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Conducător de doctorat
Prof.univ.dr. MIRELA ŞTEF ĂNESCU
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Preface

The main subject of this thesis is the study of binomial ideals in poly-
nomial rings arising from combinatorics.

By a simple graphG on the vertex set[n] we mean an undirected graph
G with no loops and no multiple edges. Villareal [30] introduced monomial
edge idealsI(G) associated with a simple graphG in the polynomial ring
K[x1, . . . ,xn] in n variables over a fieldK. The monomial edge idealI(G)
is generated by all the monomialsxix j where i < j and{i, j} is an edge
of G. In a similar way, one may define the binomial edge idealJG ⊂ S=
K[x1, . . . ,xn,y1, . . . ,yn] associated withG as the ideal generated by all the
binomials fi j = xiy j −x jyi wherei < j and{i, j} is an edge ofG.

Binomial edge ideals were first introduced in [19] and [22] indepen-
dently at the same time. The authors in [19] obtained some nice results
on Gr̈obner bases, primary decomposition and minimal prime ideals of bi-
nomial edge ideals. Afterwards, many other research papersapproached
the topic of binomial edge ideals. Much effort has been done for studying
the Cohen-Macaulay property of a binomial edge idealJG [14, 23, 31], the
syzygies ofJG and its regularity [20, 25, 27, 16, 29, 32]. Part of the interest
in studying binomial edge ideals comes from that fact that they have some
applications to algebraic statistics [19, 13, 24, 28].

In this thesis we follow two directions. The first one is the description
of homological properties of some classes of binomial edge ideals, namely,
those associated with complete bipartite graphs, cycles, and block graphs.
The second direction concerns the study of a class of binomial ideals which
are associated with scrolls. The thesis mainly consists of the original results
obtained in the papers [9], [7] and [8].

Now, we present the structure of our thesis.
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In Chapter 1 we survey the fundamental notions and results which are
intensively used throughout the thesis. We especially follow the books [11,
13, 18]. We recall some basic definitions and known facts about monomial
ideals and several concepts such as minimal free resolutions and primary
decompositions. We give a short introduction to the main features of the
Gröbner basis theory, including the Buchberger criterion and algorithm.

In the second part of this chapter, we survey the main properties of bi-
nomial edge ideals, which are the main topic of this thesis, and consider
examples of binomial edge ideals associated to the line graph and the com-
plete graph. This part is mainly based on the fundamental paper [19] where
the binomial edge ideals were introduced. We study the graphsG for which
the generators form a Gröbner basis with respect to the lexicographic order
once we have a given vertex labeling ofG and we present a combinatorial
method for finding the reduced Gröbner basis for any binomial edge ideal.
Finally, we recall how the minimal prime ideals ofJG can be obtained from
certain subsets of vertices ofG.

Chapter 2 is based on our paper [9]. In this chapter, extremal Betti
numbers of some classes of binomial edge ideals are studied.We show
that the binomial edge idealJG and its initial ideal in<(JG) with respect
to the lexicographic order have the same extremal Betti numbers for com-
plete bipartite graphs and cycles. This is a partial positive answer to the
conjecture proposed in [14] which states that, for any graphG, JG and
in<(JG) have the same extremal Betti numbers. We use the advantages
of known results on the resolution ofJG given in [29] and [32]. In the first
step, we find a minimal generating set for the initial ideals for these graphs
by using Theorem 1.4.11 which characterizes in terms of admissible paths
the reduced Gr̈obner basis ofJG with respect to the lexicographic order in
the ringS. Proposition 2.3.1 shows that in<(JG) has linear quotients ifG
is a complete bipartite graph. For monomial ideals with linear quotients,
one may easily compute the Betti numbers. Therefore, we may calculate
all the graded Betti numbers of in<(JG) for the complete bipartite graph;
see Theorem 2.3.2. Then we show that projdimin<(JG) = projdimJG and
regin<(JG) = regJG, and, therefore, in<(JG) has a unique extremal Betti
number likeJG. Finally, we show that the extremal Betti number of in<(JG)
is equal to that ofJG; see Corollary 2.3.3. While for the complete bipartite
graph, drawing the desired conclusion was not so difficult, for cycles we
need a bit more technique. In the first step, as in the completebipartite
case, we identify the minimal monomial generators of in<(JG) whereG is
an n–cycle with a natural labeling of its vertices. In this case,we use an
induction argument (Lemma 2.4.1 and Lemma 2.4.3) to computethe pro-
jective dimension and the regularity of in<(JG). Finally, in Theorem 2.4.6,
we show thatJG and in<(JG) have the same extremal Betti number.
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In Chapter 3 we study binomial edge ideals of block graphs. This
chapter is based on our joint paper [8]. By a block graphG we mean a
chordal graph with the property that it is chordal and any twomaximal
cliques intersect in at most one vertex. In support of the conjecture in
[14], we show, in Theorem 3.1.2, that, for a block graphG, depth(S/JG) =
depth(S/ in<(JG)) = n+ c, wherec is the number of connected compo-
nents ofG. We show a similar equality for regularity, namely reg(S/JG) =
reg(S/ in<(JG)) = ℓ if G is aCℓ-graph whereℓ is the length of the longest
induced path ofG. Cℓ-graphs constitute a subclass of the block graphs. In
[20], Matsuda and Murai showed that, for any connected graphG, we have
ℓ≤ reg(S/JG)≤ n−1. Therefore, we conclude thatCℓ-graphs have minimal
regularity.

The main motivation of our work was to answer the following question.
May we characterize the connected graphsG whose longest induced path
has lengthℓ and reg(S/JG) = ℓ? In other words, may we characterize the
graphs whose binomial edge ideal has minimal regularity? Wesucceeded
to answer this question for trees. We show that ifT is a tree whose longest
induced path has lengthℓ, then reg(S/JT) = ℓ if and only if T is caterpillar;
see Theorem 3.2.1.

In [21], the so-called weakly closed graphs were introduced. Thisis
a class of graphs which includes closed graphs. In the same paper, it was
shown that a tree is caterpillar if and only if it is a weakly closed graph.
Having in mind our Theorem 3.2.1 and [16, Theorem 3.2] which states
that reg(S/JG) = ℓ if G is a connected closed graph whose longest induced
path has lengthℓ, and by some computer experiments, we are tempted to
formulate the following.

Conjecture. If G is a connected weakly closed graph whose longest
induced path has lengthℓ, thenreg(S/JG) = ℓ.

In Chapter 4, based on our joint paper [7], in analogy to the binomial
edge idealJG generated by the 2-minorsfi j = xiy j −x jyi of the matrix

X =

(
x1 . . . xn
y1 . . . yn

)
,

wherei < j and{i, j} is an edge ofG, we introduce the binomial edge ideal
associated with the 2×n Hankel matrix

X =

(
x1 . . . xn−1 xn
x2 . . . xn xn+1

)
.

It is known that all the 2-minors of the Hankel matrix generate the idealIX
of the rational normal curveX ⊂ Pn.

In Section 4.1, we show that the generators ofIG form a Gr̈obner basis
with respect to the reverse lexicographic order if and only if G is closed
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with the given labeling. As a consequence of this theorem, wederive that,
for a closed graphG, the idealIG is Cohen-Macaulay of dimension 1+ c,
wherec is the number of connected components ofG.

In Section 4.2 we study the properties ofIG for a closed graphG. We
compute the minimal prime ideals ofIG in Theorem 4.2.2 for a connected
closed graphG. By using this theorem, we characterize those connected
closed graphsG for which IG is a radical ideal. In addition, we show that
IG is a set-theoretic complete intersection ifG is connected and closed. We
end by giving a sharp upper bound for the regularity ofIG and showing that
IG has a linear resolution if and only ifG is a complete graph.
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CHAPTER 1

Preliminaries

In this chapter we recall some fundamental notions and results that are
used throughout the thesis.

1.1. Gröbner bases

1.1.1. Short survey on monomial ideals and their basic properties.
Let K be a field andS=K[x1, ..,xn] be the ring of polynomials inn variables
with coefficients inK. Let Zn

+ denote the set of vectorsa= (a1, . . . ,an) ∈
Zn, ai ≥ 0, i ∈ {1, . . . ,n}. As usual, we denote the set of non-negative
integers byN.

An element inS of the formxa1
1 · · ·xan

n is called a monomial. We may
represent a monomialu by u= xa wherea= (a1, . . . ,an) ∈ Zn

+. Let Mon(S)
be the set of all monomials inS. Any polynomial f in Scan be expressed
uniquely as aK-linear combination of monomials in Mon(S)

f = ∑
u∈Mon(S)

auu, whereau ∈ K.

We call the set supp( f ) = {u∈ Mon(S) : au 6= 0} thesupportof f .
If u = xa1

1 · · ·xan
n is a monomial inS, one defines thedegreeof u as

deg(u) = a1+ · · ·+ an. If f ∈ S\ {0} is a polynomial, the degree off is
degf = max{degu : u∈ supp( f )}.

The ringS has anN-grading given byS= ⊕d∈NSd whereSd is theK-
vector subspace ofS generated by all the monomials of degreed. A non
zero element inSd is called ahomogeneous polynomialof degreed.
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A monomial ideal I⊂ Sis an ideal which is generated by a set of mono-
mials. By Dickson’s Lemma [13, Theorem 1.3], we know that any mono-
mial ideal may be generated by a finite set of monomials. The following
theorem explains an important property of monomial ideals.

THEOREM 1.1.1. [13] Let I be a monomial ideal. The setM of mono-
mials belonging to I is a K-basis of I.

COROLLARY 1.1.2. [13] Let I ⊂ S be an ideal. The following condi-
tions are equivalent:

(i) I is a monomial ideal.
(ii) For every polynomial f ∈ S we have thatf ∈ I if and only if

supp( f )⊂ I .

COROLLARY 1.1.3. [13] Let I ⊂ Sbe a monomial ideal. The residue
classes of the monomials not belonging toI form aK-basis of the ringS/I .

EXAMPLE 1.1.4. LetI = (xa1
1 , . . . ,xan

n ) ⊂ S. Then aK-basis ofS/I is
given by the residue classes of all monomialsw = xb1

1 · · ·xbn
n ∈ S with the

property thatbi < ai for all 1 ≤ i ≤ n. Therefore, we have dimK(S/I) =
a1 · · ·an.

PROPOSITION1.1.5. [13] Let a set of monomials{u1, . . . ,um} form a
set of generators for the monomial idealI . Then the monomialv belongs to
I if and only if there exists a monomialw such thatv= wui for somei.

PROPOSITION1.1.6. [13] Let I ⊂ Sbe a monomial ideal and letG(I)
denote the set of monomials inI which are minimal with respect to divisi-
bility. ThenG(I) is the unique minimal set of monomial generators ofI .

Obviously, the polynomial ringS isZn-graded with graded components

Sa =

{
Kxa, if a∈ Zn

+,

0, otherwise.

Let f = cxa ∈ Swith c∈ K anda∈ Zn. Then f is called homogeneous of
degreea.

We observe that any monomial idealI ⊂ S is aZn-graded submodule of
S. In this case, the quotientS/I is alsoZn-graded. In other words,

I =⊕xa∈ISa andS/I =⊕xa/∈ISa.

1.1.1.1. Standard algebraic operations on monomial ideals.Let I and
J be some ideals inS. The sum and the product of the ideals are defined as:

I +J = { f +g : f ∈ I ,g∈ J} andIJ = (G), whereG= { f g : f ∈ I ,g∈ J}.
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Obviously,I +J andIJ are again monomial ideals ifI andJ are monomial
ideals. In addition, we haveG(I +J)⊂ G(I)∪G(J) andG(IJ)⊂ G(I)G(J).

The intersection of two monomial idealsI and J is also a monomial
ideal which is given by

I ∩J = ({lcm(u,w) : u∈ G(I),w∈ G(J)}).

The ideal quotient of two monomial ideals is also a monomial ideal which
is given by

I : J =
⋂

w∈G(J)

I : (w),

where

I : (w) = ({u/gcd(u,w) : u∈ G(I)}).

Theradical of a monomial idealI is the ideal given by

√
I = (

√
u : u∈ G(I)),

where, foru= xa,
√

u=
n
∏

i=1,ai 6=0
xi. For example, ifu= x3

1x2x2
4, then

√
u=

x1x2x4.
I is called a radical ideal if

√
I = I . Note that a monomial idealI is

a radical ideal if and onlyI is a square free monomial ideal, that is, the
minimal monomial generators are squarefree monomials.

EXAMPLE 1.1.7. Let I = (x3,x2y,y3) and J = (xy,y2) be monomial
ideals in the polynomial ringS= K[x,y]. Then

I +J = (x3,x2y,y3)+(xy,y2) = (x3,x2y,y3,xy,y2) = (x3,xy,y2).

Sincexy dividesx2y andy2 dividesy3, we may remove the generatorsx2y
andy3. The product ofI andJ is

IJ = (x3,x2y,y3)(xy,y2) = (x4y,x3y2,x2y3,xy4,y5),

and the intersection is

I ∩J = (lcm(x3,xy), lcm(x3,y2), lcm(x2y,xy), . . . , lcm(y3,y2))

= (x3y,x3y2,x2y,x2y2,xy3,y3)

= (x2y,y3).
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Finally, the quotient of the two ideals is

I : J = (x3/gcd(x3,xy),x2y/gcd(x2y,xy),y3/gcd(y3,xy))

∩ (x3/gcd(x3,y2),x2y/gcd(x2y,y2),y3/gcd(y3,y2))

= (x2,x,y2) ∩ (x3,x2,y)

= (x,y2)∩ (x2,y)

= (x2,xy,y2).

1.1.2. Short survey on Gr̈obner basis theory. In the polynomial al-
gebraK[x] with one variable over a fieldK, we use long division for given
polynomialsf ,g∈ K[x] with g 6= 0. There exist uniquely determined poly-
nomialsq andr in K[x] such thatf = qg+ r where degr < degg.

The algorithm to calculateq andr is as follows: If degf < degg then
we setq= 0 andr = f . If deg f ≥ degg, we calculater1 = f − (a/b)xn−m,
whereaxn andbxm are the leading terms off andg, respectively. If deg
r1 < degg, thenq = (a/b)xn−m and r = r1. Otherwise, we do the same
reduction tor1. The algorithm terminates in finitely many steps.

The theory of Gr̈obner bases is based on the generalization of this al-
gorithm to polynomial algebras with several variables. In this case, we en-
counter a problem which is about determining leading terms and comparing
monomials containing more than one variable. To fix this problem, we are
going to present monomial orders.

1.1.2.1. Monomial orders.We call the pair(X,≤) a partially ordered
set if X is a set and≤ is a binary relation onX which is reflexive, antisym-
metric and transitive, i.e. for alla,b, andc in X we have:

(i) a∈ X ⇒ a≤ a;
(ii) a≤ b, b≤ a⇒ a= b;
(iii) a≤ b, b≤ c⇒ a≤ c.

We writea< b to meana≤ b anda 6= b. Also,a≥ b is the same asb≤ a.
EXAMPLE 1.1.8.

(1) The set of all subsets ofX, the power set ofX, is denoted byP(X).
The inclusion relation⊆ is a partial order onP(X).

(2) The binary relation| on monomials in Mon(S) is defined as fol-
lows:

xa1
1 · · ·xan

n |xb1
1 · · ·xbn

n if a1 ≤ b1, . . . ,an ≤ bn.

In this case, we say thatxa1
1 · · ·xan

n dividesxb1
1 · · ·xbn

n . We can check
easily that the set (Mon(S),|) is a poset.
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A partial order≤ on X is called atotal order, if for any two elements
a,b∈ X we havea≤ b or a≥ b. In other words, all pairs of elements ofX
are comparable with respect to≤.

We define a total order on the set of all monomials inS= K[x1, . . . ,xn]
which respects the multiplicative structure on Mon(S).

DEFINITION 1.1.9. Amonomial orderonSis a total order≤ on Mon(S)
which satisfies:

(i) 1 ≤ u, for all u∈ Mon(S);
(ii) if u≤ v, then for everyw∈ Mon(S), uw≤ vw.

Let us underline that every two monomials can be compared with re-
spect to a monomial order. The following conditions are satisfied for any
monomial order.

PROPOSITION1.1.10. [13] Let ≤ be a monomial order onS. Then, the
following hold:

(i) if u,v∈ Mon(S) with u|v, thenu≤ v;
(ii) if u1,u2, . . . is a sequence of monomials withu1 ≥ u2 ≥ . . . then

there exists an integermsuch thatui = um for all i ≥ m.

We now present some standard monomial orders onS. In these exam-
ples we denote the ordering of the variables in a standard wayasx1 > x2 >
.. . > xn. Let xa andxb be two monomials inS.

• The lexicographic order: We havexa < xb , if either ∑n
i=1ai <

∑n
i=1bi or ∑n

i=1ai = ∑n
i=1bi and the leftmost non zero component

of the vectora−b is negative. In this ordering we first compare
total degrees, and next we compare the powers of the variables
starting with the lowest indexed variable.

EXAMPLE 1.1.11. x2
1x2x2

4x3
5 < x2

1x2x4
4x5, since the two mono-

mials have the same degree and we havea−b= (0,0,0,−2,2).

• Thepure lexicographic order: We havexa < xb if the leftmost non
zero component of the vectora−b is negative. In this order total
degree is not important.

EXAMPLE 1.1.12. x3
1x2x5

4 < x3
1x2x3, because we havea−b=

(0,0,−1,5).

• Thereverse lexicographic order: We havexa< xb if either∑n
i=1ai <

∑n
i=1bi or ∑n

i=1ai = ∑n
i=1bi and the rightmost non zero component

of the vectora−b is positive.

EXAMPLE 1.1.13. x2
1x3x4 < x1x2

2x4, because we havea−b=
(1,−2,1,0).
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The difference between the lexicographic and the reverse lexicographic
order could be explained in the following way. Letxa,xb ∈ Mon(S) be two
monomials of same degree. Ifxa < xb in the lexicographic order,xb has
more from the beginning thanxa. If xa < xb in the reverse lexicographic
order,xb has less from the end thanxa.

EXAMPLE 1.1.14. Consider all monomials inS=K[x1,x2,x3] of degree
2. In the lexicographic order:x2

1 > x1x2 > x1x3 > x2
2 > x2x3 > x2

3. In the
reverse lexicographic order:x2

1 > x1x2 > x2
2 > x1x3 > x2x3 > x2

3.

1.1.2.2. Initial ideals and Gr̈obner bases.Let < be a fixed monomial
order on the polynomial ringS=K[x1, . . . ,xn] over a fieldK. For a non zero
polynomial f ∈ S the initial monomialof f with respect to< is the biggest
monomial among the monomials belonging to supp( f ). The initial mono-
mial of f is denoted by in<( f ) with respect to<. The leading coefficient
c∈ K of f is the coefficient of in<( f ) and theleading termof f is cin<( f ).

EXAMPLE 1.1.15. Let f = 5x3
1x2

2x3 + x2
1x4

2 + 3x4
1x3. If < is the lexi-

cographic order, then in<( f ) = x3
1x2

2x3; if < is the reverse lexicographic
order, then in<( f ) = x2

1x4
2, and if < is the pure lexicographic order, then

in<( f ) = x4
1x3.

Initial monomials of the sum and the product of two polynomials are
given by the following lemma:

LEMMA 1.1.16. [13] Let f andg be nonzero polynomials and< be a
monomial order onS. Then

(i) in<( f g)=in<( f )in<(g) ;
(ii) in<( f + g) ≤ max{in<( f ), in<(g)}. Equality holds if in<( f ) 6=

in<(g).

Let I ⊂ Sbe a nonzero ideal. Theinitial ideal of I is a monomial ideal
which is generated by all the initial monomials of the nonzero polynomials
belonging toI . The initial ideal ofI with respect to a monomial order< is
denoted by in<(I). Thus, in<(I) = (in<( f ) : f ∈ I , f 6= 0).

Note that in<(I) = (0) if I = (0). In general, the initial monomials of the
elements of a generating set do not generate in<(I). For example, consider
the idealI = (x2

1−x1x2+x2,x1−x2) and the pure lexicographic order in the
polynomial ringK[x1,x2]. We have(x2

1−x1x2+x2)−x1(x1−x2) = x2 ∈ I .
If we assume that in<(I) = (x2

1,x1) = (x1), then we should havex2 ∈ in<(I).
Howeverx2 /∈ (x1).

According to Proposition 1.1.6, a monomial ideal has a unique mini-
mal set of monomial generators. Dickson’s Lemma says that this minimal
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generating set is a finite set. Therefore every monomial ideal is finitely gen-
erated. Since in<(I) is a monomial ideal, there existg1, . . . ,gm∈ I such that
in<(I) = (in<(g1), . . . , in<(gm)).

DEFINITION 1.1.17. LetI ⊂ Sbe a nonzero ideal and let< be a mono-
mial order onS. A set of polynomials{g1, . . . ,gm} is said to be aGröbner
basisof I with respect to the order< if in<(I) = (in<(g1), . . . , in<(gm)).

According to the definition, for any nonzero monomial ideal there al-
ways exists a Gr̈obner basis.

EXAMPLE 1.1.18. The setG= (x2
1−x1x2+x2,x1−x2) is not a Gr̈obner

basis forI = (G) with respect to the pure lexicographic order, since, as it is
explained before,x2 ∈ I . Howeverx2 /∈ (x2

1,x1) = (x1).

THEOREM1.1.19. [13] Let I be an ideal on S and let the set{g1, . . . ,gm}
be a Gr̈obner basis of I with respect to a monomial order<. Then, I=
(g1, . . . ,gm). In other words, every Gröbner basis of I is a generating set
for I.

COROLLARY 1.1.20 (Hilbert’s basis theorem). [13] Every ideal in the
polynomial ringS= K[x1, . . . ,xn] is finitely generated. In other words, the
ring S is Noetherian.

THEOREM 1.1.21 (The division algorithm). [13] Let f and g1, . . . ,gm
be nonzero polynomials in S and let< be a monomial order. There exist
polynomials r and q1, . . . ,qm in S with f= q1g1+ . . .+qmgm+ r such that
the following conditions are satisfied:

(i) no element ofsupp(r) is contained in(in<(g1), . . . , in<(gm));
(ii) in<( f )≥ in<(qigi) for all i.

The expressionq1g1+ . . .+qmgm+ r satisfying the conditions above is
called astandard expressionfor f . The polynomialr is a remainderof f
with respect tog1, . . . ,gm. The following example shows that the standard
expression off is not unique.

EXAMPLE 1.1.22. The polynomialf = x2
1− x3

2 has two different stan-
dard expressions with respect tog1 = x1+ x2 andg2 = x1+ x2

2. We con-
sider the pure lexicographic order. We havef = x1g1 − x2g2 and f =
(x1− x2)g1+ x2

2− x3
2. In these different standard expressions we have dif-

ferent remainders: 0 andx2
2−x3

2.

If f has a zero remainder with respect to polynomialsg1, . . . ,gm, then
we say thatf reduces to0 with respect tog1, . . . ,gm.

We now describe an algorithm to find a standard expression forf with
respect to an ordered set of polynomialsg1, . . . ,gm. In this algorithm we
obtain a finite sequence of polynomialshi ,1≤ i ≤ s, in the following way:
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We let h0 = f and assume that we have already defined the polyno-
mials h1, . . . ,hi. The sequence ends withhi if the polynomialhi satisfies
supp(hi) /∈ (in<(g1), . . ., in<(gm)).

Otherwise letu be the biggest monomial in supp(hi) which belongs to
(in<(g1), . . ., in<(gm)) and letj be the smallest integer such that (in<(g j) | u.

We definehi+1 = hi −ab−1wgj , wherew= u/in<(g j) anda andb are
the leading coefficients ofhi andg j , respectively. Suppose that the sequence
of hi ’s ends withhs. Then we obtain the following equations:

(1) f = h0 = q′1g j1 +h1
(2) h1 = q′2g j2 +h2
(3) h2 = q′3g j3 +h3

...
(4) hs−1 = q′sg js+hs

Replacingh1 in (1) by (2), we obtain f = q′1g j1 + q′2g j2 + h2. In this
new expression, instead ofh2 we write the expression(3). By repeating this
process, we obtain a standard expression forf with the remainderr = hs.

EXAMPLE 1.1.23. Letf = x2
1x2+ x1x2

2−3x3
2. We calculate a standard

expression forf with respect tog1 = x1−x2 andg2 = x2 by using the algo-
rithm described above for the lexicographic order.

f = h0 = x1x2g1+2x1x2
2−3x3

2 whereh1 = 2x1x2
2−3x3

2

h1 = 2x2
2g1−x3

2 whereh2 =−x3
2

h2 =−x2
2g2 whereh3 = 0.

Therefore the standard expression isf = (x1x2+2x2
2)g1− x2

2g2. f reduces
to 0 with respect tox1−x2 andx2.

PROPOSITION1.1.24. [13] Let < be a monomial order onS and the
set{g1, . . . ,gm} be a Gr̈obner basis for the idealI = (g1, . . . ,gm). Then,
any nonzero polynomialf in S has a unique remainder with respect to
g1, . . . ,gm.

COROLLARY 1.1.25. [13] Let the set{g1, . . . ,gm} be a Gr̈obner basis
for the idealI = (g1, . . . ,gm). Then, any polynomialf ∈ Swhich belongs to
I reduces to zero with respect tog1, . . . ,gm.

We present an algorithm that constructs a Gröbner basis of an ideal from
any given set of generators. We need the following definition.

DEFINITION 1.1.26. Letf andg be two polynomials onSand let< be
a monomial order. The polynomial

S( f ,g) =
lcm(in<( f ), in<(g))

cin<( f )
f − lcm(in<( f ), in<(g))

din<(g)
g
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is called theS-polynomialof f andg with respect to<.

Recall that lcm(in<( f ),in<(g)) stands for the least common multiple of
in<( f ) and in<(g). In the formula,c andd are the leading coefficients off
andg, respectively.

EXAMPLE 1.1.27. Letf = x3
1x2+ x1x2+ x2

3 andg= 2x2
1+ x2x3. Then

lcm(in<( f ),in<(g)) = x3
1x2 with respect to the lexicographic order, and

therefore theS-polynomial of f andg is

S( f ,g)=
x3

1x2

x3
1x2

(x3
1x2+x1x2+x2

3)−
x3

1x2

2x2
1

(2x2
1+x2x3)=−1/2x1x2

2x3+x1x2+x2
3.

Notice that theS-polynomial helps us cancel the leading terms off and
g and obtain another polynomial in the same ideal with different leading
term.

The next theorem gives us a method to check for a given idealI =
(g1, . . . ,gm) if the generating set{g1, . . . ,gm} forms a Gr̈obner basis for
I .

THEOREM 1.1.28 (Buchberger’s criterion). [13] Let I = (g1, . . . ,gm)
be an ideal of S and< a monomial order on S. Then G= {g1, . . . ,gm} is a
Gröbner basis of I with respect to< if and only if S(gi ,g j) reduces to zero
with respect to G for all i< j.

To calculateS-polynomials ofI = (g1, . . . ,gm) for all pairs of generators
can be cumbersome. The following proposition helps us avoidthe calcula-
tions in some cases.

PROPOSITION 1.1.29. [13] Let f and g be polynomials inS with a
monomial order<. If initial monomials in<( f ) and in<(g) are relatively
prime thenS( f ,g) reduces to 0 with respect tof andg.

EXAMPLE 1.1.30. LetI ⊂ K[x1, . . . ,xn,y1, . . . ,yn] be generated by all
two minors of the matrix (

x1 x2 ... xn
y1 y2 ... yn

)
.

In other words,I = ({ fi j = xiy j − x jyi : 1≤ i < j ≤ n}). Let < be the
lexicographic order inK[x1, . . . ,xn,y1, . . . ,yn] induced byx1 > x2 > .. . >
xn > y1 > .. . > yn. We want to show that allS-polynomialsS( fi j , fkl) have
a remainder zero, where{i, j} 6= {k, l}. If i 6= k and j 6= l , then in<( fi j )
and in<( fkl) are relatively prime, soS( fi j , fkl) has a remainder 0. Ifi = k,
we may assume thatj < l and we haveS( fi j , fkl) = S( fi j , fil ) = −x jyiyl +
xl yiy j =−yi f jl which is a standard expression ofS( fi j , fkl) with a remainder
0.
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If j = l , we may assume thati < k and we getS( fi j , fkl) = S( fi j , fk j) =
xix jyk−xkx jyi = x j fik, which is again a standard expression with remainder
0. Consequently, the set of minors{ fi j : 1 ≤ i < j ≤ n} form a Gr̈obner
basis ofI with respect to the lexicographic order.

There exists an algorithm which allows us to compute a Gröbner basis
for an idealI by using a given set of generators forI . The algorithm named
asBuchberger’s algorithm is in fact a consequence of Theorem 1.1.28.
Buchberger’s algorithm works as follows:

Step 1: We compute theS-polynomial for each pair of elements of the
generating setG of the idealI .

Step 2: If allS-polynomials reduce to zero thenG is a Gr̈obner basis
of I . Otherwise we add one of the nonzero remainders to our systemof
generators to form a new system of generators and go back to Step 1.

Since any strictly ascending sequence of monomial ideals inS is finite,
this algorithm ends after a finite number of steps.

EXAMPLE 1.1.31. LetI = (x2
1+2x1x2

2,x1x2+2x3
2−1) ⊂ Q[x1,x2]. By

using Buchberger’s algorithm, we form a Gröbner basis forI in S=K[x1,x2]
with respect to the lexicographic order.

Let f = x2
1+2x1x2

2, g= x1x2+2x3
2−1. We compute theS-polynomial

S( f ,g) = x1 of f andg. SinceS( f ,g) = x1 /∈ (in<( f ),in<(g)), we addh= x1
to the set of generators getting the new generating set{ f ,g,h}.

Now let us choose the pairg,h. Since the initial monomial of theS-
polynomial S(g,h) = 2x3

2 − 1 is not in (in<( f ),in<(g), in<(h)), we get
another generator, which ist = 2x3

2 − 1 and the generating set becomes
{ f ,g,h, t}.

Here we do not have to compute theS-polynomial of every pair, since
we know thatS( f ,g) = h andS(g,h) = t. We have all the other remainders
equal to 0 as well:

S( f ,h) = 2x1x2
2 = 2x2

2h

S( f , t) = 1/2x2
1+2x1x5

2 = 1/2 f +x1x2
2t

S(g, t) = 1/2x1+2x5
2−x2

2 = 1/2h+x2
2t

S(h, t) = 1/2x1 = 1/2h

It follows that the Gr̈obner basis is{x2
1+2x1x2

2,x1x2+2x3
2−1,x1,2x3

2−1}.

We may add some more polynomials to the setGand still have a Gr̈obner
basis for the ideal. However, under some conditions there isa unique
Gröbner basis.
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DEFINITION 1.1.32. A setG= {g1, . . . ,gm} is areduced Gr̈obner basis
for I ⊂ Swith respect to a monomial order< if G is a Gr̈obner basis forI
with the following conditions satisfied:

(i) The leading coefficient of eachgi is 1;
(ii) For all i 6= j, nou∈ supp(g j) is divisible by in<(gi).

EXAMPLE 1.1.33. The reduced Gröbner basis ofI in the previous ex-
ample is{x1,x3

2−1/2}.

1.2. Minimal graded free resolutions of graded ideals

In this section, we present numerical data arising from the minimal
graded free resolution of a quotient of a polynomial ring by agraded ideal.

Let us set, for this section,S= K[x1, . . . ,xn] be a polynomial ring in
n variables over a fieldK. Every graded idealI ⊂ S has a (unique up to
isomorphism)minimal graded free resolution

F• : 0→ Fp → ·· · → F1 → F0 = S→ S/I → 0,

whereFi =
⊕

j∈ZS(− j)βi j , for any value ofi. The exponentsβi j = βi j (S/I)
are called thegraded Betti numbersof S/I . Thetotal Betti numbersof S/I
areβi = ∑ j βi j , i ≥ 0. Theprojective dimensionof S/I is given by

projdim(S/I) = max{i : βi j 6= 0, for somej ∈ Z}.

According to the Auslander-Buchsbaum formula [18, Corollary A 4.3] we
have

depthS/I = n−projdimS/I .

We recall that depthS/I is the length of a maximalS/I–sequence of
homogeneous elements contained in the maximal graded idealof S. It is
known that depth(S/I) ≤ dim(S/I). If the equality holds, we say thatI
is a Cohen-Macaulay ideal. Hence,I is Cohen-Macaulay if and only if
depth(S/I) = dim(S/I).

Theregularityof S/I is defined as reg(S/I) = max{ j − i : βi j 6= 0}. All
numerical data arising from the minimal graded free resolution of S/I are
called the homological invariants ofS/I .

Usually, the graded Betti numbers are displayed in the so-called Betti
diagramof S/I which has the shape indicated in Figure 1.1.

The Betti numbers marked in the figure by fat dots are calledextremal
Betti numbers.

EXAMPLE 1.2.1. LetJ ⊂ S= K[x1, ..,x5,y1, ..,y5] be the ideal

J=(x1y2−x2y1,x2y3−x3y2,x2y4−x4y2,x3y4−x4y3,x2y5−x5y2,x4y5−x5y4)
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•

•

•

reg

j

i projdim

βi,i+ j

FIGURE 1.1

and its initial ideal in<(J) ⊂ K[x1, ..,x5,y1, ..,y5], where< is the lexico-
graphic order induced byx1 > · · ·> x5 > y1 > · · ·> y5. The Betti diagrams
of S/J andS/ in<(J) are displayed below.

According to the diagrams,S/ in<(J) andS/J have the same extremal
Betti number which has the value of 4. We also have projdim(S/J) =
projdim(S/ in<(J))= 4, hence depth(S/J)= depth(S/ in<(J))= 6 and reg(S/J)=
reg(S/ in<(J)) = 2.

J :

0 1 2 3 4
0 1 − − − −
1 − 6 4 − −
2 − − 9 12 4

Total 1 6 13 12 4

in<(J) :

0 1 2 3 4
0 1 − − − −
1 − 6 5 − −
2 − 1 10 12 4

Total 1 7 15 12 4

The Betti diagrams help us to write down the minimal graded freeresolution
for each ideal:

0→ S(−6)4 → S(−5)12 → S(−3)4⊕S(−4)9 → S(−2)6 → S→ S/J → 0,

0→ S(−6)4 → S(−5)12 → S(−3)5⊕S(−4)10 →

→ S(−2)6⊕S(−3)→ S→ S/ in<(J)→ 0.
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DEFINITION 1.2.2. A graded ringS/I has a(d− 1)-linear resolution
(or, equivalently,I has ad-linear resolution) if its minimal graded free res-
olution is of the form

0→S(−p)βp−d+1 →S(−p+1)βp−d →·· ·→S(−d−1)β2 →S(−d)β1 →
S→ S/I → 0. (*)

The definition says thatS/I has a(d−1)-linear resolution if and only
if βi j (S/I) = 0 for j 6= i +d−1. In the Betti diagram ofS/I , except for the
positionβ(0,0) = 1, all the other non-zero graded Betti numbers are located
on the(d−1)st row. In other words,S/I has a(d−1)-linear resolution if
and only ifI is generated in degreed and reg(S/I) = d−1.

EXAMPLE 1.2.3. LetI ⊂K[x1, . . . ,x4,y1, . . . ,y4], I =(x1y2−x2y1,x1y3−
x3y1,x1y4− x4y1,x2y3− x3y2,x2y4− x4y2,x3y4− x4y3). S/I has a 2–linear
resolution. The Betti diagram ofS/I is the following.

0 1 2 3
0 1 − − −
1 − 6 8 3

REMARK 1.2.4. Let us make another comment on ideals with linear
resolution. IfS/I has a linear resolution then, by applying the additivity
property of the Hilbert series in (*), we get

HS/I (t) =
1−β1td +β2td+1−·· ·+(−1)p−d+1βp−d+1t p

(1− t)n .

This formula shows that ifS/I has a linear resolution, then the Betti num-
bers are determined by its Hilbert seriesHS/I .

A comparison between the graded Betti numbers ofS/I andS/ in<(I)
where< is a monomial order inS, is given in the following theorem and
corollary.

THEOREM 1.2.5. [18] For all i and j, βi j (S/I)≤ βi j (S/ in<(I)).

This inequality between the graded Betti numbers yields the following
consequences.

COROLLARY 1.2.6. [18]

(i) projdimS/I ≤ projdim(S/ in<(I)).
(ii) depthS/I ≥ depth(S/ in<(I)).
(iii) regS/I ≤ reg(S/ in<(I)).
(iv) If S/ in<(I) is Cohen-Macaulay thenS/I is Cohen-Macaulay.
(v) If S/ in<(I) has a linear resolution thenS/I has a linear resolution.
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1.3. A brief review of primary decomposition

In this subsection we mainly follow the book [11, Chapter 3]. LetR be
a ring andM anR–module. The prime idealP of R is called anassociated
primeof M if there exists somem∈ M such that

P= (0 :R m) = {r ∈ R : rm= 0}.

In particular, if I ⊂ R is an ideal, thenP is an associated prime ofR/I
(or, simply, ofI ) if P= I : (a) for somea∈ R.

We collect the main results on the associated primes of a module in the
following theorem. We first recall that the set of all associated primes of
M is usually denoted by Ass(M). Very often, we write Ass(I) instead of
Ass(R/I) for an idealI of R.

THEOREM 1.3.1. [11] Let R be a Noetherian ring and M a finitely gen-
erated non-zero R–module. Then:

(a) Ass(M) is a non-empty set which contains the set of minimal prime
ideals over the annihilator of M,Ann(M), whereAnn(M) = {r ∈
R : rM = 0}. In particular, Ass(I)⊇ Min(I). Here,Min(I) denotes
the set of minimal prime ideals of I.

(b) We have Z(M) =
⋃

P∈Ass(M)P where Z(M) denotes the set of all
the zero-divisors on M.

(c) Ass(M) commutes with localization. More precisely, if S⊂ R is a
multiplicative set, then

AssS−1R(S
−1M) = {S−1P : P∈ Ass(M),P∩S= /0}.

(d) If 0 → M′ → M → M′′ → 0 is an exact sequence of R–modules,
then

Ass(M′)⊂ Ass(M)⊂ Ass(M′)∪Ass(M′′).

DEFINITION 1.3.2. LetR be a Noetherian ring andP a prime ideal of
R. The idealI of R is called aP–primary ideal(or simply aprimary ideal)
if Ass(R/I) = {P}.

THEOREM 1.3.3. [11] Let R be a Noetherian ring. Then any ideal I of
R has a decomposition I= Q1∩·· ·∩Qr , where:

(a) Qi is Pi–primary for every i;
(b) the decomposition is irredundant, that is, no Qi can be omitted in

the decomposition;
(c) Pi are pairwise distinct.

Moreover,Ass(I) = {P1, . . . ,Pr}.
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The above decomposition is called aprimary decompositionof I . We
now survey the main results on the primary decomposition of monomial
ideals, mainly following [18].

THEOREM 1.3.4. [18] Let I ⊂ S= K[x1, . . . ,xn] be a monomial ideal.
Then I=

⋂m
i=1Qi , where each Qi is generated by pure powers of the vari-

ables. In other words, each Qi is of the form(xa1
i1
, . . . ,xak

ik
).

Moreover, it can be shown that the irredundant presentationconstructed
in the above proof is unique.

A monomial ideal is calledirreducible if it can not be written as proper
intersection of two other monomial ideals. It is calledreducibleif it is not
irreducible.

COROLLARY 1.3.5. [18] A monomial ideal is irreducible if and only if
it is generated by pure powers of the variables.

It follows from Theorem 1.3.4 and Corollary 1.3.5 that each mono-
mial has a unique presentation as an irredundant intersection of irreducible
monomial ideals, moreover, the proof of Theorem 1.3.4 givesus a proce-
dure for finding such a presentation.

EXAMPLE 1.3.6. LetI = (x2
1x3

2,x
2
2x3,x2

3). Then

I = (x2
1,x

2
2x3,x

2
3)∩ (x3

2,x
2
2x3,x

2
3)

= (x2
1,x

2
2,x

2
3)∩ (x2

1,x3,x
2
3)∩ (x3

2,x
2
2,x

2
3)∩ (x3

2,x3,x
2
3)

= (x2
1,x

2
2,x

2
3)∩ (x2

1,x3)∩ (x3
2,x3).

For squarefree monomial ideals we have the following corollary.

COROLLARY 1.3.7. [18] Let I ⊂ S be a squarefree monomial ideal.
Then

I =
⋂

P∈Min(I)

P,

and eachP∈ Min(I) is a monomial prime ideal.

Here Min(I) denotes, as usual, the set of minimal prime ideals ofI .
We end this section by recalling that the primary decomposition ob-

tained from an irredundant intersection of irreducible ideals is unique and
we call it thestandard primary decomposition of I.

1.4. Binomial edge ideals

Let G be a simple graph on the vertex set[n] and with the edge set
E(G). We considerS= K[x1, . . . ,xn,y1, . . . ,yn] to be the polynomial ring in
2n variables over a fieldK.
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We define the binomial edge idealJG ⊂ Sassociated withG as the ideal
generated by all the binomialsfi j = xiy j − x jyi where 1≤ i < j ≤ n with
{i, j} ∈ E(G).

Note that ifG has an isolated vertexi, andG′ is the restriction ofG
to the vertex set[n] \ {i}, thenJG = JG′ . For this reason, we will always
assume thatG has no isolated vertex.

We consider the polynomial ringSendowed with the lexicographic or-
der induced by the natural order of variablesx1 > x2 > · · ·> xn > y1 > y2 >
· · · > yn. We denote by in<(JG) the initial ideal ofJG with respect to this
monomial order. The ideal in<(JG) is a monomial ideal minimally gener-
ated by the initial monomials of the binomials in the reducedGröbner basis
of JG with respect to the lexicographic order.

EXAMPLE 1.4.1. In Figure 1.2,G is a simple graph on the vertex set
[6].

•

•

•

•

•

•3

2

1

4

5

6

FIGURE 1.2

The binomial edge ideal ofG is JG = ( f12, f23, f24, f45, f46). The re-
duced Gr̈obner basis ofJG with respect to the lexicographic order isG =
{x1y2−x2y1,x2y3−x3y2,x2y4−x4y2,x4y5−x5y4,x4y6−x6y4,x3y2y4−x4y2y3,
x5y4y6−x6y4y5}. Therefore, the initial ideal ofJG is

in<(JG) = (x1y2,x2y3,x2y4,x4y5,x4y6,x3y2y4,x5y4y6).

1.4.1. Binomial edge ideals with quadratic Gr̈obner bases.In this
subsection, we are going to present two basic examples of binomial edge
ideals. Both examples are ideals with the property that theirgenerators
form their reduced Gr̈obner bases.

The graphsG whose associated binomial edge idealJG shares the above
property, in other words,JG has a quadratic Gröbner basis, are described in
combinatorial terms in the following theorem.

THEOREM 1.4.2. [19, Theorem 1.1]Let G be a simple graph on the
vertex set[n] with the edge set E(G), and let< be the lexicographic order
on S induced by x1 > · · ·> xn > y1 > · · ·> yn. Then the following conditions
are equivalent:

(a) The generators fi j of JG form a quadratic Gr̈obner basis.
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(b) For all edges{i, j} and{i,k} with j > i < k or j < i > k one has
{ j,k} ∈ E(G).

In other words, if we represent the edge{i, j} with i < j by an arrow
which points fromi to j, then we have the following picture for a graph
which satisfies the condition (b) in Theorem 1.4.2.

(a) (b)

k

i

j k

i

j

FIGURE 1.3

EXAMPLE 1.4.3. LetG be the graph with edges{1,2} and{1,3}. We
haveJG = (x1y2 − x2y1,x1y3 − x3y1). We calculate theS−polynomial of
f12 and f13. We getS( f12, f13) = y1(x2y3−x3y2) ∈ JG. ThusS( f12, f13) =
x2y1y3−x3y1y2 ∈ JG.

But the initial monomialx2y1y3 of S( f12, f13) does not belong to the
ideal generated by the initial monomials off12 and f13 which shows that
{ f12, f13} is not a Gr̈obner basis ofJG.

However, for the same graph with the different labeling{1,2},{2,3}
the generators ofJG form a Gr̈obner Basis.

For the associated binomial edge idealJG = (x1y2− x2y1,x2y3− x3y2),
theS−polynomial of f12 and f23 reduces to 0 since the initial monomials of
f12 and f23 are relatively prime.

DEFINITION 1.4.4. A graphG endowed with a labeling which satisfies
condition (b) in Theorem 1.4.2 is calledclosed with respect to the given
labeling.

Therefore, we may reformulate Theorem 1.4.2 by saying that the gen-
erators ofJG form a Gr̈obner basis with respect to the lexicographic order
if and only if G is closed with respect to its given labeling.

We have showed that the graph from Figure 1.3(a), without edge{ j,k},
is not closed for the labelingi = 1, j = 2,k = 3 and closed for the labeling
k= 1, i = 2, j = 3.

DEFINITION 1.4.5. A graphG is closedif there exists a labeling of its
vertices such thatG is closed with respect to it.
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The following graphs are examples of graphs which are not closed. Note
that if a graphG is closed, then any induced subgraph ofG should be closed
as well. Thus, if a graphG contains as an induced subgraph any of the
graphs in the example below then it is not closed.

EXAMPLE 1.4.6.
(i) The graph with three different edgese1,e2,e3 such thate1∩e2∩

e3 6= /0 is called theclaw graph. The claw graph is not closed; see
Figure 1.4. Hence, any closed graph must be claw free.

•

•

• •

FIGURE 1.4

(ii) Any cycleCn of lengthn≥ 4 is not closed. Assume that there exists
a labeling of its vertices,a1, . . . ,an (labeled clockwise). To obtain
a closed labeling, we should either choosea1 < a2 < · · ·< an < a1
or a1 > a2 > · · ·an > a1. SinceCn has no chord, both choices lead
to contradiction.

For instance inC4, if we label in clockwise direction, 1,2,3,4,
then,{2,4} should belong to the edge set, since{1,2} ∈ E(C4)
and{1,4} ∈ E(C4) and also{1,3} must belong to the edge set to
have a closed graph since{1,4} ∈ E(C4) and{3,4} ∈ E(C4).

• •

••

4 3

21

FIGURE 1.5
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After this observation, let us state the following proposition.

PROPOSITION1.4.7. IfG is closed thenG is a chordal graph, that is, it
has no induced cycle of length≥ 4 and it is claw-free.

One may also show that a bipartite graph is not closed unless it is a line
graph; see [19, Corollary 1.3].

In the sequel, we study binomial edge ideals of two classes ofclosed
graphs.

1.4.1.1. The binomial edge ideal of the complete graph.Let G = Kn
be the complete graph on the vertex set[n]. Kn has the edge setE(Kn) =
{{i, j} : 1≤ i < j ≤ n}. Below we displayed the complete graphs on 3 and 4
vertices. Obviously,Kn is closed with respect to any labeling of its vertices.

•

•

• •

• •

•
K3 K4

FIGURE 1.6. Complete graphs

The binomial edge ideal ofKn is the idealI2(X) of all 2−minors (max-
imal minors) of the 2×n matrix:

X =

(
x1 · · · xn
y1 · · · yn

)
.

Hence we have

JG= JKn = I2(X)= (xiy j −x jyi : 1≤ i < j ≤ n)⊂S=K[x1, . . . ,xn,y1, . . . ,yn].

Let us list some properties ofJKn.

(i) The complete graph is closed with respect to any labeling. There-
fore, according to Theorem 1.4.2, the generators ofJKn form a
Gröbner basis.

(ii) Let < be the lexicographic order onS induced by natural order of
indeterminates. Then

in<(JKn) = (xiy j : 1≤ i < j ≤ n) =
⋂n

i=1(x1, . . . ,xi−1,yi+1, . . . ,yn).
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(iii) We have dim
(

S
JKn

)
= dim

(
S

in<(JKn)

)
= dim(S)−height(in<(JKn))

= 2n− (n−1) = n+1.
(iv) S

JKn
is a domain [13, Theorem 6.35]. Hence,JKn is a prime ideal.

(v) in<(JKn) has linear quotients.
(vi) Both in<(JKn) andJKn have a linear resolution. Indeed, it is well

known that a graded ideal generated in one degree which has linear
quotients has also a linear resolution; see [18, Proposition 8.2.1].
This shows that in<(JKn) has a linear resolution. For the second
part we apply Corollary 1.2.6.

(vii) in<(JKn) is Cohen-Macaulay.
(viii) JKn is Cohen-Macaulay, because according to Corollary 1.2.6, if

in<(JKn) is Cohen-Macaulay thenJKn is also Cohen-Macaulay.

1.4.1.2. The binomial edge ideal of the line graph.Let G= Ln be the
line graph on the vertex set[n] with E(G) = {(i, i+1) : 1≤ i ≤ n−1}. The
binomial edge idealJG of Ln is JLn = ( fi,i+1 : 1 ≤ i ≤ n− 1). Let us list
some properties ofJLn.

(i) The line graphLn is closed with respect to the natural order of its
vertices. Therefore, according to Theorem 1.4.2, the set ofgener-
ators{ fi,i+1 : 1≤ i ≤ n−1} form a Gr̈obner basis forJLn. In fact
it is possible to obtain the same conclusion without using Theo-
rem 1.4.2. We know that the initial monomials of any two distinct
generators ofJLn are relatively prime. Then, we conclude that the
generators ofJLn form a Gr̈obner basis by Proposition 1.1.29.

(ii) in<(JLn) = (xiyi+1 : 1 ≤ i ≤ n− 1) is generated by a regular se-
quence of lengthn−1 of monomials of degree 2. It follows that
the generatorsf12, f23, . . . , fn−1,n of JLn form a regular sequence on
S. This result is a consequence of the following lemma.

LEMMA 1.4.8. LetI ⊂ S= K[x1, . . .xn] be a graded ideal and
G= {g1, . . . ,gm} the reduced Gr̈obner basis ofI with respect to<.
If in<(g1), . . . , in<(gm) is a regular sequence inS, theng1, . . . ,gm
is a regular sequence inS.

(iii) Since JLn is a complete intersection, that is,JLn is generated by a
regular sequence, it follows thatJLn is Cohen-Macaulay. We have

depth
(

S
JLn

)
= dim

(
S

JLn

)
= n+1.

1.4.2. Gr̈obner bases of binomial edge ideals.In general, for an arbi-
trary graphG, JG has a Grobner basis whose initial monomials are square-
free.
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In order to characterize in combinatorial terms the Grobnerbasis ofJG,
we introduce the following definition.

DEFINITION 1.4.9. Leti < j be two vertices ofG. A pathi = i0, i1, . . .,
ir−1, ir = j from i to j is calledadmissibleif the following conditions are
satisfied:

(i) ik 6= iℓ for k 6= ℓ;
(ii) for eachk= 1, . . . , r −1, one has eitherik < i or ik > j;
(iii) for any proper subset{ j1, . . . , js} of {i1, . . . , ir−1}, the sequence

i, j1, . . . , js, j is not a path inG.

With a given admissible pathπ of G from i to j, we associate a mono-
mial

uπ = (∏
ik> j

xik)(∏
iℓ<i

yiℓ).

Obviously, any edge ofG is an admissible path. In this case, the associ-
ated monomial is just 1.

EXAMPLE 1.4.10. All the admissible paths other than the edges ofC5
with respect to the given labelling in Figure 1.7 are:

π1 = 1,5,4; π2 = 2,1,5; π3 = 1,5,4,3; π4 = 2,1,5,4; π5 = 3,2,1,5.

•

• •

•

•
1

2 3

4

5

FIGURE 1.7

The associated monomials for these admissible paths are:

uπ1 = x5; uπ2 = y1; uπ3 = x4x5; uπ4 = x5y1; uπ5 = y1y2.

Note that, in a closed graph, the admissible paths are exactly the edges
of G. Hence, ifG is closed and connected then{i, i+1} is an edge ofG for
any i.

THEOREM 1.4.11. [19] The set of binomials

Γ =
⋃

i< j

{uπ fi j : π is an admissible path from i to j}
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is the reduced Gr̈obner basis of JG with respect to the lexicographic order
on S induced by the natural order of indeterminates, x1 > · · · > xn > y1 >
· · ·> yn.

EXAMPLE 1.4.12. For the graphC5 of figure 1.7 given in the previous
example, the reduced Gröbner basis ofJC5 with respect to the lexicographic
order is:

{x4x5 f13,x5y1 f24,y1y2 f35,x5 f14,y1 f25, f12, f15, f23, f34, f45}.
As a consequence of Theorem 1.4.11, we see that all admissible paths

of a graphG can be determined by computing the reduced Gröbner basis of
JG.

EXAMPLE 1.4.13. LetG = K3,2 be a complete bipartite graph with 5
vertices given in Figure 1.8.

•

•

•

•

•1 2 3

54

FIGURE 1.8

The admissible paths ofK3.2 other than the edges are:
π1 = 1,4,2; π2 = 1,5,2; π3 = 1,4,3; π4 = 1,5,3; π5 = 2,4,3;

π6 = 2,5,3; π7 = 4,1,5; π8 = 4,2,5; π9 = 4,3,5.
The reduced Gr̈obner basis of binomial edge ideal of the complete bipar-

tite graphG= K3,2 is given byJG = ( f14, f15, f24, f25, f34, f35,x4 f12,x5 f12,
x4 f13,x5 f13,x4 f23,x5 f23,y1 f45,y2 f45,y3 f45).

1.4.3. Primary decomposition of binomial edge ideals.JG is a radi-
cal ideal [19, Corollary 2.2]. This is a consequence of Theorem 1.4.2. Since
a radical ideal can be expessed as the intersection of its minimal prime
ideals, we have

JG =
⋂

P∈Min(JG)

P,

where Min(JG) denotes the set of the minimal prime ideals ofJG.
We would like to characterize the minimal primes ofJG in terms of the

combinatorics of G. We need to introduce the following notation.
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Let G be a simple graph on[n]. For each subsetS ⊂ [n] we define a
prime idealPS in the following way. LetG1, . . . ,Gc(S ) be the connected
components ofG[n]\S , whereG[n]\S is the induced subgraph ofG on the

vertex set[n] \S . For 1≤ i ≤ c(S ), let G̃i be the complete graph on the
vertex setV(Gi). We set

PS (G) = ({xi ,yi}i∈S ,JG̃1
, . . . ,JG̃c(S )

).

By using property(iv) of JKn, it follows thatPS (G) is a prime ideal since
JG̃1

, . . . ,JG̃c(S )
are prime binomial ideals whose generators belong to dis-

joint sets of variables.
We observe that, for anyS ⊂ [n], PS (G) ⊃ JG and dimS/PS (G) =

∑c(S )
i=1 dim(Si/JG̃i

) whereSi is the polynomial ring in the variablesx j ,y j

with j ∈V(Gi). Thus, we get

dimS/PS (G)=
c(S )

∑
i=1

(|V(Gi)|+1)= c(S )+
c(S )

∑
i=1

|V(Gi)|= c(S )+n−|S |.

THEOREM 1.4.14. [19] Let G be a simple graph on the vertex set[n].
Then

JG =
⋂

S⊂[n]

PS (G).

In particular, the minimal primes of JG are among the prime ideals PS (G),
whereS ⊂ [n].

The proof may be found in [19, Theorem 3.2].

COROLLARY 1.4.15. [19, Corollary 3.3] LetG be a simple graph on the
vertex set[n]. Then

dimS/JG = max{n−|S |+c(S ) : S ⊂ [n]}.

If we chooseS = /0, then the number of connected components ofG is
c= c( /0). Since there is no variable inP/0(G), it can be seen easily thatP/0(G)
is not comparable to any other prime idealPS (G) whereS 6= /0. Therefore
P/0(G) is a minimal prime ofJG. We calculate dimS/P/0(G) = n+ c which
is the maximum value ofn−|S |+c(S ), for instance, whenJG is Cohen-
Macaulay. Because, in this case,JG is unmixed which implies that all the
minimal primes have the same dimension. In particular, ifG is connected,
thenJG is unmixed if and only if for every minimal primePS (G) of G, we
haven−|S |+c(S ) = n+1, that isc(S )−|S |= 1.

Let us state a theorem that characterizes the setsS for which the prime
idealPS (G) is minimal.
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THEOREM1.4.16. [19] Let G be a connected graph on the vertex set[n],
andS ⊂ [n]. Then PS (G) is a minimal prime of JG if and only ifS = /0 or
S is non-empty and for each i∈ S one has c(S \{i})< c(S ).

For the proof, one may see [19, Corollary 3.9].
A setS ⊂ [n] satisfying the condition of the above theorem is called a

cut-point setof G. The theorem simply says that ifG is a connected graph,
thenPS (G) is a minimal prime ideal ofJG if and only if eachi ∈ S is a
cut-point of the graphG([n]\S )∪{i}.

EXAMPLE 1.4.17.

(1) The cut-point set for a complete graphG is the empty set.
(2) Let G= Ln be the line graph on the vertex set[n] with the natural

labelling of the vertices. Then, a non-empty subsetS ⊂ [n] is a
cut-point set ofG if and only if S = {i1, . . . , ir} with 1 < i1 <
· · ·< ir < n andis+1− is> 1 for all 1≤ s≤ r −1. For instance, let
G= L5 the line graph with 5 vertices. See Figure 1.9.

• • • • •
1 2 3 4 5

FIGURE 1.9

The the cut-point sets are /0,{2},{3},{4},{2,4}. Therefore,
we may write

JG = P/0(G)∩P{2}(G)∩P{3}(G)∩P{4}(G)∩P{2,4}(G)

as the intersection of the corresponding minimal primes. Wehave,
for example,P{2,4}(G) = (x2,y2,x4,y4), P{2}(G) = (x2,y2,x3y4−
x4y3,x3y5−x5y3,x4y5−x5y4).

(3) Let G be a cycle ofn vertices,G=Cn. A non-empty cut-point set
S ⊂ [n] occurs when|S |> 1 and no two elementsi, j ∈S belong
to the same edge ofCn. JG is not unmixed because dimP/0(G) =
n+1 and all the other minimal primes have dimensionn. Here are,
for instance, the minimal primes ofG=C5 given in Figure 1.7:

P/0(G), P{1,3}(G), P{1,4}(G), P{2,4}(G), P{2,5}(G), P{3,5}(G).

(4) LetG be a graph on the vertex set[7] shown in Figure 1.10.
The cut-point sets ofG are /0,{2},{6},{2,6},{3,5},{2,4,6}.

Therefore we have

JG = P/0(G)∩P{2}(G)∩P{6}(G)∩P{2,6}(G)∩P{3,5}(G)∩P{2,4,6}(G),



1.4. Binomial edge ideals 25

• •

•

• •

•

•
1 2

3

6 7

5

4

FIGURE 1.10

where, for example,

P{2,6}(G) = (x2,y2,x6,y6,x3y4−x4y3,x3y5−x5y3,x4y5−x5y4).

We calculate easily that dimS/JG = 8 for the maximum value
of n−|S |+c(S ) whenS = /0.

1.4.4. The minimal graded free resolutions of some binomial edge
ideals. We first consider the binomial edge ideal of the line graph. Let G=
Ln be the line graph onn vertices withE(G) = {{i, i+1} : 1≤ i ≤ n−1}.

As we have already seen, the generatorsf = f12, f23, . . . , fn−1,n of JLn

form a regular sequence inS. Therefore, the Koszul complexK•( f ) gives
the minimal graded free resolution ofS/JLn :

K•( f ) : 0→Kn−1( f )→·· ·→K j( f ) · · ·→K1( f )→K0( f )=S→S/JLn →0.

The S-moduleK j( f ) is the jth exterior power of the freeS-module of
rank n− 1 of basise1, . . . ,en−1. Hence,K j( f ) is also free overS of rank(n−1

j

)
and basis

{ei1 ∧·· ·∧ei j : 1≤ i1 < · · ·< i j ≤ n−1}.
Since we would like to have all the maps in the above resolution of

degree 0, we takeK j( f ) = S(−2 j)(
n−1

j ), for all j. Therefore,

βi j (S/JLn) =

{(n−1
i

)
, j = 2i

0, otherwise.

On the other hand, the generators of in<(JLn) have the same property,
namely they form a regular sequence inS. This implies that we have a
similar resolution forS/ in<(JLn). For the regularity we have

regS/JLn = reg(S/ in<(JLn)) = n−1.

We now consider the binomial edge ideal of the complete graph. Let
G = Kn be the complete graph on the vertex set[n]. As we have seen, in
this case,JKn coincides with the ideal of all 2-minors of the matrix X whose
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rows arex1, . . . ,xn andy1, . . . ,yn. The resolution ofI2(X) is known, it is
the Eagon-Northcott complex, but we would like to restrict to showing that
βi j (S/ in<(JKn)) = βi j (S/JKn) also in this case, without using that complex.

Let us first observe that in<(JKn) = (xiy j : 1 ≤ i < j ≤ n) has linear
quotients if we order its generators in decreasing order with respect to the
lexicographic order induced byx1 > · · · > xn > y1 > · · · > yn. Therefore,
S/ in<(JKn) and, consequently,S/JKn has a linear resolution, by Corollary
1.2.6. By Remark 1.2.4, the Betti numbers ofS/JKn and of S/ in<(JKn)
are determined by their Hilbert series. ButS/JKn andS/ in<(JKn) have the
same Hilbert series. HenceS/JKn andS/ in<(JKn) have the same graded
Betti numbers.



CHAPTER 2

Extremal Betti numbers of some classes of binomial

edge ideals

In [14], the authors conjectured that the extremal Betti numbers ofJG
and in<(JG) coincide for any graphG. Here,< denotes the lexicographic
order inS= K[x1, . . . ,xn,y1, . . . ,yn] induced by the natural order of the vari-
ablesx1> · · ·> xn> y1> · · ·> yn. In this section, we give a positive answer
to this conjecture when the graphG is a complete bipartite graph or a cycle.
To this aim, we use some results proved in [29] and [32] which completely
characterize the resolution of the binomial edge idealJG whenG is a cycle
or a complete bipartite graph. In particular, in this case, it follows thatJG
has a unique extremal Betti number. We recall all the known facts on the
resolutions of binomial edge ideals of the complete bipartite graphs and cy-
cles. We study the initial ideal ofJG whenG is a bipartite graph or a cycle.
We show that projdimin<(JG) = projdimJG and regin<(JG) = regJG, and,
therefore, in<(JG) has a unique extremal Betti number as well. Finally, we
show that the extremal Betti number of in<(JG) is equal to that ofJG.

To our knowledge, this is the first attempt to prove the conjecture stated
in [14] for extremal Betti numbers. In our study, we take advantage of
the known results on the resolutions of binomial edge idealsof cycles and
complete bipartite graphs and of the fact that their initialideals have nice
properties.

2.1. Binomial edge ideals of complete bipartite graphs

LetG=Km,n be the complete bipartite graph on the vertex set{1, ..,m}∪
{m+1, ..,m+n} with m≥ n≥ 1 and letJG be its binomial edge ideal.JG

27
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is generated by all the binomialsfi j = xiy j − x jyi where 1≤ i ≤ m and
m+1≤ j ≤ m+n. In [29, Theorem 5.3] it is shown that the Betti diagram
of S/JG has the form

0 1 2 · · · p
0 1 0 0 · · · 0
1 0 mn 0 · · · 0
2 0 0 β24 · · · βp,p+2

wherep= projdimS/JG =

{
m, if n= 1,
2m+n−2, if n> 1.

In particular, from the above Betti diagram we may read thatS/JG has
a unique extremal Betti number, namelyβp,p+2.

Moreover, in [29, Theorem 5.4] all the Betti numbers ofS/JG are com-
puted. Since we are interested only in the extremal Betti number, we recall
here its value as it was given in [29, Theorem 5.4], namely,

βp,p+2 =

{
m−1, if p= m,
n−1, if p= 2m+n−2.

One may easily see that the only admissible paths of the complete graph
G=Km,n are the edges ofG, the paths of the formi,m+k, j with 1≤ i < j ≤
m, 1≤ k≤ n, andm+ i,k,m+ j with 1≤ i < j ≤ n, 1≤ k≤ m. Therefore,
we get the following consequence of Theorem 1.4.11.

COROLLARY 2.1.1. LetG = Km,n be the complete bipartite graph on
the vertex setV(G) = {1, . . . ,m}∪{m+1, . . . ,m+n}. Then

in<(JG) = ({xiy j} 1≤i≤m
m+1≤ j≤m+n

,{xixm+ky j}1≤i< j≤m
1≤k≤n

,{xm+iykym+ j}1≤i< j≤n
1≤k≤m

).

2.2. Binomial edge ideals of cycles

In this subsection,G denotes then–cycle on the vertex set[n] with edges
{1,2},{2,3}, . . . ,{n−1,n},{1,n}.

In [32] it was shown that the Betti diagram ofS/JG has the form

0 1 2 3 · · · n
0 1 0 0 0 · · · 0
1 0 n 0 0 · · · 0
2 0 0 β24 0 · · · 0
3 0 0 0 β36 · · · 0
...

...
...

...
...

...
...

n−2 0 0 β2,n β3,n+1 · · · βn,2n−2

and all the Betti numbers were computed. One sees that we have aunique
extremal Betti number and, by [32], we haveβn,2n−2 =

(n−1
2

)
−1.
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We now look at the initial ideal ofJG. It is obvious by Definition 1.4.9
and by the labeling of the vertices ofG that the admissible paths are the
edges ofG and the paths of the formi, i −1, . . . ,1,n,n−1, . . . , j +1, j with
2≤ j − i ≤ n−2. Consequently, we get the following system of generators
for the initial ideal ofJG.

COROLLARY 2.2.1. LetG be then–cycle with the natural labeling of
its vertices. Then

in<(JG) = (x1y2, . . . ,xn−1yn,x1yn,{xix j+1 · · ·xny1 · · ·yi−1y j}2≤ j−i≤n−2).

2.3. Extremal Betti numbers of complete bipartite graphs

LetG=Km,n be the complete bipartite graph on the vertex set{1, ..,m}∪
{m+1, ..,m+n} with m≥ n≥ 1 and letJG be its binomial edge ideal. The
initial ideal in<(JG) has a nice property which is stated in the following
proposition.

PROPOSITION2.3.1. LetG=Km,n be the complete graph. Then in<(JG)
has linear quotients.

THEOREM 2.3.2. Let G= Km,n be the complete graph. Then

βt,t+2(in<(JG)) = ∑
1≤i≤m

m+1≤ j≤m+n

(
i+ j −m−2

t

)
,

βt,t+3(in<(JG)) =





∑1≤i< j≤m
1≤k≤n

(n+k+ j−3
t

)
, if n = 1,

∑1≤i< j≤m
1≤k≤n

(n+k+ j−3
t

)
+∑1≤i< j≤n

1≤k≤m

(m+k+ j−3
t

)
, if n > 1.

In particular, by the above theorem, it follows the following corollary
which shows that forG = Km,n the extremal Betti numbers ofS/JG and
S/ in<(JG) coincide.

COROLLARY 2.3.3. LetG=Km,n be the complete graph. Then we have

(a) p= projdim(S/ in<(JG))= projdim(in<(JG))+1=

{
m, n= 1,
2m+n−2, n> 1.

(b) S/ in<(JG) has a unique extremal Betti number, namely

βp,p+2(S/ in<(JG)) = βp−1,p+2(in<(JG)) =

{
m−1, if n= 1,
n−1, if n> 1.
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2.4. Extremal Betti numbers of cycles

In this section, the graphG is ann–cycle. If n = 3, thenG is a com-
plete graph, therefore the idealsJG and in<(JG) have the same graded Betti
numbers. Thus, in the sequel, we may considern≥ 4.

As we have already seen in Corollary 2.2.1, in<(JG) is minimally gen-
erated by the initial monomials of the binomials corresponding to the edges
of G and bym= n(n− 3)/2 monomials of degree≥ 3 which we denote
by v1, . . . ,vm where we assume that ifi < j, then either degvi < degv j or
degvi = degv j andvi > v j . We observe that ifvk = xix j+1 · · ·xny1 · · ·yi−1y j ,
we have degvk = n− j + i +1. Hence, there are two monomials of degree
3, namely,v1 = x1xnyn−1 andv2 = x2y1yn, three monomials of degree 4,
namely,v3 = x1xn−1xnyn−2,v4 = x2xny1yn−1,v5 = x3y1y2yn, etc.

We introduce the following notation. We setJ=(x1y2,x2y3, . . . ,xn−1yn),
I = J+(x1yn), and, for 1≤ k≤ m, Ik = Ik−1+(vk), with I0 = I . Therefore,
Im = in<(JG).

LEMMA 2.4.1. The ideals quotientJ : (x1yn) andIk−1 : (vk), for k≥ 1,
are minimally generated by regular sequences of monomials of lengthn−1.

REMARK 2.4.2. From the above proof we also note that if we build the
monomialvk = xix j+1 · · ·xny1 · · ·yi−1y j , then the regular sequence of mono-
mials which generatesIk−1 : (vk) containsj − i −2 monomials of degree 2
andn− j + i+1 variables.

In the following lemma we compute the projective dimension and the
regularity ofS/I . This will be useful for the inductive study of the invariants
of S/Ik.

LEMMA 2.4.3. We have projdimS/I = n−1 and regS/I = n−2.

LEMMA 2.4.4. For 1≤ k≤ m, we have projdimS/Ik ≤ n and regS/Ik ≤
n−2.

PROPOSITION2.4.5. projdimS/ in<(JG) = n, regS/ in<(JG) = n−2.

THEOREM 2.4.6. Let G be a cycle. Then S/ in<(JG) and S/JG have the
same extremal Betti number, namely

βn,2n−2(S/JG) = βn,2n−2(S/ in<(JG)) =

(
n−1

2

)
−1.

REMARK 2.4.7. There are examples of graphs whose binomial edge
ideal have several extremal Betti numbers. For instance, thegraphG dis-
played below has two extremal Betti numbers which are equal tothe ex-
tremal Betti numbers of in<(JG).
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CHAPTER 3

On the binomial edge ideals of block graphs

In this chapter we study homological properties of some classes of bi-
nomial edge ideals. LetG be a simple graph on the vertex set[n] and let
S= K[x1, . . . ,xn,y1, . . . ,yn] be the polynomial ring in 2n variables over a
field K.

We show that ifG is a block graph, depth(S/JG) = depth(S/ in<(JG)).
Also we show a similar equality for regularity, namely

reg(S/JG) = reg(S/ in<(JG)) = ℓ if G is aCℓ−graph.

Cℓ-graphs constitute a subclass of the block graphs. In [20] it was shown
that, for any connected graphG on the vertex set[n], we have

ℓ≤ reg(S/JG)≤ n−1,

whereℓ is the length of the longest induced path ofG.
The main motivation of our work was to answer the following question.

May we characterize the connected graphsG whose longest induced path
has lengthℓ and reg(S/JG) = ℓ? We succeeded to answer this question for
trees. We show that ifT is a tree whose longest induced path has lengthℓ,
then reg(S/JT) = ℓ if and only if T is caterpillar. Acaterpillar treeis a tree
T with the property that it contains a pathP such that any vertex ofT is
either a vertex ofP or it is adjacent to a vertex ofP.

In [21], the so-called weakly closed graphs were introduced. Thisis
a class of graphs which includes closed graphs. In the same paper, it was
shown that a tree is caterpillar if and only if it is a weakly closed graph.
Having in mind our Theorem 3.2.1 and [16, Theorem 3.2] which states
that reg(S/JG) = ℓ if G is a connected closed graph whose longest induced
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path has lengthℓ, and by some computer experiments, we are tempted to
formulate the following.

CONJECTURE3.0.8. If G is a connected weakly closed graph whose
longest induced path has lengthℓ, then reg(S/JG) = ℓ.

We first recall some basic definitions from graph theory. A vertex i
of G whose deletion from the graph gives a graph with more connected
components thanG is called acut pointof G. A chordal graph is a graph
without cycles of length greater than or equal to 4. A clique of a graphG
is a complete subgraph ofG. The cliques of a graphG form a simplicial
complex,∆(G), which is called theclique complexof G. Its facets are the
maximal cliques ofG. A graphG is ablock graphif and only if it is chordal
and every two maximal cliques have at most one vertex in common.

The clique complex∆(G) of a chordal graphG has the property that
there exists aleaf orderon its facets. This means that the facets of∆(G)
may be ordered asF1, . . . ,Fr such that, for everyi > 1, Fi is a leaf of the
simplicial complex generated byF1, . . . ,Fi. A leaf F of a simplicial complex
∆ is a facet of∆ with the property that there exists another facet of∆, called
abranchof F, sayG, such that, for every facetH 6= F of ∆, H ∩F ⊆ G∩F.

3.1. Initial ideals of binomial edge ideals of block graphs

In this section we first show that for a block graphG on [n] with c
connected components depth(S/JG) = depth(S/ in<(JG)) = n+c, where<
denotes the lexicographic order induced byx1 > · · ·> xn > y1 > · · ·> yn in
the ringS= K[x1, . . . ,xn,y1, . . . ,yn].

We begin with the following lemma.

LEMMA 3.1.1. LetG be a graph on the vertex set[n] and let i ∈ [n].
Then

in<(JG,xi,yi) = (in<(JG),xi,yi).

THEOREM 3.1.2. Let G be a block graph and let c be the number of
connected components of G. Then

depth(S/JG) = depth(S/ in<(JG)) = n+c.

Let G be a connected graph on the vertex set[n] which consists of

(i) a sequence of maximal cliquesF1, . . . ,Fℓ with dimFi ≥ 1 for all i
such that|Fi ∩Fi+1| = 1 for 1≤ i ≤ ℓ−1 andFi ∩Fj = /0 for any
i < j such thatj 6= i+1, together with

(ii) some additional edges of the formF = { j,k} where j is an inter-
section point of two consecutive cliquesFi ,Fi+1 for some 1≤ i ≤
ℓ−1, andk is a vertex of degree 1.
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FIGURE 3.1. Cℓ-graph

In other words,G is obtained from a graphH with ∆(H) = 〈F1, . . . ,Fℓ〉
whose binomial edge ideal is Cohen-Macaulay (see [14, Theorem 3.1]) by
attaching edges in the intersection points of the facets of∆(H). Therefore,
G looks like the graph displayed in Figure 3.1.

Such a graph has, obviously, the property that its longest induced path
has length equal toℓ. If a connected graphG satisfies the above conditions
(i) and (ii), we say thatG is a Cℓ-graph. In the case that dimFi = 1 for
1≤ i ≤ ℓ, thenG is called acaterpillar graph.

We should also note that anyCℓ–graph is chordal and has the property
that any two distinct maximal cliques intersect in at most one vertex. So
that anyCℓ-graph is a connected block graph.

THEOREM 3.1.3. Let G be aCℓ-graph on the vertex set[n]. Then

reg(S/JG) = reg(S/ in<(JG)) = ℓ.

EXAMPLE 3.1.4. For the graphG of Figure 3.1 we get reg(S/JG) = 5.

3.2. Binomial edge ideals of caterpillar trees

Matsuda and Murai showed in [20] that, for any connected graphG on
the vertex set[n], we have

ℓ≤ reg(S/JG)≤ n−1,

whereℓ denotes the length of the longest induced path ofG, and conjectured
that reg(S/JG) = n−1 if and only ifT is a line graph. Several recent papers
are concerned with this conjecture; see, for example, [16], [25], and [27].
One may ask as well to characterize connected graphsG whose longest
induced path has lengthℓ and reg(S/JG) = ℓ. In this section, we answer this
question for trees.
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A caterpillar tree is a treeT with the property that it contains a pathP
such that any vertex ofT is either a vertex ofP or it is adjacent to a vertex
of P. Clearly, any caterpillar tree is aCℓ-graph for some positive integerℓ.
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FIGURE 3.2. Caterpillar
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FIGURE 3.3. Induced graph H

Caterpillar trees were first studied by Harary and Schwenk [17]. These
graphs have applications in chemistry and physics [12]. In Figure 3.2, an
example of caterpillar tree is displayed. Note that any caterpillar tree is a
narrow graph in the sense of Cox and Erskine [5]. Conversely, one may
easily see that any narrow tree is a caterpillar tree. Moreover, as it was
observed in [21], a tree is a caterpillar graph if and only if it is weakly
closed in the sense of definition given in [21].

In the next theorem we characterize the treesT with reg(S/JT) = ℓ
whereℓ is the length of the longest induced path ofT.

THEOREM 3.2.1. Let T be a tree on the vertex set[n] whose longest in-
duced path P has lengthℓ. Thenreg(S/JT) = ℓ if and only if T is caterpillar.



CHAPTER 4

Binomial edge ideals and rational normal scrolls

Let K be a field andS= K[x1, . . . ,xn+1] the polynomial ring inn+ 1
variables over the fieldK. The 2-minors of the matrix

X =

(
x1 . . . xn−1 xn
x2 . . . xn xn+1

)

generate the idealIX of the rational normal curveX ⊂ Pn. It is well-known
thatS/IX is Cohen- Macaulay and has anS–linear resolution. We refer the
reader to [10], [4], [1] for properties of the ideal of the rational normal
scroll.

On the other hand, in the last few years, the so-called binomial edge
ideals have been intensively studied. In analogy to the construction of clas-
sical binomial edge ideals, in this chapter we consider the following ideals
in S. For a simple graphG on the vertex set[n], let IG be the ideal generated
by the 2-minorsgi j = xix j+1−x jxi+1 of X with i < j and{i, j} ∈ E(G). We
call IG thebinomial edge ideal of X.

It is clear already from the beginning that unlike the case ofclassical
binomial edge ideals, the idealIG strongly depends on the labeling of the
graphG. For example, ifG is the graph displayed in Figure 4.1, we get
dim(S/IG) = 3 for the labeling given in Figure 4.2 (a) and dim(S/IG) = 4
for the labeling ofG given in Figure 4.2 (b).

However, for some classes of graphsG which admit a natural labeling,
we may associate withG a unique idealIG and study its properties. This
is the case, for instance, for closed graphs. We recall from [19] that G is
closed if it has a labeling with respect to which is closed. A graphG is
called closed with respect to its given labeling if for all edges{i, j} and
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FIGURE 4.2

{i,k} with j > i < k or j < i > k, one has{ j,k} ∈ E(G). A closed graph
G is chordal and, therefore, by Dirac’s Theorem, its clique complex∆(G)
is a quasi-forest.∆(G) is a quasi-forest if the facetsF1, . . . ,Fr of ∆(G) have
a leaf order. It was shown in [14] that if G is closed, then we may label
the vertices ofG such that the facets of∆(G), sayF1, . . . ,Fr , are intervals,
Fi = [ai,bi] ⊂ [n] and if we orderF1, . . . ,Fr such thata1 < a2 < · · · < ar ,
then this is a leaf order.

The rest of this chapter is structured as follows. In Section4.1, we show
that the generators ofIG form a Gr̈obner basis with respect to the reverse
lexicographic order if and only ifG is closed with the given labeling. As
a consequence of this theorem, we derive that, for a closed graphG, the
ideal IG is Cohen-Macaulay of dimension 1+ c, wherec is the number of
connected components ofG.

In Section 4.2, we study the properties ofIG for a closed graphG. We
compute the minimal prime ideals ofIG in Theorem 4.2.2. By using this
theorem, we characterize those connected closed graphsG for which IG is
a radical ideal (Proposition 4.2.3). In addition, we show, in Corollary 4.2.4,
thatIG is a set-theoretic complete intersection ifG is connected and closed.
In the last part of Section 4.2, we give a sharp upper bound forthe regularity
of IG (Theorem 4.2.7) and we show thatIG has a linear resolution if and only
if G is a complete graph.

4.1. Gröbner bases

Let G be a graph on the vertex set[n] and IG ⊂ S= K[x1, . . . ,xn] its
associated ideal. The main result of this section is the following.



4.2. Properties of the scroll binomial edge ideals of closedgraphs 39

THEOREM 4.1.1. The generators of IG form the reduced Gr̈obner basis
of IG with respect to the reverse lexicographic order induced by x1 > · · ·>
xn > xn+1 if and only if G is closed with respect to its given labeling.

As in the case of classical binomial edge ideals associated with graphs,
the idealIG whereG is the line graph onn vertices has nice properties.

Let G be a line graph on[n] with E(G) = {{i, i +1} : 1 ≤ i ≤ n−1}.
Then IG is minimally generated by{gi,i+1 = x2

i+1 − xixi+2 : 1 ≤ i ≤ n−
1} and inrev(IG) = (x2

2,x
2
3, . . . ,x

2
n). As x2

2,x
2
3, . . . ,x

2
n is a regular sequence

in S, it follows that the generators ofIG form a regular sequence as well.
Consequently, the Koszul complex of the generators ofIG gives the minimal
free resolution ofS/IG overS.

The following proposition shows that, for a closed graphG, the ini-
tial ideal of IG with respect to the reverse lexicographic order has a simple
structure.

PROPOSITION 4.1.2. LetG be a closed graph on[n] with the clique
complex∆(G) = 〈F1, . . . ,Fr〉 whereFi = [ai,bi] for 1≤ i ≤ r, and 1= a1 <
· · · < ar < br = n. Then inrev(IG) is a primary monomial ideal, hence it is
Cohen-Macaulay.

COROLLARY 4.1.3. LetG be a closed graph. ThenIG is a Cohen-
Macaulay ideal of dim(S/IG) = 1+ c wherec is the number of connected
components ofG.

4.2. Properties of the scroll binomial edge ideals of closedgraphs

In this section we study several algebraic and homological properties of
the idealIG whereG is a closed graph on the vertex set[n].

4.2.1. Associated primes.We recall thatIX denotes the binomial edge
ideal associated with the complete graphKn. It is well known thatIX is a
prime ideal.

PROPOSITION4.2.1. LetG be an arbitrary connected graph on the ver-
tex set[n]. ThenIX is a minimal prime ofIG. If P is a minimal prime ideal
of IG which contains no variable, thenP= IX.

Now we restrict our study to ideals associated with connected closed
graphs.

THEOREM4.2.2. Let G 6=Kn be a connected closed graph on the vertex
set[n] and IG its associated ideal. Then

Ass(S/IG) = Min(IG) = {IX,(x2, . . . ,xn)}.
As a consequence of the above theorem, we may characterize the radical

idealsIG.
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PROPOSITION4.2.3. LetG be a connected closed graph on the vertex
set[n]. ThenIG is a radical ideal if and only if

G= Kn or ∆(G) = 〈[1,n−1], [2,n]〉.
Theorem 4.2.2 has the following nice consequence.

COROLLARY 4.2.4. LetG be a connected closed graph. ThenIG is a
set-theoretic complete intersection.

4.2.2. Regularity. Let G be a closed graph on the vertex set[n] and
IG ⊂ S its associated ideal. The first question we may ask is under which
conditions on the graphG the idealIG has a linear resolution. The next
proposition answers this question. We first need the following known state-
ment.

LEMMA 4.2.5. [3, Exercise 4.1.17 (c)] LetR= K[x1, . . . ,xn]/I be a ho-
mogeneous Cohen-Macaulay ring. The ringR has anm-linear resolution if
and only ifI j = 0 for j < mand dimK Im =

(m+g−1
m

)
whereg= heightI .

PROPOSITION4.2.6. LetG be a closed graph on[n]. Then the following
are equivalent:

(a) G is a complete graph;
(b) IG has a linear resolution;
(c) All powers ofIG have a linear resolution.

In the next theorem we give an upper bound for the regularity of IG
whenG is a closed graph.

THEOREM 4.2.7. Let G be a closed graph on the vertex set[n]. Then
reg(S/IG)≤ r where r is the number of maximal cliques of G.

REMARK 4.2.8. The upper bound given in the above theorem is sharp.
Indeed, letG be a closed graph with the maximal cliquesFi = [ai,ai+1]
where 1= a1 < a2 < · · ·< ar < ar+1 = n. In this case, we have

inrev(IG) = (x2, . . . ,xa2)
2+(xa2+1, . . . ,xa3)

2+ · · ·+(xar+1, . . . ,xn)
2.

Therefore,

S/(inrev(IG),x1,xn+1)∼= (S1/(x2, . . . ,xa2)
2)⊗K · · ·⊗K (Sr/(xar+1, . . . ,xn)

2),

whereSi = K[xai+1, . . . ,xai+1] for all i, which implies that

HS/(inrev(IG),x1,xn+1)(t) =
r

∏
i=1

(1+(ai+1−ai)t).

This shows that reg(S/IG) = r.

From Proposition 4.2.6 and Theorem 4.2.7, we derive the following con-
sequence.
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COROLLARY 4.2.9. LetG be a closed graph with two maximal cliques.
Then reg(S/IG) = 2.

The following example shows that the inequality given in Theorem 4.2.7
may be also strict.

EXAMPLE 4.2.10. LetG be the closed graph on the vertex set[6] with
the maximal cliquesF1 = [1,4],F2 = [3,5],F3 = [4,6]. Then reg(S/IG) =
2< 3.





Conclusions and further research

In summary, the main original results of this thesis are the following.

1. We showed that, ifG is a complete bipartite graph or a cycle, then
the associated binomial idealJG and its initial ideal in<(JG) with
respect to the lexicographic order inS= K[x1, . . . ,xn,y1, . . . ,yn]
have the same extremal Betti numbers.

2. If G is a block graph on the vertex set[n], then depth(S/JG) =
depth(S/ in<(JG)) = n+ c wherec is the number of connected
components ofG.

3. If G is aCℓ-graph, then reg(S/JG) = reg(S/ in<(JG)) = ℓ. In par-
ticular, it follows that the binomial edge ideal of aCℓ–graph has
minimal regularity.

4. We characterized the trees whose binomial edge ideals have mini-
mal regularity.

5. We introduced binomial edge ideals of closed graphs associated
with scrolls and we studied several algebraic and homological prop-
erties of them.

Binomial edge ideals have been intensively studied in the last 5 years. We
intend to continue our research on this topic with a special focus on Matsuda
and Murai conjecture [20] which states that, for a graphG on the vertex set
[n], we have reg(S/JG) = n− 1 if and only if G is the line graph. This
conjecture was proved for block graphs in [16]. In particular, it follows
that this conjecture holds for trees. Another interesting problem is to solve
the conjecture on binomial edge ideals with minimal regularity which we
proposed in [8].
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Moreover, we would like to extend our research on binomial edge ideals
associated with scrolls. For instance, one direction is to generalize our con-
struction for a pair of graphs for a Hankel matrix of arbitrary type following
ideas of the paper [15].
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