆arul de clici maximale ale lui G.

OBSERVAŢIE 4.2.8. Marginea superioară din teorema de mai sus este
strict̆a.

În adev̆ar, fieG un graf ı̂nchis cu clicile maximaleFi = [ai ,ai+1] unde
1= a1 < a2 < · · ·< ar < ar+1 = n. În acest caz, avem

inrev(IG) = (x2, . . . ,xa2)
2+(xa2+1, . . . ,xa3)

2+ · · ·+(xar+1, . . . ,xn)
2.

Prin urmare,

S/(inrev(IG),x1,xn+1)∼= (S1/(x2, . . . ,xa2)
2)⊗K · · ·⊗K (Sr/(xar+1, . . . ,xn)

2)

undeSi = K[xai+1, . . . ,xai+1] pentru toţii, ceea ce implic̆a

HS/(inrev(IG),x1,xn+1)(t) =
r

∏
i=1

(1+(ai+1−ai)t).

Aceasta arată c̆a reg(S/IG) = r.

Din Proposition 4.2.6 şi Theorem 4.2.7, deducem următoarea consecinţă.

COROLAR 4.2.9. Fie G un graf̂ınchis cu doŭa clici maximale.
Atuncireg(S/IG) = 2.

Exemplul urm̆ator arat]u a c̆a inegalitatea dată ı̂n Theorem 4.2.7 este
strict̆a.

EXEMPLU 4.2.10. FieG un graf ı̂nchis pe mulţimea de noduri[6] cu
clicile maximaleF1 = [1,4], F2 = [3,5], şi F3 = [4,6]. Avem reg(S/IG) =
2< 3.
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Concluzii şi dezvoltări ulterioare

În rezumat, principalele rezultate ale tezei sunt următoarele.

1. Am ar̆atat c̆a, dac̆aG este un graf complet bipartit sau ciclu, atunci
idealul binomial asociatJG şi idealul s̆au iniţial in<(JG) ı̂n ra-
port cu ordonarea lexicografică ı̂n S= K[x1, . . . ,xn,y1, . . . ,yn] au
aceleaşi numere Betti extremale.

2. Dac̆aG este un graf bloc pe mulţimea de noduri[n], atunci
depth(S/JG) = depth(S/ in<(JG)) = n+c undec este num̆arul

de componente conexe pentruG.
3. Dac̆a G este unCℓ-graf, atunci reg(S/JG) = reg(S/ in<(JG)) = ℓ.

În particular, rezult̆a ca idealul binomial muchie al grafuluiCℓ are
o regularitate minimală.

4. Am caracterizat arborii pentru care idealele binomiale muchie au
regularitate minimal̆a.

5. Am introdus idealele binomiale muchie ale grafurilorı̂nchise aso-
ciate cu scroluri şi am studiat mai multe proprietăţi algebrice şi
omologice ale lor.

Idealele binomiale muchie au fost intensiv studiateı̂n ultimii 5 ani.
Intention̆am s̆a continŭam cercet̆arile pe această tem̆a cu o focalizare

speciala pe conjectura lui Matsuda şi Murai [20] care stabileşte c̆a, pentru
un grafG pe mulţimea de noduri[n], avem reg(S/JG) = n−1 dac̆a şi numai
dac̆aG este un graf linie.

Aceast̆a conjectur̆a a fost demonstrată pentru grafurile bloĉın [16]. În
particular, rezult̆a c̆a aceast̆a conjectur̆a este valabil̆a pentru arbori.

O alt̆a problem̆a interesant̆a este rezolvarea conjecturii pentru idealele
binomiale muchie cu regularitate minimală, pe care am propus-oı̂n [8].
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În plus, am dori s̆a extindem cercetarea asupra idealelor binomiale mu-
chie asociate cu scroluri. De exemplu, o direcţie este să generaliz̆am construcţia
noastr̆a la perechea de grafuri pentru matricea Hankel de tip arbitrar urm̆arind
ideile din lucrarea [15].
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