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Preface

The main subject of this thesis is the study of binomial idealpoly-
nomial rings arising from combinatorics.

By a simple grapl@ on the vertex sén] we mean an undirected graph
G with no loops and no multiple edges. VillaredD] introduced monomial
edge ideald (G) associated with a simple graghin the polynomial ring
K[X1,...,X] in nvariables over a fiel&k. The monomial edge ide&(G)
is generated by all the monomiatsx; wherei < j and {i, j} is an edge
of G. In a similar way, one may define the binomial edge idkat- S=
K[X1,..-, X, Y1,---,Yn| @ssociated witlG as the ideal generated by all the
binomialsfi; = xy; — Xjyi wherei < j and{i, j} is an edge oG.

Binomial edge ideals were first introduced 9] and [22] indepen-
dently at the same time. The authors 9] obtained some nice results
on Gbner bases, primary decomposition and minimal prime sdefbi-
nomial edge ideals. Afterwards, many other research pamsoached
the topic of binomial edge ideals. Much effort has been donetudying
the Cohen-Macaulay property of a binomial edge idedl14, 23, 3], the
syzygies oflg and its regularity 20, 25, 27, 16, 29, J2Part of the interest
in studying binomial edge ideals comes from that fact thay thave some
applications to algebraic statisticsd, 13, 24, 28

In this thesis we follow two directions. The first one is theatggion
of homological properties of some classes of binomial edgals, namely,
those associated with complete bipartite graphs, cyctesbéock graphs.
The second direction concerns the study of a class of biradeals which
are associated with scrolls. The thesis mainly consistsebtiginal results
obtained in the paper9], [ 7] and [3].

Now, we present the structure of our thesis.



In Chapter 1 we survey the fundamental notions and resultshndrie
intensively used throughout the thesis. We especiallpiothe books 11,
13, 1§. We recall some basic definitions and known facts about nmmoalo
ideals and several concepts such as minimal free resaduiod primary
decompositions. We give a short introduction to the mainuies of the
Grobner basis theory, including the Buchberger criterion dgdrahm.

In the second part of this chapter, we survey the main prigseof bi-
nomial edge ideals, which are the main topic of this thesid, @nsider
examples of binomial edge ideals associated to the linehgragd the com-
plete graph. This part is mainly based on the fundamentaijag] where
the binomial edge ideals were introduced. We study the gr&gdbr which
the generators form a @bner basis with respect to the lexicographic order
once we have a given vertex labeling@fand we present a combinatorial
method for finding the reduced &wner basis for any binomial edge ideal.
Finally, we recall how the minimal prime ideals & can be obtained from
certain subsets of vertices Gt

Chapter 2 is based on our papét.[ In this chapter, extremal Betti
numbers of some classes of binomial edge ideals are studiishow
that the binomial edge idedg and its initial ideal in(Jg) with respect
to the lexicographic order have the same extremal Betti nusriioercom-
plete bipartite graphs and cycles. This is a partial pasiéimswer to the
conjecture proposed inlf] which states that, for any grap@, Js and
in-(Jg) have the same extremal Betti numbers. We use the advantages
of known results on the resolution d§ given in [29] and [32]. In the first
step, we find a minimal generating set for the initial idealsthese graphs
by using Theorem 1.4.11 which characterizes in terms of ssibiie paths
the reduced Gibner basis ofg with respect to the lexicographic order in
the ringS. Proposition 2.3.1 shows that.ifJs) has linear quotients iG
is a complete bipartite graph. For monomial ideals with Imgaotients,
one may easily compute the Betti numbers. Therefore, we maylest
all the graded Betti numbers of.ifJs) for the complete bipartite graph;
see Theorem 2.3.2. Then we show that projdia{dg) = projdimJs and
regin. (Jg) = regJs, and, therefore, in(Jg) has a unique extremal Betti
number likeJg. Finally, we show that the extremal Betti number of {dg)
is equal to that ofg; see Corollary 2.3.3. While for the complete bipartite
graph, drawing the desired conclusion was not so difficolt,clycles we
need a bit more technique. In the first step, as in the compipttite
case, we identify the minimal monomial generators of(ii;) whereG is
an n—cycle with a natural labeling of its vertices. In this case, use an
induction argument (Lemma 2.4.1 and Lemma 2.4.3) to comihnetero-
jective dimension and the regularity of.itJg). Finally, in Theorem 2.4.6,
we show thatlg and in- (Jg) have the same extremal Betti number.



In Chapter 3 we study binomial edge ideals of block graphs.s Thi
chapter is based on our joint pap&}.[ By a block graphG we mean a
chordal graph with the property that it is chordal and any twaximal
cligues intersect in at most one vertex. In support of thejezuare in
[14], we show, in Theorem 3.1.2, that, for a block graphdepti(S/J) =
depti{S/in-(Jg)) = n+c, wherec is the number of connected compo-
nents ofG. We show a similar equality for regularity, namely (8gJg) =
regS/in-(Jg)) = ¢ if Gis aCy-graph wher¢ is the length of the longest
induced path ofs. C,-graphs constitute a subclass of the block graphs. In
[20], Matsuda and Murai showed that, for any connected gfaplie have
¢ <reg(S/Js) < n—1. Therefore, we conclude th@at-graphs have minimal
regularity.

The main motivation of our work was to answer the followingesgtion.
May we characterize the connected graghehose longest induced path
has lengthY and redS/Js) = ¢? In other words, may we characterize the
graphs whose binomial edge ideal has minimal regularity?sUéeeeded
to answer this question for trees. We show thdt is a tree whose longest
induced path has lengththen redS/Jr) = ¢ if and only if T is caterpillar;
see Theorem 3.2.1.

In [21], the so-called weakly closed graphs were introduced. Ehis
a class of graphs which includes closed graphs. In the sap®r,gawas
shown that a tree is caterpillar if and only if it is a weaklpstd graph.
Having in mind our Theorem 3.2.1 and€, Theorem 3.2] which states
that redS/Jg) = ¢ if Gis a connected closed graph whose longest induced
path has lengtld, and by some computer experiments, we are tempted to
formulate the following.

Conjecture. If G is a connected weakly closed graph whose longest
induced path has length thenreg(S/Jg) = /.

In Chapter 4, based on our joint papét, [in analogy to the binomial
edge ideallg generated by the 2-minoffg = xjy; — X;y; of the matrix

X:(Xl xn)’
Y1 ... Yn

wherei < j and{i, j} is an edge 06, we introduce the binomial edge ideal
associated with the 2 n Hankel matrix

X _ X]_ cee Xn_]_ Xn
X2 ce Xn Xn+1 ’
It is known that all the 2-minors of the Hankel matrix genertite idealx
of the rational normal curve&?” c P".

In Section 4.1, we show that the generator$pform a Gibbner basis
with respect to the reverse lexicographic order if and ohl iis closed



with the given labeling. As a consequence of this theoremdeveve that,
for a closed grapi®, the ideallg is Cohen-Macaulay of dimension+ic,
wherec is the number of connected component&sof

In Section 4.2 we study the propertieslgffor a closed grapl. We
compute the minimal prime ideals &f in Theorem 4.2.2 for a connected
closed graplG. By using this theorem, we characterize those connected
closed graph& for which Ig is a radical ideal. In addition, we show that
I is a set-theoretic complete intersectiosifs connected and closed. We
end by giving a sharp upper bound for the regularitygnd showing that
Ig has a linear resolution if and only@ is a complete graph.



CHAPTER 1

Preliminaries

In this chapter we recall some fundamental notions and tethat are
used throughout the thesis.

1.1. Grobner bases

1.1.1. Short survey on monomial ideals and their basic propées.
LetK be afield ands= K|xy, .., Xn] be the ring of polynomials in variables
with coefficients inK. LetZ!) denote the set of vectoess= (ay,...,an) €
Z", a > 0,i € {1,...,n}. As usual, we denote the set of non-negative
integers byN.

An element inS of the formx¢* ---x& is called a monomial. We may
represent a monomialby u=x® wherea= (ay,...,an) € Z. LetMon(§
be the set of all monomials i& Any polynomial f in Scan be expressed
uniquely as &-linear combination of monomials in Mo8Y

f = Z auu, wherea, € K.
ueMon(S)

We call the set sugd) = {u € Mon(S) : a, # 0} thesupportof f.

If u=x3-.-xé& is a monomial inS, one defines thelegreeof u as
degu) =a;+---+an. If f € S\ {0} is a polynomial, the degree dfis
degf = max{degu: u € supff)}.

The ring S has anN-grading given byS = ©genSy WhereS; is theK-
vector subspace & generated by all the monomials of degikeA non
zero element iy, is called ahomogeneous polynomiaf degreed.

1



2 Preliminaries

A monomial ideal IC Sis an ideal which is generated by a set of mono-
mials. By Dickson’s Lemmal3, Theorem 1.3], we know that any mono-
mial ideal may be generated by a finite set of monomials. THewmng
theorem explains an important property of monomial ideals.

THEOREM1.1.1. fL3] Let| be a monomial ideal. The sef of mono-
mials belonging to | is a K-basis of I.

COROLLARY 1.1.2. [13] Let| C Sbe an ideal. The following condi-
tions are equivalent:

(i) 1'is a monomial ideal.
(i) For every polynomialf € S we have thatf € | if and only if
supg f) C 1.

COROLLARY 1.1.3. [L3] Let| C Sbe a monomial ideal. The residue
classes of the monomials not belongingd form aK-basis of the rindgs/I.

EXAMPLE 1.1.4. Letl = (x{%,...,x&) C S Then aK-basis ofS/I is
given by the residue classes of all monomials- xi’l ... € Swith the
property thath; < & for all 1 <i < n. Therefore, we have dir(S/l) =
ai---an.

PrROPOSITION1.1.5. [L3] Let a set of monomialguy,...,un} form a

set of generators for the monomial idéallhen the monomiat belongs to
| if and only if there exists a monomial such tha = wy; for somei.

PROPOSITION1.1.6. [L3] Let| C Sbe a monomial ideal and I&(l)
denote the set of monomials invhich are minimal with respect to divisi-
bility. ThenG(l) is the unique minimal set of monomial generators.of

Obviously, the polynomial rin@is Z"-graded with graded components

S, — Kx?, ifaeZl,
0, otherwise

Let f =cx@ e Swith ce K anda e Z". Thenf is called homogeneous of
degreea.

We observe that any monomial idéat Sis aZ"-graded submodule of
S. In this case, the quotie®/| is alsoZ"-graded. In other words,

| = Dyae| Sa andS/I = @X%él Sa

1.1.1.1. Standard algebraic operations on monomial idedl&t | and
J be some ideals i8. The sum and the product of the ideals are defined as:

l+J={f+g:fel,ged}andld=(G), whereG={fg: f el ,ged}.
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Obviously,l +J andlJ are again monomial idealslifandJ are monomial
ideals. In addition, we havg(l +J) C G(1)UG(J) andG(1J) c G(1)G(J).
The intersection of two monomial idealsand J is also a monomial
ideal which is given by
INJ = ({lem(u,w) :ue G(l),we GJ)}).

The ideal quotient of two monomial ideals is also a monondahi which
is given by

where
I:(w) = ({u/gcdu,w):ueG(l)}).

Theradical of a monomial ideal is the ideal given by

VI = (Vi:ue G(1)),

n
where, foru=x®, /U= 1|‘| ;oni' For example, it = x3xx3, then,/u =
|: 7a'i
X1XoX4.
| is called a radical ideal if/1 = 1. Note that a monomial idedl is

a radical ideal if and only is a square free monomial ideal, that is, the
minimal monomial generators are squarefree monomials.

EXAMPLE 1.1.7. Letl = (x3,x%y,y®) and J = (xy,y?) be monomial
ideals in the polynomial rin&= K[x,y]. Then

1 +3 = 04, Y) + (xy.Y?) = 0,3, V3, xy,¥2) = (6, Xy, y?).

Sincexy dividesx?y andy? dividesy®, we may remove the generatots/
andy®. The product of andJ is

13 = (53, %%y, y3) (xy, ) = (X, 3y2, %2, xyP yP),

and the intersection is

1N = (Ilem(x3,xy), lem(x3,y?),lem(x®y,xy), ..., lem(y?,y?))
= (Y, )Y, XY, Y2 Xy, )
= (YY)



4 Preliminaries

Finally, the quotient of the two ideals is

= (x*/ ged(x®, xy), x%y/ gedx®y,xy), y*/ ged(y?, xy))
N ¢/ ged>C,y?), x°y/ gedxy,y?),y%/ gedy®, y?))

= (2, x,y%) N (3, x2y)

= (XY )N (x,y)

= (XY, y?).

1.1.2. Short survey on Gbbner basis theory. In the polynomial al-
gebraK[x] with one variable over a field, we use long division for given
polynomialsf, g € K[x] with g # 0. There exist uniquely determined poly-
nomialsq andr in K[x] such thatf = qg+r where deg < degg.

The algorithm to calculatg andr is as follows: If degf < degg then
we setg =0 andr = f. If deg f > degg, we calculate; = f — (a/b)x"™™,
whereax" andbx™ are the leading terms df andg, respectively. If deg
ri < degg, theng= (a/b)x""™ andr =r;. Otherwise, we do the same
reduction tor;. The algorithm terminates in finitely many steps.

The theory of Gdbner bases is based on the generalization of this al-
gorithm to polynomial algebras with several variables.his tase, we en-
counter a problem which is about determining leading temalscamparing
monomials containing more than one variable. To fix this [zl we are
going to present monomial orders.

1.1.2.1. Monomial orders.We call the pair(X, <) a partially ordered
setif X is a set and is a binary relation ofX which is reflexive, antisym-
metric and transitive, i.e. for adl, b, andc in X we have:

() ac X=a<g
(i) a<b,b<a=a=Db;
(i) a<b,b<c=a<c

We writea < bto meama < banda## b. Also,a> bis the same as < a.
ExAmMPLE 1.1.8.

(1) The set of all subsets &f, the power set oK, is denoted by? (X).
The inclusion relatiorC is a partial order or? (X).

(2) The binary relatiorf on monomials in Mo(S) is defined as fol-
lows:

L@ i ag < by,...,a0 < by,

In this case, we say thaf? - -x& dividesx2 - - - X2

easily that the set (Mofg,|) is a poset.

n. We can check
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A partial order< on X is called atotal order, if for any two elements
a,b € X we havea < b ora> b. In other words, all pairs of elements Xf
are comparable with respect4a

We define a total order on the set of all monomialSis KXy, ..., Xn]
which respects the multiplicative structure on M8n(

DEFINITION 1.1.9. Amonomial ordeonSis a total ordexK on Mon(S)
which satisfies:
(i) 1 <u, forallue Mon(S);
(i) if u<v, then for everyw € Mon(S), uw < vw.

Let us underline that every two monomials can be comparei ngH
spect to a monomial order. The following conditions aressigtil for any
monomial order.

PROPOSITION1.1.10. [L3] Let < be a monomial order o8 Then, the
following hold:
(i) if u,v e Mon(S) with u|v, thenu <';
(ii) if ug,up,... Is a sequence of monomials with > u, > ... then
there exists an integen such thau; = uy for alli > m.

We now present some standard monomial orderS.dm these exam-
ples we denote the ordering of the variables in a standardasgy> xo >
... > Xn. Letx® andxP be two monomials irs.

e The lexicographic order We havex? < x° , if either 31 ;& <
Si,biorsi! & =75 ;b and the leftmost non zero component
of the vectora— b is negative. In this ordering we first compare
total degrees, and next we compare the powers of the variables
starting with the lowest indexed variable.

EXAMPLE 1.1.11. X$XX3X2 < X3X2XgXs, since the two mono-
mials have the same degree and we tavé = (0,0,0, -2, 2).

e Thepure lexicographic orderWe haved < x? if the leftmost non
zero component of the vectar— b is negative. In this order total
degree is not important.

EXAMPLE 1.1.12.X3%X; < X3XpX3, because we hae— b =
(0,0,—1,5).

e Thereverse lexicographic ordeiVe haved < x° if either s, g <
S, biory;a =73 ,b and the rightmost non zero component
of the vectora— b is positive.

EXAMPLE 1.1.13. X2X3X4 < X1X3X4, because we have— b =
(1,-2,1,0).
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The difference between the lexicographic and the reversedgraphic
order could be explained in the following way. L& x? e Mon(S) be two
monomials of same degree. »x* < x in the lexicographic order® has
more from the beginning thax®. If x® < x° in the reverse lexicographic
order,x? has less from the end thad.

ExAMPLE 1.1.14. Consider all monomials 8= K|x1, X2, X3] of degree
2. In the Ie.xicograp.hic orderx? > x1Xp > X1X3 > X3 > XpXg > ¥3. In the
reverse lexicographic ordex? > xixz > X2 > X1Xg > XpXg > X3.

1.1.2.2. Initial ideals and Gbbner baseslLet < be a fixed monomial
order on the polynomial rin§= K|[xa, ..., Xn] over afieldk. For a non zero
polynomial f € Stheinitial monomialof f with respect to< is the biggest
monomial among the monomials belonging to supp The initial mono-
mial of f is denoted by in(f) with respect to<. Theleading coefficient
c € K of f is the coefficient of in (f) and thdeading termof f is cin(f).

EXAMPLE 1.1.15. Letf = 5x3x3x3 + XPx4 + 3x{xs. If < is the lexi-
cographic order, then in(f) = x{’x%xy if < is the reverse lexicographic
order, then in(f) = x2x3, and if < is the pure lexicographic order, then
in<(f) = X?|_1X3.

Initial monomials of the sum and the product of two polynomiate
given by the following lemma:

LEMMA 1.1.16. [L3] Let f andg be nonzero polynomials and be a
monomial order ors. Then

(i) in<(fg)=in<(f)in-(g) ;
(i) in<(f +g) < max{in.(f), in.(g)}. Equality holds if in.(f) #
in<(9).

Letl C Sbe a nonzero ideal. Thaitial ideal of | is a monomial ideal
which is generated by all the initial monomials of the noozaolynomials
belonging tal. The initial ideal ofl with respect to a monomial order is
denoted by in(l). Thus, inc(l) = (in.(f): f €l,f #0).

Note thatin-(I) = (0) if I = (0). In general, the initial monomials of the
elements of a generating set do not generatélin For example, consider
the ideall = (xf — X1X2 + X2, X1 — X2) and the pure lexicographic order in the
polynomial ringK[xz,Xz]. We have(xf —X1X2 +X2) — X1(X1 —X2) = X2 € |.

If we assume that in(1) = (x2,x1) = (x1), then we should have < in_(1).
Howeverxs ¢ (X1).

According to Proposition 1.1.6, a monomial ideal has a ugiguni-

mal set of monomial generators. Dickson’s Lemma says thatimimal
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generating set is a finite set. Therefore every monomial iddaitely gen-
erated. Since in(l) is a monomial ideal, there exigt, ..., gn € | such that

in<(1) = (@in<(91),---, IN<(gm))-
DEFINITION 1.1.17. Letl C Sbe a nonzero ideal and letbe a mono-

mial order onS. A set of polynomialg gy, ...,9m} is said to be &rdbner
basisof | with respect to the ordet ifin (1) = (in<(91),. .-, iIN<(Im))-

According to the definition, for any nonzero monomial iddsre al-
ways exists a Gibner basis.

EXAMPLE 1.1.18. The seB = (xf — X1X2 4 X2, X1 — X2) is not a Gbbner
basis forl = (G) with respect to the pure lexicographic order, since, as it is
explained beforex, € |. Howeverx, ¢ (x2,x1) = (xq).

THEOREM1.1.19. [L3] Let| be anidealon S and letthe def, ..., Om}
be a Gibbner basis of | with respect to a monomial order Then, I=
(01,--.,0m)- In other words, every @bner basis of | is a generating set
for 1.

COROLLARY 1.1.20 (Hilbert’s basis theorem)13] Every ideal in the
polynomial ringS= K|xi,...,Xs] is finitely generated. In other words, the
ring Sis Noetherian.

THEOREM 1.1.21 (The division algorithm).1B] Let f and g,...,0m
be nonzero polynomials in S and letbe a monomial order. There exist
polynomialsrand g,...,Qmin S with f= 0191+ ...+ gmgm -+ r such that
the following conditions are satisfied:

(i) no element oSupyr) is contained iNin-(g1),..., IN<(gm));
(i) inc(f) > in-(qig) for all i.
The expression; g1 + . .. + qmdm + I satisfying the conditions above is
called astandard expressiofor f. The polynomialr is aremainderof f

with respect tayy, ..., gm. The following example shows that the standard
expression of is not unique.

EXAMPLE 1.1.22. The polynomiaf = xZ —x3 has two different stan-
dard expressions with respectdp = x; + X2 andgy = X1 + x%. We con-
sider the pure lexicographic order. We hake= X101 — Xog» and f =
(X1 —X2)01+ X5 — x3. In these different standard expressions we have dif-

ferent remainders: 0 ang — x3.

If f has a zero remainder with respect to polynomgals..,gm, then
we say thatf reduces td with respect t@y, ..., gm.

We now describe an algorithm to find a standard expressiof faith
respect to an ordered set of polynomigils...,gm. In this algorithm we
obtain a finite sequence of polynomi&lsl <i <'s, in the following way:
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We lethg = f and assume that we have already defined the polyno-
mials hy,...,hj. The sequence ends with if the polynomialh; satisfies
suppthi) ¢ (in<(d1), .-, IN<(gm)).

Otherwise let be the biggest monomial in su@p) which belongs to
(in<(91), ..., in(gm)) and letj be the smallest integer such that({ig;) | u.

We definehi 1 = hj — ab~lwgj, wherew = u/in_(g;) anda andb are
the leading coefficients ¢f andgj, respectively. Suppose that the sequence
of hy’s ends withhs. Then we obtain the following equations:

(1) f= hozq&gjl-i-hl
(2) hy=0qy9j,+hy
(3) hy=050;,+hs

(4) hs_1=0gj,+hs

Replacinghy in (1) by (2), we obtainf = g;g;, + 0,9j, + h2. In this
new expression, instead lof we write the expressiof8). By repeating this
process, we obtain a standard expressiorf faith the remainder = hs.

EXAMPLE 1.1.23. Letf = x2x; +x1X5 — 3x3. We calculate a standard
expression forf with respect tay; = x; — X2 andgz = x2 by using the algo-
rithm described above for the lexicographic order.

f = hg = X1X201 + 2X1%5 — 3% whereh; = 2x1x3 — 35
hy = 2391 — %5 wherehy = —x3
hy = —x3g, wherehs = 0.

Therefore the standard expressiorf is: (xyx2 + ZX%)gl — x%gz. f reduces
to 0 with respect tx; — xo andx.

PROPOSITION1.1.24. [L3] Let < be a monomial order o® and the
set{gi,...,gm} be a Gbbner basis for the idedl= (gi,...,9m). Then,
any nonzero polynomiaf in S has a unique remainder with respect to
d1,-..,9m.

COROLLARY 1.1.25. [L3] Let the set{gs,...,0m} be a Gbbner basis
for the ideall = (93, ...,0m). Then, any polynomiaf € Swhich belongs to
| reduces to zero with respectdg, ..., gm.

We present an algorithm that constructs al@rer basis of an ideal from
any given set of generators. We need the following definition

DEFINITION 1.1.26. Letf andg be two polynomials oisand let< be

a monomial order. The polynomial
lcm(in.(f),in lcm(in.(f),in
S(f,g) = (in<(f) <(9))f_ (in<(f),in<(9))

cin(f) din(g)
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is called theS-polynomialof f andg with respect to<.

Recall that Icnfin- (f),in-(g)) stands for the least common multiple of
in.(f) and in-(g). In the formula,c andd are the leading coefficients éf
andg, respectively.

EXAMPLE 1.1.27. Letf = x3x + X1X2 + X5 andg = 2x2 + Xox3. Then
lem(in<(f),in-(g)) = X3x, with respect to the lexicographic order, and

therefore thes-polynomial of f andg is

XX XX
S(f,09) = 222 (o +XaXe +38) — 2m (28 4 XoXa) = — 1/ X083+ Xaxo+ B
XJX2 2x7
Notice that theS-polynomial helps us cancel the leading termd @ind
g and obtain another polynomial in the same ideal with diffeteading
term.
The next theorem gives us a method to check for a given ideal
(91,...,0m) if the generating sefos,...,gm} forms a Gbbner basis for
l.

THEOREM 1.1.28 (Buchberger’s criterion).18] Let | = (g1,...,0m)
be an ideal of S anet a monomial order on S. Then&{gy,...,gm} isa
Grobner basis of | with respect ta if and only if §g;,g;) reduces to zero
with respect to G for all k j.

To calculateS-polynomials ofl = (gs,...,gm) for all pairs of generators
can be cumbersome. The following proposition helps us at@dalcula-
tions in some cases.

PROPOSITION1.1.29. 3] Let f and g be polynomials inS with a
monomial order<. If initial monomials in.(f) and in-(g) are relatively
prime thenS( f,g) reduces to 0 with respect foandg.

ExamMpPLE 1.1.30. Letl C K[Xy,...,Xn,Y1,---,Yn] b€ generated by all
two minors of the matrix

( X1 X2 ... Xn )
Yi Y2 . Yn )

In other words] = ({fij = xyj —Xjyi : 1 <i < j<n}). Let< be the
lexicographic order irK([x1,...,Xn,Y1,-..,Yn] induced byx; >x; > ... >
Xn > Y1 > ... >Yn. We want to show that al-polynomialsS( fjj, f ) have
a remainder zero, wherfd, j} # {k,1}. If i #kandj # 1, then in (fij)
and inc(fy) are relatively prime, s&(fjj, fi) has a remainder 0. If=k,
we may assume that< | and we haves( fij, fi) = S(fij, fi) = —Xjyivi +
X yiyj = —Yi fj whichis a standard expressionSfffi;, fii) with a remainder
0.
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If j =1, we may assume thak k and we ge§(fjj, fi) = Sfij, fxj) =
XiXjYk — XkXj¥i = Xj fik, which is again a standard expression with remainder
0. Consequently, the set of minofdj : 1 <i < j < n} form a Gidbner
basis ofl with respect to the lexicographic order.

There exists an algorithm which allows us to compute ab@er basis
for an ideall by using a given set of generators foiThe algorithm named
asBuchberger’s algorithm is in fact a consequence of Theorem 1.1.28.
Buchberger’s algorithm works as follows:

Step 1: We compute th&polynomial for each pair of elements of the
generating seb of the ideall.

Step 2: If allSpolynomials reduce to zero thénis a Gibbner basis
of I. Otherwise we add one of the nonzero remainders to our system
generators to form a new system of generators and go backpalSt

Since any strictly ascending sequence of monomial ideg#ssriinite,
this algorithm ends after a finite number of steps.

EXAMPLE 1.1.31. Letl = (3¢ +2x1x3, XgX2 + 25 — 1) C Q[xq, X2 By
using Buchberger’s algorithm, we form adbner basis fok in S= K|[x1, x7]
with respect to the lexicographic order.

Let f = x% + 2x1x§, g=X1Xo+ 2x§ — 1. We compute th&polynomial
S(f,g) =x; of f andg. SinceS(f,g) =x1 ¢ (in(f),in-(g)), we addh=x;
to the set of generators getting the new generating 5ef h}.

Now let us choose the pag;h. Since the initial monomial of th&
polynomial S(g,h) = 2x3 — 1 is not in (in.(f),in(g), in<(h)), we get
another generator, which ts= 2x§ — 1 and the generating set becomes
{f,g,ht}.

Here we do not have to compute tBgolynomial of every pair, since
we know thatS(f,g) = h andS(g, h) =t. We have all the other remainders
equal to 0 as well:

S(f,h) = 2x%5 = 2x3h
S(f,1) = 1/2% + 2xx3 = 1/2f 4 x93t

S(g,t) = 1/2x1 + 23 — x5 = 1/2h+ 3t
S(h,t) =1/2x; = 1/2h

It follows that the Gobner basis i§x3 + 2x1x3, X1X2 + 2X3 — 1, %1, 233 — 1}.

We may add some more polynomials to theGaid still have a Gibner
basis for the ideal. However, under some conditions ther® isique
Grobner basis.
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DEFINITION 1.1.32. AseG={0i,...,0m} is areduced Gobner basis
for | € Swith respect to a monomial order if G is a Gibbner basis fot
with the following conditions satisfied:

() The leading coefficient of ead is 1,
(i) Foralli# j, noue supfgj) is divisible by in-(gi).

ExampLE 1.1.33. The reduced G@Gbner basis of in the previous ex-
ample is{x,x3 —1/2}.

1.2. Minimal graded free resolutions of graded ideals

In this section, we present numerical data arising from theimal
graded free resolution of a quotient of a polynomial ring lyraded ideal.

Let us set, for this sectior§ = K[xy,...,X,] be a polynomial ring in
n variables over a fiel&k. Every graded idedl C S has a (unique up to
isomorphismminimal graded free resolution

Fe:0—2Fp— - —>F—>FR=S—S/ =0,

whereF = @jEZS(—j)Bii , for any value of. The exponentgi; = Si;(S/I)
are called thgraded Betti numbersf S/1. Thetotal Betti numbersf S/I
aref = 3 ; Bij,i > 0. Theprojective dimensionf S/I is given by

projdim(S/I) = max{i : Bjj # O, for somej € Z}.

According to the Auslander-Buchsbaum formuls,[Corollary A 4.3] we
have

depthS/l = n— projdimS/I.

We recall that deptB/I is the length of a maxima$/I-sequence of
homogeneous elements contained in the maximal graded odéallt is
known that dept(S/I) < dim(S/1). If the equality holds, we say that
is a Cohen-Macaulay ideal. Hendejs Cohen-Macaulay if and only if
dept(S/1) = dim(S/1).

Theregularity of S/1 is defined as re@/l) = max{j —i : j # 0}. All
numerical data arising from the minimal graded free resmtuof S/1 are
called the homological invariants &f1.

Usually, the graded Betti numbers are displayed in the dedBletti
diagramof S/I which has the shape indicated in Figure 1.1.

The Betti numbers marked in the figure by fat dots are cadkddemal
Betti numbers

ExamMPLE 1.2.1. Letd C S=K|[xy,..,Xs,VY1,..,¥s5] be the ideal
J = (X1Y2— XoY1, X2Y3 — X3Y2, XoYa — Xay2, XaYa — XaY3, X2Y5 — X5Y2, Xay5 — X5Ya)
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projdim

regl—-————— ¢

FIGURE 1.1

and its initial ideal in-(J) C K[xa,..,Xs,Y1,..,Y5], Where< is the lexico-
graphic order induced iy > --- > x5 > y1 > --- > ys. The Betti diagrams
of S/J andS/in.(J) are displayed below.

According to the diagrams/in-(J) andS/J have the same extremal
Betti number which has the value of 4. We also have proj &) =
projdim(S/in-(J)) =4, hence deptls/J) = deptS/in-(J)) =6 and regS/J) =
reg(S/in-(J)) = 2.

0O 1 2 3 4

o |1 - - - -

J 1 |- 6 4 — -—
2 |— — 9 12 4
Total| 1 6 13 12 4

0O 1 2 3 4

o |1 - — — -

in-(J): 1 |- 6 5 — —
2 |— 1 10 12 4
Total| 1 7 15 12 4

The Betti diagrams help us to write down the minimal gradedrieselution
for each ideal:

0— S(—6)* - S(-5)12 = §(—3)*®§~4)* - §-2)°* - S~ S/J =0,
0— S(—6)* = 5512 - §—3)°x5—4)1°—

— -2)°pS(—3) + S—S/in-(J) = 0.
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DEFINITION 1.2.2. A graded rindS/1 has a(d — 1)-linear resolution
(or, equivalently] has ad-linear resolution) if its minimal graded free res-
olution is of the form

0— S(—p)Pe-dit 5 §(—p+1)Prd ... 5 §—d—1)P2 - §(—d)Pr -
S— S/l —0. *

The definition says the®/1 has a(d — 1)-linear resolution if and only
if Bij(S/I) =0for j #i+d—1. In the Betti diagram o&/1, except for the
position g0y = 1, all the other non-zero graded Betti numbers are located
on the(d — 1)st row. In other words$/I has a(d — 1)-linear resolution if
and only ifl is generated in degrekand re@S/1) =d — 1.

EXAMPLE 1.2.3. Letl C K[Xq1,...,X4,Y1,...,Ya], | = (Xay2—X2Y1,X1Y3—

X3Y1,X1Ya — XaY1,X2Y3 — X3Y2,XoYa — XaY2,X3ya — Xay3). S/| has a 2-linear
resolution. The Betti diagram &/| is the following.

0 1 2 3
0L - — -
1/- 6 8 3

REMARK 1.2.4. Let us make another comment on ideals with linear
resolution. IfS/l has a linear resolution then, by applying the additivity
property of the Hilbert series in (*), we get

1—ut? +Batt — -+ ()P By g atP
Hs (t) = (1_t)n '

This formula shows that i§/I has a linear resolution, then the Betti num-
bers are determined by its Hilbert seriég .

A comparison between the graded Betti numberS/fandS/in. (1)
where < is a monomial order irg, is given in the following theorem and
corollary.

THEOREM1.2.5. [18] For alliand j, Bij(S/I) < Bij(S/in(l)).

This inequality between the graded Betti numbers yields ¢Hewing
consequences.

COROLLARY 1.2.6. [Lg]
(i) projdimS/1 < projdim(S/in_(1)).
(i) depthS/1 > depti(S/in(l)).
(ii) regS/1 <reg(S/in(l)).
(iv) If S/in.(1) is Cohen-Macaulay the®/I is Cohen-Macaulay.
(v) If S/in.(l) has a linear resolution the3f1 has a linear resolution.
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1.3. A brief review of primary decomposition

In this subsection we mainly follow the bookl, Chapter 3]. LeR be
a ring andM anR—-module. The prime ided of Ris called amassociated
primeof M if there exists somen € M such that

P=(0:rm)={r e R:rm=0}.

In particular, ifl C Ris an ideal, therP is an associated prime &/1
(or, simply, ofl) if P=1: (a) for someac R.

We collect the main results on the associated primes of a lmaadlthe
following theorem. We first recall that the set of all assailaprimes of
M is usually denoted by A¢Ml). Very often, we write Asf) instead of
Asg(R/I) for an ideall of R

THEOREM1.3.1. [L1] Let R be a Noetherian ring and M a finitely gen-
erated non-zero R—module. Then:

(a) AsgM) is a non-empty set which contains the set of minimal prime
ideals over the annihilator of MAnNn(M), whereAnn(M) = {r €
R:rM = 0}. In particular, Asg(I) 2 Min(l). Here,Min(l) denotes
the set of minimal prime ideals of |

(b) We have ZM) = Upcassm) P Where ZM) denotes the set of all
the zero-divisors on M

(c) AsgM) commutes with localization. More precisely, itR is a
multiplicative set, then

Asss 1(SIM) = {SIP: P c Ass(M),PNS=0}.

(d1fo0o—-M —M-—M"— 0is an exact sequence of R—-modules,
then

AssM’) C AssM) C AsgM') UAsg(M").

DEFINITION 1.3.2. LetR be a Noetherian ring an a prime ideal of
R. The ideall of Ris called aP—primary ideal(or simply aprimary idea)
if Ass(R/I) = {P}.

THEOREM 1.3.3. [L1] Let R be a Noetherian ring. Then any ideal | of
R has a decompositior= Q1N ---NQy, where:
(a) Q; is R—primary for every;
(b) the decomposition is irredundant, that is, np&n be omitted in
the decomposition;
(c) B are pairwise distinct.

MoreoverAss(l) = {Pi,...,R}.
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The above decomposition is calledoemary decompositiof |. We
now survey the main results on the primary decomposition ohamial
ideals, mainly following 18].

THEOREM 1.3.4. 18] Let | C S=K|Xxy,...,X,] be a monomial ideal.
Then I= ", Qi, where each Qis generated by pure powers of the vari-
ables. In other words, each; @ of the form(xiall, ... ,xi"ik).

Moreover, it can be shown that the irredundant presentatostructed
in the above proof is unique.

A monomial ideal is calledtrreducibleif it can not be written as proper
intersection of two other monomial ideals. It is calledlucibleif it is not
irreducible.

COROLLARY 1.3.5. [L8 A monomial ideal is irreducible if and only if
it is generated by pure powers of the variables.

It follows from Theorem 1.3.4 and Corollary 1.3.5 that eachnowo
mial has a unique presentation as an irredundant inteoseatiirreducible
monomial ideals, moreover, the proof of Theorem 1.3.4 gu&sa proce-
dure for finding such a presentation.

EXAMPLE 1.3.6. Letl = (x2x3,X5x3,X3). Then
| = (X, X5%3,X5) N (6. XX, X5)
2 2 2 2 2 3 2 2 2
= (X3,%6,)8) N (X4, X3,%5) N (53, X5, )X5) N (X3, X3, %3)
= (X%’X%X%) N (X%7X3) M <X37X3)'
For squarefree monomial ideals we have the following caryll
COROLLARY 1.3.7. [L8] Let | C S be a squarefree monomial ideal.
Then
= () P

PeMin(l)
and eactP € Min(l) is a monomial prime ideal.

Here Min(l) denotes, as usual, the set of minimal prime ideals of

We end this section by recalling that the primary decompsibb-
tained from an irredundant intersection of irreducibleaides unique and
we call it thestandard primary decomposition af |

1.4. Binomial edge ideals

Let G be a simple graph on the vertex gat and with the edge set
E(G). We consideS=K|[x1,...,Xn,Y1,--.,Yn| to be the polynomial ring in
2n variables over a fiel&.
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We define the binomial edge ideR] C Sassociated witle as the ideal
generated by all the binomialg; = xjyj — x;y; where 1<i < j < nwith
{i.j} €E(G).

Note that if G has an isolated verteix andG' is the restriction oiG
to the vertex sefn| \ {i}, thenJs = Jz. For this reason, we will always
assume thab has no isolated vertex.

We consider the polynomial rin§ endowed with the lexicographic or-
der induced by the natural order of varialbkges> xo > --- > X, >y1 > yo >
.-+ > Yyn. We denote by in(Jg) the initial ideal ofJg with respect to this
monomial order. The ideal inJg) is a monomial ideal minimally gener-
ated by the initial monomials of the binomials in the reduGedbner basis
of Jg with respect to the lexicographic order.

ExamMpPLE 1.4.1. In Figure 1.2G is a simple graph on the vertex set
6].

1 5

FIGURE 1.2

The binomial edge ideal o is Jg = (f12, f23, f24, 45, f46). The re-
duced Gbébner basis ofg with respect to the lexicographic order4s=

{X1Y2 — XoY1, Xoy3 — X3Y2, X2Y4 — XaY2, XaY5 — X5Y4, XaYe — XeYa, X3Y2Y4 — XaY2Y3,
XsYaYs — XsYaYs }. Therefore, the initial ideal ofg is

iN<(Jg) = (X1Y2, X2Y3, X2y, XaYs, XaYe, X3Y2Ya, X5YaYe) -

1.4.1. Binomial edge ideals with quadratic Gobner bases.In this
subsection, we are going to present two basic examples ofrtith edge
ideals. Both examples are ideals with the property that theirerators
form their reduced Gibner bases.

The graph$s whose associated binomial edge id&akhares the above
property, in other wordslg has a quadratic ®bner basis, are described in
combinatorial terms in the following theorem.

THEOREM 1.4.2. [19, Theorem 1.1]et G be a simple graph on the
vertex setn| with the edge set &), and let< be the lexicographic order
on Sinduced by - -+ > X, > Y1 > -+ - > Y. Then the following conditions
are equivalent:

(a) The generatorsif of J; form a quadratic Gobner basis.
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(b) For all edges{i, j} and{i,k} with j >i <k or j<i>kone has
{i.k} €E(G).

In other words, if we represent the edfjej} with i < j by an arrow
which points fromi to j, then we have the following picture for a graph
which satisfies the condition (b) in Theorem 1.4.2.

FIGURE 1.3

ExAMPLE 1.4.3. LetG be the graph with edgedl, 2} and{1,3}. We
haveJs = (X1y2 — X2Y1,X1y3 — X3y1). We calculate th&s—polynomial of
f12 and f13. We getS(f1z, f13) = y1(X2ys — Xay2) € Jo. ThusS(f1o, f13) =
X2Y1Y3 — X3Y1Y2 € Jo.

But the initial monomialxoy1ys of 1o, f13) does not belong to the
ideal generated by the initial monomials fib and f13 which shows that
{f12, f13} is not a Gbbner basis odg.

However, for the same graph with the different labeliig2},{2,3}
the generators aig form a Gbbner Basis.

For the associated binomial edge id&al= (x1y2 — XaY1,X2Y3 — X3Y2),
the S—polynomial of f1» and fo3 reduces to 0 since the initial monomials of
f12 and f,3 are relatively prime.

DEFINITION 1.4.4. A graphG endowed with a labeling which satisfies
condition (b) in Theorem 1.4.2 is calledosed with respect to the given
labeling.

Therefore, we may reformulate Theorem 1.4.2 by saying tlegen-
erators ofJg form a Gidbner basis with respect to the lexicographic order
if and only if G is closed with respect to its given labeling.

We have showed that the graph from Figure 1.3(a), withoue €qid},
is not closed for the labeling= 1, ] = 2,k = 3 and closed for the labeling
k=1i=2j=3.

DEFINITION 1.4.5. A graphG is closedif there exists a labeling of its
vertices such thag is closed with respect to it.
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The following graphs are examples of graphs which are nsetloNote
that if a graphG is closed, then any induced subgrapl&ahould be closed
as well. Thus, if a grapl contains as an induced subgraph any of the
graphs in the example below then it is not closed.

ExXAMPLE 1.4.6.

(i) The graph with three different edges, e>,e3 such thate;nex N
e3 # 0 is called theclaw graph The claw graph is not closed; see
Figure 1.4. Hence, any closed graph must be claw free.

FIGURE 1.4

(i) Any cycleC, of lengthn > 4 is not closed. Assume that there exists
a labeling of its verticesy, ..., a, (labeled clockwise). To obtain
a closed labeling, we should either choagsec ay < --- <ap < a1
ora; > ap > ---an > a;. SinceC, has no chord, both choices lead
to contradiction.

For instance irC4, if we label in clockwise direction,,2, 3,4,
then, {2,4} should belong to the edge set, since2} € E(Cy)
and{1,4} € E(C4) and also{1,3} must belong to the edge set to
have a closed graph sin¢&, 4} € E(C4) and{3,4} € E(Ca).

FIGURE 1.5
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After this observation, let us state the following propiosit

PROPOSITION1.4.7. IfGis closed thert is a chordal graph, that is, it
has no induced cycle of length 4 and it is claw-free.

One may also show that a bipartite graph is not closed urtlesa line
graph; seel9, Corollary 1.3].

In the sequel, we study binomial edge ideals of two classedoskd
graphs.

1.4.1.1. The binomial edge ideal of the complete graplet G = K,
be the complete graph on the vertex gt K, has the edge s&(Ky) =
{{i,j}:1<i< j<n}. Below we displayed the complete graphs on 3 and 4
vertices. ObviouslyKp is closed with respect to any labeling of its vertices.

Ks Ky

FIGURE 1.6. Complete graphs

The binomial edge ideal df, is the ideal»(X) of all 2—minors (max-
imal minors) of the 2 n matrix:

X:(Xl Xn)'
Yi -+ Yn

Jo =k, =12(X) = (xyj—Xjyi : 1<i<j<n) CS=KI[X1,...,%n, Y1, --,Yn].

Hence we have

Let us list some properties dk,,.

() The complete graph is closed with respect to any labelirigere-
fore, according to Theorem 1.4.2, the generatorgyqfform a
Grobner basis.

(i) Let < be the lexicographic order ddinduced by natural order of
indeterminates. Then

iNc(J) = (067 11 <T < <) = Pg(Xty o X1, Y1, s Yi)-
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(iii) We have dim(%) — dim (ﬁ) — dim(S) — heightin (J,))
=2n—(n—1)=n+1.

(iv) % is a domain 13, Theorem 6.35]. Hencé, is a prime ideal.

(v) in<(J,) has linear quotients.

(vi) Both in.(Jk,) andJk, have a linear resolution. Indeed, it is well
known that a graded ideal generated in one degree whichriess li
guotients has also a linear resolution; s&& Proposition 8.2.1].
This shows that in(Jk,) has a linear resolution. For the second
part we apply Corollary 1.2.6.

(vii) in<(Jk,) is Cohen-Macaulay.

(viii) Jk, is Cohen-Macaulay, because according to Corollary 1.2.6, if
in<(J,) is Cohen-Macaulay theik,, is also Cohen-Macaulay.

1.4.1.2. The binomial edge ideal of the line graphet G = L, be the
line graph on the vertex s@t] with E(G) = {(i,i+1):1<i<n-—1}. The
binomial edge idealg of Ly is J., = (fij+1:1<i<n-1). Letus list
some properties af .

() The line graphL,, is closed with respect to the natural order of its
vertices. Therefore, according to Theorem 1.4.2, the sgéoér-
ators{fijj1:1<i <n-—1} form a Gbner basis fod,,. In fact
it is possible to obtain the same conclusion without usingcoFh
rem 1.4.2. We know that the initial monomials of any two disti
generators of, are relatively prime. Then, we conclude that the
generators of, form a GBbner basis by Proposition 1.1.29.

(i) in<(J,) = (XYi+1: 1 <i<n-—1)is generated by a regular se-
guence of lengtim — 1 of monomials of degree. 2t follows that
the generator§; o, f23,.. ., fn_1n 0f J., form aregular sequence on
S This result is a consequence of the following lemma.

LEMMA 1.4.8. Letl € S=K]xg,...X,| be a graded ideal and
G={0s,...,0m} the reduced QGibner basis of with respect to<.
Ifin-(g1),...,in-(gm) is a regular sequence B thengy,...,gm
is a regular sequence #

(i) Since J.,, is a complete intersection, that i,, is generated by a
regular sequence, it follows thdt, is Cohen-Macaulay. We have

depth(ﬁ) — dim (f) —nt1l.
1.4.2. Grobner bases of binomial edge idealsln general, for an arbi-

trary graphG, Js has a Grobner basis whose initial monomials are square-
free.
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In order to characterize in combinatorial terms the Grolaesis oflg,
we introduce the following definition.

DEFINITION 1.4.9. Leti < ] be two vertices 06. A pathi =g, iy, ...,
ir_1,ir = J fromi to j is calledadmissiblef the following conditions are
satisfied:

(i) ix#i,fork #£¢;
(i) foreachk=1,...,r —1 one has eithel <iorix > j;
(iii) for any proper subsefj1,...,js} of {i1,...,i;_1}, the sequence
I,j1,---, s, J IS NOt @ path irG.

With a given admissible patit of G fromi to j, we associate a mono-

mial
Ur = ( |_| Xik)(.l_l. yiz)-

K> ip<i
Obviously, any edge dB is an admissible path. In this case, the associ-
ated monomial is just 1.

ExAMPLE 1.4.10. All the admissible paths other than the edgeSsof
with respect to the given labelling in Figure 1.7 are:

=154, =215, 3=1543;, m=2154; 5=3215.

FIGURE 1.7

The associated monomials for these admissible paths are:
Ug = X5, Up =Y1;, Umg =X4X5;, Ug = XsY1, Umg = Y1Y2.

Note that, in a closed graph, the admissible paths are gxaetledges
of G. Hence, ifG is closed and connected théini + 1} is an edge o6 for
anyi.

THEOREM1.4.11. [L9] The set of binomials

M= U{Un—fij : 1ris an admissible path from i to} |
i<j
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is the reduced Gibner basis of d with respect to the lexicographic order
on S induced by the natural order of indeterminatgsyx -- > Xy > y; >

S > Y.

EXAMPLE 1.4.12. For the grap@s of figure 17 given in the previous
example, the reduced Gioner basis ofc, with respect to the lexicographic
order is:

{Xaxs5 f13,X5Y1 f24, y1Y2 f35, X5 f14, Y1 o5, f12, f15, 23, f34, f45}.

As a consequence of Theorem 1.4.11, we see that all adneigsalths
of a graphG can be determined by computing the reducedi®er basis of
JG.

EXAMPLE 1.4.13. LetG = K3, be a complete bipartite graph with 5
vertices given in Figure 1.8.

FIGURE 1.8

The admissible paths &3 » other than the edges are:
m=142, =152, i8=143;, =153, 15=24,3,;
=253, "f=415;, g=4,2,5; my=4,3,5.
The reduced Gibner basis of binomial edge ideal of the complete bipar-
tite graphG = Kz 2 is given byJe = (f14, f15, f24, f25, f34, f35, X4 f12, X5 f12,
X4 F13, X513, X4 T23, X5 f23, y1 fa5, Y2 f45, y3 fas).

1.4.3. Primary decomposition of binomial edge idealsJs is a radi-
cal ideal [L9, Corollary 2.2]. This is a consequence of Theorem 1.4.2. Since
a radical ideal can be expessed as the intersection of itsn@irprime
ideals, we have
k= [) P

PeMin(Jg)
where MinJg) denotes the set of the minimal prime idealslef
We would like to characterize the minimal primesJgfin terms of the
combinatorics of G. We need to introduce the following notat
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Let G be a simple graph om|. For each subse¥ C [n] we define a
prime idealPy in the following way. LetGy,...,G¢.») be the connected
components o5y, o, whereG, » is the induced subgraph @& on the

vertex sefn] \.#. For 1<i < c(.¥), let G; be the complete graph on the
vertex seV (G;). We set

Py (G) = ({Xi=Yi}i677JG~1’ : ""]écw))'

By using property(iv) of Jk,,, it follows thatP(G) is a prime ideal since
\]G”l,...,\]éqy) are prime binomial ideals whose generators belong to dis-
joint sets of variables.

We observe that, for any” C [n], P»(G) D Jg and dimS/Py(G) =
z, dlm(S/J ) where§ is the polynomial ring in the variables, y;
Wlth j eV(G). Thus, we get

()
dimS/Py(G) = (M(Gi)|+1) =c(<)+ V(G S)+n—|.7|.
25 Ve b3
THEOREM 1.4.14. L9 Let G be a simple graph on the vertex &gt
Then
= () P»(G)
L Cn]

In particular, the minimal primes ofglare among the prime ideals,;RG),
where. C [n].

The proof may be found inlP, Theorem 3.2].

COROLLARY 1.4.15. L9, Corollary 3.3] LetG be a simple graph on the
vertex sefn|. Then

dimS/Jg = max{n—|.|+c(.¥) : .¥ C [n]}.

If we choose¥” = 0, then the number of connected components &f
c=c(0). Since there is no variable By(G), it can be seen easily thBg(G)
is not comparable to any other prime id€a4(G) where.” # 0. Therefore
Py»(G) is a minimal prime ofls. We calculate din$/Py(G) = n+ ¢ which
is the maximum value afi — .| + ¢(.¥), for instance, whedg is Cohen-
Macaulay. Because, in this cask, is unmixed which implies that all the
minimal primes have the same dimension. In particulad i§ connected,
thenJg is unmixed if and only if for every minimal primBy (G) of G, we
haven— |.|+c¢(”) = n+1, thatisc(.”) — |.7| = 1.

Let us state a theorem that characterizes the gefisr which the prime
idealPy(G) is minimal.
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THEOREM1.4.16. [L9] Let G be a connected graph on the vertexsgt
and. C [n]. Then B/(G) is a minimal prime of d if and only if. = 0 or
& is non-empty and for eachd . one has ¢\ {i}) < c(.¥).

For the proof, one may se&9, Corollary 3.9].

A set.” C [n| satisfying the condition of the above theorem is called a
cut-point sebf G. The theorem simply says that® is a connected graph,
thenPy(G) is a minimal prime ideal ofg if and only if eachi € . is a
cut-point of the grapl® o »)uyiy -

EXAMPLE 1.4.17.

(1) The cut-point set for a complete gra@hs the empty set.

(2) LetG = Ly be the line graph on the vertex et with the natural
labelling of the vertices. Then, a non-empty subget: [n] is a
cut-point set ofG if and only if . = {iy,...,i;} with 1 <ij <
- <lir<nandig;1—ig>1forall1<s<r—1. Forinstance, let
G = Ls the line graph with 5 vertices. See Figure 1.9.

FIGURE 1.9

The the cut-point sets are #},{3},{4},{2,4}. Therefore,
we may write

Jo = P@(G) N P{z} (G) N P{g} (G) N P{4} (G) N P{274} (G)

as the intersection of the corresponding minimal primes hees,
for example P, 43 (G) = (X2,¥2,%a,Ya), P2y (G) = (X2, Y2, %aya —
X4Y3, X35 — X5Y3, X4Y5 — X5Y4).

(3) LetG be a cycle oh vertices,G = C,. A non-empty cut-point set
& C [n] occurs when.#| > 1 and no two elementsj € . belong
to the same edge @,. Jg is not unmixed because difg(G) =
n+ 1 and all the other minimal primes have dimensioiere are,
for instance, the minimal primes & = Cs given in Figure 1.7:

Po(G), Pr1.31(G), Pi1,4)(G), P24y (G), P25 (G), Pasy(G).
(4) LetG be a graph on the vertex §&t shown in Figure 1.10.
The cut-point sets of are 0{2},{6},{2,6},{3,5},{2,4,6}.
Therefore we have

Je = Po(G) NP2 (G) NP6y (G) NPy2,61(G) NP3 5,(G) NP2.46(G),
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FIGURE1.10

where, for example,

P26} (G) = (X2, Y2, X6, Y6, XaYa — XaY3, XaY5 — X5Y3, XaY5 — X5Y4).

We calculate easily that diByfJs = 8 for the maximum value
of n— || +¢() when = 0.

1.4.4. The minimal graded free resolutions of some binomialdge
ideals. We first consider the binomial edge ideal of the line graph.G.e-
L, be the line graph on vertices withE(G) = {{i,i+1}:1<i<n-—1}.

As we have already seen, the generators i, foz,..., fn_1n 0f I,
form a regular sequence 1 Therefore, the Koszul complég (f) gives
the minimal graded free resolution 8fJ, , :

Ke(f):0—=Kno1(f) = = Kj(f) - =Ky (f) = Ko(f)=S— S/, —0.
The SmoduleK;|(f) is the j'" exterior power of the fre&module of
rankn— 1 of basisey,...,e,—1. HenceK|(f) is also free ovels of rank
(";*) and basis
{e A-ng i 1<ip < <ijp<n—1}.
Since we would like to have all the maps in the above resaiutib
n—1
degree 0, we taki§; (f) = S(—2j){"1), for all j. Therefore,
n-1

Bij(S/JLn):{( [ )7 j=2

0, otherwise

On the other hand, the generators af (9 ,,) have the same property,
namely they form a regular sequence3n This implies that we have a
similar resolution forS/in-(J.,,). For the regularity we have

regS/J., =reg(S/in.(J,,)) =n—1.
We now consider the binomial edge ideal of the complete gray

G = K, be the complete graph on the vertex gét As we have seen, in
this caseJk, coincides with the ideal of all 2-minors of the matrix X whose
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rows arexy,...,X, andys,...,yn. The resolution ofy(X) is known, it is
the Eagon-Northcott complex, but we would like to restracshowing that
Bij(S/inc(J,)) = Bij (S/Xk,) also in this case, without using that complex.

Let us first observe that inJk,) = (Xiyj : 1 <i < j <n) has linear
quotients if we order its generators in decreasing order véspect to the
lexicographic order induced b¥j > --- > X, > y1 > --- > Y. Therefore,
S/in.(J,) and, consequentlys/Jk, has a linear resolution, by Corollary
1.2.6. By Remark 1.2.4, the Betti numbers $fJ, and of S/in-(J,)
are determined by their Hilbert series. B#ft)k, andS/in-(J,) have the
same Hilbert series. Hen&®'Jk, andS/in.(J,) have the same graded
Betti numbers.



CHAPTER 2

Extremal Betti numbers of some classes of binomial
edge ideals

In [14], the authors conjectured that the extremal Betti numbek;of
and in. (Jg) coincide for any grapl. Here, < denotes the lexicographic
order inS=K|[xg,...,Xn,Y1,...,Yn] induced by the natural order of the vari-
ables; > --- > X3 > Y1 > -+ > VY. Inthis section, we give a positive answer
to this conjecture when the grafis a complete bipartite graph or a cycle.
To this aim, we use some results proved28][and [32] which completely
characterize the resolution of the binomial edge idgavhenG is a cycle
or a complete bipartite graph. In particular, in this caséllows thatJg
has a unique extremal Betti number. We recall all the knowtsfan the
resolutions of binomial edge ideals of the complete bipagraphs and cy-
cles. We study the initial ideal @& whenG is a bipartite graph or a cycle.
We show that projdimin(Js) = projdimJg and regin (Jg) = regJs, and,
therefore, in (Jg) has a unique extremal Betti number as well. Finally, we
show that the extremal Betti number otifds) is equal to that ofg.

To our knowledge, this is the first attempt to prove the conjecstated
in [14] for extremal Betti numbers. In our study, we take advantaige o
the known results on the resolutions of binomial edge ideats/cles and
complete bipartite graphs and of the fact that their initiglals have nice
properties.

2.1. Binomial edge ideals of complete bipartite graphs

Let G = Kmn be the complete bipartite graph on the vertex{det, m} U
{m+1,..,)m+n} withm>n>1and let)s be its binomial edge idealls

27
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is generated by all the binomialg; = xy; — Xjyi where 1<i < m and
m+1 < j <m+n.In[29 Theorem 5.3] it is shown that the Betti diagram
of S/Jg has the form

0 1 2 P
0O/1 0 O 0
1/0 mn O 0
2/0 0 Poa - Bppi2

m, ifn=1,

2m+n—2, ifn>1

In particular, from the above Betti diagram we may read 81dt has
a unique extremal Betti number, namg@lyp, ».

Moreover, in P9, Theorem 5.4] all the Betti numbers 8fJg are com-
puted. Since we are interested only in the extremal Betti rarnie recall
here its value as it was given i@9, Theorem 5.4], namely,

_f m=1 ifp=m,
Bppiz= { n—1, ifp=2m+n—2

One may easily see that the only admissible paths of the @egtaph
G =Kmn are the edges @, the paths of the formm+k, jwith1<i < j <
m, 1< k<n,andm+i,k,m+ j with 1 <i < j <n, 1< k<m. Therefore,
we get the following consequence of Theorem 1.4.11.

wherep = projdimS/Jg = {

COROLLARY 2.1.1. LetG = Ky be the complete bipartite graph on
the vertex se¥ (G) = {1,...,m}u{m-+1,...,m+n}. Then

in<(JG):({Xiyi} 1<i<m 7{Xixm+kyj}1§i<j§m7{Xm+iykym+j}1§i<j§n)~
mM+1<j<m+n 1<k<n 1<k<m

2.2. Binomial edge ideals of cycles

In this subsectionG denotes the—cycle on the vertex s@t] with edges

{17 2}7 {27 3}’ IERE! {n - 17 n}a {17 n}'
In [32] it was shown that the Betti diagram 8fJg has the form

01 2 3 n
0 1 0 O 0 0
1 |[0On O 0 0
2 |00 Bg O 0
3100 0 P 0
N—2(0 0 Bon Bantr -+ Bnzn-2

and all the Betti numbers were computed. One sees that we havigue
extremal Betti number and, b2, we haveBzn—2 = (",%) — 1.
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We now look at the initial ideal odg. It is obvious by Definition 1.4.9
and by the labeling of the vertices &f that the admissible paths are the
edges ofG and the paths of the formi —1,...,1,n.n—1,...,j+ 1, j with
2 < j—i<n—2. Consequently, we get the following system of generators
for the initial ideal ofJg.

COROLLARY 2.2.1. LetG be then—cycle with the natural labeling of
its vertices. Then

inc(Jg) = (X1Y2, - - -, Xn—1Yn, XtYn, {XiXj 41 XnY1- - Yi-1Yj fo<j—i<n-2)-

2.3. Extremal Betti numbers of complete bipartite graphs

Let G = Kmn be the complete bipartite graph on the vertex{det, m} U
{m+1,..,m+n} withm>n> 1 and letJs be its binomial edge ideal. The
initial ideal in-(Jg) has a nice property which is stated in the following
proposition.

PROPOSITION2.3.1. LetG = Km be the complete graph. Theniflg)
has linear quotients.

THEOREM2.3.2. Let G= Ky be the complete graph. Then

. I+j—m—2
paincen= 3 (),
1<i<m
MH1<j<m+n
21§i<j§m (n+ij73), if n= 1,
inc(Jg)) = 1zksn . , _
Bt,t+3( <( G)) S 1ciciem (n+k4trj—3) + T acicjen (W—k?—]—3)7 ifn> 1

In particular, by the above theorem, it follows the folloginorollary
which shows that foiG = Ki,y the extremal Betti numbers &/Js and
S/in-(Jg) coincide.

COROLLARY 2.3.3. LetG = Km, be the complete graph. Then we have
- . e m, n=1,
(a)pzprojdlm<8/m<ue>>=projdlm<m<<Je>>+1:{ Mn—2 o1

(b) S/in-(Js) has a unique extremal Betti number, namely

Bp.p+2(S/IN<(Js)) = Bp-1,p+2(IN<(Jg)) = { nm—_f: :I gi 1,
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2.4. Extremal Betti numbers of cycles

In this section, the grap® is ann—cycle. Ifn= 3, thenG is a com-
plete graph, therefore the idedls and in- (Jg) have the same graded Betti
numbers. Thus, in the sequel, we may consider4.

As we have already seen in Corollary 2.2.1(dg) is minimally gen-
erated by the initial monomials of the binomials correspogdo the edges
of G and bym = n(n— 3)/2 monomials of degree- 3 which we denote
by vi,...,Vm Where we assume thatiif< j, then either deg < degv; or
degv; = degv;j andv; > vj. We observe that ¥ = XiXj+1---Xny1---Yi-1Yj,
we have degx = n— j +i+ 1. Hence, there are two monomials of degree
3, namely,vi = X1XnYn—1 andve = XoYy1Yn, three monomials of degree 4,
namely,v3 = X1Xn—_1XnYn—2, V4 = XoXnY1Yn—1, V5 = X3Y1Y2Yn, €tc.

We introduce the following notation. We skt (X1y2, X2Y3, - . ., Xn—1Yn),
| =J+ (Xayn), and, for 1<k <m, Iy = lx_1+ (v), with 1o = |. Therefore,
Im= in<(Jg).

LEMMA 2.4.1. The ideals quotiedt: (x1yn) andly_1 : (), for k> 1,
are minimally generated by regular sequences of monomi&sgthn— 1.

REMARK 2.4.2. From the above proof we also note that if we build the
monomialvi = XiXj1---Xny1---Yi—1Yj, then the regular sequence of mono-
mials which generatdg_; : (v) containsj — i —2 monomials of degree 2
andn— j+i+1 variables.

In the following lemma we compute the projective dimensiod #he
regularity ofS/1. This will be useful for the inductive study of the invariants
of S/lk.

LEMMA 2.4.3. We have projdir8/l =n—1andred@/l| =n—2.

LEMMA 2.4.4. For I< k< m, we have projding/lx < nand red/Ix <
n—2.

PROPOSITION2.4.5. projdinB/in.(Jg) =n, regS/in.(Jg) =n—2.

THEOREM2.4.6. Let G be a cycle. Then/$1.(Jg) and §Jg have the
same extremal Betti number, namely

. n—1
Bn,Zn—Z(S/JG) = Bn72n—2(s/|n<(JG)) = ( ) > -1
REMARK 2.4.7. There are examples of graphs whose binomial edge
ideal have several extremal Betti numbers. For instancegriyehG dis-
played below has two extremal Betti numbers which are equ#ieaex-
tremal Betti numbers of in(Jg).
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CHAPTER 3

On the binomial edge ideals of block graphs

In this chapter we study homological properties of somesea®f bi-
nomial edge ideals. L&b be a simple graph on the vertex seftand let
S=K|x1,...,%n,Y1,--.,Yn] be the polynomial ring in 2 variables over a
field K.

We show that ifG is a block graph, dept$/Js) = depth(S/in-(Jg)).
Also we show a similar equality for regularity, namely

reg(S/Jg) =regS/in-(Jg)) = ¢ if Gis aC, —graph

C,-graphs constitute a subclass of the block graph20hfwas shown
that, for any connected grajhon the vertex sen|, we have

¢ <reg(S/Js) <n-—1,

where/ is the length of the longest induced pathGaf

The main motivation of our work was to answer the followingesgtion.
May we characterize the connected graghehose longest induced path
has lengthy and redS/Js) = ¢? We succeeded to answer this question for
trees. We show that if is a tree whose longest induced path has ledgth
then reqS/Jr) = ¢if and only if T is caterpillar. Acaterpillar treeis a tree
T with the property that it contains a pakhsuch that any vertex of is
either a vertex oP or it is adjacent to a vertex ¢.

In [21], the so-called weakly closed graphs were introduced. Ehis
a class of graphs which includes closed graphs. In the sap®r,gawas
shown that a tree is caterpillar if and only if it is a weaklpstd graph.
Having in mind our Theorem 3.2.1 and€, Theorem 3.2] which states
that redS/Jg) = ¢ if Gis a connected closed graph whose longest induced
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path has lengtli, and by some computer experiments, we are tempted to
formulate the following.

CONJECTURE3.0.8. If G is a connected weakly closed graph whose
longest induced path has lendttthen regS/Jg) = ¢.

We first recall some basic definitions from graph theory. Ateser
of G whose deletion from the graph gives a graph with more coedect
components that is called acut pointof G. A chordal graph is a graph
without cycles of length greater than or equal toAclique of a graphG
is a complete subgraph @. The cliques of a grapks form a simplicial
complex,A(G), which is called theclique complexof G. Its facets are the
maximal cliques ofs. A graphG is ablock graphif and only if it is chordal
and every two maximal cliques have at most one vertex in commo

The cligue complexA(G) of a chordal graptG has the property that
there exists deaf orderon its facets. This means that the facet\oB)
may be ordered aky,...,F such that, for every > 1, F; is a leaf of the
simplicial complex generated Iy, . . ., F. A leaf F of a simplicial complex
Ais a facet ofA with the property that there exists another facetofalled
abranchof F, sayG, such that, for every facét = F of A, HNF C GNF.

3.1. Initial ideals of binomial edge ideals of block graphs

In this section we first show that for a block gra@hon [n] with c
connected components deffiJg) = depti{S/in-(Jg)) = n+c, where<
denotes the lexicographic order induced®y> - -+ > Xn > y1 > -+ > ypin
the ringS= K|[x1,...,Xn,Y1,---,Yn)-

We begin with the following lemma.

LEMMA 3.1.1. LetG be a graph on the vertex sgf and leti € [n].
Then

in<(Jg, %, ¥i) = (in<(Js), X, Yi)-

THEOREM 3.1.2. Let G be a block graph and let ¢ be the number of
connected components of G. Then

depti{S/Jg) = deptHS/in-(Jg)) = n+c.

Let G be a connected graph on the vertex|sgwhich consists of

(i) a sequence of maximal cliqués,...,F, with dimF > 1 for all i
such thatFFNF4q|=1for 1<i </—1andFfNF; =0 for any
I < j such thatj #i+ 1, together with

(i) some additional edges of the forfn= { j,k} wherej is an inter-
section point of two consecutive cliquesF 1 for some 1< i <
¢—1, andk is a vertex of degree.1
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NZNINZ N

FIGURE 3.1. Cy-graph

In other wordsG is obtained from a grapH with A(H) = (F1,...,F)
whose binomial edge ideal is Cohen-Macaulay (d&k Theorem 3.1]) by
attaching edges in the intersection points of the facet§Bif). Therefore,
G looks like the graph displayed in Figure 3.1.

Such a graph has, obviously, the property that its longektded path
has length equal té. If a connected grapl satisfies the above conditions
(i) and (ii), we say that is a é,-graph. In the case that difn= 1 for
1<i </, thenGis called acaterpillar graph

We should also note that argj—graph is chordal and has the property
that any two distinct maximal cliques intersect in at most @ertex. So
that anyC,-graph is a connected block graph.

THEOREM3.1.3. Let G be a&&;-graph on the vertex sét|. Then
reqS/Jg) =reg(S/in.(Jg)) =¢.
ExAmMPLE 3.1.4. For the grapt® of Figure 3.1 we get rd®/Jz) = 5.

3.2. Binomial edge ideals of caterpillar trees

Matsuda and Murai showed i2()] that, for any connected gragh on
the vertex sefn|, we have

¢<reqS/Js) <n—1,

wherel denotes the length of the longest induced patB,and conjectured
that redS/Jz) =n—1ifand only if T is a line graph. Several recent papers
are concerned with this conjecture; see, for examglé, [25], and [27].
One may ask as well to characterize connected gr&hgose longest
induced path has lengthand redS/Jg) = 4. In this section, we answer this
guestion for trees.
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A caterpillar tree is a tre@ with the property that it contains a pafh
such that any vertex oF is either a vertex oP or it is adjacent to a vertex
of P. Clearly, any caterpillar tree is@-graph for some positive integér

FIGURE 3.2. Caterpillar

FIGURE 3.3. Induced graph H

Caterpillar trees were first studied by Harary and Schwék [These
graphs have applications in chemistry and physi&.[In Figure 3.2, an
example of caterpillar tree is displayed. Note that any pdtar tree is a
narrow graph in the sense of Cox and ErskiBe [Conversely, one may
easily see that any narrow tree is a caterpillar tree. M@e®@s it was
observed in 21], a tree is a caterpillar graph if and only if it is weakly
closed in the sense of definition given Ri]J.

In the next theorem we characterize the tr@ewvith reg(S/Jr) = ¢
where/ is the length of the longest induced pathTof

THEOREM3.2.1. Let T be a tree on the vertex §af whose longest in-
duced path P has length Thenreg(S/Jr) = ¢ ifand only if T is caterpillar.



CHAPTER 4

Binomial edge ideals and rational normal scrolls

Let K be a field andS= K|[xy,...,Xy+1] the polynomial ring inn+ 1
variables over the fiel&. The 2-minors of the matrix

X — ( X1 ... Xn—1 Xn )
X2 ... Xn Xn+1
generate the ide& of the rational normal curvé” c P". It is well-known
thatS/Ix is Cohen- Macaulay and has 8nrlinear resolution. We refer the
reader to 10], [4], [1] for properties of the ideal of the rational normal
scroll.

On the other hand, in the last few years, the so-called biabedge
ideals have been intensively studied. In analogy to thetoactson of clas-
sical binomial edge ideals, in this chapter we consider tflewing ideals
in S. For a simple grapls on the vertex seh|, letlg be the ideal generated
by the 2-minorgyi; = xiXj+1—XjXi+1 of X with i < jand{i, j} € E(G). We
call I thebinomial edge ideal of X.

It is clear already from the beginning that unlike the casela$sical
binomial edge ideals, the idek} strongly depends on the labeling of the
graphG. For example, ifG is the graph displayed in Figure 4.1, we get
dim(S/lg) = 3 for the labeling given in Figure 4.2 (a) and di8ilg) = 4
for the labeling ofG given in Figure 4.2 (b).

However, for some classes of grapgBsvhich admit a natural labeling,
we may associate witls a unique idealg and study its properties. This
is the case, for instance, for closed graphs. We recall frt@hthat G is
closed if it has a labeling with respect to which is closed. raph G is
called closed with respect to its given labeling if for aliged{i, j} and
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FIGUREA4.1
3 5 2 5
2 4 3 4
1 6 1 6
(a) (b)
FIGURE 4.2

{i,k} with j >i <korj<i>k, onehas{j,k} € E(G). A closed graph
G is chordal and, therefore, by Dirac's Theorem, its cliqumptexA(G)

is a quasi-forestA(G) is a quasi-forest if the facels, ..., of A(G) have
a leaf order. It was shown irlf] that if G is closed, then we may label
the vertices ofG such that the facets &(G), sayF,...,F, are intervals,
F = [a,bi] C [n] and if we orderF,...,F such thata; < a» < -+ < &,
then this is a leaf order.

The rest of this chapter is structured as follows. In Sectidnwe show
that the generators o form a Gibner basis with respect to the reverse
lexicographic order if and only i6G is closed with the given labeling. As
a consequence of this theorem, we derive that, for a clossguhgs, the
ideallg is Cohen-Macaulay of dimensiortic, wherec is the number of
connected components Gf

In Section 4.2, we study the propertieslgffor a closed grapie. We
compute the minimal prime ideals &f in Theorem 4.2.2. By using this
theorem, we characterize those connected closed g@phiswhich Ig is
a radical ideal (Proposition 4.2.3). In addition, we shawCorollary 4.2.4,
thatlg is a set-theoretic complete intersectioifs connected and closed.
In the last part of Section 4.2, we give a sharp upper bounithérregularity
of Ig (Theorem 4.2.7) and we show thgthas a linear resolution if and only
if Gis a complete graph.

4.1. Grobner bases

Let G be a graph on the vertex sgt andlg C S= K[xg,...,Xq] its
associated ideal. The main result of this section is thevoiig.
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THEOREM4.1.1. The generators old form the reduced Gibner basis
of Ig with respect to the reverse lexicographic order induced py x- - >
Xn > Xnr1 If @and only if G is closed with respect to its given labeling.

As in the case of classical binomial edge ideals associaitbdgraphs,
the ideallg whereG is the line graph om vertices has nice properties.

Let G be a line graph ofn] with E(G) = {{i,i+1}:1<i<n-1}.
Thenlg is minimally generated byg; ;1 = Xf;l —XXii2:1<i<n-—
1} and inev(lg) = (X3,%2,...,X2). As x3,X3,...,%2 is a regular sequence
in § it follows that the generators of form a regular sequence as well.
Consequently, the Koszul complex of the generatotsg gives the minimal
free resolution o5/Ig overS.

The following proposition shows that, for a closed graphthe ini-
tial ideal oflg with respect to the reverse lexicographic order has a simple
structure.

PROPOSITION4.1.2. LetG be a closed graph ofm| with the clique
complexA(G) = (F1,...,FR) whereR = [g,bj] for1 <i <r,and 1=a; <
-« < a < by =n. Then ine(lg) is a primary monomial ideal, hence it is
Cohen-Macaulay.

COROLLARY 4.1.3. LetG be a closed graph. Thdg is a Cohen-
Macaulay ideal of dirfS/Ig) = 1+ ¢ wherec is the number of connected
components o.

4.2. Properties of the scroll binomial edge ideals of closagraphs

In this section we study several algebraic and homologicaigrties of
the ideallg whereG is a closed graph on the vertex &at

4.2.1. Associated primesWe recall thatyx denotes the binomial edge
ideal associated with the complete grafh It is well known thatly is a
prime ideal.

PROPOSITION4.2.1. LetG be an arbitrary connected graph on the ver-
tex set[n]. Thenlx is a minimal prime olg. If P is a minimal prime ideal
of Ig which contains no variable, théh= Ix.

Now we restrict our study to ideals associated with conrmkctesed
graphs.

THEOREM4.2.2. Let G# K, be a connected closed graph on the vertex
set[n| and ks its associated ideal. Then

ASS(S/|G) = Min(IG) = {|x, (Xz, e ,Xn)}.

As a consequence of the above theorem, we may charactezizadical
idealslg.
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PROPOSITION4.2.3. LetG be a connected closed graph on the vertex
set[n|. Thenlg is a radical ideal if and only if

G=K, or A(G) =([1,n—1],[2,n]).
Theorem 4.2.2 has the following nice consequence.

COROLLARY 4.2.4. LetG be a connected closed graph. THens a
set-theoretic complete intersection.

4.2.2. Regularity. Let G be a closed graph on the vertex §gtand
I C Sits associated ideal. The first question we may ask is underhwh
conditions on the grapls the ideallg has a linear resolution. The next
proposition answers this question. We first need the foligvkinown state-
ment.

LEMMA 4.2.5. B, Exercise 4.1.17 (c)] LeR= K|[Xg,...,Xn|/I be a ho-
mogeneous Cohen-Macaulay ring. The riRRbas arm-linear resolution if
and only ifl; = 0 for j < mand dink Im= (™ 97*) whereg = height .

m

PROPOSITION4.2.6. LetG be a closed graph dn]. Then the following
are equivalent:
(a) Gis a complete graph;
(b) I has a linear resolution;
(c) All powers oflg have a linear resolution.

In the next theorem we give an upper bound for the regulafitizo
whenG is a closed graph.

THEOREM4.2.7. Let G be a closed graph on the vertex g8t Then
reg(S/lg) < r where r is the number of maximal cliques of G

REMARK 4.2.8. The upper bound given in the above theorem is sharp.
Indeed, letG be a closed graph with the maximal cliqugs= [a;, & 1]
where 1=a; < ay < --- < & < &1 = n. In this case, we have

inrev(lc) = (X2, . .. :Xaz)z + (Xap+1; - - - axas)z o+ (Xar 1y - ,Xn)z-
Therefore,

S/(inrev(le), X1, Xn+1) = (S1/(Xz, - Xap)?) @K -+ O (S / (Xay 115 - -, X)),
where§ = K[Xg 41, ..,Xq,,] for all i, which implies that

r

Hs/(invev(la) xaxnea) (1) = rl(l + (@41 —a)t).

This shows that re@/Ig) =.

From Proposition 4.2.6 and Theorem 4.2.7, we derive thewiatlg con-
sequence.
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COROLLARY 4.2.9. LetG be a closed graph with two maximal cliques.
Then red@S/lg) = 2.

The following example shows that the inequality given in diteen 4.2.7
may be also strict.

ExAMPLE 4.2.10. LetG be the closed graph on the vertex gtwith
the maximal cliques; = [1,4],F, = [3,5],F3 = [4,6]. Then re¢S/Ig) =
2<3.






Conclusions and further research

In summary, the main original results of this thesis are thiewing.

1. We showed that, iG is a complete bipartite graph or a cycle, then
the associated binomial idedd and its initial ideal in-(Jg) with
respect to the lexicographic order 8= K[xq,...,Xn,Y1,..-,Yn]
have the same extremal Betti numbers.

2. If G is a block graph on the vertex sgt], then depthS/Jg) =
depti{S/in-(Jg)) = n+ ¢ wherec is the number of connected
components of.

3. If Gis aCy-graph, then re$/Js) = regS/in-(Jg)) = ¢. In par-
ticular, it follows that the binomial edge ideal ofGz—graph has
minimal regularity.

4. We characterized the trees whose binomial edge ideaésrhani-
mal regularity.

5. We introduced binomial edge ideals of closed graphs &ssoc
with scrolls and we studied several algebraic and homoébgiop-
erties of them.

Binomial edge ideals have been intensively studied in theblgears. We
intend to continue our research on this topic with a speo@i$ on Matsuda
and Murai conjecture0] which states that, for a grapgh on the vertex set
[n], we have re¢S/Jz) = n—1 if and only if G is the line graph. This
conjecture was proved for block graphs @6]. In particular, it follows
that this conjecture holds for trees. Another interestirgpfem is to solve
the conjecture on binomial edge ideals with minimal regtylawhich we
proposed in§].
43
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Moreover, we would like to extend our research on binomigkadeals
associated with scrolls. For instance, one direction isteegalize our con-
struction for a pair of graphs for a Hankel matrix of arbiyréype following
ideas of the papedf.
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